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Pole Placement Under Structural Constraints 

A. PIAZZI 

Abstract- The spectral assignability properties of the linear map 
A +BF are exploited under the structural constraints that a given con- 
trolled invariant V complement of im E are both ( A  +BF)-invariants. 
Correlations with previous results are established, and the duality is per- 
formed with conditioned invariants. Direct applications are found in the 
linear geometric theory of many reduced-order syntheses, e.g., those of 
observers, regulators, etc. 

1. INTRODUCTION 

In the current section, we set the notation and present a known result 
on the spectral assignability of A +BF, This result will be generalized in 
Section I1 by Lemma 2, and in the last section, we report two corollaries, 
an application of the found result. 

With the capital scripts X, 'U, and 'y we denote real vector spaces of 
order, respectively, n, q, and p .  The direct sum of subspaces, the sum 
of disjointed subspaces, is designated by , i  . We introduce the linear 
maps A :  3: - T, B: 'U -, X, C :  3: - 'y , and define 31. := im B as the 
image of B and e := kerC as the kernel of C. In general, matrices and 
linear maps are denoted by the same symbols, relying on the context for 
the appropriate distinction. 

A subspace 4 C X is an A-invariant if A9 C 4. A14 A l T / 9  are, re- 
spectively, the restriction on 9 of A and the map induced by A on the 
quotient space X/4. o ( A )  signifies the spectrum of A and k. the set union 
with repetition. 

Controlled invariants, also known as ( A .  B)-invariants, are subspaces 
V C 3: such that A V  C V +(B and conditioned invariants are subspaces 
S C X satisfying A(Sn e)  C_ S. 

Given a controlled invariant V ,  let F ( V )  be the set of all maps 
F :  X + 'U such that ( A  + B F ) V  C V .  & denotes the reachable sub- 
space of the pair ( A ,  B) and &<, the reachable subspace constrained on 
V. As is known, (R = (AI@)  (i.e.,  @ + A @  + A 2 @  + .  . .  + A " - ' @ )  
and (R%, = (A + BFIa n V )  with F E F ( P )  (&is, does not depend on 
the particular chosen F ) ;  hence, CR,. and V + CR are ( A  + BF)-invariants 
for any F E F ( V ) .  Schumacher [ I ]  proved the following result. 

Property I :  Given a pair ( A ,  B )  and any controlled invariant V. The 
freedom in placing the poles of A + BF when F is restricted to F ( V )  
can be described as follows: 

o(A + BF I@%.) is free 

u ( A  + B F  IV /CR.,) is fixed 

o ( A  + B F  jV + CR /V) is free 

a ( A  + B F l X / V  + @) is fixed. 
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11. LF.MMAS 

With respect to Property I .  thc further structural constraint that a 
complement V i  of @ is to become an ( A  + BF)-invariant and V is to 
be expressed as V n @ + V n V ,  does not imply any further restriction 
on the spectral assignability, which is indeed the same as in Property I .  
This is stated in the following lemma. 

Lemma 2: Given a pair ( A ,  B) and any controlled invariant V ,  there 
exist both a controlled invariant Vi and a linear map F :  X - 'U such 
that 

63.: V ,  = X  ( l a )  

v = v n @ + v n v ,  ( I b )  

( A  + B F ) V i  C Vi (IC) 

( Id)  (A + B F ) V  c V 

and with the following possibility of pole placement: 

u ( A  + BF 1CR.J is free ( l e )  

u ( A  + BF is fixed (10 

(Ig)  a ( A  + B F I V  + @/V) is free 

a(A + BF lX/V + 03) is fixed. 

Proof: Let us perform the basis change in the state space according 
to 

x =Tx'  (2)  

where T is a nonsingular matrix partitioned as [Ti T2 Ti  T, T,  Th 1 with 
im T i  = @ nV, im [ T I T 2 ]  = &, , im [ T I T I T 3 ]  = V, im [ T I T 4 ]  = (B, 

and im [TIT2T3T?Ts] = V + CR.  On the basis of state variables x', the 
system and control matrices are expressed by 

A : ,  A:2 A:3 A:, A:,  A:,  

A:' A;? A:, AS, 4, AS, 

The structural zeros in A' are due to the A-invariance of V + (R and the 
( A ,  @)-controlled invariance of CR\, and 9. 

Considering matrix B of full rank (without any loss of generality), we 
make the basis change, in the input space 'U. 

U = N u  (3) 

having defined N as 

N:= [:;]-I. 
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- 0  0 0 0 -  

I z O O O  

0 1 3 0 0  

0 0 0 0  

0 0 1 5 0  

- 0  0 0 1 6 -  

V I  := im 

The control matrix in the coordinates x’ and U is given by 

with the identity matrices I ,  and I4 of order equal to, respectively, dim 
(63 n V) and dim (17 + a3/V). 

By virtue of the properties of as, and C R ,  the following pairs are 
controllable: 

(4) 

On the other hand, the controllability of pairs (4) and ( 5 )  implies, by 
means of the rank criterion, that pairs (A:?, AS, ) and (A:s, are 
also controllable. Hence, there exist matrices F{> and Fis such that the 
spectra a(Ai,  + A i , F i 2 )  and o(A:,  +A:,?:,) are arbitrarily assignable. 

Consider now the further basis change in the state space 

x’ = T i  

where T’ is defined as 

T := 

I ,  F i 2  0 0 0 0 

0 I Z 0 0 0 O  

0 0 I ? 0 0 0  

0 0 0 1 4  F:S 0 

0 0 0 0 15 0 

O O O O O I b  

The system and control matrices according to coordinate transformations 
(3) and (6) are given by 

We define in the coordinates X and U the subspace VI  and the map F ,  

O 1  0 0 A I J + R  0 

The structural zeros of matrix (7) show the (A + BF)-invariance of 
subspaces V I  and V [inclusions ( I C )  and (Id)]. The last four conditions 
derive from the following spectra identities: 

u ( A  +BF/R..)  = g(P) Mua(AS, +ASIF: , )  

u(A t B F / V / R , , )  = u(A; , )  

o ( A  + B F ( V  +(R/V) = o ( Q )  kJu(A{ ,  + A ( J F i 5 )  

u(A +BFlX/V + C R )  = u ( A i b ) .  c 

Remark: Note that the given proof is fully constructive and provides 
the map F and the subspace V I  , which both depend on the chosen spec- 
tra. 

Given a pair (C, A )  and a conditioned invariant S ,  let Q be the un- 
observable subspace of the pair ( C ,  A )  and let Q, be the unobservable 
subspace containing S. Lemma 2 can be dualized-in terms of condi- 
tioned invariants-in the following way. 

Lemma 2’: Given a pair ( C ,  A )  and any conditioned invariant S, there 
exist both a conditioned invariant SI and a linear map G :  y + 3c such 
that 

and with the following possibility of pole placement: 

u ( A  + G C / Q n S ) i s  fixed (Se) 

o(A +GCIS /QnS) i s  free (80 

u ( A  + GCJQ,/S) is fixed (8g) 

o ( A  + GC(X/Q,,,) is free. (8h) 

.- 
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R + V  

v 

R v  

76 1 

fixcd free 

() Q s  0 

frec fixcd 

0 s 0 

fixed free 

0 Q f l S  0 

free Lxed 

The pole placement possibilities can be visualized by the Hasse diagrams 
shown in Fig. 1 where the free and fixed spectra are exhibited. 

111. COROLLARIES 

From Lemmas 2 and 2’. we can derive a variety of corollaries de- 
pending on the assumptions we choose for the specific applications. For 
example, the following result has been presented by Imai and Akashi for 
dealing with stable disturbance rejection compensators 121 (see also 131). 

Corollary 3: Let pair ( A ,  B )  be controllable. Given any internally 
stabilizable controlled invariant V,  there exists a controlled invariant VI 
such that 

63CPVl =x (9a) 

v = v n @  + v n v ,  (9b) 

V, is internally stabilizable. (9c) 

A specialization of Lemma 2’ leads to the geometric theory of reduced- 
order observers, as we shall see shortly (see [4]). 

Corollary 4: Given an observable pair ( C ,  A ) ,  there exist a condi- 
tioned invariant S, and a map G such that 

e;s,  =x ( 1 0 4  

( A  +GC)SI c SI ( lob)  

u ( A  +GCjX/S,)is free. (10c) 

Proof: With regard to Lemma 2’, we choose S:= Ec which is, ev- 
idently, a (e ,  @)-conditioned invariant. The subspace SI satisfies ( loa)  
and (lob). Since the unobservable subspace Q is equal to 0 (the zero 
subspace), it follows from (8f) that u ( A  + G C )  is freely assignable. But 
u ( A  + G C )  = a ( A  +GCISl) S u ( A  +GCJ~C/SI) ;  therefore, we obtain 
condition ( 1Oc). - 

I 

Consider the observable system 

2( t )  = A x ( t )  + u ( t )  

Y ( 0  = C x ( 0  

where x,  U ,  and y are, respectively, the state, the input, and the output 
vectors. Using Corollary 4, we can immediately synthesize for system 
C an observer with order n - p of arbitrary dynamic response. Indeed, 
write the observer equations as 

c CO TI 

Fig 2 State e\timation through a reduced-order oh\erver 

Perhaps a more interesting application of Lemmas 2 and 2’ can be 
found in the geometric theory of reduced-order regulators [5]-[7]. In  
fact, in these applications, the synthesis procedure can take advantage of 
the fact that the above lemmas do not need any hypothesis on either pair 
( A ,  B )  or ( C ,  A ) .  
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Comments on “Adaptive Manipulator Control: 
A Case Study” 

MARK W .  SPONG, ROMEO ORTEGA, A N D  

RAFAEL KELLY 

Abstract-Stability in the sense of Lyapunov of the adaptive motion 
controller for robot manipulators reported in the paper’ is established 
in this note. 

It is well known (see, e.g., [ I ] )  that to carry out the stability analysis 
of most adaptive systems, the well-known Lyapunov techniques cannot 
be directly applied. Instead, a problem specific mathematical machinery 
has been developed which, roughly speaking, proceeds as follows. First, 
a nonnegative function of (not necessarily all) the states of the system is 
used to establish boundedness and square integrability of some signals of 
interest. Then, chasing the signals through the loop, global boundedness 
of all signals and asymptotic error tracking is proven. It is worth under- 
scoring that, in general, this procedure does not allow us to establish 
stability in the sense of Lyapunov. This situation may cast doubts on the 
robustness properties of the adaptive systems. See [2], and references 
therein, for further details. 

This same procedure for stability analysis is used in the paper! for 
an adaptive motion controller for robot manipulators. The proposed con- 

where L l ,  Q I  , TI are full-rank matrices satisfying L ,  C + TI QI = I 
with ker 81 = SI and G and SI are synthesized according to 
4; z is the observer state and X is the estimate of state x .  The block 
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It would not be difficult, and it is left to the interested reader, to prove 
that lim,+c-z i ( r )  = x ( f )  tix(O), z(0)  and the dynamic response of Z.I f ~ . E ~ ~ ~ ~ ~  ~ ~ ~ ! r ~ ~ ~  T ~ ~ ~ ~ .  A ~ ~ ~ ~ ~ ~ ,  ,-onir,. 33, pp, 995-1003. Nov. 
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