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Polaroids: a new tool in non-convex

and in integer programming

by

Claude-Alain Burdet

ABSTRACT

This paper presents a generalization~called polrodof the contept

of polar sets.

A list of properties satisfied by polaroids is established indicat-

ing that the new concept may be fruitfully used in an area of non-conve;:

(called here polar) pragramming as well as in integer programming, by

means of nolaroid cats; this class of new cuts contains the ones defined by

Tuy for concave programming (a special case of polar programming) and by

Balas for integer programming; it furthermore provides for new degrees

of freedom in the const.-uction of algorithms in the above-mentioned areas

of mathematical programminl.g.
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I) Preliminaries

In this introductory section we present the definitions and some

relevant properties of a new concept: polaroid sets and functions;

these mathematical objects are derived directly from the theory of con-

vex sets and represent a generalization of polar sets; historically,

polar relationships have been one of the main topics in projective geome-

try where the involutory correspondence of poles and polars is of prime

interest. The first generalization to polar sets can be found in Min-

kowski [8 ]; these sets have since played an increasingly important

role in the area of convex analysis and mathematical programming (see

for instance, the treatise [10] by Rockafellar); more recently, Balas

[ 21 has uncovered an interesting application of polar sets to integer

progran•m.½-, there the use of a positive-definite quadratic form (n-

dimensional. sphere or ellipsoid) allows him to define his outer-polar

sets which enjoy all the desirable properties for the convex outer-

domain theory of valid intersection cuts (further aspects of this theory

have been discussed Ly Clover [5] and Burdet 13,4]).

Our objectiva here is merely to present some fundamental properties

of polaroids, and to indicate how they can be fruit~ul in an area of

non-convex linearly constrained programming (called here polar program-

ming) as well as in integer (primarily zero-one) programming.

When the constrained set is polyhedral, the use of polaroids can be

viewed as a generalization of the intersection approach of Hoang 'Ey f7]

for concave programming or of the intersection cut approach initiated by

Balas [ 1] in integer programming. The generalization with respect to

[7 ] is that polaroid cuts can be defined for non-concavP problems;
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furthermore, for concave problems Tuy's cuts are uniformly dominated by

polaroid cuts; indeed Tuy's approach can be imbedded as a trivial special case

in the presenL zheory. With respect to the results of Balas [3,2], the

generalization consists in the fact that:

a) convex polazoids can be defined for a more general class

of functions than positive eefinite quadratic forms as

in [2 ] ; adequately constructed polaroids

can be used as convex outer-domains to generate new

cutting planes.

b) the convexity requirement imposc on outer-domains

merely plays the role of 3 sufficiency condition in the

construction of an intersection cutI

and it can be relaxed; it is shown that non-

convex polaroids may very well be used to generate valid

polaroid cuts.

Mee* cmIpa: T1he underlying goal of this report is not primarily focused

on numerical and computational aspects of the uncovered

properties; the basic idea was to start with as general an object as pos-

sible (viz. polaroid sets) and to test those properties which seem prom-

ising for the global optimization of non-convex problems. The analysis

resulted in a hierarchy of properties ranked by increesingly strong

assumptions. In a second effort it was found, however, that many of the

additional assumptions leading to the more sophisticated (higher ranked)

properties (such as convexity) certainly are convenient because they pro-

vide for automatic sufficiency conditions, but at the same time they seem
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to be unnecessarily taming the power of the approach. Ror insLdnce, for

the construction of a cutting plane it is believed (as indica*.ed in the %.n-

clusic~ns) that a fruitful line of research (Ln order to attain computational

efficiency) would be to proceed along the following way:

a) generate a cut under very weak a priori assumptions (from

an arbitrary polaroid, for instance).

"b) check a posteriori the validity of the cut (using theorems

13 or 14); this may require 4n ad hoc weakening

readjustment of the cutting plane but will in general yield

a better cut than if sufficiency conditions had been postu-

lated a priori for the entire polaroid.

2) Polaroids

Let f =fx,y)- be a real valued function with two n-vector argu-

ments x and y ; let P denote a closed set in IR

Definition 1: For a given value of the parameter k , define the polaroid

set P*(k) by

P*(k) = ly I f(x,y) <_ k , VxeeP (1)

By convention set P*(O) 0 , Vk < min {f(x,y) I xP1P
y

Theorem 1 (Inclusion theorem):

For any closed sets P and Q C Rn , one has the following implica-

tions:

If Q cP then Q*(k) =P*(k) ; and

If kI >k 2 then P*(N = P*(k2)



4.

El of: The nLssertions follow from (1):

Q*(k) (-y f x,y) <_ k , VxcQ) D (yj f(x,y) _< k , VxcP D Q) - P*(k)

P*(k 1 )= [y! f(x,y) < kit VxcPJ I (4Y f(xy) < k<_ k, VxcP) = P*(k 2 )

Q.E.D.

Theorem 2 (Union tteorem): For any closed sets P , Q one has

(P U Q)* (k) = P*(k) n Q*(k)

Proof: (P U Q)* (k) f yif(x,y) < k , Vxg(P U Q)] )

fyi r(x,y) <_ k , vx, P) n fy f(x,y) <_ k , VxcQ}

P*(k) r Q*(k) . Q.E.D.

Corollary 2.1: Let

(P A Q) - cl (x xe(P U Q) and xi(P n Q)]

Then one has

(P n Q) (k) n (P A Q) (k) = P*(k) n Q (k)

Proof: (P U Q) (k) = [(P U Q) U (P A Q)]*(k) (P n Q) (k)fl (P A Q) *(k)

On the other hand, theorem 2 implies:

(P U Q) (k) = P (k) n Q (k) Q.E.D.

Theorem. 3 (Intersection theorem):

(P n Q)* (k) D p*(k) U Q*(k)

Proof: (P n Q) (k) = y f(x,y) < k , Vxe(P n Q))

:D fy ! f(x,y) 5 k , VxeP} U fy I f(x,y) < k , VxeQl

= P (k) U Q (k) . Q.E.D.
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corollary 2.2:

P (k) -- (P n Q)* (k) n (P a (P P Q)) (k)
(k) (P n Q) (k) n (Q * (P Fi Q))* (k)

Proof: P (P n Q) uP A (P fn Q)) , and similarly for Q ; applying

the union theorem completes the proof. Q.E.D.

Corolla!r 2.3:
* q* *k)

P (k) U Q = (P nl Q) (k) n [(P A (P fl Q))*(k) U (Q A (P n Q))*(k)]

D (P -n Q) (,k) n (P A Q) *(k) =P (k) n. Q (k)

Proof: The (first) equality is obtained directly from the corollary 2.2;

the inclusion can be deyived by inspection of the polaroid sets

in the bracket or directly from corollary 2.1, since P U Q D P n Q

Definition 2: The function g = g(x) = f(xx) is said polarized by f_.

Denote the level set of g by lev g Ix g(x)<cy

Defi.Ition 3: An arbitrary (closed compact) set S satisfying

o S n P c -evk g

is called a valid cut at the level k

Tbeorem 4: A cut S •valid at the level k •is valid at all higher

levels k 2 (> kp) .

Proof: Immediate since lev g k levk g by definition.

-E2
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3) Convex Polaroids

Theorem 5: The polaroid P*(k) is convex Vk

if f f(x,y) is quasi-convex in y, for all xSP

1 2Proof: Let y and y be arbitrary points in P*(.) ; and set

3 1 2
y Xy +(-X)y , O<X<l

then VxeP , one has

f(x,y 3 f(x,%yI + (l-,X)y2) <max {f(x,y), f(x,y )] = k

Furthermore, assume P*(k) convex for all k ; thus let

y3 = yI (I-X)y 2 thnoehsy3e *k foal ksuhtt
y - +, then one has yeP*(k) , for all k such that

y and y-e P*(k) i.e. for all k such that:

k >_max [f(x,yI, f(x,y2 xeP* •

In particular for

k = k max ff(x,y fx,y2 ) xeP.

3Since y e P() one has VxeP

3 -1 2f(x,y ) <k =max ff(x,yI) , f(x,y2)J VxeP

Q.E.D.

In order to acquire at this point a better geometrical feeling for the con-

tent of the statement in theorem 5 let us review some classical results:
n

1) Let f be the euclidean scalar product f(x,y) = < xy>
Sil xii

which yields (the square of) the euclidean norm as polarized
n 2

function R(x) = x
Si1=1

__ __F
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Following the classical definition [101 one finds

that, in this case, the polaroid P*(l) is nothing but the

polar set P*IP*(l) = P* fx* "Oc'x*> K VxeP)

In [2] Balas introduced a generalization of the classical

concept by allowing for a scaling factor k in the

above definition. Clearly this can be absorbed in our

definition, either by considering the polaroid P (k)

with respect to the same polaroid function f , or by

changing the polaroid function to f = f and retaining

the parameter 1 : P (1).

Since f is bilinear it is quasi-convex in y and theorem 5

t:9raphrases,in this case, the convex property of

polar sets.

2) Let f be the scalar product function corresponding to a

general Riemann metric, with arbitrary (real symmetric)

metric tensor g ; i.e.

n
f(x,y) = giik,

i , k=1

for the polarized function g one has

n
g(x; Z i

i , 
xk1

Since the parameter k can always be absorbed by the tensor

gik ' the polaroid P* = P*(l) is a genuine generalization

of the polar concept, to arbitrary quadratic forms (not

necessarily definite or positive).

Since f is again bilinear, one finds from theorem 5

that the polaroid P* generated from an arbitrary set P

is convex; in a follow-up paper, we show how the nolaroii
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theory can be used to solve an arbitrary non-convex quad-

ratic programming problem (particularly in the indefinite case) [121,

3) The following extension of a Riemann metric was found

useful to generate convex outer-domains In integer pro-

gramming [4 1.

n
Let f(x,y) Z gixiYiy

i~l

= (a+)-2 for xi > 0

0 ~ +0where g. =0 for a. =0 or a, 0

-- 2Ai(a) for x. < 0

n +
with 2 A. = I , A. > 0 , (a. and a.- being given quantities)._ i-I 1 1z --

"The corresponding polarized function g
• n

g(x) = n i is

i=l2..

piecewise quadratic, i.e. it is quadratic in each of the

2n "orthants of Rn.," But here agaii becaure f(x,y) is

linear in y for every x in a given orthant, the .. la-

roid set P (k) can be shown to be convex.

4) Consider a quasi-convex function g(x) and define

f(x,y) = g(y) , Vx

The polaroid P*(k) then merely reduces to P*(k) = levk g

and theorem 5 restates the known convexity property ot

levk g . In general-, however, tb.hre belongs many other

possibilities for choosing f = f(x,y) such that f(x,x) = g(x) ;
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hence there will correspond other polaroid sets to

the same polarized function g(x) ; example 1 illus-

trates this situation, for instance.

5) This list could extend indefinitely! As a final example

consider

n n
f =f(x,y) = (c.. + r d..,,.x,_ yiy

and suppose that P has the property that the matrix

[C + Dx] is positive semi-definite VxeP . Then

f(x,y) is convex VxeP and the polaroid P* is

convex.

4) Complete polaroids

Until now we always considered k as an accessory parameter whose

value played no essertial role. We now analyze polaroids (convex or not)

corresponding to particular values of k

Definition 4: The polaroid P*(k) defined by (1) is called complete if

p c P*(k)

Definition 5: A function f = f(x,y) is called complete on P at the level k if

f(x,y) _< k , Vx,yeP

Theorem b (Com let61....• the-rem :

The polaroid P*(k) is complete iff f is complete on p (at the level k).

Proof: Take any x'eP ; then f(x,x') < k , VxeP by hypothesis,when

f is complete; but one has P*(k) = (y) (f(x,y)) •_ k , VxeP,

which shos that x' must belon; to P*(k) and hence P c P*(k) .

Conversely, suppose P*(k) complete; the argument is by contradiction:

su-pose there exists a pair x,yeP such that f(x,y) k ; in this

su-ps
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case one has either xjP*(k) or yjP*(k) , or both; in any case

P • P*(k) which is contrary to hypothesis.

Q.E.D.

The following theorems will be useful in establishing

opti-iality conditions for polar programming as well as for testing the

validity of polaroid cuts in integer programming.

Corollary 6.1: If P (k) is complete then P C levkg

Proof: By hypothesis one has f(x,y) < k , Vx,ycP ; hence, in par-

ticular for y = x : f(x,x) = g(x) < k

Q.E.D.

Theorem 7: If f is symmnetric, i.e. f(x,y) = f(y,x) then

p C (P* (k))*(k)

Proof: P (k) = (ylf(x,y) < k Vxe•p•P , hence

f(x,y) <__ k , VxeP , VyP "(k); but by hypothesis

f(x,y) = f(y,x) <_ k , hence VxCP , one has

xc(P (k)) (k) = tylf(y,u) < k , VyeP (k)'1

and therefore P C (1 (k) (k) Q.E.D.

Corollary 7.1: If P (k) is complete (and f sytmmetric) then

P C (P (k)) (k) C P (k)

Proof: P C P (k) implies

(P-(k))-(k) = [yjf(x,y) < k, VxsP (k)j c

C fy f(x,y) < k, VWePI P (k)

Q.E.D.
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Let us now consider the "boundary" sets

bd P*(k) = [yeP*(k) I f(x,y) = k , for some xeP]

bd (levkg) = (x ? g(x) k

Theorem 8: Suppose P*(k) is complete, then one has

[P n bd(levkg)] c [P nl bd P*(k)]

Proof: First let us note that the assertion is trivial for

[P ( bd(levkg)] = 0

Take xe [P n bd(Gevkg)] , i.e. xcP with g(x) = k . Since

P*(k) is complete, one also has xe?*(k). Thus xeP*(k) and

g(x) = f(x,x) = k , with xeP which completes the ?roof.

Q.E.D.

Theorem 6 indicates that when P*(k) is complete, k ih mn

upper bound for the polarized function g on the set P . Theorem 8

nmw states that this upper bound may only be attained on the "boundary"

of the polaroid P*(k) . Thus completeness means that no interior

point of P*(k) is an optimal polar program x e P , with

E = max g(x) = g(x) • This i.s stated in the following
xeP

Corollary 8.1 (Boundary Theorem).

If P*(k) is complete, then every optimal solution x of the

polar programming problem

maximize g(x , subject tc .o.P

satisfies X • bd P*(k)

Proof.: Optimality implies x e bd levkg ; theorem 8 completes the proof.

Q.E.D.
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Me above corollary, in a way, corresponds to the classical result

assezting that the maximum of a quasi-convex function over a closed

(bounded) set P is always attained on the boundary of P .

Theorem 9: Let Q c P ; if P*(k) is complete, then Q*(k) is

complete.

Procf: From the inclusion theorem 1 one has P*(k) C Q*(k) and com-

pleteness of P*(k) yialds

Q C P C P*(k) C Q*(k)

Q.E.D.

Theorem 10: Let Q C P and P*(k) be complete; then one has

Q C P C levkg

and

(levkg)* (k) C P*(k) C Q*(k)

Proof: Immediate from theorems I and 7.

Q.E.D.
Corol] try 10.1: if P*(k) and (levkg)* (k) are complete, then one

has

Q C P C levkg C (ex kg)* (k) C P*(k) C Q*(k)

Proof: Immediate from theorem 10. Q.E.D.

h1eorem 11: If '? 6 Q)* (k) is complete, then both P*(k) and

A QQ*(k) are complete.

Proof: From tle union theorem one has

(P U Q) C (P U Q)* (k) = P*(k) I"I Q*(k)

but PC (P U Q) so that P C P*(k) n Q*(k)

and hence P C P*(k) ; and similarly for Q - Q.E.D.

\I
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In integer programming, one is really interested in the polaroid

set of isolated sets (points in all integer-, or linear fibers in

mixed integer-programming). Completeness of the outer-domain is

clearly a desired feature in order to generate a deep cut and theorem

11 indicates that such an outer domain can be constructed as the inter-

section of individual polaroids (one for each point or fiber) proviued

all such polaroids contain all feasible integer points.

The same argument holds true, of course, in polar programming

if the feasible set P consists of (or is arbitrarily split into)

several components.

5) Validity and optimality conditions

The definition 3 of a valid cut allows one to consider optimality

conditions in polar programming as a particular valid cut; this is formu-

lated in the next

Theorem 12: The polarized function g(x) = f(x,x) attains its maxi-

nal value k = g(x) over the set P at the point xeP

iff there exists a valid cut S at the level k max g(x) = g(x)
xeP

Proof: _Trivial (take for instance S = levI g) Q.E.D.
k

In this section we are not only interested in stating necessary and

sufficient optimality conditions for polar programs in terms of more

general kand computationally more easily tractable) polaroids than

the (trivial) level sets lev g ; we also want to find the conditions

which must be satisfied, for an arbitrary cut to be valid; for instance,

the term valid cut can here be visualize • as . t-;uning from the cutting

plane approach of Tuy [7] for concave programming, or from the inter-

section cut approach, in integer programming. [1,4,5]. In tne latter case, how-

ever, a somewhfat stronger concept for valid cuts is necessary (see section 7).
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Theorem 13: If the set (P n S)* (k) is complete then

S is a valid cut at the levwl k

Proof: Immediate from theorem 7, applied t., the set (P nl S)

Theorem 14: Every subset S of a polaroid P*(k) is a valid cut.

Proof: (Eliminate the uninteresting case where S n P = .) One has

P*(k) =y I f(x,y) < k , VxeP'i

hence f(x,y) <k VxeP , VyeS c r*(k) and in particular

f(x,y) <k , Vx,ye P n S

Thus the function f is complete on the set (P (' S) ; theorems 6 and

7 ee'tablish that the definition 3 is satisfied. Q.E.D.

Corollary 14.1: P n P (k) c levkg

Proof: I) One may simply set S=P (k) and apply Theorem 14 together with
Definition J.

2) Alternately, the proof can be obtained as follows:

I (k) = fyj f(x,y) < k, VxeP)

henc. yFP (k) - f(x,y) < k, VxeP and, in particular,

when x=yeP, one Las

f(y,y) = g(y)<_ k, VyeP 7, P (k)

Q.E.D.

In theorems 13 and 14 one notes that neither of them requizes

completeness of P*(k) ; all that is required in theorem 13 is that the

cutoff portion of P (i.e. (P fn s) ) be contained in the polaroid

(P r, S)* (k) ; from the intersection theorem 3 one has

(P n S)* (k) D P*(k) U S* (k)
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showing that the hypothesis of theorem 13 is quite weak and should

be easy to test computationally; in particular when one constructs S as

a subset of P*(k) (as is often practically the case) theorem 14

shows that one merely must ensure S c P*

Corollary 6.2: (Optimality theorem)

The point x is an optimal solut-ion of the polar programming

problem

maximize g(x) , subject to xeP

if f there exists a complete polaroid P*(k) such that

x e bd P*(k)

Proof: Immediate from theorems 7 and 8. Q.E.D.

6) Polaroid cuts for linearly constrained polar or integer programming problems.

El
L.et us now focus our attention on the polyhedral sets PC R i.e.

P = {X = X1,...,xn) I xi = x- i " ai.- t_ 0 , Vic(' _ 11. (2)9
1 jOi 13 .

where it is assumed that (2) represents a linear program in explicit

(Tucker) format, expressed with respect to a basis with non-basic set

NC (N U M) ; N = [1.2,...,n) is the set of the original variables;

M = [n+l,...,no+T) :s the set of the slack (and artificial)variables.

Consider the extreme(basic)ray uJ(t.) = x - a.t. , t. > 0 , jeN

where aj = (a l,a. ... ,a n) ,

--- (XI X ''-n

and assume (for simplicity of the exposition) that e Int P*(k)

i.e. that the intersection points u (X ) of each ray u-, jeN with

the"boundary'of P*(k) are different from x , that is

SJ)i = 7Ti-. ,ih .U (A a t
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Furthermore define the halfspaces

H+ (x=x(t)f t > 1

H =(x x(t) I -. t.<l)
jeN 3

where x(t) = (xl(t),x 2(t),...,x (t)) is given by the n first com-

ponents of the linear program (2) characterizing P . Clearly H+ and

H are open, and they are both defined by the cutting plane

1 -- t.=l

jeN KJ 3

(Note that, (by assumption) x e , i.e. x j H+)

Define the set S C P*(k) as the following n-dimensional simplicial

hull S = cony {x, uJ(Xj) , VjcN)

Assuming that the hypothesis of one of the theorem 13 or 14 is

satisfied the set S represents a valid cut. (See section 7) Implementation into

the current linear programming tableau merely amounts to the addi-

tion of the new linear constraint

> >

jeN K ?i
called polaroid cut.

For the use of a cutting plane method to solve non-convex prob-

lems the reader is referred to the papezs by Hoang Tuy [ 7 1, Glover [5]

and Klingman [11], Gomory [61, Balas [1, 2 ] or Burdet [ 3,13]. A more

detailed study of particular typesof polaroid cutsin integer pro-

gram•ning is given in Burdet [4,12 ].
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7) Conclusions

In polar programming the objective function is the polarized

function g ; algorithms for solving such non-convex optimization

problems therefore follow a stepwise construction of a set S

satisfying

P[ S C P*(i.

where k is always the current best value and ultimately

= max g(x) . The optimality theorem provides for ihe
xCP

stopping criterion. In practice, the use of polaroids will prove

efficient whenever the set P*(k) is much larger than P ; in this case

ample room is left for an easy construction of a set S yielding a suf-

ficiency condition for global optimality.

In integ1 r pregramming, the use of polaroids is somewhat Oif-

ferent since they are only used for the characterization of

the set of feasible integer solutions, as compared to the other

(continuous) feasible solutions; the polarized function g then

usually has the property:

g(v) = V Vv vertex of a unit cube U(x)

.ontaining the linear programming

optimum x .

g(x) < 1 Vx C U(x)

thus k 1 ; the meaning of a valid cut S here becomes: Int(S) con-

tains no feasible integer point (as shown by theorem 13, the cor.-

struction of a valid cut requires neither completeness nor Lonvex-
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ity of the polaroid P ). However, a stronger definition of valid cuts

is needed here; we need add the requirement

Int(S) n [P n bd levk] =g

to the definition 3.

In terms of this new definition, Theorem 13 remains true if one requires

the additional hypothesis:

S c (P n S) (k) ; indeed, by Lneorem 8:

(P n S n bd levkg) C (P 0 S bd (P 0 S) (k))

every feasible integer point which lies in S also lies on the boundary of S :

bd1 S r (P r) S ) bd levkg)

(Proof : since Int(S) n bd (P 0 S) (k) = 0 one has

Int(S) n bd levkg g 0 , Q.E.D.)

This general result opens a new are. of research which contrasts from the

algebraic approach of Gomory [6] or the intersection approach of Bales [I]

where one imposes in advance conditions which are sufficient to ensure the

validity of the cut independently of the particular simplex S which

is actually generated. The polaroid cut approach also entails such

a possibility (using convex and complete polaroids); but, in addition,
*i

it can lead to new methods where an arbitrary polaroid P is used to

generate the simplex S (owing to the generality of P , this cut

can be made deep); in a second phase, the validity of S is then

established; for instance by checking directly S C P (theorem 14).
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Footnotes

Page1/______ ______ ___

- f is in fact a bifunction [10] with object functions f(x;.), for

xCP; f can also be viewed as a multivalued mapping IR n 'JR, where each

xeP determines a particular mapping.

151I!

I

I
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