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Institut de Physique Théorique, CEA Saclay, CNRS URA 2306,

F-91191 Gif-sur-Yvette, France

E-mail: iosif.bena@cea.fr, mariana.grana@cea.fr,

stanislav.kuperstein@cea.fr, stefano.massai@cea.fr

Abstract: Anti-D3-branes at the tip of the Klebanov-Strassler solution with D3-charge

dissolved in fluxes give rise, in the probe approximation, to a metastable state. The fully

back-reacted smeared solution has singular three-form fluxes in the IR, whose presence

suggests a stringy resolution by brane polarization à la Polchinski-Strassler. In this paper
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1 Introduction

An extensive body of work has dealt over the past few years with the important question

of the backreaction of anti D-branes in backgrounds that have D-brane charge dissolved

in supergravity fluxes, focusing in particular on anti-D3 branes in the Klebanov-Strassler

(KS) warped deformed conifold solution [1]. These anti-D3 branes appear to give rise

to metastable vacua in the probe approximation [2], but upon taking into account their

backreaction at first order [3–5], one finds that their supergravity solution has a certain

singularity in the infrared corresponding to a divergence of the energy density in the RR and

NSNS three-forms. This singularity has been argued to go away when considering the full

backreaction of the anti-D3 branes [6], but this hope was short-lived: the fully-backreacted

solution describing the infrared of the anti-D3 branes is also singular [7].
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Figure 1. Left : localized anti-D3 branes at the north pole of the S3 can polarize into a NS5 brane

wrapping a two sphere S2 ⊂ S3 and into a D5 brane wrapping the shrinking S2 of the conifold.

Right : smearing the anti-D3 branes on the S3 wipes out the KPV channel but the D5 channel still

survives.

Singularities in string theory have been studied extensively over more than ten years,

and there are two very important lessons that have come out of this study: the first is that if

a solution has a singularity one cannot hope to obtain correct physics by doing calculations

in some region far away from the singularity, where the curvature is low; the resolution

of the singularity may involve low-mass modes that modify the spacetime at macroscopic

distances away from the singularity, or may signal an instability of the whole spacetime.

A second lesson, which is a corollary of the first, is that in the context of the AdS-CFT

correspondence only singularity-free solutions are dual to vacua of the gauge theory, while

singular solutions (such as the Polchinski-Strassler unpolarized solution [8, 9], the singular

giant graviton [10, 11] or the Klebanov-Tseytlin solution [12]) are not dual to any vacuum

of the gauge theory and have to be discarded as unphysical.1

Thus, the healthy instinct when seeing a singular solution is to discard it, unless there

is a good physical reason to accept it. For anti-D3 branes in Klebanov-Strassler one would

expect that there is such a reason:2 brane polarization [14] à la Polchinski-Strassler [9].

Indeed, in the probe approximation, the probe anti-D3 branes were found to polarize into

NS5 branes that wrap a contractible S2 inside the large S3 at the tip of the conifold [2], as

drawn in figure 1, and one might expect that this polarization will continue to happen in

the fully backreacted solution. However, to check this directly one would need to construct

a solution for multiple anti-D3 branes localized at the north pole of the S3. Unfortunately,

constructing non-supersymmetric solutions that depend on two variables is beyond current

technology,3 so the resolution of the singularity via polarization into NS5 branes cannot be

directly checked.

However, one can use a less direct route to this result by remembering a very important

feature of the Polchinski-Strassler construction: the D3 branes that polarize into NS5

branes wrapping an S2 inside a three-plane can also polarize into D5 branes wrapping an

S2 inside an orthogonal plane, and more generally into a (p, q) five-brane wrapping an S2

inside a diagonal three-plane. Hence, if the NS5 polarization channel is present and can

cure the anti-brane singularity, so should be the other (p, q) five-brane channels, as well

1Another possibility is that the singularity is resolved in a manner that we do not understand, but then

one expects that it could be cloaked by a horizon if one increases the temperature. In [13] it has been

explicitly shown that this is not the case either.
2We thank H. Verlinde and J. Maldacena for discussions on this point.
3Only the supersymmetric KS solution with localized D3 branes is known [15, 16].
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as the D5 channel. The latter channel would correspond to a polarization of the anti-D3

branes localized at the north pole of a large S3 at the tip of KS into a D5 brane wrapping

the contractible S2 of the deformed conifold at a finite distance away from the KS tip

(see figure 1). At fist glance this calculation looks as hopeless as the previous one, as it

appears to also require the backreacted localized anti-D3 solution. However, things are

much better: as shown in [9] and as we will review in section 5.2, the polarization potential

is independent of the location of the branes that polarize, and hence the potential for the

D3’s to polarize into D5 branes can be calculated from the smeared near-antibrane solution.

The purpose of this paper is to calculate this polarization potential.

We find that this potential has exactly the same type of terms as the polarization

potential in Polchinski-Strassler, which confirms the expectation that brane polarization

may be the mechanism of choice for resolving this singularity. However, the coefficients of

the terms are not the same as in [9]; in particular, these coefficients depend nontrivially on

two parameters that can only be fixed if one knows the full interpolating solution between

the IR and the UV. Thus, in general, our potential could have had either SUSY minima

(as in [9]), stable non-SUSY minima, metastable minima, or no polarization whatsoever.

However, we find that, for any values of the unknown parameters, the terms are such that

no polarization is possible.

Hence, our calculation shows that the singularity of the smeared anti-D3 infrared

solution of [7] cannot be resolved by brane polarization, and by the arguments above,

that also the localized anti-D3 brane solution will not be resolvable by polarization into

D5 branes. Of course, our result does not directly rule out a resolution of the antibrane

singularity in KS by polarization into NS5 branes that wrap the S2 inside the S3 at the

tip à la KPV. However, the fact that D3 brane polarization always happens in multiple

channels, and the fact that at least one of this channels is absent, suggests that the KPV

polarization channel into NS5 branes might also be absent at full backreaction.

Our calculation further strengthens the evidence that anti D-branes in solutions with

charge dissolved in fluxes do not give rise to metastable vacua. Two immediate corollaries

follow: the first one is that the dual gauge theories, despite having a intricate structure of

supersymmetric vacua [17], do not have metastable vacua. The other is that the mecha-

nism for uplifting AdS vacua with stabilized moduli to dS vacua by adding anti-D3 branes

in regions of high warp factor [18] will probably not work and will have to be replaced by

another uplift mechanism. While there are several other uplift mechanisms in the market

(F/D-term uplifting [19, 20] and Kahler-uplift [21, 22]), none is as generic as anti-D3 up-

lifting, and it may be possible that these mechanisms will also suffer from similar problems.

Hence, it may be necessary to revisit the idea that string theory has a large landscape of dS

vacua and to fall back to the old “non-anthropic” approach to understanding the physics

of our universe.

The paper is organized as follows. In the next section we start with the generalities of

Klebanov-Strassler solution. We discuss the IR boundary conditions for anti-D3’s smeared

over the deformed tip of the conifold and identify the criteria for 3-form flux regularity.

In section 3 we demonstrate that the regular solution does not exist, namely one cannot

connect smoothly the anti-D3 region in the IR to the KS solution in the UV. We provide

two different proofs: the first one is based on the discussion in [7], while the second is

– 3 –



J
H
E
P
0
9
(
2
0
1
3
)
1
4
2

brand-new. We then investigate the behavior of the singular solution in section 4. These

results are further used in section 5 where we calculate the polarization potential and

argue that it has no metastable minima. We also compare the potential to the one of [23]

corresponding to polarization of anti-D6 branes into D8-branes. We summarize our results

in the last section and briefly point towards future directions. Various useful formulae are

relegated to the appendices.

2 The setup

We solved for the full backreaction of anti-D3 branes in the near tip region. In this section

we will introduce a useful computational technique and we describe the essential features of

regular supersymmetric solutions of the equations of motion, while in the next section we

expand the results presented in [7], and we prove that there is no singularity-free solution

corresponding to smeared anti-D3 branes at the tip of the deformed conifold.

2.1 The Papadopoulos-Tseytlin Ansatz

In [24] Papadopoulos and Tseytlin (PT) wrote down the most general form of the warped-

conifold type IIB background that preserves the SU(2)× SU(2) isometry. In this paper we

will study the backreaction of (anti)D3 branes smeared over the tip of the deformed conifold.

This backreaction preserves an additional Z2 ∈ U(1)R symmetry of the Klebanov-Strassler

(KS) geometry, otherwise broken in more general PT solutions (like the one describing the

full baryonic branch of KS [25]).

The Ansatz for the solution describing smeared D3 or anti-D3 branes in the KS back-

ground is given by:

ds2
10 = e2A+2 p−x ds2

1,3 + e−6 p−x (dτ2 + g2
5

)
+ ex+y

(
g2

1 + g2
2

)
+ ex−y

(
g2

3 + g2
4

)
(2.1)

C0 = 0

H3 =
1

2
(k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + dτ ∧

(
ḟ g1 ∧ g2 + k̇ g3 ∧ g4

)
F3 = F g1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + Ḟ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) (2.2)

F5 = F5 + ∗F5 , F5 = K g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

with

K ≡ −π
4
Q+ (2P − F )f + kF , (2.3)

where all the functions (including the dilaton) depend only on the radial variable τ and

the dot stands for the τ -derivative. The angular forms gi are defined in [1], and are such

that g1 and g2 are along the shrinking S2, while g3,4,5 are along the S3 of finite size at the

tip. The constant P is proportional to the 5-brane flux of the KS solution

P =
1

4
Mα′ , (2.4)

while Q is the number of (anti) D3 branes.4 In the following we will set α′ = 1.

4The π/4 coefficient ensures that Q is indeed the number of D3 branes. Throughout this paper we will

use the conventions of [24] apart from the definition of Q. In our conventions Q is positive for D3 branes

and negative for anti-D3’s (and similarly K is negative in KS and positive in anti-KS). These are the same

conventions as in [5].
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After integration over all but the radial coordinate, the type IIB supergravity action

reduces to an effective one-dimensional action for the eight fields

φa = (x, p,A, y, f, k, F,Φ) , (2.5)

whose kinetic term and potential are:

Gab(φ)φaφb = −e4(p+A)

(
ẋ2 +

ẏ2

2
+

Φ̇2

4
+ 6

(
ṗ2 − Ȧ2

)
(2.6)

+
1

4
e−Φ−2x

(
e−2yḟ2 + e2yk̇2

)
+

1

2
eΦ−2xḞ 2

)
V = −e4(p+A)

(
1

4
e−12p−4x − e−6p−2x cosh y +

1

4
sinh2 y

+
1

16

(
e−Φ−2x(f − k)2 + 2eΦ−2x

(
e−2yF 2 + e2y(2P − F )2

)
+ 2e−4xK2

))
.

This potential V can, in turn, be obtained from a superpotential W :

V =
1

8
Gab

∂W

∂φa
∂W

∂φb
. (2.7)

In fact this equation has two different solutions, and therefore V has two possible super-

potentials:

W± = e4(p+A)

(
cosh y ± e−6p−2x ± 1

2
e−2xK

)
. (2.8)

Using either of the two W , the supersymmetry conditions can be neatly written as a first-

order flow equation

Gabφ̇
b − 1

2

∂W

∂φa
= 0 . (2.9)

The presence of the two superpotentials follows directly from the invariance of the type

IIB action under the flip (C4, H3) → (−C4,−H3). In our notations this corresponds to

the change of sign of f , k, Q and, as a result, of K. The first-order equations following

from the two superpotentials impose either an imaginary self-duality (ISD) or imaginary

anti-self-duality (IASD) condition on the complex 3-form, G3 ≡ F3 + ie−ΦH3. As the

subscript suggests, in our conventions, the supersymmetric solution derived from W+ is

the Klebanov-Strassler background with ISD 3-form, while W− leads to the anti-Klebanov-

Strassler solution with IASD fluxes. The two solutions preserve different supersymmetries.

Consequently the supersymmetric KS solution can also include arbitrary number of the

mobile D3-branes, Q > 0, but no anti-D3 branes, Q < 0; and vice versa for the supersym-

metric anti-KS background.

2.2 The KS and anti-KS solutions

Before proceeding it is worth mentioning how the eight integration constants of the eight

first-order superpotential equations (2.9) (with W = W+) are fixed in the KS solution with

Q smeared mobile D3 branes (Q > 0):

– 5 –
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• The zero-energy condition of the effective Lagrangian fixes the τ -redefinition gauge

freedom and is automatically solved, but the constant shift τ → τ + τ0 still remains

unfixed, and so τ0 appears as a “trivial” integration constant.

• The conifold deformation parameter ε and the constant dilaton eφ0 give two other

free parameters.

• An additional parameter renders the conifold metric singular in the IR [26] and has

to be discarded.

• The three equations for the flux functions f , k and F appear to have three free

parameters [27]. The first corresponds to an IR singular (2, 1) complex 3-form G3 ≡
F3 + ie−φH3, the second gives a (0, 3) form which is singular in the UV,5 and the

third is related to the B-field gauge transformation (f, k) → (f + c, k + c), which is

just a shift of the D3 brane charge and can be absorbed in the redefinition of Q.

• The warp function h ∼ e2x−4(p+A) can only be determined up to a constant, which

is fixed requiring that h(τ) vanishes at infinity:

h(τ) =

∫ ∞
τ
dτ̄

(
4πQ+ 32gsP

2 (τ̄ coth(τ̄)− 1) (sinh(τ̄))−2 (1
2 sinh(2τ̄)− τ̄

))
(

1
2 sinh(2τ̄)− τ̄

)2/3 . (2.10)

It is important to stress here that for the anti-KS solution with anti-D3’s (Q < 0)

one has to put |Q| instead of Q, since otherwise h(τ) is negative for small τ . This

is contrary to the flux K(τ) which flips sign once we go from the KS to the anti-

KS solution.

We have relegated the remaining functions appearing in the Klebanov-Strassler solution

to appendix A. As has been explained above, the anti-KS solution can be easily found by

flipping the sign of the functions f and k. Notice that the (2, 1) and the (0, 3) 3-forms will

be now (1, 2) and (3, 0). The remaining functions are exactly the same for the solutions

derived from W+ and W−.

2.3 The first-order formalism

In order to solve for the anti-D3 backreaction we will need to solve the full set of second-

order equations of motion coming from (2.6). We now introduce a computational technique

that will be extremely useful: the idea is to recast the eight second-order EOMs for the

scalars φa as a set of sixteen coupled first-order equations by introducing conjugate mo-

menta ξa, defined as

ξa = Gabφ̇
b − 1

2

∂W

∂φa
. (2.11)

Since we have two superpotentials that govern the system, W+ and W−, we can

introduce two sets of conjugate modes, denoted by ξ+
a and ξ−a respectively. With this

5Importantly the singular (2, 1) form is supersymmetric exactly as the 3-form of the KS solution, while

the (0, 3) form breaks SUSY [28, 29].

– 6 –
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notation the supersymmetric KS first-order flow equations (with ISD fluxes) are simply

ξ+
a = 0, while the first-order equations corresponding to supersymmetric anti-KS solutions

(with IASD fluxes) are ξ−a = 0. It is easy to verify that solutions of these eight first-order

equations solve also the full set of EOM. Indeed, by plugging the definition (2.11) into the

second order EOMs we obtain:

ξ̇a = −1

2

[
∂Gbc

∂φa
ξbξc +

∂Gbc

∂φa
∂W

∂φb
ξc +Gbc

∂2W

∂φa∂φb
ξc

]
, (2.12)

which is indeed trivially solved by putting all of ξa’s to zero.

Replacing the second-order EOMs for the eight fields φa by sixteen first-order ones,

equations (2.11) and (2.12), proves very efficient when studying supersymmetry breaking

perturbatively [3, 30], and turns out to be extremely useful for our purpose as well. As we

will review in the next section, it was shown in [7] that without introducing singular fluxes

it is not possible to interpolate between the ISD Klebanov-Strassler solution in the UV

and the anti-D3 branes (Q < 0) boundary conditions in the IR. The regularity conditions

on the fields near the anti-branes determine almost uniquely the leading-order behavior

of the fields ξa’s derived from W−, which in turn appears to be incompatible with the

equations (2.12). Moreover, we will provide a new “topological” argument leading to the

same conclusion but using instead the ξa functions derived from W+. Since we will make an

extensive use of both functions ξ, the following should useful to keep track of the notation:

W+ = WKS , BPS solution : ξ+ = 0 , G3 ISD , FD3 = 0

W− = WAKS , BPS solution : ξ− = 0 , G3 IASD , FD3 = 0

where in the last equality we have added the force on probe D3 and anti-D3 branes.

The explicit form of (2.11) for the conjugate momenta is:

ξ±1 = −e4(p+A)

(
ẋ− 2ṗ− 2Ȧ∓ 1

2
e−2xK

)
ξ±2 = −e4(p+A)

(
ẋ+ ṗ− 2Ȧ+ cosh y − 1

2
e−6p−2x

)
ξ±3 = −6e4(p+A)

(
ṗ+ Ȧ− 1

2
e−6p−2x

)
ξ±y = −1

2
e4(p+A) (ẏ + sinh y)

ξ±Φ = −1

4
e4(p+A)φ̇

ξ±f = −1

4
e−2x+4(p+A)

(
e−Φ−2yḟ ± (2P − F )

)
ξ±k = −1

4
e−2x+4(p+A)

(
e−Φ+2yk̇ ± F

)
ξ±F = −1

2
e−2x+4(p+A)

(
eΦḞ ± 1

2
(k − f)

)
, (2.13)

where

ξ±1 ≡ ξ
±
x −

ξ±p
3

+
ξ±A
3
, ξ±2 ≡ ξ

±
x +

ξ±p
6

+
ξ±A
3
, ξ±3 ≡ ξ

±
p − ξ±A . (2.14)

– 7 –
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The ξ1 redefinition will prove to be especially convenient, since we can show that this mode

has a very clear physical meaning: it parameterizes the force felt by D3 branes probing a

given solution. Indeed, the force on probe D3 and anti-D3 branes only depends on ξ1 and

no other ξa:

FD3 = −2e−2xξ+
1 , FD3 = −2e−2xξ−1 . (2.15)

As expected, adding a probe D3 brane to a solution derived from the superpotential W+

(with ISD fluxes) does not break supersymmetry, and hence the force on probe D3 branes,

FD3, vanishes. Analogously, an anti-D3 brane in the anti-KS solution does not break

supersymmetry and therefore feels no force. In a general non-supersymmetric solution,

such as the singular anti-D3 in KS backreacted solution that we analyze in section 4, both

forces are nonzero.

3 A regular solution does not exist

In this section we review and expand the results of [7]. We will prove that there is no

IR-regular solution with smeared anti-D3 branes (Q < 0) at the tip of the conifold and

with KS asymptotics in the UV. Indeed, starting with a singularity-free anti-brane solution

in the IR, one necessarily ends up with an anti-KS solution in the UV. Moreover, we will

prove that the only regular solution with |Q| anti-D3 branes is exactly the anti-KS version

of the solution with Q mobile anti-branes we described in the previous subsection.

3.1 Regular boundary conditions for anti-D3 branes

In order to prove our statement, we need to understand first the IR boundary conditions

corresponding to the presence of smeared anti-D3 branes at the tip of the KS geometry.

We will also impose regularity of the 3-form fluxes. These conditions, which we will call

IR regularity conditions, are the following:

• The dilaton is finite at τ = 0.

• the 6d conifold metric has the tip structure of the KS solution: the 2-sphere (the

g2
1 + g2

2 part of the 6d metric) shrinks smoothly at τ = 0 and the 3-sphere (the

g2
3 + g2

4 + 1
2g

2
5 term) has finite size. The former condition is equivalent to 2e−6p−x ≈

ex−y near τ = 0, and the latter requires τ2e−6p−x ≈ 2ex+y. All in all, we find that

e6p+2x = τ +O(τ2) , ey =
τ

2
+O(τ2) . (3.1)

• The warp factor comes from |Q| anti-D3 branes smeared on the 3-sphere, and hence

goes like h(τ) ∼ |Q|/τ . In our notation it amounts to demanding that both e12p+2x

and e4(p+A)−2x go like τ . The precise proportionality coefficients, though, cannot be

fixed in this approach. Instead, one coefficient can be eliminated by a proper rescaling

of the 4d space-time coordinates, while the other is a free parameter that measures

the size of the non-shrinking 3-sphere (the conifold deformation parameter ε). We will

– 8 –
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use the 4d rescaling to match the expansion of e6p+x to the supersymmetric solution

(see (2.10) and (A.2)):

e12p+2x =
4

πQ
· τ +O(τ2) , e4(p+A)−2x = c0

4

πQ
· τ +O(τ2) . (3.2)

For the KS solution one finds c0 = 2−10/33−2/3ε
8/3
0 .

• There is no singularity in the three-form fluxes; their energy densities, H2
3 and F 2

3 ,

do not diverge at τ = 0. From (2.1) we obtain that

|F3|2 = FµνρF
µνρ = 6e6p−x

(
e2y(2P − F )2 + e−2yF 2 + 2Ḟ 2

)
|H3|2 = HµνρH

µνρ = 6e6p−x
(
e−2yḟ2 + e2yk̇2 +

1

2
(k − f)2

)
. (3.3)

Hence, using (3.1) and (3.2) the Taylor expansions of the functions f , k and F

start from τ3, τ and τ2 terms respectively, exactly like in the KS background (see

appendix A). To be more precise, in a solution with branes at the tip, the functions

f , k and F can also start with non-integer powers (τ9/4, τ1/4 and τ5/4), but it is

not hard to show that the logarithmic terms in x, p, A and y imply that the IR

expansion of the solution proceeds only with integer powers of τ . In either situation

the expansion of K starts with a constant Q term.

Let us summarize the leading IR terms in the expansion of the metric functions:

eΦ = eΦ0 +O(τ) , e2x =
πQ

4
· τ +O(τ2) , ey =

τ

2
+O(τ2) , ,

e6p =
4

πQ
+O(τ) , e6A = c

3
2
0

πQ

4
· τ3 +O(τ4) , (3.4)

f = O(τ3) , k = O(τ) , F = O(τ2) , K = −πQ
4

+O(τ3) .

Even if we arrived at the boundary conditions (3.4) by physical arguments, one my wonder

whether these are the most general conditions we can impose. We checked that if we start

by allowing a general Taylor expansion for the functions x, y, p and A, the equations of

motion imply precisely the behavior summarized in (3.4).

For our proof that this IR behavior does not glue to a solution with ISD fluxes in the

UV, it will be essential to determine the leading-order behavior of the conjugate modes

ξ+
a ’s and ξ−a ’s (defined in (2.13)) in the IR. Let us denote by n+

a and n−a the lowest pos-

sible leading orders of these two functions respectively. We find that the boundary condi-

tions (3.4) imply:(
n+

1 , n
+
2 , n

+
3 , n

+
y , n

+
f , n

+
k , n

+
F , n

+
Φ

)
= (1, 2, 2, 2, 1, 3, 2, 2)(

n−1 , n
−
2 , n

−
3 , n

−
y , n

−
f , n

−
k , n

−
F , n

−
Φ

)
= (2, 2, 2, 2, 1, 3, 2, 2) . (3.5)

The only difference between the two sets is in n+
1 and n−1 . Indeed, from (3.4) one sees

that the leading (logarithmic) terms cancel out in the parenthesis of ξ−1 , eq. (2.13), and
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sum up for ξ+
1 . Similar cancelations happen also for ξ+

2 , ξ+
3 , ξ+

y and their ξ−a counterparts.

However, for the 3-form ξa’s we cannot argue for such a cancelation neither for ξ+
f , ξ+

k and

ξ+
F nor for ξ−f , ξ−k and ξ−F . This is since we have no control over the coefficients of the

leading terms in the expansions of f , k and F .

It is important to stress again that in arriving at (3.5) we have not imposed neither

the ISD nor the IASD flux condition. Instead, we insisted on having a regular 3-form flux

in the IR, with all other components of the solution being that of a smeared D3-brane

solution: 1/τ behavior of the warp function, constant 5-form flux proportional to Q, plus

a constant dilaton.

Finally, we should also briefly mention the UV boundary conditions, although their

details will not be used in our discussion. In general we must insist on KS (and not anti-KS)

asymptotic with some normalizable UV modes turned on. Having only normalizable modes

in the UV should be essential for the construction, since the new solution must describe a

new vacuum in the same theory. Since in the UV region the non-supersymmetric solution

should be just a small perturbation of the KS solution, one can use the linearized version

of the equations of motion. A careful analysis reveals (see, for example, [5]) that ξ+
f (τ) and

ξ+
k (τ) approach the same non-zero constant value at large τ , while all the other functions

ξ+
a (τ) vanish.

We would like to demonstrate now that one cannot meet both the IR and the UV

boundary conditions advocated in the previous section. We will do it in two different

ways. We will find that the only possible solution is ξ−a = 0 for all a’s, meaning that

one has anti KS solution not only in the IR, but also all the way to the UV. Hence,

any solutions with anti-D3 branes in the infrared must necessarily have singular three-form

fluxes. This result is in agreement with the linearized analysis of [3, 5], where the equations

of motion (2.11)–(2.12) were solved perturbatively in the number of antibranes. Similar

results were obtained for other types of anti-branes in background with opposite charge

dissolved in fluxes [31–36].

We will provide two proofs of this claim. First, we will argue that the IR condi-

tions (3.5) are in odds with the ξ−’s equations of motion. This analysis has been carried

out originally in [7], where it was referred to as the “IR obstruction”. Second, we will

present a new “global” argument which is also based on the ξ−’s equations of motion, but

does not employ the Taylor expansion of these functions.

3.2 The first proof

Our immediate goal is to show that when solving the equations (2.12) for ξ−1 , ξ−f , ξ−k and ξ−F
in the IR (small τ) and imposing the IR regularity conditions, one finds only trivial solutions

for these functions. This essentially means that the IASD conditions ξ−f , ξ
−
k , ξ

−
F = 0 will be

satisfied all the way to the UV and not only at τ = 0.

The equations we need are:

ξ̇−1 +Ke−2xξ−1 = 4e2x−4(p+A)

[
eΦ+2y(ξ−f )2 + eΦ−2y(ξ−k )2 +

1

2
e−Φ(ξ−F )2

]
(3.6)
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and

ξ̇−f =
1

2
e−2x(2P − F )ξ−1 +

1

2
e−Φξ−F

ξ̇−k =
1

2
e−2xFξ−1 −

1

2
e−Φξ−F (3.7)

ξ̇−F =
1

2
e−2x(k − f)ξ−1 + eΦ

(
e2yξ−f − e

−2yξ−k

)
.

We give the remaining four ξ̇−a equations in appendix B.

Remember that if the fluxes are regular, the IR expansions of f(τ), k(τ) and F (τ) can

only start from τ3, τ and τ2 respectively (see the discussion around (3.4)). As we have

pointed out earlier, lower but non-integer powers are not ruled out. One can easily check,

though, that our proof still goes through even in this situation.

Let us denote by n the lowest power in the Taylor expansion of ξ−1 , i.e. ξ−1 = a1τ
n+ . . .

, We already know from (3.5) that n > 2. Together with (3.4), equation (3.6) implies that

the leading terms in the expansions of ξ−f , ξ−k and ξ−F are

ξ−f = af τ
(n−2)/2 + . . . , ξ−k = ak τ

(n+2)/2 + . . . , ξ−F = aF τ
n/2 + . . . , (3.8)

Note that an additional comparison with (3.5) shows that actually for a regular solution

n > 4. Moreover, since all the terms on the right hand side of (3.6) are non-negative

and Ke−2x = τ−1 + . . ., at least one of the constants af , ak and aF has to be non-

zero. Next, plugging these expansions into the last two equations of (3.7) we see that

for n > 4, the terms involving ξ−1 and ξ−f disappear from the leading-order expansions

of all these equations. A simple calculation then reveals that (3.7) has only two possible

solutions, ξ−F ∼ τ or ξ−F ∼ τ−2, and both yield a singular 3-form flux.6 Thus we have to

put ak, aF = 0, in which case the first equation in (3.7) gives n = −2, and so we arrive

at a contradiction.

We observe, therefore, that with regular boundary conditions at τ = 0, the equa-

tions (3.6) and (3.7) have only the trivial solution ξ−1 = ξ−f = ξ−k = ξ−F = 0. This means

that we obtain an IASD solution all the way from the IR to the UV. In other words, one

cannot “glue” the solution near the smeared anti D3-branes to the KS solution, since the

latter has an ISD 3-form.

Importantly, with a bit of an effort we can demonstrate that the anti-KS geometry

with mobile anti-D3’s at the tip is the only regular solution of the remaining equations of

motion. In other words, there is no non-singular solution with anti-D3 branes in the IR

and anti-KS asymptotics in the UV. To do this we have to prove that all the remaining ξ−

functions identically vanish, exactly as ξ−1 , ξ−f , ξ−k and ξ−F .

Plugging ξ−1,f,k,F = 0 into (B.1) we find that ξ−Φ = 0 (otherwise the dilaton diverges),

6We will come back to the ξ−F ∼ τ singular solution in the next section.
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while the remaining functions satisfy:

ξ̇−2 = 3e−6p−2xξ−2 − e
−4(p+A)

(
2

3
ξ−2 ξ

−
3 −

1

18
(ξ−3 )2 + 2(ξ−y )2

)
ξ̇−3 = 6e−6p−2xξ−2

ξ̇−y = cosh y ξ−y +
1

3
sinh y ξ−3 . (3.9)

In the (anti) KS solution e−4(p+A) goes to zero as e−4τ/3 for large τ , while e−6p−2x asymp-

totes to 2/3. From the first two equations we find that ξ̇−2 ≈ 2ξ−2 . The functions ξ−2 , ξ−3
and ξ−y , exactly like the functions ξ+

2 , ξ+
3 and ξ+

y , have to vanish at infinity both for KS

and anti KS solutions. So we have to put ξ−2 = 0. This in turn implies that ξ−3 = ξ−y = 0.

We have shown that a regular solution with anti-D3 branes in the IR remains anti-KS

all the way to the UV using the conjugate variables ξ. But actually, the most straightfor-

ward way to see it is to solve the second-order φa equations directly in powers of τ subject

to the regularity conditions (3.4). We found that to order τ10 the space of solutions is

parameterized by three independent parameters, none of which breaks the IASD condition

confirming that ξ−f , ξ−k and ξ−F are indeed zero for the IR regular solution. Furthermore,

one parameter leads to

ξ−2 = 3cτ3 + . . . , ξ−3 = 6cτ3 + . . . , ξ−y = −cτ3 + . . . , . (3.10)

This is consistent with (3.9) and, as we already know, produces a UV divergent solution.

The remaining two parameters correspond to two UV-singular solutions of the supersym-

metric ξ−a = 0 equations that we have already mentioned in the previous section. The first

introduces the (0, 3) complex 3-form and the second shifts the warp function.

To sum up, IR regularity of the 3-form fluxes implies that all of the ξ−a ’s identically

vanish. The integration constants emerging from the ξ−a = 0 equations are then fixed

by the UV regularity and we end up with the anti KS background with |Q| mobile anti

D3 branes.

3.3 The second proof

We can also present a “global” argument why the functions ξ−1 , ξ−f , ξ−k and ξ−F have to

vanish in a regular solution, without focusing on their Taylor expansions. The proof for

the remaining four functions proceeds precisely as above.

Our key observation is that the flux functions f(τ), k(τ) and F (τ) appear only in

equations (3.6) and (3.7). None of the remaining ˙ξ−a equations has any flux function in it.

Next, the equations in (3.7) might be derived from the following reduced Lagrangian:

Lfluxes = 4e2x−4(p+A)

[
eΦ+2y(ξ−f )2 + eΦ−2y(ξ−k )2 +

1

2
e−Φ(ξ−F )2

]
+ e−4(p+A)(ξ−1 )2 . (3.11)

Recall that the ξ−’s are first order in the derivatives of φ’s and so the Lagrangian is of

second order in τ -derivatives, as it should be. It differs from the second and the fourth lines

of (2.6) only by total derivative terms. Written this way, however, Lfluxes has a remarkable
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property: it is strictly non-negative and vanishes only if all the functions ξ−1 , ξ−f , ξ−k and

ξ−F are zero.

Again, we treat Lfluxes as the effective Lagrangian only for the fields f(τ), k(τ) and

F (τ). In particular, it means that the first three terms in (3.11) are kinetic terms, while

the last one is a potential term. We assume now that one first solves (3.7) for these three

fields and for arbitrary x, y, p, A, Φ (but with the proper boundary conditions ensuring

regularity of the metric), and then substitutes the result into the remaining five EOM.

Since Lfluxes is bounded from below, in other words has a global minimum for

ξ−f (τ), ξ−k (τ), ξ−F (τ), ξ−1 (τ) = 0 , (3.12)

one may wonder whether this trivial IASD solution is, in fact, the unique solution of the

EOM (3.7). The answer depends on the boundary conditions for f(τ), k(τ) and F (τ). If

these are incompatible with (3.12), the final solution will be more complicated. If on the

other hand, the regular boundary conditions we imposed on the 3-form flux are compatible

with the trivial IASD solution, then the latter will also be the only possible solution.

For our Lagrangian (3.11) the fields ξ−f , ξ−k and ξ−F are the conjugate momenta of the

fields f , k and F respectively. In general, one may impose boundary conditions either on

these fields or on their conjugate momentum, in the IR or/and in the UV.

The regularity requirement we considered in the previous sections, however, constrains

all the three flux functions and their conjugate momenta in the IR. Indeed, we saw that

both (f, k, F ) and (ξ−f , ξ
−
k , ξ

−
F ) have to vanish at τ = 0 for a regular solution. Furthermore,

ξ−1 = 0 in the IR, therefore the IR boundary conditions following from the regularity are

consistent with the trivial solution (3.7). Thus we see that requiring regularity in the IR

forces upon us the anti-KS solution.

This proof, though, has to be taken with a grain of salt, since the EOM for the flux

fields are strictly speaking singular at τ = 0, and so we cannot rule out completely the

possibility that there are two different solutions of (3.7) subject to the same boundary

conditions. One can promptly make our proof more rigid by listing Taylor τn-expansions

of all six possible solutions in the IR and verifying that only one of them, the IASD, is not at

odds with (3.12). However, the main goal of this subsection is to prepare the ground for the

localized case discussion, where the power counting method of the first proof will be most

likely unavailable making a “topological” argument we presented here a more efficient tool.

4 The singular anti-D3 solution

In the previous section we proved that by imposing the regular IR boundary conditions

summarized in (3.4), it is not possible to find a supersymmetry-breaking solution (except

the one that we have mentioned before, corresponding to ISD fluxes with a (0, 3) compo-

nent, which diverges in the UV). Thus, the regular IR boundary conditions are incompatible

with the presence of anti-D3 branes in the infrared. One can try to construct a singular

solution describing the backreaction of these anti-D3 branes by relaxing the assumptions

we made in the previous section, and considering a more general expansion for the fields.
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In this section we therefore analyze the equations of motion dropping the assumption of

regularity in the three-form fluxes discussed in section 3.1.

Let us start by noticing that even in a solution with singular 3-forms, all ξ−a ’s, but

ξ−f , ξ−k and ξ−F , have the same leading term powers at small τ as for any regular solution,

see (3.5). In particular, we still have ξ−1 ∼ τ2, since otherwise the solution will not describe

anti D3’s at the tip of the conifold. At the same time, ξ−f , ξ−k and ξ−F will now start with

lower powers of τ . Remarkably, equation (3.6) suffices to determine this behavior. Indeed,

since the left hand side is still of order τ exactly like in the regular case, and the right hand

side is a sum of positive terms, we see that:

ξ−f = bf +O(τ) , ξ−k = bk τ
2 +O(τ3) , ξ−F = bF τ +O(τ2) . (4.1)

In deriving this result we used the first two lines of (3.4). The expansions of the original

flux functions are:

f=−πQ
8c0

eΦ0bf τ
2 +O(τ3), k =

πQ

c0

(
bF + 2eΦ0bk

)
+O(τ), F =

πQ

c0
bk τ +O(τ2), (4.2)

where in going from (4.1) to f(τ), k(τ) and F (τ) we have eliminated two additional solu-

tions (see the end of the previous section): the first one is the “very” singular (1, 2) solution

with k ∼ τ−2 and F ∼ τ−1 which we will not consider, and the second corresponds to the

gauge transformation (f, k)→ (f+c, k+c) we mentioned earlier. We fix the gauge freedom

by requiring that f(τ) vanishes at τ = 0.

It seems that, all in all, we have a singular solution in the UV parameterized by three

independent parameters bf , bk and bF . However, only two parameters are independent,

since both the ξ̇−k and the ξ̇−F equations in (3.7) imply that

bF = −4eΦ0bk . (4.3)

Thus we have (at least) a two-dimensional space of singular solutions in the IR. At the

same time, by gluing the solution to the UV we expect to arrive at a unique solution for

the entire range of τ that depends on two parameters Q and P . The UV regularity will

then impose an additional constraint on bf and bk (as well as on all the other “free” IR

parameters like the dilaton), so that one will have to switch on both these modes in order to

avoid a divergent UV solution. In fact, the perturbative solution constructed in [5] at linear

order in Q/P has exactly this singularity structure (4.2) with bf = −12bk ∼ 0.02 ε
8/3
0 P−2.

However, for the full solution this result is expected to change.

We see now that the singular solution will necessarily have a non-zero ξ−f at τ = 0. In

this case the arguments from the end of the previous section do not apply and, as a result,

there is no “global minimum” obstruction for the singular solution.

As a consistency check we may show that the net force on a probe D3 brane in this

background will be pointed towards the tip, as expected for a solution with smeared anti-

D3 branes. This force is given by (2.15) and in our conventions it means that ξ+
1 should

be non-negative. Let us demonstrate it with the help of the ξ+
1 equation of motion (we

summarize the equations for ξ+
f , ξ+

k and ξ+
F in appendix C):

ξ̇+
1 −Ke

−2xξ+
1 = 4e2x−4(p+A)

[
eΦ+2y(ξ+

f )2 + eΦ−2y(ξ+
k )2 +

1

2
e−Φ(ξ+

F )2

]
. (4.4)
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Figure 2. The function ξ1(τ) is positive for small τ but cannot have a zero (left) at finite τ = τ?,

since ξ̇1(τ) < 0 is not allowed. As a consequence, it will be everywhere positive (right). Notice that

it goes to zero at infinity, otherwise we do not get asymptotic KS solution.

We know from (3.4) that ξ+
1 = 1

2c
2
0τ + . . . near τ = 0. Thus, for function ξ+

1 (τ) to vanish at

some τ = τ? and to become negative for τ > τ?, we must have ξ̇+
1 (τ?) < 0. This, however,

is at odds with the equation (4.4), since its right hand side is non-negative. We conclude

that ξ+
1 (τ) > 0 for τ ∈ (0,∞), see figure 2.

Let us now come back to the ξ− equations of motion. We may further use (3.6) in

order to extract a relation between bf , bk, bF and the constant b1 defined by

ξ−1 = b1τ
2 +O(τ3) . (4.5)

Plugging (4.1) into (3.6) we get:

b1 =
πQ

3c0

(
eΦ0

(
b2f
4

+ 4b2k

)
+ e−Φ0

b2F
2

)
=

πQ

12c0
eΦ0

(
b2f + 48b2k

)
>

πQ

12c0
eΦ0b2f . (4.6)

This last inequality will play a crucial rôle in the next section when we will determine the

form of the polarization potential. For this we will also need the explicit expressions for

the RR 4 and 6-form gauge fields:7

C4 =
(
−2χ1 + e−2x+4(p+A)

)
dx0 ∧ . . . ∧ dx3

C6 = χf · g1 ∧ g2 + χk · g3 ∧ g4 , (4.7)

where8

χ̇1 = e−2xξ−1 , χ̇f = 4e2y+Φξ−f + 2ḟχ1 , χ̇k = 4e−2y+Φξ−k + 2k̇χ1 . (4.8)

The integration constants of χ1, χf and χk can be eliminated by gauge transformations of

C4 and C6. We will fix the freedom by requiring that all these functions vanish at τ = 0.

Using (4.1) and (3.4) we can find the leading order behavior of χ1 and χf :

χ1 =
2

πQ
b1 · τ2 + . . . , χf =

1

3
eΦ0bf · τ3 + . . . . (4.9)

7In our conventions dC6 = eΦ ?10 F3 −H3 ∧ C4.
8Notice that C6 depends only on ξ−’s and vanishes for the anti KS solution. It is also zero for the KS

background as one can show using (2.13).
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We end this section by making explicit the singular character of our solution, and

explaining the various terms that contribute to the singularity. First, it is easy to verify

by plugging the IR behavior into (3.3) that the 3-form flux densities diverge, namely

|H3|2 ∼
(bf )2 + 8(bk)

2

√
τ

+O(τ0) |F3|2 ∼
(bk)

2

√
τ

+O(τ0) . (4.10)

It is useful to characterize the singularity of our solution in terms of the ISD and IASD

components of the three form flux. Borrowing the notation of [37], we define three scalar

functions of the radial variable λA, by

e−ΦH3 = λ(τ)A ∗ FA3 (4.11)

where FA3 denotes each of the three components of F3, namely along g125, g345 and dτ (g13+

g24). These definitions ensure that for ISD (IASD) fluxes, λA = −1(1). We find that the

component with legs g345 is singular:

λ345(τ) =
πQ

2c0P
bfτ
−1 +O(τ0) , (4.12)

while the other two are regular. We should note that in the linearized anti-D3 solution

of [3–5], there was actually an additional singular λ, namely λ125. We thus see that at

the full non-linear level one singularity gets resolved, but the singularity in λ345 persists,

confirming the observation made in [38]. Note that this corresponds precisely to three-form

field strengths that have the legs on the S3.

We end this section by comparing our results to the ones in the solution considered

in [37], corresponding to anti-D6-branes wrapping a T 3. As explained in [23], that solution

can be T-dualized three times, and will yield a KS-like solution where the warped deformed

conifold is replaced by T 3 × R3. As argued in [23] this solution can be regarded as a toy

model for the KS infrared region. Indeed, there is a flux singularity very much like the one

found here, but in a sense simpler: the fluxes can be parameterized by a single function λ,

defined by H3 = λ(τ) ∗3 F0, where F0 is the mass parameter in massive type IIA, which

is the toy-model version of the dual 3-form F3 on the S3. The fully backreacted anti-

D6 solution has [36] λ(τ) = λ0 τ
−1 + O(τ0), and the whole (IR singular) solution can be

parameterized by λ0.

5 D5 polarization

In this section we would like to address the main question of this paper: can the 3-form

flux singularity of the anti-D3 brane putative solution be cured by the polarization of the

anti-D3 branes into D5 branes? The singularity occurs at τ = 0 and if we find that there is

a stable configuration with a polarized D5 brane wrapping the 2-sphere at a finite distance

away from the tip, it will imply that the singularity is still physically meaningful. In the

first subsection we will compute the potential of a probe D5 brane with anti-D3 charge n

in the singular solution sourced by Q anti-D3 branes smeared on the KS tip. We will then

argue in the second subsection that this potential also governs the polarization of all Q

anti-D3 branes into D5 branes.
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5.1 The D5 potential

In order to see if the anti-branes polarize or not into D5-branes we need to compute the

potential of a probe D5-brane that wraps the S2 of the deformed conifold and has n anti-D3

branes dissolved in it. The D5 brane action (in string frame) is

SD5 = SDBI + SWZ (5.1)

with

SDBI = −µ5

∫
d6ξe−φ

√
−det (g + 2πF2) , SWZ = µ5

∫
(C6 + 2πF2 ∧ C4) , (5.2)

where 2πF2 ≡ 2πf2 −B2 and f2 is the D5 worldvolume gauge field strength that gives the

number of anti-D3 branes dissolved in the D5:

f2 =
n

2
ωS2 , (5.3)

where ωS2 is proportional to g1 ∧ g2. The larger n the easier to polarize it is, and in that

limit one can expand the DBI action in a 1/n series. The leading term cancels the leading

term in the WZ action, and the polarization potential has in general the following form:

V (τ) ∼ 2πn · c2τ
2 − c3τ

3 +
1

2πn
c4τ

4 , (5.4)

where the quadratic term comes from the imperfect WZ-DBI cancelation (and is equal to

the force on a probe anti-D3 brane), the cubic term9 comes from the C6 term in the WZ

action and the quartic terms is the subleading term in the 1/n expansion of the DBI action.

It is easy to show that if the following relation is satisfied

(c3)2 <
32

9
c2c4 , (5.5)

then the potential (5.4) has no minima for any τ away from zero, and thus there is no

polarization. In our singular solution we obtain

c2 = lim
τ→0

(χ1

τ2

)
, c3 = lim

τ→0

(χf
τ3

)
, c4 = lim

τ→0

(
e4(p+A)+2y+Φ

τ4

)
, (5.6)

where χ1 and χf are defined in eqs. (4.7), (4.8), and their IR behavior is given in (4.9).

Using this and (3.4), we arrive at the following result:10

c2 =
2

πQ
b1 , c3 =

1

3
eΦ0bf , c4 =

1

4
c0e

Φ0 . (5.7)

We can now rewrite the inequality in (4.6) in terms of c2, c3 and c4 and find that in all

anti-D3 singular solutions:

(c3)2 6
8

3
c2c4 . (5.8)

9In our conventions c3 is positive.
10Notice that neither bk nor bF appear in the potential.
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From this result we see that the condition (5.5) is always satisfied. This is our main

result. It proves that the potential (5.4) has no minimum, not even a metastable one.

Thus no polarization into D5 branes occurs and the 3-form flux singularity appears to be

genuine. Even more importantly, we were able to prove this statement without extending

the solution from the IR all the way to the UV.

In fact, the story here is strikingly similar to the D6 toy model of [23] that we briefly

mentioned in the previous section. Remarkably, in this model there is also no need to

determine the full backreacted solution in order to see that the polarization potential

has no minimum away from zero. Moreover, the inequality (5.8) was exactly saturated.

Our potential is more complicated, and reduces to the one of [23] if one sets bk = bF = 0.

However, turning this parameter back on makes polarization even more difficult, and hence

does not modify the physics that the toy model predicted.

5.2 The mean field argument

To understand the relation between the potential for probe anti-D3 branes that we calcu-

lated in the previous section, the potential that governs the polarization of all the smeared

D3 branes into smeared D5 branes, and the potential for the polarization of localized D3

branes into D5 branes it is important to recapitulate several very important features of the

Polchinski-Strassler construction [9].

Despite the absence of a fully-backreacted solution, Polchinski and Strassler compute

in [9] the potential for all the D3 branes that source the AdS5 × S5 geometry to polarize

into D5, NS5 or (p, q)-5 branes. This computation has three ingredients. One starts from

a singular solution sourced by N D3 branes, and calculates the potential of a probe D5

brane that wraps a topologically-trivial S2 and has n units of D3 brane charge inside, where

n � N . This potential has three terms, that go respectively like r4, r3 and r2. One then

finds that in the r4 term the various factors of the warp function of the backreacted D3

branes cancel out, and this term is therefore independent of the location of the backreacted

branes (all the information about the angular location of the D branes is stored in the warp

factor). Furthermore, the r3 term is proportional to the IASD three-form, which is closed

and co-closed, and hence depends only on the asymptotic boundary conditions; hence, this

term is also independent of the location of the backreacted D3 branes.

The r2 term in [9] is much more complicated, as it comes from the the backreaction

of the fluxes on the metric, dilaton and five-form field strength. When supersymmetry is

present, one can find this term by completing the squares in the supersymmetric polar-

ization potential [9]. However, computing this term directly is much more painful, and

has been done in [39, 40]. Not surprisingly, the two calculations agree, and the r2 term

also turns out to be independent of the warp factor sourced by the backreacted D3 branes,

although this is much more difficult to see from the supergravity calculation. When super-

symmetry is broken by the introduction of a fourth fermion mass, one can still compute

the r2 term by using various supersymmetric limits as well as the fact that this term comes

from interacting three-form field strengths (see for example section IV of [9]) and one still

finds that this term is independent of the warp factor, and therefore of the position of

the backreacting D3 branes. Hence, both in supersymmetric and in non-supersymmetric
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Polchinski-Strassler backgrounds the polarization potential for a probe D5 brane with D3

charge n is independent of the position of the N D3 branes that source the solution.

Armed with this fact, one can consider then the much more general problem of a large

number of D5 branes that have charges ni, such that
∑

i ni = N and ni � N . Each of

these D5 branes can now be treated as a probe in the supergravity solution created by the

other branes, and because the polarization potential is independent of the position of the D3

branes that source the background, the potential felt by each D5 brane in this configuration

is the same as the potential of this D5 brane in the singular solution above. Hence, one can

construct self-consistently the full solution by requiring that each probe is at a minimum

in the background sourced by the other probes. This “mean-field” construction can then

be generalized straightforwardly to D3 branes polarizing into multiple shells that can also

have NS5 or more general (p, q)-5-brane dipole charge. More generally, this construction

can also be used to study all the other types of brane polarization that occur in the region

where the branes that polarize dominate the geometry. The correctness of this “mean-

field” Polchinski-Strassler construction of vacua with polarized branes has been confirmed

in the few examples where the fully-backreacted brane polarization supergravity solution

exists, such as the mass-deformed M2 brane theory [11, 41], or the supergravity dual of

the mass-deformed 5D Super Yang-Mills theory [42]. Hence the probe calculation that we

presented in the previous section gives the full potential for the smeared anti-D3 branes to

polarize into D5 branes at a finite distance away from the tip.

However, one can do much more: one can use this independence of the Polchinski-

Strassler polarization potential on the location of the polarizing branes to compute the

potential for N D3 branes that are localized near the north pole of the large S3 at the

bottom of the KS solution to polarize into a D5 brane wrapping the conifold S2 at a finite

distance from the tip. By the arguments above, this potential is the same as the potential

for several probe D3 branes to polarize on this S2 in the singular geometry sourced by a large

number of D3 branes that are localized on the KS three-sphere, as long as the polarization

occurs in the region where these D3 branes dominate the geometry. In turn, this potential

is independent of the location of the D3 branes that dominate the geometry, and hence is

the same as the potential for several probe D3’s to polarize into a D5 brane in the geometry

where these D3 branes are smeared, which we calculated in the previous subsection.

Hence, our calculation indicates that neither smeared nor localized anti-D3 branes do

not polarize into D5 branes, and therefore that brane polarization à la Polchinski-Strassler

does not appear to cure the singularity of antibranes in KS.

5.3 Validity of approximations

We now discuss the range of validity of our calculation. We see from the probe D5 po-

tential (5.4) and the expressions (5.7) that the radius τ∗ at which the D5 would sit is

of the order

τ∗ ∼ n
c3

c4
∼ n bf . (5.9)

Here we immediately face a problem. Since we do not know the full solution we cannot fix

the dependence of bf and all other coefficients on P (the 5-form flux) and Q (the number
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of the anti D3’s). We can still estimate however this dependence using the method utilized

in [23]. The full solution is expected to be unique, namely having no parameters other

than P and Q. We, therefore, anticipate that for a fixed order in the τ expansion the

contributions coming from various terms in the EOM will be of the same order in terms of

P and Q. In other words, there should be a detailed balance between different terms.

Let us introduce the following notation:

ξ−f = b
(0)
f + b

(1)
f τ + b

(2)
f τ2 + . . . (5.10)

and similarly for the other ξ−’s. The additional index stands for the power of τ and in

terms of the notation introduced in the previous section we have b
(0)
f = bf , b

(2)
k = bk, etc.

We can start our analysis, for instance, from the τ2 contribution to the following term

in the ξ−1 equation (3.6)

e2y
(
ξ−f

)2
+ e−2y

(
ξ−k
)2
. (5.11)

We see that the detailed balance implies b
(0)
f ∼ b

(2)
k . Next, the e2yξ−f − e

−2yξ−k term in the

ξ̇−F equation gives b
(0)
f ∼ b

(4)
k . We conclude that b

(2)
k ∼ b

(4)
k . With a bit of effort, one can

further show that in fact all b
(i)
f ’s and b

(i)
k ’s are of the same order of magnitude. Moreover,

b
(i)
F ∼ eΦ0b

(j)
k for all i and j.

Let us now consider the b
(i)
1 coefficients. From (3.6) and the ξ̇−f equation in (3.7) we

learn that b
(2)
1 ∼ QeΦ0

(
b
(0)
f

)2
and b

(2)
f ∼ PQ

−1b
(2)
1 respectively. Combining the two we see

that b
(i)
f ∼ e

−Φ0P−1 and b
(i)
F ∼ P−1.

Finally, we have to compare the ξ−f and ξ−f
2

terms on the right hand side of the ˙ξ−Φ

equation in (B.1). We find b
(1)
f ∼ P/Q and comparing this with the observations of the

previous two paragraphs we see eventually that eΦ0 ∼ Q/P 2.

To summarize, we find that:

b
(i)
f ∼ b

(i)
k ∼

P

Q
, b

(i)
F ∼

1

P
, and eΦ0 ∼ Q

P 2
. (5.12)

The remaining coefficients are irrelevant for our analysis.

We are now in a position to check the validity region of our polarization calculation.

In order to trust our computation we need to assume the following conditions:

• The anti-D3 charge of the probe D5 should be much smaller than the anti-D3 charge

of the background

n� Q . (5.13)

We recall that in our conventions Q is the number of anti-D3 branes.

• In order to trust the IR expansions we should demand that τ∗ is small compared

to the ratio between the leading and next-to-leading terms in the series. Since, for

instance, all of the b
(i)
f are of the same order, we must require τ∗ � 1. This in turn

amounts to

n� Q

P
. (5.14)
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• Since we expanded the square root in the DBI action we should demand that

det(2πF2)� det(g⊥). Recalling that in our Ansatz det(g⊥) = e2x+2y ∼ Qτ3 + . . . we

obtain n2 � τ3
∗Q or

n� Q2

P 3
. (5.15)

• The radius of the S2 at which the D5 brane would polarize should be large in

string units. Since the radius is given by (det(g⊥))1/4 this amounts to demanding

τ3
∗Q� 1 or

n� Q2/3

P
. (5.16)

• The string coupling should be small at τ∗. This means that

Q� P 2 . (5.17)

To conclude, we have the following criteria

Q2/3

P
� n� Q2

P 3
� Q

P
� Q . (5.18)

This can be easily achieved. For example, we can set n∼σ, Q∼σ7 and P ∼σ4 for large σ.

Before closing this section let us add an important comment on the range of the

parameters. As one can see from (5.18) our calculation necessitates Q� P , in other words

the number of the anti D3’s has to dominate the flux. At the first glance it looks as we

are away from the parameter region studied in [2], and so our findings have nothing to do

with the brane polarization scenario proposed in this paper.

Let us clarify this important point. Indeed, the probe analysis of [2] indicates that if

the ratio Q/P is below the threshold of approximately 8%, then the polarization poten-

tial has a metastable vacuum, so that the 2-sphere warped by the polarizing NS5 brane

can be stabilized at a certain radius inside the 3-sphere at the conifold tip. If the ratio

rather exceeds the threshold, the polarization potential is monotonic and there is only one

(supersymmetric) vacuum. In other words, the probe anti brane polarizes for any values

of Q and P , but only for small enough Q/P the configuration has a non-supersymmetric

metastable vacuum, so that the anti branes do not dissolve directly into the flux. One

might expect that once the backreaction is taken into account the threshold will be lower,

but nevertheless the scenario will still work for small enough Q/P .

Furthermore, one may also argue [23] that if one considers the polarization of the anti

D3 branes into multiple NS5 branes, one might see that there will exist metastable vacua

for an arbitrarily-large Q, as long as Q/P divided by the number of these NS5 branes does

not exceed 8%.

What we observe in this paper is conceptually different. We consider a different 2-

sphere, one that shrinks at the conifold tip, and find that the anti D3’s do not polarize into

D5’s on this 2-spere, since the polarization potential has neither metastable nor any other

minimum at a finite distance away from the tip. Moreover, as no polarization occurs for

large Q/P , it becomes even more unlikely for small Q/P . This is radically different from

the situation in [2].
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To sum up, the restriction we find on the ratio Q/P does not invalidate in any way

our main conclusions.

6 Discussion

We reviewed in detail the solution corresponding to Q anti-D3-branes smeared on the S3 at

the tip of the deformed conifold, focusing on the fact that such solution has singular three-

form fluxes in the infrared. These singularities could have suggested a stringy resolution

by polarization à la Polchinski-Strassler. However, we show in this paper that the anti-D3-

branes do not polarize into anti-D5-branes wrapping the S2 at a finite radius, and therefore

such mechanism of resolution of singularities is not in place here.

In order to show that, we computed the polarization potential, which has quadratic,

cubic and quartic terms in the radial variable, but with coefficients such that there is no

minimum, regardless of any UV data. All information needed to reach that conclusion are

the IR boundary conditions reviewed in detail in the text. This result is quite strong, as on

one hand we had shown that any solution with anti-D3-brane boundary conditions leads to

either an anti-KS solution or to a singular solution, and on the other hand we are showing

that this singularity is not resolved by polarization into anti-D5-branes, no matter what

irrelevant or relevant operators one adds in the UV.

It is worth mentioning again the striking similarities between our results and those

on anti-D6-branes in backgrounds with D6-charge dissolved in fluxes, which serves indeed

as a toy model for the IR of KS. They both have the same type of singularities, and in

neither case these can be resolved by polarizing into anti-branes of two dimensions higher.

Furthermore, the potential for polarization in the case of anti-D3 branes reduces exactly

to the one for anti-D6 if one integration constant is set to zero. The second integration

constant, which should be related to the first one by UV boundary conditions, only makes

things worse in terms of getting a minimum.

Our result also suggests that in the fully back-reacted solution there will be no po-

larization into NS5-branes, opposite to what happens in the probe calculation. In order

to pin down this question one would need the localized solution, though, as smearing the

charge on the S3 wipes out this polarization channel. However, one might hope that, as

was the case here, only very few details of the solution are needed to get an answer, and

such details might be within reach. We hope to report on this soon.
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A The KS solution

Here we summarize all the functions of the KS solution as it appears in (2.1). The flux

and the dilaton functions are given by

f(τ) = −gsP · (τ coth(τ)− 1) tanh
(τ

2

)
k(τ) = −gsP · (τ coth(τ)− 1) coth

(τ
2

)
F (τ) = P ·

(
1− τ

sinh(τ)

)
eΦ = gs . (A.1)

The metric functions are

e2x(τ) =
h(τ)

16

(
1

2
sinh(2τ)− τ

)2/3

ey(τ) = tanh
(τ

2

)
e6p(τ) =

24

h(τ)

(
1
2 sinh(2τ)− τ

)1/3
sinh2(τ)

e6A(τ) =
ε40

3 · 29
h(τ)

(
1

2
sinh(2τ)− τ

)2/3

sinh2(τ) . (A.2)

B The ξ−2 , ξ
−
3 , ξ

−
y and ξ−Φ EOMs

The equations of motion for the eight ξ−a modes are given in equations (3.6)–(3.7), together

with the following remaining equations:

ξ̇−2 =−Ke−2xξ−1 + 3e−6p−2xξ−2

−e−4(p+A)

(
(ξ−1 )2 +

2

3
ξ−2 ξ

−
3 −

1

18
(ξ−3 )2 + 2(ξ−y )2 + 4(ξ−Φ )2

)
ξ̇−3 = 6e−6p−2xξ−2

ξ̇−y = cosh y · ξ−y +
1

3
sinh y · ξ−3 − 2eΦ

(
e2y(2P − F )ξ−f − e

−2yFξ−k

)
+4eΦ+2x−4(p+A)

(
e2y(ξ−f )2 − e−2y(ξ−k )2

)
ξ̇−Φ =−eΦ

(
e2y(2P − F )ξ−f + e−2yFξ−k

)
+

1

2
e−Φ(k − f)ξ−F

+2e2x−4(p+A)

(
eΦ
(
e2y(ξ−f )2 + e−2y(ξ−k )2

)
− 1

2
e−Φ(ξ−F )2

)
. (B.1)
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C The ξ̇+
a equations

ξ̇+
f = −1

2
e−2x(2P − F )ξ+

1 −
1

2
e−Φξ+

F

ξ̇+
k = −1

2
e−2xFξ+

1 +
1

2
e−Φξ+

F (C.1)

ξ̇+
F = −1

2
e−2x(k − f)ξ+

1 − e
Φ
(
e2yξ+

f − e
−2yξ+

k

)
.
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