Pole Assignment for Uncertain Systems

Mehmet Turan Söylemez

Control Systems Centre, UMIST, UK

RESEARCH STUDIES PRESS LTD. Baldock, Hertfordshire, England

Contents

Ec	litori	al Foreword	vii
Pı	eface	3	ix
A	cknov	vledgements	x
Li	st of	Figures	xv
N	otatio	n	xix
1	Intr	oduction	1
	1.1	Preliminaries	1
		1.1.1 Poles and Zeros of MIMO Systems	1
		1.1.2 Pole Assignment and Desired Locations of Poles	3
	1.2	Formulation of the Pole Assignment Problem	4
	1.3	Parametric Uncertain Systems and Pole Assignment	10
	1.4	A Few Words on Computer Algebra	14
	1.5	The Structure of This Book	16
2	A B	rief History of Pole Assignment	19
	2.1	Introduction	19
	2.2	Early Developments	21
	2.3	State-Feedback Methods	21
	2.4	Constant Output-Feedback Methods	23
	2.5	Dynamic Output-Feedback Methods	25
	2.6	Miscellaneous Results	25
	2.7	Use of Geometric Algebra and Generic Results	26
	2.8	Eigenstructure Assignment Methods	28
	2.9	Decoupling Methods	29
	2.10	Robust Pole Assignment	30

3	Dya		ate-Feedback Pole Assignment Methods	33			
	3.1	Introd	uction	33			
	3.2	The C	ontrollable Standard Form and Pole Assignment	36			
	3.3	Ackern	mann's Formula	44			
	3.4	The M	fapping Approach	46			
	3.5	The T	ransfer Function Matrix Approach	49			
	3.6		pectral Approach	51			
	3.7		se of Closed-Loop Eigenvectors	55			
	3.8		ef Comparison of Dyadic Methods	58			
	3.9		ary	61			
4	Full	-Rank	State-Feedback Pole Assignment Methods	63			
	4.1		luction	63			
	4.2	Closin	g the Loop Twice	64			
	4.3	Using	the Controllable Standard Form	66			
	4.4	Eigenv	vector Assignment Methods	73			
		4.4.1	Real Eigenvalues Case	74			
		4.4.2	Complex Eigenvalues Case	77			
	4.5	Sylves	ter's Equation and Pole Assignment	84			
	4.6	A Gen	eralised Mapping Approach to the Pole Assignment Prob-				
		lem .		88			
	4.7	Summ	ary	93			
5	Pol	Pole Assignment Using Output-Feedback 9					
	5.1		luction				
	5.2		neralised Matrix Inverse Approach				
	5.3	Use of	Dynamic Compensators	104			
	5.4	Summ	ary	113			
6	Par			115			
	6.1		luction				
	6.2		c Methods				
	6.3	Full-R	ank Methods	120			
		6.3.1	Generalised Mapping Approach and Partial Pole Place-				
			ment	122			
		6.3.2	Eigenvector Assignment Methods for Partial Pole Place-				
			ment				
		6.3.3	Two-Step Algorithms	126			
	6.4	A Mul	lti-Step Technique for Partial Pole Assignment	131			
		6.4.1	Pole Retention	132			
		6.4.2	The Method	137			
	6.5		ot-Locus Approach to Partial Pole Assignment	148			
	6.6	Gener	alised Hermite-Biehler Theorem	150			

	6.7	Summary 158		
7	7 Robust Controller Design			
	7.1	Introduction		
	7.2	Analysis of Robustness in Uncertain Systems		
		7.2.1 Kharitonov's Theorem		
		7.2.2 The Edge Theorem		
		7.2.3 The Value-Set Concept		
		7.2.4 The Pole-Colouring Approach		
	7.3	Robust Pole Assignment Controller Design using GAs 174		
		7.3.1 What are Genetic Algorithms?		
		7.3.2 A Design Methodology for Robust Pole Assignment 181		
	7.4	Satisfying Further Design Requirements		
		7.4.1 Improving The Real Stability Radius		
		7.4.2 Zero Assignment		
	7.5	Summary		
Δ	Pro	ofs 199		
11		Proof of Theorem 3.2		
	A.2	Proof of Theorem 4.1		
		Proof of Lemma 5.1		
	A.0	11001 01 Definita 0.1		
в	Pos	sible Cost Functions for Pole Colouring 209		
	B.1	Minimum Perturbation Based Cost Functions		
	B.2	Settling-Time Based Cost Functions		
	B.3	Rise-Time Based Cost Functions		
	B.4	Damping-Ratio Based Cost Functions		
	B.5	A Composite Cost Function		
References 217				
Index 23				