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Pole-Zero Computation in Microwave Circuits 
Using Multipoint Pad6 Approximation 
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Abstruct- A new method is proposed for dominant pole- 
zero (or pole-residue) analysis of large linear microwave circuits 
containing both lumped and distributed elements. The method is 
based on a multipoint Pad6 approximation. It finds a reduced- 
order rational s-domain transfer function using a data set ob- 
tained by solving the circuit at only a few frequency points. We 
propose two techniques in order to obtain the coefficients of 
the transfer function from the data set. The proposed method 
provides a more efficient computation of both transient and 
frequency domain responses than conventional simulators and 
more accurate results than the techniques based on single-point 
PadC approximation such as asymptotic waveform evaluation. 

I. INTRODUCTION 
OLE-ZERO computation in a linear circuit is alge- P braically equivalent to the computation of the eigenvalues 

of a circuit matrix. There exist many numerical eigenvalue 
algorithms including QR, QZ, deflation-QZ, Muller, MD-QR 
algorithms. A detailed comparison of them is given in [l]. 

Another approach in pole-zero computation is to obtain a 
rational network function in the s-domain and find the poles 
and zeros from the polynomials of this rational function by 
means of a standard root finding algorithm. A review of 
symbolic frequency domain network analysis methods can be 
found in [6]. Among these methods the most popular one is 
the numerical interpolation method. It is based on polynomial 
interpolation with arbitrary selection of frequency points. It 
is shown in [7] that the best result is obtained when the 
interpolation points are uniformly distributed on the unit circle, 
which is known as interpolation using FFT algorithm. Most 
of the symbolic analysis methods, including the interpolation 
algorithm, try to compute an exact form of the network 
functions in the frequency domain. 

The methods mentioned above are not practical for mi- 
crowave circuits for two reasons: 

1) Usually, practical microwave circuits are of large size, 
therefore difficult to analyze. Even a simple circuit 
may have a very large equivalent circuit due to highly 
complex device models and parasitic elements that may 
be obtained by means of layout extractors. 

2 )  Circuits which contain distributed elements are infinite- 
dimensional systems and have an infinite number of 
poles. Therefore, the methods which attempt to find an 
exact solution would not be successful. 
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One solution to these problems is the dominant pole-zero (or 
pole-residue) approximation using the Asymptotic Waveform 
Evaluation (AWE) [ 2 ]  method. The AWE technique employs 
a form of PadC approximation to approximate the behavior 
of the higher order linear circuit with a reduced order model. 
The moments of the circuit, which result from a Taylor series 
expansion of the circuit response about s = 0, are matched 
to a reduced order rational function. Since the moments 
convey information about the low-frequency characteristics 
of the circuit, the AWE technique can only extract the low- 
frequency poles. However, for some applications, e.g., the 
interconnect circuits, the mid and high frequency ranges are 
more important. 

In order to improve the accuracy and generality of the 
AWE method, many techniques have been proposed. It has 
been extended to handle lossy coupled transmission lines 131, 
1141, [lo]. In addition to the moments, the Markov parameters, 
which are the coefficients of the Taylor series expansion at s = 
m, are used to improve the accuracy of the transient response 
near t = 0 [5]. Moment matching techniques have been refined 
in order to obtain accurate and stable low-frequency poles 
[11]-[13]. 

Recently, Chiprout and Nakhla have introduced the complex 
frequency hopping (CFH) technique [9] in order to find all 
of the dominant poles within the frequency range of interest. 
In this technique, a number of single point expansions is 
performed at different frequency points. The expansion points 
are chosen on the j w  axis using a binary search technique 
and then the poles which are considered to be accurate under 
some criteria are collected. 

This paper proposes a new pole-zero (or pole-residue) ap- 
proximation technique for the analysis of large linear circuits. 
The novelty of this method over AWE based methods is 
that the approximation holds for the entire frequency range 
under consideration rather than for the low frequencies only. 
This method also provides a better approximation than the 
previously proposed work which uses multipoint moment 
matching methods such as the CFH technique, as will be 
shown to reader in the following sections. 

The proposed approach requires the solution of the circuit 
matrix at a few frequency points. The derivatives of the 
network function with respect to s are obtained efficiently 
from these solutions. By using these derivatives at different 
complex frequency points, a multipoint Pad6 approximation 
is used in order to obtain a reduced order s-domain network 
function. Poles and zeros (or poles and residues) can be found 
from this rational network function using standard techniques. 
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In the next section, the order reduction technique is ex- 
plained briefly. Frequency-shifted moments are defined in 
Section 111. We propose two methods for the calculation of 
the coefficients of the network function in Section IV. Practical 
and numerical considerations of the proposed method are given 
in Section V. In Section VI we present some examples to show 
the performance of the proposed method. 

11. ORDER REDUCTION 
Consider a linear system modeled by a coupled set of linear 

algebraic equations in Laplace domain, 

T(s)x = w (1)  

where T is the system matrix, the vector x is the system 
response and the vector w is the system excitation. In gen- 
eral, the system matrix T is an arbitrary function of s. Let 
the system output be any linear combination of the system 
response, 

H = dTx. (2) 

Using Cramer's rule one can obtain 

(3) 

If the elements of the system matrix are polynomials in s 
(e.g., in lumped networks T = T1 +  ST^), the expansion of 
the determinants in (3) leads to polynomials in s ,  

(4) 

In this paper, we consider the circuits containing distributed 
components as well as lumped elements. Those circuits can 
be regarded as infinite-dimensional systems and the network 
functions for an infinite-dimensional system cannot be ex- 
pressed as a ratio of two polynomials of finite-degree. Our 
aim is to approximate the network function H ( s )  - regard- 
less of whether it is a rational or irrational function of s, 
with a rational function B(s) which has approximately the 
same frequency characteristics as the original circuit. Let the 
approximate function be of the form 

bo + bls + . . . + bq-1sq-' 
H ( s )  = ( 5 )  1 + a1s + . . . + a& 

Since there are 29 parameters to compute in the reduced model, 
we need 2q constraints from the actual circuit. In the AWE 
technique 2q unknowns are calculated by matching the first 
T moments and the first (2q - T )  Markov parameters of the 
original circuit to the approximate rational function [5] .  

In this work, we propose a method which uses a data 
set obtained from the circui! to construct the approximate 
s-domain rational function, H ( s ) .  This data set contains the 
frequency-shifed moments obtained at different complex fre- 
quency points. In the following section, we present the eval- 
uation of the frequency-shifted moments. 

111. FREQUENCY-SHIFTED MOMENTS 

The system response x(s), can be expanded into a Taylor 
series at s = S k  as: 

m 

i=O 

provided that x(s) is analytic at s = Sk. The coefficient xki 
in (6) is called the vector of ith frequency-shifted moments' 
at s = S k  and 

(7) 

The first moment vector is the solution of the circuit at s = s k ,  

X ~ O  = T-'(s~)w. (8) 

It can be shown that the higher order moments can be 
evaluated recursively as, 

. .  
r=l  

where superscript ( T - )  indicates the rth derivative with respect 
to s. If the circuit contains only lumped components, then 
T(') = 0 for T- > 1. If it contains distributed elements, 
then the derivatives can be found efficiently using either the 
eigenvalue moment method [3],[ 141 or the matrix exponential 
method [lo]. 

are obtained from the moment vectors xki's as, 
The moments for a particular output of the circuit at s = Sk . 

where nk is the number of the moments at s = sk. We denote 
the point s = 0 by SO and the moments at s = 0 are represented 
with moi. Note that, the frequepcy-shifted moments at s = sz 
are complex conjugates of the frequency-shifted moments at 
s = sk. We represent the frequency point SE by s - k  and the 
moments at s = s-k by m - k i .  Let N be the total number of 
moments, then we have 

n n 

k=-n k=l 

where n is the number of expansion points in the upper half 
s-plane. 

IV. MULTIPOINT MOMENT MATCHING 

We match the moment set, which contains N frequency- 
shifted moments obtained from 2n + 1 points, to a qth order 
proper rational function (q = N/2, which implies N should 
be even), which is denoted by [(q - l ) /q]:  

k = - n  ,.., 0 ,.., n 

We propose two methods for the calculation of the coefficients 
of the rational function. In the first method a set of linear 

' Hereafter, the frequency-shifted moments will be referred to as moments. 
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equations is obtained for the coefficients and solved directly. 
The second method finds the coefficients in a recursive manner 
without requiring a matrix inversion. 

matrix equation is formed: 

A. Method 1 

In this part we will show that finding the coefficients of 
the rational function is equivalent to solving a set of linear 
equations. 

Let us first consider the one-point moment matching case 
at s = sk.  If we write the polynomials of the rational function 
in terms of i = s - S k  rather than s, we obtain: 

60 + b 1 i  + ... + bq-$-l - - 
&I + i i1 i  + ... + i i q i q  

m k O  + m k l i  + ... + m k ( n k - l ) i n k - l  + 0 ( i 7 ' n ) ,  (12) 

where, 

60 = 1 + E;- a& 

6 t -  -E"-' l=z bl(;)s;-z, 
(13) iiz = E;='=, al(Z)S;-Z,  -11 i = 1 , 2 ,  . . . q  

i = 0 , 1 ,  ... 9 - 1 .  

Multiplying the denominator polynomial with right hand side 
in (12) and equating the coefficients gives 

bo = mkoao 

- 
bnb-1 - m k 0 6 ~ ~ ~ - 1  + ... + m k ( n ~ - l ) ~ o  

or in the matrix form, 

Mkc = m k .  (15) 

In (151, c = [bo...b,-lal . . .a , ]T  is the coefficient vector 
and, 

m k  = [ m k o  . . . mk(r~~- l ) ]*  

and the n k  by N matrix Mk is equivalent to 

[C1 i C Z  BC2 B C a ] .  

where 

... I mkO 
B =  [mkl mkO : 

mk(nk-1) mk(nk-2) mkO 

and C1, Cz and C3 are defined as: 

[CI  I cz I C a ] =  

Note that, M-k = M; and m-k = m;, Finally, collecting 
the equations obtained from all points, the following N by N 

The solution of this matrix equation yields the coefficients of 
the rational transfer function we are seeking. 

B. Method 2 
Alternatively, the coefficients of the rational function can be 

found by means of a recursive computation scheme starting 
from a polynomial which interpolates the given data set. 
This method corresponds to the computation of a cross- 
diagonal sequence in Pad6 table, i.e., it gives all [m/Z] Pad6 
approximations such that m + 1 = N - 1. 

We denote the rational function that corresponds to the 
[(N-l-Z)/Z] Pad6 approximation by p l /q l .  In other words, for 
a denominator polynomial the degree is its subscript and for 
a numerator polynomial the degree is the difference between 
its subscript and N - 1. Now, let us suppose that the rational 
function pl/ql  interpolates the given data set. That is, 

lc = -n, .., 0, ..n 

Let us also define the polynomial g( s )  of degree N as 
71 

k=-n 

Now, assuming p l ( s )  and q ( s )  are co-prime with g(s) ,  we 
claim that if 

P l ( s ) q m ( s )  - Pm(Sk l (S )  = d s ) r ( s ) ,  (22) 

where ~ ( s )  is a polynomial such that deg[r(s)] = max(l - 
m - 1, m - 1 - l), then the rational function p , / q ,  also 
interpolates the given set. We can prove this claim as follows. 
Dividing both sides of (22) by ql(s)qm(s)  we obtain, 

(23) Pl(s) - P , o  = g(s)r(s) 
ql(s)  4m(s )  4 1 ( . 5 ) 4 m ( S ) .  

From the definition of g ( s )  we have 

IC = -n, ..,0, ..n. (24) 

Therefore, 

i = 0,1, .., nk - 1, IC = -72, ..,0, ..TI,. (25) 

The converse of the claim is also true. That is, if p l /q l  and 
p ,  /qm are two rational polynomials interpolating the moment 
set, then, (22) holds. 
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Now, we can construct our method as follows. Let pl/ql  and 
p lP l  /ql-  be two consecutive solutions, then (22) becomes: 

Pl(s )q l - l ( s )  - Pl- l ( s )q l ( s )  = s(s)ro,  (26) 

where TO is any real number. Now if we divide the polynomial 
p l - l ( s )  by p l ( s )  we obtain 

P l - l ( S )  = P l ( S ) C ( S )  - 4 s ) ,  (27) 

where, c(s )  is the quotient polynomial with degree 1 and d ( s )  
is the remainder polynomial with degree N - 1 - 2. If we add 
and subtract the polynomial p l (  s)ql ( s ) c (  s )  to the left hand 
side of (26) we obtain 

(28) 

where e ( s )  = ql(s)c(s)-ql-I(s)  with degree 1+1. Now since 
d ( s )  and e(s) have degrees of N - 1 - 2 and 1 + 1, respectively 
and since they satisfy (22), we conclude that d / e  is nothing 
but [ ( N  - 1 - 2)/(1 + l ) ]  Pad6 approximation: 

d(s)ql(s)  - Pl(s)e(s)  = s(s)ro,  

Pl+l(S) = 4 s )  (29) 
ql+l(s) = 4 s ) .  (30) 

As a summary, given pl-l/ql-I and p l / q l ,  we can find 
pl+l/ql+1 simply by evaluating one polynomial division, one 
polynomial multiplication and one polynomial addition. The 
first two approximations are found as follows: Let f(s) be 
a polynomial of degree N - 1 interpolating the computed 
moment set, 

IC = -n ,.., O,..n. (31) 

The polynomial f ( s )  is, in fact, [ ( N  - 1)/0] Pad6 approxi- 
mation and to obtain [ ( N  - 2)/1] approximation we rewrite 
(26), 

Pl (S )  - f(s)q1(s) = g(s)ro,  (32) 

which means that the quotient of the division of g(s) by f(s) 
gives q1(s) and the remainder is p l ( s ) .  Therefore, having 
found the data interpolating polynomial f ( s ) ,  we can compute 
recursively the cross diagonal sequence of the Pad6 table. 

V. PRACTICAL CONSIDERATIONS 

In the previous sections, we treated the subject theoret- 
ically. Now, we will discuss some topics on the practical 
implementation of the proposed method. 

A. Calculation of Frequency-Shijled Moments 

A recursive scheme for computing the frequency-shifted 
moments at a point is given in (9). Since the LU factorization 
of the circuit matrix T(sk) is known from the solution of the 
first moment vector, each higher order moment vector can be 
obtained by one forward and one back substitution (FBS) only. 
Totally, we need n + 1 LU decompositions of the circuit matrix 
which is equivalent to obtaining the ac response of the circuit 
at dc and n points. In addition to LU decompositions we also 
need ni FBS’s in order to calculate the N moments. 

B. Selection of Frequency Points 

A crucial step in our method is the selection of frequency 
points. Only the poles close to the j w  axis are important in 
both time and frequency analyses. Therefore, we choose the 
expansion points on the j w  axis. Once the frequency region 
of interest is specified, which is generally between dc and a 
maximum frequency, the location and the number of expansion 
points can be chosen using the complex frequency hopping 
(CFH) algorithm [9]. This algorithm first performs one-point 
expansions at the points s = 0 and s = jwmaz.  The poles are 
calculated separately from these expansions and if there exists 
any common pole, then the search is completed. Otherwise, 
more frequencies are selected using a binary search and, an 
expansion is performed at every new point until every two suc- 
cessive expansions result in at least one common pole. In the 
CFH method, the poles about an expansion point are calculated 
independently from the other expansions, and this conse- 
quently decreases the accuracy. In contrast, in our algorithm, 
all of the poles and the corresponding residues are obtained 
considering all the expansion points simultaneously. This 
approach yields a more compact and accurate approximation. 

The CFH technique gives the number of accurate poles 
about an expansion point. We can choose the number of 
moments at each frequency point using this information but not 
less than 8 moments at one point. Having chosen the expansion 
points and the number of moments at each point, we can find 
the coefficients of the rational transfer function using one of 
the two methods presented in Section IV. 

C. Finding the Coeflcients Using Method 1 

The complex conjugate of every row also exists in (19). 
Therefore, this N by N complex equation set is equivalent to 
an N by N real equation set and can be solved using ordinary 
elimination algorithms. 

Since our method is proposed for relatively complex cir- 
cuits, the orders of approximations (10 N 50) are generally 
large compared to the orders of typical approximations (< 12) 
seen in the AWE technique. Hence, very large numbers can 
appear in the entries of the matrix given in (19) because of 
the powers of the expansion points, and consequently, the 
matrix can become ill-conditioned. Therefore, we use double 
precision arithmetic, and, we also perform a frequency scaling 
such that the absolute values of the expansion points, I S k  l’s, 
are reduced to around unity. 

Another important topic is the stability of the approxi- 
mated poles. Similar to the AWE technique, multipoint Pad6 
approximations may also result in spurious right hand side 
poles. When some unstable poles appear in an approximation, 
we discard them and solve a new matrix equation for the 
coefficients of the numerator polynomial. The new matrix 
equation is obtained as follows. First, let q’ be the number of 
stable poles of the q approximated poles. Now, let us rewrite 
(19) in the form, 

(33) 

or 



10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. I ,  JANUARY 1995 

where the vector b’ contains the coefficients of the numerator 
polynomial to be solved, the vector a’ corresponds to the 
coefficients of the stable denominator polynomial and the other 
primed quantities are obtained in a similar manner defined 
in Section IV, but this time the number of moments are 
reduced such that 2q’ = 7th + 2 E;=, nk. Equation (34) is 
overdetermined and a solution in the least square sense can be 
obtained. However, this solution does not exactly match the 
first q’ moments. Therefore, we form the primed quantities in 
(34) by taking the first n k / 2  moments from each point which 
results in a q’ by q’ matrix equation. 

D. Finding the CoefJicients Using Method 2 

In contrast to the first one, this method does not require 
any matrix inversion. It is more efficient than the first method. 
Moreover, this method allows a search on the Pad6 table in 
order to choose stable and accurate approximations. The major 
difficulty with this method is the construction of the data 
interpolation polynomial, f( s). This polynomial is obtained 
using the method of divided differences [8] and, generally, it 
is numerically hard to obtain the coefficients for higher order 
interpolations. Our experiments show that approximations 
having orders up to about 20-25 can be found. However, the 
first method yields accurate results up to 40-50 poles. 

E. Finding the Poles and the Residues 

After having obtained the coefficients of the network func- 
tion, to find the poles and residues, a partial fraction de- 
composition routine is employed which requires a polynomial 
factorization with an associated extra CPU time. This extra 
cost becomes important only when the order of approximation 
must be increased to about 50. For this size, this task is about 
1.6 million floating point operations. Even in this case, this is 
less than the CPU time required for the moment computation. 
As the circuit size grows, moment computation gets more 
costly, but the cost of the polynomial factorization remains 
the same. 

The obtained set of poles and residues may be inaccu- 
rate due to round-off errors both in the computation of the 
coefficients of the network function and in the polynomial 
factorization. This set of poles and residues can be verified for 
accuracy by using an error criterion defined in the following. 
Consider the approximated transfer function: 

where the pj  are the q approximate poles, and the k j  their 
corresponding residues. Then, the approximate moments of 
this transfer function can be computed as, 

IC = -n ,.., O,..n. (36) 

In the absence of round-off errors, we should have 

i = O , l ,  . . , n k - l ,  r iZk i  = mki, IC = -n, ..,O, ..n (37) 

0, 1 
exact 
Methcd 1 
AWE _ _ _  - - I  

C 

-60 

-70 

-80 

Fig. 1. Frequency response of the lowpass filter. 

where mki are the exact moments obtained from the circuit. 
A normalized error can be defined as 

The error increases as the order of approximation increases and 
an error beyond a tolerance limit indicates that the approxima- 
tion is inaccurate. In this case, a new lower order multipoint 
Pad6 approximation should be performed. However, our ex- 
periments have revealed that, even for an approximation of 
order 50, this error is less than 1 x which corresponds 
to a good accuracy. 

VI. EXAMPLES 

The following examples demonstrate the performance of the 
proposed method on both transient and frequency analyses. 

Example I :  The first example is a lowpass filter imple- 
mented with transmission lines. It has a cutoff frequency of 
4 GHz. Because of the repetitive properties of the transmission 
lines, the response is significant also at higher frequencies. 

The actual frequency response of the filter is shown in 
Fig. 1 .  Applying the enhanced moment matching techniques 
[ll],  we found that the best AWE result is the [6/9] Pad6 
approximation which is plotted in Fig. 1 .  We have chosen the 
maximum frequency as 50 GHz, and, found the expansion 
points to be 0, 12.5, 25, 37.5, and 50 GHz using CFH 
technique (so = 0, s1 = j27r12.5 x lo9,  s-1 = -j27r12.5 x 
lo9, ..., s4 = j27r5Ox1O9, sV4 = -j27r5Ox1O9). Solving (19), 
we have found the 47th order approximation (no = 14,ni = 
10, for i = 1, -1 ,  ..., 4 ,  -4) which resulted in 41 stable 
poles. Then solving (34), we have obtained the stable [40/41] 
approximation whose frequency response is also shown in 
Fig. 1 .  

The step response of the filter is also computed from 
the approximations mentioned above. The results are shown 
in Fig. 2 together with the HSPICE simulation result for 
comparison. 

Using this circuit again, we have compared the accuracies of 
the CFH technique and our first method. Let 0 and 1 1  GHz be 
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2 
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Proposed method 

HSPICE 

CFH method 

Method 1 j 
0.1 t ,I 

A W E  _ _ _  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
time (nsec) 

A W E  _ _ _  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
time (nsec) 

Fig. 2. Step response of the lowpass filter. 

I -2.3329803591e11 I I 
I -1.4459214949ell I 1 

-9.2186239031e08 f j1.231099147Oell 

-4.2213073890e09 f j1.0631300764ell 

-5.131872946449 f j8 7044023156e10 

-4.2316598128e09 f j1.0636483876e11 

-5.131869963749 * j8 7044023398elO c -1.9776350608eO9 f j7.5409512193elO -1.9776350608eO9 f j7.5409512192elO 

I -2.2627219713elO * j3.7198003498e10 I -2.2790993205elO f j3.7221048203elO I 
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I -2.7169584289p09 zi i2.3731095682elO 1 -2.716954635Oe09 f i2.3731023229elO 1 
I -9.7407610673e09 1 -9.7407610672e09 I 

two hopping frequencies. Then, following the steps explained 
in [9], we have found 12 accurate poles using 16 real moments 
(s = 0) and 16 complex moments (s = j27r11 x lo9). Our 
method, using 16 real moments and 12 complex moments, has 
been able to find a stable 18-pole approximation. The approx- 
imated poles are listed in Table I for reference. The accuracy 
of these two sets of poles and residues have been compared 
using the error criterion given in (38). The errors have been 
calculated as cm = 1.554 x 10-1 and t, = 7.035 x 10-l2, in 
CFH's and our results, respectively. Normalized errors in the 
frequency response2 with respect to actual response are plotted 
in Fig. 3. Since the filter has a zero at 8 GHz, normalized errors 
become very large around that frequency. As it is seen from 
the figure, the accuracy is considerably improved by using 
multipoint moment matching rather than collecting the poles 
from a set of single-point moment matches. The price we pay 
is to solve an extra 40 by 40 matrix. In comparison to the 
other computations this is a very small price. 

Example 2: We consider the interconnect circuit shown in 
Fig. 2 of [3]. It contains 7 transmission lines, 8 inductors, 12 
capacitors and 9 resistors. 

@( J ) ) / H ( J U!) I. 
*Normalized error in frequency response is defined as, E, = ~ ( H ( J Z P )  - 

Fig. 3. Normalized error in the frequency response of the lowpass filter. 

-10, 

- exact 
Method 1 
Method 2 
A W E  

_ _ .  

_ _ _  

1 2 3 4 5 6 
frequency (GHz) 

Fig. 4. Frequency response of the interconnect circuit. 

Using the CFH technique, we have found the expansion 
points as 0, 1.25, 2.5, and 5 GHz. Taking 10 moments at each 
point we have obtained a 35th order approximation or the 
stable [30/3 11 approximation using the first method proposed 
in this work. The exact and approximated frequency responses 
are shown in Fig. 4. The 11th order AWE result is plotted in 
the same figure. 

We have also tested our second method in this circuit. We 
have chosen the expansion points as 0, 1.25, and 2.5 GHz, 
and, found the [17/18] approximation. The result is shown in 
Fig. 4. In Fig. 5, normalized errors of all approximations are 
plotted as a function of frequency. 

In Fig. 6, we present the step responses obtained from the 
above approximations. Our results and the HSPICE result are 
indistinguishable to the resolution of figure. In Fig. 7 the errors 
of the approximated step responses with respect to the HSPICE 
result are plotted. Figs. 5 and 7 show clearly how far the 
accuracy is improved by solving the matrix equation directly. 

Example 3: A circuit which contains six band-pass filters in 
parallel is considered. It has a total of 20 transmission lines, 
23 inductors, 32 capacitors and 26 resistors. The filters are 
switched by finite isolation PIN diodes resulting in a very 
complicated frequency response. 
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Fig. 5.  
circuit 

Normalized errors in the frequency response of the interconnect 

- HSPICE 
Method 1 
Method 2 
AWE 

_ _ _  
- - - _  

1.5 

Fig. 6. Step response of the interconnect circuit 

Using CFH technique the expansion points have been found 
as 0.5, 1 .O, 1.5, 2.0, and 2.5 GHz. Since the circuit has a band- 
pass type characteristics, the expansion about s = 0 does not 
give any useful information. Therefore, we have chosen the 
first expansion point as 0.5 GHz (no = 0). Taking 8 moments 
at each point we have found a 40th order approximation which 
resulted 36 stable poles. The magnitude and the phase of the 
frequency response are compared with the exact response in 
Figs. 8 and 9. The step response of the filter is shown in 
Fig. 10 together with the HSPICE result for comparison. 

VII. CONCLUSIONS 

A new dominant pole-zero (or pole-residue) computation 
method for microwave circuits has been presented. This 
method uses a multipoint Pad6 approximation to find a 
reduced order s-domain network function. In order to find the 
coefficients of the multipoint Pad6 approximant, we proposed 
two techniques. The poles obtained from the network function 
are not necessarily low-frequency approximations as it is the 

I 
0.5 1 1.5 2 

time (nsec) 

Fig. 7. Errors in the step responses of the interconnect circuit. 

-20t I 
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-60- 

\ 
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Fig. 8. Frequency (magnitude) response of the band-pass filter 

2001 I 

1 
I 

0.5 1.5 2 2.5 3 
frequency (GHz) 

Fig. 9. 

case in AWE. This method can also be used to compute pole- 
zero sensitivity in a similar way to the approach presented 
in [4]. 

Frequency (phase) response of the band-pass filter. 
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~ HSPICE 
Method 1 

7 8  

Fig. 10. Step response of the band-pass filter 
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