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ABSTRACT: Often in pharmaceutical research the goal is to identify small
molecules that can interact with and appropriately modify the biological
behavior of a new protein target. Unfortunately, most proteins lack both
known structures and small molecule binders, prerequisites of many virtual
screening, VS, approaches. For such proteins, ligand homology modeling,
LHM, that copies ligands from homologous and perhaps evolutionarily distant
template proteins, has been shown to be a powerful VS approach to identify
possible binding ligands. However, if we want to target a specific pocket for
which there is no homologous holo template protein structure, then LHM will
not work. To address this issue, in a new pocket-based approach, PoLi, we
generalize LHM by exploiting the fact that the number of distinct small
molecule ligand-binding pockets in proteins is small. PoLi identifies similar
ligand-binding pockets in a holo template protein library, selectively copies
relevant parts of template ligands, and uses them for VS. In practice, PoLi is a
hybrid structure and ligand-based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for
improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor
structures, PoLi achieves an average enrichment factor of 13.4 and 9.6, respectively, in the top 1% of the screened library. In
contrast, traditional docking-based VS using AutoDock Vina and homology-based VS using FINDSITEfilt have an average
enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets, respectively. Experimental validation of PoLi predictions on
dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular
scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods.

■ INTRODUCTION

Identifying lead molecules that bind to a given target protein is
a fundamental challenge in pharmaceutical research. This issue
has been addressed using both experimental high-throughput
screening (HTS) and computational in silico (commonly
referred as virtual screening, VS) approaches.1 Although HTS
is currently the best method for lead identification, the
dependence of the results on experimental factors, “chemical
space” coverage, and applicability for all targets, along with the
cost and time required to perform such screens limit their
applicability.2 For this reason, new computational approaches
that can efficiently screen large databases are needed, as they
not only complement HTS but also have much higher
throughput and greatly reduced cost and increased speed.3

On the basis of the availability of target protein structures,
either structure- or ligand-based VS calculations are performed
to identify potential lead molecules. The most commonly used
structure-based VS approach is molecular docking, which does
not require a priori knowledge of known binders4 and can
target a specific binding pocket of interest. Molecular docking
involves screening database molecules based on their calculated
interaction energy with the receptor binding site.5 As such, its
performance relies heavily on the receptor structure quality and
flexibility.6 For example, about 90% of docking accuracy is lost

if models of trypsin and HIV-1 protease with a root-mean-
square deviation, RMSD, greater than 1.5 Å from native are
used.7 It also depends on the presence of water molecules, the
conformations of database molecules, and the sensitivity of the
scoring function used for evaluating protein−ligand inter-
actions.8 Another structure-based variant docks small molecule
fragments to screen for promising leads.9 However, distinguish-
ing binding and nonbinding fragments is a challenge in these
methods, as fragments bind with very low weak binding affinity,
which cannot be captured using the inaccurate scoring
functions that we currently have.10 Moreover, like other small
molecule docking approaches, fragment-based approaches also
require a high-resolution structure, which is not always
available. To address this problem, homology models that are
very closely related to the template proteins in the PDB have
been used; moreover, the models frequently require a lot of
side-chain refinement.11

In the absence of a target receptor structure, ligand-based VS
approaches are generally used. Ligand-based VS is robust but
requires at least one known bioactive molecule that is used as a
seed to fish out database molecules with similar chemotypes.
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Most common ligand-based VS approaches evaluate a 2D
fingerprint,12 pharmacophore,13 or 3D shape-based similarity14

between known bioactive and database molecules. Thus, most
structure and ligand-based VS methods require either an
experimentally solved receptor structure or an experimentally
determined bioactive molecule. As such, they cannot be readily
applied to many proteins of therapeutic interest.
To address these significant limitations, we recently

described two new virtual screening approaches.15,16 The first,
FINDSITEfilt,15 can use either experimental or predicted low-
resolution target protein structures to screen database
molecules based on 2D fingerprint similarity with template
ligands in the PDB holo template library. FINDSITEcomb

includes FINDSITEfilt for proteins having holo templates, but
for those proteins lacking holo templates, it also uses an
artificially generated template library of predicted tertiary
structures whose binding ligands are found in the ChEMBL17

and DrugBank18 ligand-binding databases. Template ligands are
copied from globally related protein structures based on
structural similarity to the target, without considering where the
ligand actually binds in the template protein. These methods
have the inherent advantages of speed, lack of requirement of
high-resolution protein structures, and do not need known
binders. Although both approaches achieve good enrichment in
identifying out active molecules, FINDSITEfilt, in particular,
depends on the availability of proteins with a similar fold in the
holo template library for effective virtual screening. More
importantly, both FINDSITEfilt and FINDSITEcomb were not
developed with the goal of targeting a specific binding pocket.
To begin to generalize our approach, we developed a shape-

based virtual screening algorithm, LIGSIFT,16 that screens
database molecules based on their 3D shape and chemical
feature similarity to a target seed ligand. LIGSIFT was
benchmarked using the 3D similarity of database molecules
to a known binding ligand to the target protein, as provided by
the DUD database,19 and its performance without known
binding ligands was not established. Thus, a new pocket centric
approach that can target a specific binding pocket of interest,
overcome the requirement of global fold similarity between

template and target structures, and combines both 2D- and 3D-
based ligand similarity metrics for virtual screening using
ligands identified from holo templates is needed.
On the basis of these ideas and the fact that the space of

protein−ligand-binding pockets is small and close to
complete,20 we developed a new virtual screening pipeline,
PoLi, that first predicts the ligand-binding pocket in the target
protein, selectively copies parts of template ligands based on
binding-pocket alignment, and then performs virtual screening
of database molecules based on combined 2D and 3D ligand
similarity metrics to the selected template small molecules.
Large-scale in silico benchmarking followed by in vitro high-
throughput experimental validation of predictions on E. coli
DHFR establishes PoLi as an effective virtual screening
approach.

■ RESULTS

Overview of PoLi Pipeline. PoLi is based on the basic idea
that the number of distinct binding pockets is small,20 and for
many query proteins that lack any known active molecule, one
can detect binding pockets in the query protein structure,
identify similar pockets in the holo template library, copy
ligands from similar pockets, and subsequently use them for
ligand-based virtual screening. Figure 1 shows the schematic
representation of PoLi. The input to the PoLi pipeline is a 3D
structure of the query protein. If an experimentally determined
structure of query protein is already available, it can be used
directly; otherwise, starting from a query protein sequence, the
TASSER-VMT21 structure modeling pipeline is used to
generate 3D models of the query protein. The next step in
the hierarchical pipeline is the detection of ligand-binding sites
and copying of ligands from similar binding pocket of holo
template proteins. In PoLi, ligand-binding pockets in the query
protein’s structure are predicted using two different approaches:
first by global structural superposition of holo proteins in the
PDB library on the query protein structure using the TM-
align22 structure alignment algorithm and second by detecting
pockets using the ConCavity23 algorithm. These predicted
pockets are then structurally aligned against known ligand-

Figure 1. Schematic flowchart of the PoLi virtual screening pipeline.
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binding pockets in the PDB holo template library, using the
sequence-order independent binding-site comparison algorithm
APoc,24 and template ligands from similar binding pockets are
copied in the query ligand-binding pocket. These copied
template ligands are later pruned to remove parts of the
template ligand that interact with the unaligned region of
template binding pocket and then used in ligand-based VS.
Virtual screening in PoLi is performed using a combination of

2D fingerprint-based and 3D-shape-based similarity metrics,
where the 2D path-based fingerprint is generated using
OpenBabel,25 and 3D similarity is calculated using a variant
of the LIGSIFT16 algorithm. LIGSIFT is a small molecule
structural alignment algorithm that uses an atom-centered
smooth Gaussian function to describe the ligand structure and
perform rapid overlay to measure 3D shape and chemical
similarity. The ligand 3D similarity between molecules in
LIGSIFT is evaluated using a size-independent scoring function
(a scaled TC). The statistical significance of the similarity score
(p-value) is estimated based on millions of comparisons of
randomly selected ligands.16 A detailed description of the
pipeline modules is provided in the Materials and Methods
section.
Detection of Template Seed Ligands for Virtual

Screening. We first validate our approach to detect chemically
similar ligands using a pocket-based search. These detected
ligands will be used as seed ligands for ligand-based virtual
screening. The objective of this exercise is to show that the
ligands copied from template proteins have a statistically
significant chemical similarity to the native ligand when they
come from structurally similar pockets as assessed using the
ligand-binding pocket structural comparison algorithm APoc.24

In practice, we selected a nonredundant set of 30,000 ligand-
pairs with statistically significant chemical similarity (LIGSIFT
3D chemical similarity p-value < 0.001) and 35,000 ligand pairs
that lack significant chemical similarity score from the PDB
holo template library, such that the corresponding receptor
pairs share less than 30% sequence identity. Figure 2 shows the
performance of APoc’s pocket similarity24 to detect templates
that have chemically similar ligands bound to them, in
comparison to TM-align22 (global structural similarity) and
HHalign26 (threading). Predictions are labeled as correct if the
p-value of the 3D chemical similarity score between copied

template ligand and the query ligand is less than 0.001. As
shown in Figure 2, the pocket similarity-based approach
(APoc) outperforms both TM-align and HHalign in detecting
true positives. For instance, at 95% specificity, APoc identifies
34% of chemically similar ligand pairs; TM-align global
structural template matching recovers 18.5% true positives,
while HHalign only identifies 14.5% true positives. This
establishes that pocket similarity is the best of the three
approaches to identify templates that have ligands with
overlapping chemical features.

Benchmarking Performance on DUD and DUD-E
Databases. Benchmarking of virtual screening algorithms
was done on 40 DUD database proteins19 and 65 proteins
included in the DUD-E database (Table S1).27 Both are
routinely used for testing scoring functions and virtual
screening methods. Our objective here is to analyze the overall
performance of the PoLi pipeline, which includes structure
modeling of the receptor, binding site prediction, and virtual
screening of database molecules (Materials and Methods). We
also ran the same pipeline using experimentally solved protein
structures to assess the effect of model quality on virtual
screening performance. For structure modeling of target
proteins and binding site predictions using both modeled and
experimental structure, closely related homologous proteins
were excluded from template libraries using a sequence identity
threshold of 30%.

Model Quality of Target Proteins. Since model quality and
accuracy of binding site predictions are expected determinants
of structure-based methods for virtual screening, including PoLi,
we first examine the quality of predicted protein structures.
Figure 3A and B present the global and local structure quality
of predicted TASSER21 models. The global structure quality of
models is measured as TM-score,28 with values ranging
between [0,1] with a higher score indicating a better structural
match between the model and native structure. Statistically, a
TM-score less than 0.3 means random structural similarity and
TM-score greater than 0.4 indicates that the protein pairs have
a similar fold. The average TM-scores of DUD and DUD-E set
proteins are 0.76 ± 0.18 and 0.73 ± 0.12, respectively (Figure
3A), clearly highlighting that the predicted structure of most
proteins share high structural similarity with the experimentally
determined structure. Two proteins in both sets, namely, hmgr
(hydroxymethylglutaryl-CoA reductase) and sahh (S-adenosyl-
homocysteine hydrolase) in the DUD set, and nos1 (nitric
oxide synthase) and pa2ga (phospholipase A2 group IIA) in the
DUD-E set, have incorrectly predicted structures, i.e., the TM-
score between the model and experimental structure is less than
0.4. For these proteins, the structural confidence C-score of
model29 is also less than −3, i.e. they can be easily recognized as
having poorly predicted structures even in the absence of
experimentally determined structures (Table S2). Figure 3B
shows the structure quality of the predicted models near the
known ligand-binding site of the co-crystallized ligand. The
mean Cα RMSD of binding pocket residues (residues within
<4.5 Å from co-crystallized ligand in experimental structure) in
the DUD proteins is 4.3 ± 5.7 Å, and in the DUD-E proteins, it
is 3.3 ± 3.2 Å. In most cases, the structure near the known
ligand-binding pocket is also reasonably well predicted (Table
S2), with some local structural variations (typical of any
homology based structure modeling algorithm). This is not
surprising, as functionally important regions are generally more
conserved than other parts of the protein and are more likely to
be correctly predicted. Nevertheless, for some proteins, the

Figure 2. Comparison of a pocket-based method (APoc) with global
structure alignment and homology-based approaches to detect similar
ligands. The benchmark shows the ability of different approaches to
recognize 30,000 pairs of similar ligands from 35,000 pairs of
chemically dissimilar ligands.
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structural variations of the binding pocket residues can be large
(Cα RMSD > 5 Å) because of two reasons: (a) The global
structure itself is incorrectly predicted and so is the binding
pocket (e.g., in hydroxymethylglutaryl-CoA reductase). (b)
While the global fold is basically correct, the structure of the
ligand-binding site is only partially correct. For example, it
could be an interdomain binding pocket with one incorrectly
predicted domain (e.g., in glycogen phosphorylase beta). Such
structural variations affect both binding pocket predictions and
have a seriously adverse effect on the performance of molecular
docking methods that use these models.
Analysis of Binding Site Predictions. Figure 3C shows the

performance of the PoLi pipeline in recapitulating known
ligand-binding sites as provided in the DUD and DUD-E
databases19,27 using both modeled and experimental structures.
Using modeled structures, ligand-binding pockets are correctly
identified (within 5 Å from the geometric center of the
experimentally solved ligand−protein) in 32 of the 40 DUD set

proteins and in 52 of the 65 DUD-E set proteins. When
experimental structures are used, binding pockets can be
correctly predicted for 36 proteins in DUD set and 60 proteins
in DUD-E set, within the same distance cutoff. Among the
modeled protein structures with incorrectly predicted binding
pockets (pocket distance >5 Å), 5 of the 8 proteins in DUD set
and 7 of the 13 proteins in DUD-E set have binding pocket
residues with a Cα RMSD > 5 Å. For the remaining predicted
and experimental structures even though binding pocket
cavities could be detected, they lacked a significant match (p-
value < 0.001 and PS-score > 0.35) to known ligand-binding
pockets in the PDB holo template library. This is one of the
main limitations of LHM-based binding site predictions. Thus,
these VS predictions are of poor quality. Also in some targets
(e.g., in HIV reverse transcriptase), the known ligand-binding
site is interfacial (formed by contacts of protein chains in a
complex) and cannot be always predicted using monomeric
structures alone (especially in those models having structural

Figure 3. Structure quality and binding site prediction accuracy for DUD and DUD-E proteins. Box and whiskers plot of (A) TM-score and (B)
ligand-binding pocket Cα RMSD of TASSER models to the experimentally determined structures. (C) Distance between the geometric center of the
ligand in the co-crystallized complex and the center of the best predicted ligand-binding pocket in the 40 DUD and 65 DUD-E protein targets.

Table 1. Virtual Screening Performance of PoLi on 40 DUD Targets and 65 DUD-E Targets Using Experimental and Modeled
Structuresa

target receptor AUC av | sd EF1% av | sd EF5% av | sd EF10% av | sd HR1% av | sd HR5% av | sd HR10% av | sd

DUD-E (LIGSIFT) 0.73 ± 0.20 18.7 ± 18.1 6.6 ± 4.4 4.2 ± 2.3 29.2 ± 25.7 20.0 ± 14.1 25.3 ± 14.6

DUD-E (exp.) 0.72 ± 0.16 9.6 ± 13.5 4.8 ± 4.4 3.4 ± 2.3 14.6 ± 19.1 14.0 ± 13.9 20.1 ± 15.1

DUD-E (model TM > 0.5) 0.74 ± 0.16 9.9 ± 13.5 4.9 ± 4.3 3.6 ± 2.3 14.9 ± 18.8 14.5 ± 13.4 21.4 ± 15.3

DUD-E (model pdist < 5 Å) 0.76 ± 0.16 11.0 ± 14.3 5.4 ± 4.4 3.9 ± 2.3 16.6 ± 19.9 15.9 ± 13.9 23.4 ± 15.6

DUD-E (model) 0.73 ± 0.16 9.6 ± 12.7 4.7 ± 4.2 3.6 ± 2.3 14.3 ± 17.0 13.9 ± 13.2 21.1 ± 15.3

DUD (LIGSIFT) 0.77 ± 0.20 17.4 ± 11.1 7.8 ± 5.4 4.7 ± 2.7 49.4 ± 31.5 39.2 ± 27.1 47.2 ± 27.5

DUD (exp.) 0.78 ± 0.19 15.2 ± 11.4 7.2 ± 5.2 4.7 ± 2.7 43.3 ± 32.4 31.9 ± 24.4 41.3 ± 26.0

DUD (model TM > 0.5) 0.78 ± 0.18 14.1 ± 10.1 7.2 ± 4.7 4.6 ± 2.7 40.1 ± 28.8 31.8 ± 22.1 40.7 ± 25.5

DUD (model pdist < 5 Å) 0.80 ± 0.19 15.9 ± 9.9 8.1 ± 4.7 5.1 ± 2.7 45.2 ± 28.3 34.9 ± 21.8 44.1 ± 25.4

DUD (model) 0.78 ± 0.18 13.4 ± 10.3 7.0 ± 4.8 4.6 ± 2.9 38.0 ± 29.3 30.7 ± 22.3 39.5 ± 26.1
aav, average; sd, standard deviation; exp, experimentally determined structure; TM, TM-score of model to experimental structure; pdist, distance
between predicted pocket and center of mass of ligand in crystal structure.
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variations near the pocket), which is a limitation of this
approach.
Virtual Screening Performance on DUD and DUD-E

targets. The above analyses have shown the following: (a) A
pocket-based approach is better than both global similarity- and
homology-based approaches in detecting templates whose
ligands have similar chemical features. (b) For most proteins,
computationally generated models have a correctly predicted
fold, whose ligand-binding pockets can also be correctly
identified in about 80% of the cases. In this section, we
examine the next module of the PoLi pipeline: the ability to
identify active molecules in the DUD19 and DUD-E27

databases. Performance is evaluated using standard evaluation
metrics: (a) the Enrichment Factor (EF) of the screened
compound library, (b) the Hit Rate (HR) of active molecules,
and (c) the Receiver Operating Characteristic (ROC) curve.
Descriptions of these metrics are given in Materials and
Methods.
Table 1 shows the virtual screening performance of PoLi

using both computationally generated models and experimen-
tally determined receptor structures. The average enrichment in
the top 1% of the screened library is 13.4 and 9.6 for DUD and
DUD-E set modeled receptor structures, respectively, and the
average hit rates are 38.0 and 14.3, respectively. When
experimental structures are used, the enrichment rates in the
top 1% increase to 15.2 and 9.6, respectively, and the hit rate
increases to 43.3 and 14.6, respectively, for the DUD and
DUD-E sets. A paired Wilcoxon signed rank t-test between
EF1% achieved using model and experimental structures has a
p-value of 0.44 on the DUD set and 0.30 on the DUD-E set,
suggesting that the difference in VS performance using model
and experimental structure is not statistically significant.
Moreover, using a known binder of each target protein
(taken from the experimental structure in PDB), the best
average EF1% obtained using LIGSIFT shape-based screening
is 17.4 and 18.7 for the DUD and DUD-E sets, respectively;
this is notable since PoLi predictions were generated by using
ligands copied from templates with <30% sequence identity.
Since model quality and accuracy of binding pocket

predictions directly affect the performance of the PoLi pipeline,
we further analyzed the VS results only for proteins with
reasonable quality model (TM-score > 0.5) and for those
proteins in which one of the predicted pockets overlap with the
known ligand-binding site in the experimental structure (pocket
distance < 5 Å). Since most proteins are reasonably well
predicted, using correctly modeled structures, the EF1% on
DUD and DUD-E set, marginally improved to 14.1 and 9.9,
respectively (Table 1), an increase of approximately 3−5%
compared to EF1% obtained for all the proteins. A more
significant improvement is observed when proteins in which the
known ligand-binding site was recapitulated as one of the
binding site predictions. The EF1% values for DUD and DUD-

E are 15.9 and 11.0, respectively, an improvement of
approximately 14−18%.
It is interesting to observe that using both modeled and

experimental structures the performance of PoLi is consistently
lower on the DUD-E set compared to the DUD set, while
performance remains similar when known binders are used as
input for LIGSIFT-based VS. This decrease in performance
cannot be attributed to either structure quality, as the average
TM-score for both sets about 0.7, or to the accuracy of binding
pocket predictions, as just 20% of modeled proteins and about
10% of experimental structures in both the sets have predicted
pockets at a distance greater than 5 Å from the geometric
center of the experimentally solved ligand location in the
protein’s structure.
We sought to analyze this further by examining the highest

3D and 2D molecular similarity between database molecules
and collected template ligands. Table 2 clearly shows that the
main reason for the decrease in performance on the DUD-E set
(using both experimental and modeled structures) is because of
increased overlap between the active and decoy molecular
similarity distributions. More specifically, there is an overall
decrease of 3D similarity scores in the DUD-E compared to the
DUD database. A detailed statistical analysis performed by
taking random samples from the DUD and DUD-E databases
and analyzing the difference between 3D similarity scores of
actives and decoy molecules reveals that the mean of the
difference distribution is 0.08 in the DUD set and 0.02 in the
DUD-E set. Also a Welch’s t-test performed on the difference
distributions has a p-value less than 2.2 × 10−16, suggesting that
difference between the highest similarity scores of actives and
decoys in the DUD set was significantly greater than in the
DUD-E set.

Comparison with Control Methods for Virtual Screening.
Without known binders, molecular docking is the most widely
used virtual screening approach and has been benchmarked on
numerous occasions using experimental structures.30,31 Another
virtual screening approach that is becoming increasingly
popular copies ligands from homologous/structurally analogous
template proteins and uses them as seeds for ligand-based
virtual screening.15,32 Here, template ligands are copied, and
either a single or combination of different 2D molecular
similarity metrics is used for ranking the database molecules.
As our experimental control, we employed the widely used

molecular docking tool AutoDock Vina,33 our in-house
developed VS algorithm FINDSITEfilt (as it also uses a PDB
holo template library), and shape-based VS using LIGSIFT.
Docking runs of AutoDock Vina were performed with default
options, and the entire receptor structure was enclosed within a
box during the docking simulations (as if the binding pocket
were unknown). Furthermore, to avoid any bias arising due to
differences in holo template library, both FINDSITEfilt and
LIGSIFT used the same set of templates as PoLi for virtual

Table 2. Analysis of Molecular Similarity Scores between Database Molecules and Template Ligands To Understand the
Decrease in Performance of PoLi on DUD-E Databasea

3D similarity 2D similarity

database receptor structure actives av | sd decoys av | sd actives av | sd decoys av | sd

DUD-E experimental 0.52 ± 0.06 0.50 ± 0.04 0.61 ± 0.09 0.57 ± 0.06

model 0.52 ± 0.06 0.50 ± 0.04 0.61 ± 0.09 0.56 ± 0.06

DUD experimental 0.58 ± 0.09 0.53 ± 0.05 0.62 ± 0.09 0.58 ± 0.06

model 0.57 ± 0.06 0.53 ± 0.04 0.62 ± 0.09 0.57 ± 0.06
aav, average; sd, standard deviation.
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screening. FINDSITEfilt uses a 2D fingerprint similarity metric
(eq 6) between these selected templates and database
molecules, while LIGSIFT uses these template ligands as
seeds (without any pruning) for shape-based structural
alignment with database molecules (eq 4). Thus, FINDSITEfilt

is the VS performance achieved using a 2D approach, while
LIGSIFT is representative of a 3D VS algorithm.
Table 3 reports the AUC, EF, and HR obtained on the DUD

and DUD-E sets using modeled protein structures. The average
enrichment factors of PoLi, LIGSIFT, FINDSITEfilt, and
AutoDock Vina in the top 1% of the screened library
(EF1%) are 13.4, 11.8, 9.0, and 1.6, respectively, on the
DUD set. A similar trend is also observed on the DUD-E set,
where PoLi, LIGSIFT, FINDSITEfilt, and AutoDock Vina
achieve EF1% values of 9.6, 5.9, 7.9, and 3.0, respectively.
Figure S1 shows the distribution of AUC and EF1% for the
DUD and DUD-E set proteins using a boxplot. A paired
Wilcoxon signed rank t-test between EF1% of PoLi and control
methods (LIGSIFT, FINDSITEfilt, and AutoDock Vina), after
Boneferroni correction for multiple comparison, have p-values
of 8.45 × 10−02, 4.18 × 10−02, and 1.51 × 10−06, respectively, on
the DUD set and 0.0004, 0.0099, and 0.0011, respectively, on
the DUD-E set of proteins. It is clear from these results that
establishing which molecular similarity metrics (3D shape-
based or 2D fingerprint-based) is better is difficult, as their

performance can vary with the protein target. Nevertheless,
fusion of 2D and 3D similarity metrics based on their Z-score
(eq 7) shows the best performance in virtual screening on the
tested databases. The observed improvement of PoLi is also
partially due to the pruning of template ligands. Biased
structural overlap of ligands near the hot spot regions also
contributed to the enrichment of actives in the DUD set, where
EF1% increased from 12.3 for unbiased structural overlap to
13.4 for biased overlap. For the DUD-E set, the performance
was similar, where EF1% was 9.7 for unbiased structural overlap
and 9.6 for biased overlap. Molecular docking using AutoDock
Vina has the worst performance in identifying active molecules.
One might expect that without explicitly providing the exact
location of target binding site, molecular docking will certainly
result in poor enrichment of active molecule. However, a
similar analysis done by Feinstein and Brylinski32 have shown
that even when the predicted binding site in modeled receptor
structures of the DUD-E set were specified, the resulting EF1%
was 2.45 and 2.86 on high and medium quality models. These
results suggest that traditional docking-based approaches
cannot correctly evaluate protein−ligand interactions on
predicted protein structures, as they frequently have incorrect
side-chain orientations.

Predictions Using Globally Unrelated Template Proteins.
An important advantage of PoLi over existing template-based

Table 3. Performance of PoLi, LIGSIFT, FINDSITEfilt, and AutoDock Vina on DUD and 65 DUD-E Targets Using Modeled
Structuresa,b

method AUC av | sd EF1% av | sd EF5% av | sd EF10% av | sd HR1% av | sd HR5% av | sd HR10% av | sd

DUD-E database

AutoDockVina 0.60 ± 0.13 3.0 ± 2.8 2.1 ± 1.5 1.8 ± 1.0 4.9 ± 4.7 6.3 ± 4.8 11.1 ± 6.9

FINDSITEfilt 0.69 ± 0.16 7.9 ± 11.3 3.9 ± 3.8 2.9 ± 2.2 12.1 ± 17.0 11.2 ± 11.6 16.8 ± 13.1

LIGSIFT 0.67 ± 0.14 5.9 ± 8.7 3.5 ± 3.4 2.7 ± 1.9 8.9 ± 11.1 10.3 ± 10.1 15.8 ± 12.3

PoLiunbiased 0.72 ± 0.17 9.7 ± 13.5 4.8 ± 4.2 3.5 ± 2.3 14.4 ± 17.4 14.0 ± 13.0 21.0 ± 15.3

PoLi 0.73 ± 0.16 9.6 ± 12.7 4.7 ± 4.2 3.6 ± 2.3 14.3 ± 17.0 13.9 ± 13.2 21.1 ± 15.3

DUD database

AutoDockVina 0.50 ± 0.16 1.6 ± 2.2 1.5 ± 1.3 1.3 ± 1.0 4.6 ± 6.1 6.7 ± 5.9 11.6 ± 9.3

FINDSITEfilt 0.70 ± 0.20 9.0 ± 10.3 4.4 ± 4.5 3.1 ± 2.5 25.8 ± 29.4 20.8 ± 22.5 28.8 ± 25.4

LIGSIFT 0.71 ± 0.20 11.8 ± 11.5 5.4 ± 4.6 3.7 ± 2.6 33.3 ± 32.9 23.0 ± 19.9 31.3 ± 21.9

PoLiunbiased 0.77 ± 0.19 12.3 ± 10.4 6.6 ± 4.8 4.5 ± 2.9 35.0 ± 29.8 29.0 ± 22.2 39.3 ± 26.9

PoLi 0.78 ± 0.18 13.4 ± 10.3 7.0 ± 4.8 4.6 ± 2.9 38.0 ± 29.3 30.7 ± 22.3 39.5 ± 26.1
aPoLiunbiased performance is obtained without performing biased structural overlap in hot spot regions; bav, average; sd, standard deviation.

Table 4. Performance of PoLi on DUD-E and DUD Database Using Templates with Similar Fold and Those with Random
Structure Similarity (TM-score < 0.4)a,b,c

templates AUC av | sd EF1% av | sd EF5% av | sd EF10% av | sd HR1% av | sd HR5% av | sd HR10% av | sd

DUD-E database

same fold 0.71 ± 0.17 8.7 ± 13.3 4.3 ± 4.2 3.2 ± 2.5 12.9 ± 17.4 12.7 ± 12.5 19.0 ± 15.6

unrelated fold 0.62 ± 0.15 2.7 ± 4.1 2.1 ± 2.2 1.9 ± 1.6 4.3 ± 6.6 6.2 ± 6.5 11.4 ± 10.3

same foldb 0.75 ± 0.16 10.5 ± 14.0 5.2 ± 4.2 3.8 ± 2.3 15.6 ± 18.0 15.3 ± 12.2 22.9 ± 14.4

combinedb 0.74 ± 0.16 10.0 ± 13.1 4.8 ± 4.0 3.7 ± 2.3 14.7 ± 16.5 14.1 ± 11.4 21.7 ± 14.2

failed (combined) 0.69 ± 0.25 7.3 ± 10.4 4.1 ± 5.3 3.0 ± 2.8 12.5 ± 19.4 12.7 ± 19.9 18.0 ± 20.5

DUD database

same fold 0.74 ± 0.21 12.0 ± 11.0 6.3 ± 5.3 4.2 ± 3.3 33.9 ± 31.0 27.5 ± 23.5 35.9 ± 29.5

unrelated fold 0.68 ± 0.20 7.1 ± 8.7 4.3 ± 4.3 3.1 ± 2.5 20.0 ± 25.0 19.2 ± 20.6 27.9 ± 24.1

same foldc 0.80 ± 0.20 15.0 ± 10.4 7.9 ± 4.8 5.2 ± 2.9 42.3 ± 29.4 34.4 ± 21.6 44.9 ± 26.7

combinedc 0.80 ± 0.16 15.9 ± 10.0 7.7 ± 4.7 5.0 ± 2.6 44.9 ± 28.5 33.5 ± 22.2 43.3 ± 25.3

failed (combined) 0.70 ± 0.27 4.0 ± 4.6 3.8 ± 3.9 3.1 ± 2.4 11.1 ± 12.7 18.2 ± 19.0 29.3 ± 23.7
aav, average; sd, standard deviation. bAverage over 54 DUD-E targets with predictions generated using similar fold template. cAverage over 32 DUD
targets with predictions generated using similar fold template. Combined: Predictions generated using both similar and unrelated fold templates.
Failed: Proteins targets where no predictions could be generated due to lack of similar pockets in similar fold templates.
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methods15,32 for virtual screening is that it can copy ligands
from proteins with different folds but similar pockets and use
them for ligand-based virtual screening. To examine this in
greater detail, we performed an experiment in which binding
site predictions and ligand copying were done using templates
with unrelated fold (TM-score < 0.4) and templates with
similar fold. Table 4 shows the result of this analysis on the
DUD and DUD-E databases. It is encouraging to observe that
using ligands copied from globally unrelated template proteins,
PoLi can achieve an EF1% of 7.1 on the DUD set and 2.7 on
DUD-E set proteins. These EF1% values are significantly higher
on the DUD set and are similar for DUD-E targets when
compared to the EF1% obtained using molecular docking
(Table 3), which is currently the best approach for screening
database molecules in the absence of any homologous/

structurally analogous holo template protein. Similarly, when
we restrict PoLi to only use template ligands from related folds
(TM-score > 0.4), the EF1% on DUD and DUD-E targets
increases to 12.0 and 8.7, respectively, which is still lower than
that achieved using default PoLi pipeline (Table 1) that uses all
templates ligands irrespective of the fold they were collected
from. It needs to be mentioned that when we restricted PoLi to
use only template proteins with similar global fold, then 8
proteins in the DUD set and 11 proteins in the DUD-E set
failed to generate any predictions because of lack of similar
template pockets. For the subset of proteins where predictions
could be made using globally related template proteins, the
EF1% is 15.0 and 10.5 on DUD and DUD-E sets, respectively.
On the same set, a combination of both globally related and
unrelated template ligands yield EF1% values of 15.9 and 10.0,

Table 5. Pocket Specific Predictions by PoLi on DUD-E and DUD Databases

pocket (# protein) AUC av | sd EF1% av | sd EF5% av | sd EF10% av | sd HR1% av | sd HR5% av | sd HR10% av | sd

DUD-E database

pocket 1 (65) 0.74 ± 0.13 9.4 ± 13.1 4.7 ± 4.1 3.5 ± 2.3 14.2 ± 17.0 14.0 ± 4.8 20.9 ± 15.3

pocket 2 (45) 0.64 ± 0.13 2.5 ± 3.1 2.1 ± 2.1 1.9 ± 1.4 4.1 ± 5.5 6.4 ± 7.9 11.6 ± 10.2

pocket 3 (27) 0.60 ± 0.16 2.5 ± 3.5 2.2 ± 1.9 1.9 ± 1.6 3.8 ± 5.2 6.2 ± 5.6 11.1 ± 9.4

pocket 4 (12) 0.66 ± 0.13 2.4 ± 2.9 2.5 ± 1.8 2.4 ± 1.5 3.9 ± 5.0 7.5 ± 6.4 14.1 ± 10.1

pocket 5 (6) 0.60 ± 0.18 3.5 ± 5.3 2.6 ± 4.3 2.0 ± 2.5 5.0 ± 7.1 7.7 ± 13.2 12.0 ± 15.5

DUD database

pocket 1 (40) 0.77 ± 0.15 13.3 ± 9.1 6.8 ± 4.4 4.5 ± 2.7 37.7 ± 26.1 30.0 ± 21.8 38.8 ± 25.5

pocket 2 (36) 0.64 ± 0.18 2.3 ± 4.0 2.4 ± 3.0 2.2 ± 2.2 6.5 ± 11.6 11.8 ± 15.2 21.3 ± 22.5

pocket 3 (23) 0.63 ± 0.21 4.1 ± 5.7 2.8 ± 3.3 2.3 ± 2.3 11.6 ± 16.0 13.2 ± 16.0 22.0 ± 22.9

pocket 4 (14) 0.65 ± 0.22 3.3 ± 9.7 2.8 ± 3.6 2.5 ± 2.1 9.1 ± 26.9 13.3 ± 17.9 24.2 ± 21.8

pocket 5 (8) 0.74 ± 0.13 4.9 ± 5.9 3.9 ± 3.1 3.3 ± 2.1 14.3 ± 17.4 18.7 ± 16.0 31.5 ± 21.4

Figure 4. Thermal unfolding curves of E. coli DHFR. (A) Primary unfolding curves for hits belonging to the 1,3,5 triazine-2, 4-diamine group. (B)
Primary unfolding curves for hits belonging to the quinazoline-1,3-diamine group. (C) Primary unfolding curves for hits belonging to the
pyrimidinediamine and aminopteridine group. (D) Primary unfolding curves for hits belonging to chemical classes distinct from any reported DHFR
inhibitors. (E) Gaussian fit of first-derivative for curves in (A). (F) Gaussian fit of first-derivative for curves in (B). (G) Gaussian fit of first-derivative
for curves in (C). (H) Gaussian fit of first-derivative for curves in (D). On plots A−D, the y-axis represents the normalized fluorescence and the x-
axis represents the temperature in degrees Celsius. The experimental data points were fit to the respective equations using the nonlinear curve-fitting
algorithm of GraphPad Prism v 6.0e.
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respectively. These results highlight that even though template
ligands copied from globally related proteins on average yield
better enrichment during virtual screening, ligands copied from
unrelated folds improve prediction coverage. For example,
EF1% for targets that could only be predicted after copying
ligands from globally unrelated template structures (shown as
Failed in Table 4) are 4.0 and 7.3 on the DUD and DUD-E set
proteins, respectively. Also, unrelated fold template ligands
complement the ligands templates copied from globally related
template proteins to improve the overall virtual screening
performance, as observed for DUD database proteins (shown
as combined in Table 4).
Pocket Specific Virtual Screening Performance. Another

important advantage of PoLi compared to other LHM
methods15,32 is its ability to generate pocket specific
predictions, similar to docking approaches. To analyze if
pocket specific predictions can yield better virtual screening
performance, we analyzed the EF1% and AUC of ranked
database molecules for the top 5 predicted pockets treated
individually (Table 5). As shown in the table, in both the DUD
and DUD-E databases, the best virtual screening performance
(both EF1% and AUC) is achieved using the top predicted
pocket, which has the maximum number of superposed

template ligands (pocket 1). Using modeled receptor
structures, pocket 1 results in an average AUC and EF1% of
0.77 and 13.3 on the DUD set, respectively, and 0.74 and 9.4
on the DUD-E set, respectively. Interestingly, virtual screening
on other predicted pockets (pockets 2−5) also resulted in
nonrandom ranking of database molecules (AUC > 0.5 and
EF1% > 0). Moreover, the combined ranking procedure used in
PoLi, which combines predictions from all the pockets, results
in slightly improved predictions compared to individual pocket-
based predictions (compare Tables 1 and 5). This suggests that
some of the experimentally known active molecules in the
DUD and DUD-E databases could bind in pockets different
from pocket 1. For example, both experimentally verified
canonical and alternate binding sites in PPAR34 were predicted
by PoLi and resulted in nonrandom predictions (AUC > 0.5
and EF1% > 0) for both sites.

Experimental Validation of PoLi VS. To demonstrate the
utility of PoLi as a better VS option in identifying small
molecule binders, experimental validation was carried out using
a high-throughput DSF approach. The method relies on the
increase in fluorescence quantum-yield of the extrinsic
fluorophore reporter dye Sypro orange upon its interaction
with an unfolded protein. In the presence of the ligand that

Figure 5. Structures of small molecules showing binding to E. coli DHFR as assessed by the thermal shift assay methodology. (A) 1,3,5-triazine-2,4-
diamine derivatives. (B) Quinazoline-1,3-diamine derivatives. (C) Pyrimidinediamine and diaminopetridine derivatives. (D) 2,4-dihydroxyphenyl
derivatives. The SDF files for the small molecules were downloaded from Pubchem (http://pubchem.ncbi.nlm.nih.gov), and the figure was
generated using ChemBioDraw 14.0.
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binds to and stabilizes the protein of interest, the transition
midpoint of unfolding shifts to higher temperatures, the
magnitude of which is proportional to the strength of binding.
Escherichia coli DHFR, an enzyme that is the sole source of

cellular tetrahydrofolate and thus pivotal for nucleic acid
synthesis, was chosen for its immense medical importance.35

The top 90 predictions from PoLi (approximately the top 3% of
the ligand library) were tested. Out of 76 interpretable curves
(i.e., those showing a single sigmoidal transition and reasonably
good Q values; see Methods), 14 curves showed a substantial
shift in their thermal unfolding transition midpoint indicative of
ligand binding (Figures 4 and 5). This indicates a success rate
of 18.4%. Table 6 shows the thermal shift assay parameters for
all hits. Seven out of the 14 hits obtained were within the top
10 ranks assigned by the PoLi VS algorithm with a distinct
positive skew to the distribution of top ranking hits when
plotted against the rank. Moreover, 13 of the 14 hits have
consistently low μM affinities in spite of the high Tm of 51.9 °C
for the protein alone. This is a clear indication of the strength
of the methodology in identifying experimentally verified
binders as top ranking predictions.
Figure 4 shows the thermal melting curves, their first

derivatives, and the nonlinear fits used to estimate thermal melt
parameters for the various classes of molecules that showed
unambiguous binding to prokaryotic DHFR. Figure 5 provides
the chemical structures for these hits.
The algorithm was capable of picking up derivatives of 1,3,5-

triazine-2,4-diamine; this represents the most populated group
of identified ligands (Figure 5A). Among molecules belonging
to this class, NSC133071 shows the highest shift with a ΔTm of
14.3 °C followed by NSC168184 and CHEMBL597262 with
about 10.6 °C each, CHEMBL333873 with 9.6 °C,
NSC117268 with 8.5 °C, and NSC104129 with 5.4 °C
(Table 6 and Figure 4A and E, and Figure 5A). An approximate
estimate of the dissociation constant for NSC133071 shows
that it binds tightly to E. coli DHFR, with a 6.4 ± 1.5 μM KD

(Table 6). The tighter binding of this molecule compared to
others from this class can be ascribed to possible favorable
contacts made by the [3-chloro-4-(3-phenoxypropoxy)phenyl]

substituent at the first position of the triazine ring. It should be
noted here that cycloguanil, a molecule belonging to the 1,3,5-
triazine-2,4-diamine class, is a known inhibitor of Plasmodium
falciparum DHFR.36 However, to the best of our knowledge, no
report exists on either binding or inhibition of E. coli DHFR by
molecules predicted by PoLi VS and experimentally validated in
the current study. Thus, all hits are novel binders. Moreover, in
spite of the presence of 1,3,5-triazine-2,4-diamine ring, it would
be difficult to predict the binding of NSC117268 to E. coli
DHFR solely relying on 2-D ligand comparison methodologies
or SAR intuition (Table 6). The presence of two bulky ortho
ring substituents at the first and sixth position on the core ring
precludes intuitive assumptions about binding. We posit that
the 3D method of comparison facilitated the prediction of
NSC117268 as a potential binder.
The second class of molecules predicted to bind to E. coli

DHFR, and subsequently validated experimentally, are
derivatives of quinazoline-1,3-diamine (Figure 4B and F and
Figure 5B). In previous studies from our lab,37−39 we have
demonstrated the binding and potent inhibition of E. coli
DHFR by two of these molecules (NSC339578 and
NSC309401) both contain a pyrroloquinazoline core ring.
The prediction of these molecules by PoLi as potential binders
validates the VS approach and demonstrates its predictive
power. Furthermore, a novel molecule NSC305782 showed
binding to the enzyme with a ΔTm of 14.4 °C, indicative of
strong binding.
The third class of predicted molecules contains either a

diaminopteridine ring (NSC740) or a diaminopyrimidine ring
(NSC7364 and NSC71669) (Figures 4C and G and Figure
5C). NSC740, commonly known as methotrexate, is a well-
known DHFR inhibitor acting on both prokaryotic and
eukaryotic homologues.35,40 Likewise, NSC7364 is commonly
known as metoprine and is also a known inhibitor of DHFR
from various sources.41 Prediction of the above two molecules
serves as an internal quality control of the VS algorithm’s
predictive ability and reinforces our confidence in the novel
ligands that are predicted. The sole novel hit from this class,
NSC71669, with two trifluoromethyl phenyl substituents on

Table 6. Summary of Virtual Ligand Screening, Thermal Shift Assay and Binding Parameters for the Hits Obtained on E. coli

DHFR

identity rank rank2D Q# Tm (° C) ΔTm (° C) KD (μM)c

protein NA NA 1.00 51.9 NA NA

NSC339578a 6 777 0.35 69.5 17.6 02.4 ± 0.6

NSC71669 75 863 0.32 66.9 15.0 05.2 ± 1.3

NSC305782 46 1485 0.20 66.3 14.4 06.2 ± 1.2

NSC740a 18 674 0.34 66.3 14.4 06.2 ± 1.6

NSC133071 25 119 0.41 66.2 14.3 06.4 ± 1.5

NSC7364a 5 1303 0.43 64.4 12.5 10.8 ± 2.1

NSC309401a 7 129 0.31 63.6 11.7 13.7 ± 1.8

CHEMBL597262 1 41 0.42 62.6 10.7 18.4 ± 2.7

NSC168184 3 109 0.23 62.4 10.5 19.5 ± 3.5

CHEMBL333873 2 90 0.31 61.5 9.6 25.6 ± 3.8

NSC117268 60 254 0.43 60.4 8.5 35.7 ± 6.3

NSC11150 77 69 0.50 58.4 6.5 65.6 ± 11.1

NSC104129 10 80 0.32 57.3 5.4 91.9 ± 14.0

NSC89759 51 66 0.30 55.1 3.2 182.1 ± 21.6
aIndicates reported inhibitors of DHFR independently picked up by PoLi and validated experimentally. Rank2D is the rank of identified inhibitors
using 2D fingerprint similarity (TC) using same set of templates as used by PoLi. #, quality score (Q) is the ratio of the melting-associated increase in
fluorescence (ΔFmelt) and total range in fluorescence (ΔFtotal). A Q value of 1 represents a high-quality curve, while a value of 0 shows an absence of
melting as described earlier.49 KD

c is the dissociation constant computed from the magnitude thermal shifts obtained relative to the protein alone.
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the diaminopyrimidine ring gave a ΔTm of 15 °C that translates
into an approximate dissociation constant of 05.2 ± 1.3 μM.
Once again, it should be noted here that NSC71669 would
have been difficult to predict solely relying on 2D comparison
methodology (Table 6) or SAR intuition.
Lastly, the fourth class contains two hits (NSC89759 and

NSC11150) with structures containing 2,4-dihydroxyphenyl
rings that are very different from known DHFR inhibitors
(Figure 4D and H and Figure 5D). This class of compounds
would require further experimental proof before establishing
their veracity as genuine DHFR binders/inhibitors. If these
molecules are true hits, they represent novel structural scaffolds
amenable to further exploration as potential DHFR inhibitors.
In conclusion, PoLi predicted 14 ligands as binders of E. coli

DHFR, with 10 of them being novel. Further, it offers the
advantage of predicting diverse ligands as potential binders in
that it uses a 3D metric that aids in selecting ligands that may
get overlooked if only a 2D metric of ligand comparison is
employed.

■ DISCUSSION

Drug discovery pipelines have many bottlenecks, but new
computational methods capable of identifying multiple novel
lead molecules that likely bind to the protein of interest could
improve the situation. In that regard, computational approaches
that employ molecular similarity-based searches and small
molecule docking are the two most commonly used methods
for virtual ligand screening. While molecular similarity-based
VS requires a priori knowledge of at least one known binder, for
molecular docking, receptor structure quality is crucial for
success. Such limitations have proven to be quite problematic.
Methods that can use computationally generated receptor
structures will allow us to approach drug discovery from a
systems biology perspective and investigate the interaction of
lead molecules at the proteome level. In that regard, we have
developed a number of methods that can use modeled receptor
structures for lead identification.15,42 Our initial efforts in this
direction utilized ligands from structurally related template
proteins for ligand-based VS.15 While the capability of this
method has been both computationally and experimentally
demonstrated for its ability to correctly predict new lead
molecules for diverse targets,15,37 it has some inherent
limitations: (a) Template ligands are used without any pruning
to remove parts that interact with template binding site region
bearing no similarity with target pocket. (b) Template ligand
selection is limited to proteins sharing global structural
similarity to target. (c) The predictions are not pocket specific
and cannot be used for targeting a specific binding pocket of
interest.
To address these limitations, we have developed PoLi, which

copies ligands from related pockets (irrespective of the global
fold of the template protein), prunes the ligand to avoid false
positive matches, and then uses them in virtual screening.
Moreover, since specific pockets can be targeted, one might be
able to identity ligands with novel models of action. Other
special features of PoLi include (a) biased structural overlap
between the database molecule and template ligand to promote
overlap in hot spot regions of the target’s binding pocket and
(b) ranking of database molecules using a data fusion technique
that combines 2D and 3D molecular similarity scores for
improved virtual screening performance.
On the widely used DUD and DUD-E benchmark databases,

PoLi shows improved performance in detecting active

molecules compared to all other methods used in this study.
Notably, even when template proteins with similar fold (TM-
score > 0.4) are excluded, PoLi achieves an EF1% of 7.1 on
DUD database proteins and 2.7 on DUD-E database proteins,
which is significantly higher for the DUD set and similar for
DUD-E set when compared to the EF1% achieved using
AutoDock Vina molecular docking. Considering that many
proteins lack a globally related template protein in the PDB
holo template library, this gives PoLi a significant advantage
over other LHM-based virtual screening algorithms.15,32

Experimental demonstration of an 18.4% success rate to
identify lead molecules that bind the pharmaceutically relevant
target, E. coli DHFR, demonstrates the power of the
methodology. With 14 total hits, 10 of which are novel, it
becomes amply clear that the VS is capable of finding novel
analogues from chemical classes that constitute known DHFR
inhibitors. Further, the demonstration that the methodology is
capable of predicting binders based on a 3-D metric of
comparison, as exemplified by NSC117268 and NSC71669,
offers a distinct advantage over traditional 2D comparison and
SAR intuition. For example, using 2D fingerprint similarity as
the only scoring metric and with same set of templates as input,
only 5 of these 14 hits would have ranked among the top 90
predictions that were experimentally validated using differential
scanning fluorimetry.
In summary, PoLi is a new hybrid approach for virtual

screening that has multiple advantages over contemporary
approaches. Nevertheless, the somewhat low enrichment of
active molecules (EF1%) in the DUD-E database results from
the rather small difference between active and decoy molecules.
A more elaborate screening procedure that evaluates the
interactions made by database molecules in the target binding
pocket can provide a potential solution. This type of approach
will be examined in future studies.

■ MATERIALS AND METHODS

Structure Modeling and Binding Site Identification.
For each target protein, structural models are generated using
the TASSER-VMT21 automated structure modeling pipeline,
wherein template proteins in the nonredundant PDB library are
selected using the SP3 threading algorithm,43 followed by
multiple TASSER refinement using a variable number of
templates and SPICKER clustering.44 For benchmarking, we
removed homologous template proteins from both the
threading library and holo template binding site library
(described in next section) using a threshold of 30% pairwise
sequence identity.
Given a target structure, that can be either modeled or

experimental, ligand-binding pockets are predicted using two
different approaches. In the first, the superposition matrix from
the TM-align22 global structural alignment is used to overlay
template ligands onto the target structure and predict the
pockets based on residues that make contact (distance < 4.5 Å)
with the superimposed ligand. Next, binding pocket similarity
of this predicted pocket (in the target) and original template
ligand-binding site is evaluated using the APoc pocket
alignment algorithm;24 to filter out cases where even though
the receptors share fold similarity (TM-score > 0.4), their
ligand-binding pockets are not similar (APoc p-value > 0.001 or
PS-score < 0.35). The second approach to predict pockets uses
the cavity detection algorithm ConCavity23 to find pockets.
Then, these pockets are used to scan the holo template binding
site library using APoc. Then, ligands of matched pockets in the
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PDB (with p-value < 0.001 and PS-score > 0.35) are copied
onto the target structure. Finally, all superimposed template
ligands are clustered based on their spatial distance, measured
from the center of mass of the ligand, using an average-linkage
clustering algorithm and a threshold distance of 4.5 Å.
Holo Templates and Small Molecule Screening

Library. The holo template library required by PoLi for
binding pocket prediction and virtual screening was compiled
from the May 14, 2014 release of BioLiP database.45

Downloaded protein−ligand complexes were filtered to remove
nucleic acids and small molecules with less than six atoms. This
filtering process resulted in 40,158 receptors with 44,098
nonredundant ligands and binding sites.
The small molecule screening library is compiled from two

different sources. A large fraction (2628 molecules) of this
library was compiled from NCI/DTP Open Chemical
Repository molecules. In addition, 400 molecules were added
using Malaria Box donated by Medicines for Malaria Venture
(MMV). A maximum of 200 low energy conformation of these
molecules were generated using RDKit conformer generation
tool46 were used for shape-based screening (described below).
PoLi Virtual Screening Pipeline. Figure 1 shows the

schematic representation of the PoLi pipeline. Starting from the
tertiary structure of a protein, the first step is to identify
potential small molecule binding sites in the target protein
structure. The modus operandi of small molecule binding site
prediction in PoLi is based on the structural alignment of
putative target pockets with a known template ligand-binding
site. This also enables copying of template ligands in the
predicted ligand-binding pocket using the superposition matrix
generated during the pocket alignment. Since PoLi relies on this
binding site comparison to selectively copy template ligands, an
advantage of this approach is its ability to copy ligands from
protein structures that have different global folds, but have
similar ligand-binding pockets. Up to the top 200 template
ligands, ranked based on the harmonic mean of binding pocket
similarity (APoc PS-score) and the identity of binding site
residues, are selected and clustered based on their spatial
distance. Then, ligand-based virtual screening uses these
selected template ligands.
Ligand Pruning and Identification of Hot Spot Regions.

Naiv̈ely copying template ligands and using them in virtual
screening usually leads to spurious results, as parts of the
template ligand that interact with unaligned regions of the
template binding site can also be copied. Moreover, since both
target and template binding pockets have their own sets of
ligand-binding residues, even structurally aligned residues in the
binding pocket alignment are not always chemically similar and
can potentially make disparate interactions. In PoLi, these issues
are addressed by only copying parts of the template ligand that
interact with template residues that are chemically similar to the
aligned target residue (Figure S2A). This is performed by first
defining template binding site residues, which are at a distance
less than 4.5 Å of heavy atoms from the ligand. Also, a map
between the heavy atom index of the template ligand and the
residue index of the template receptor is built. Next, an APoc
alignment between the template and query pocket is used to
define the aligned and unaligned template binding site residues.
This is followed by deletion of atoms, which do not make any
contact with aligned template residues, with an exception not to
delete all atoms that are part of an aromatic/nonaromatic ring if
at least one atom of the same ring makes contact with any
aligned template residue.

A hot spot is defined as the location on the protein that has a
high ligand-binding propensity. These regions are usually
experimentally detected by screening large libraries of fragment-
sized organic compounds for binding to target proteins using
NMR or X-ray crystallography and identifying regions that have
large fragment clusters.47 On the basis of a similar concept, we
tried to identify parts of template ligand that can make
interactions in the hot spot region by clustering pharmaco-
phores of superposed template ligands in order to bias the
LIGSIFT structural alignment near these hot spot regions.
However, it is difficult to detect pharmacophore clusters that
can make similar interactions, as the copied template ligands are
unaligned to each other (Figure S2B).
We addressed the problem of identifying the hot spot region

by examining the number of potential interactions that a target
binding site residue can make with all copied template ligands
(based on its occurrence in binding site alignment with the
template residues that interact with ligand). Let us say for a
given target protein we selected P template proteins, and for a
given template protein p (p ∈P), the bound ligand has L atoms.
Let T be the set of binding site residues that interact with L and
are also conserved (both structurally aligned and chemically
similar) in in the APoc binding site alignment. Since template
residue t (t ∈ T) is structurally aligned with target residue q, we
assume that template ligand atom a (a ∈ L) can potentially
make similar interactions with q. Now, to bias the small
molecule structural alignment near hot spot regions or the
regions that have high propensity to make interactions, a weight
h is assigned to each template ligand atom a that can potentially
interact with q (Figure S2C) and is defined as
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In eq 2, Cq is the number of potential interactions that can be
made by residue q, δqt is a step function which is equal to 1
when target residue q is structurally aligned and chemically
similar to template binding site residue t and is 0 otherwise. Iat
is also a step function which is equal to 1 when template ligand
atom a is at a distance ≤ 4.5 Å from residue t.

Scoring of Database Molecules Using Template Ligands.
PoLi uses a combination of 2D and 3D chemical similarity
metrics to score the ligand database molecules. 3D chemical
and shape similarity is calculated using a variant of the LIGSIFT
algorithm,16 which uses different molecular overlay techniques
to find the best volume overlap between template ligand T and
database molecule D. Structural superpositions are scored as a
shape-density overlap volume (VTD), calculated as the sum of
the overlaps of individual atom’s Gaussian functions (with
similar chemical nature) and is defined as
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i and j are the heavy atom indices, ρi and ρj are the atomic
Gaussian distributions of each atom, and dij is the distance
between atom i and j. αi is the decay factor, φi = 2(2)1/2 is the
amplitude, Ri is the atomic coordinate for the ith atom, σi is its
van der Waals radius, and hi is the hot spot weighting term to
reward the overlap near the hot spot regions in the target. Once
the maximum overlap (VTD) is attained, similarity between two
molecules is calculated using a ligand size independent scaled
Tanimoto Coefficient (sTC) and is defined as

=
+

+
=

+ −
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1
, where TC3D 0

0
3D

TD

T D TD (4)

Here, TC3D is the Tanimoto coefficient (TC) of the 3D shape/
chemical similarity, VT and VD are the chemical density volume
of template molecule T and database molecule D calculated
using the Gaussian model, VTD is the molecular volume overlap
between molecules T and D, and s0 is the scaling factor to
ensure that the similarity scores of the same statistical
significance are size-independent. A combination of shape
and chemical similarity in the ratio 1:1 is used for measuring 3D
similarity in PoLi.
2D chemical similarity between molecules is generally

evaluated using the TC of bit fingerprints and is defined as

=
+ −

c

a b c
TC2D (5)

where a is the count of bits on the first string, b is the count of
bits on the second string, and c is the count of bits in both
strings. In PoLi, we use an average Tanimoto Coefficient
(aveTC) of 1024 bit Daylight-fingerprints generated using
OpenBabel25 API, which is defined as

=
+ ′

aveTC
TC TC

2 (6)

where TC′ is Tanimoto coefficient calculated for bits that are
set off rather than on in the fingerprints.
Ranking of Database Molecules. It is a challenging problem

to rank database molecules using multiple seed ligands and two
different scoring functions without any supervised initial
training on the data set. Therefore, in PoLi, we adopted an
unsupervised data fusion technique, where a fused similarity
score Fsim of the yth database molecule is defined as

= × ‐ + ‐
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In eq 7, Z-scorely (2D/3D) is the Z-score of similarity between
template ligand l and database molecule y, N represents the set
of all selected template ligands, dl is the density of the cluster to
which template ligand l belongs, Nc is the number of template
ligands in that cluster, w is a weight parameter (defined as w =
0.3), and Sim is the 2D (eq 6) or 3D (eq 4) similarity score
between template ligand (T) and database molecule (D).

Benchmarking Sets and Evaluation. We have used two
types of benchmarking to evaluate PoLi. In the first, in silico VS
predictions were done on DUD and DUD-E database targets.
The DUD database contains 40 target proteins with active and
decoys molecules in the ratio of 1:36, while DUD-E database
contains a list of 102 targets with an average of 224 active
molecules and 50 decoys for each active molecule. For
validation, we have used 40 proteins listed in the DUD
database and 65 targets of DUD-E database; 37 proteins of
DUD-E set that were already included in DUD set were not
included to avoid redundancy. Moreover, both experimental
and modeled receptor structures of these proteins have been
used to objectively evaluate the effect of model quality on
virtual screening performance.
The performance of PoLi in these in silico virtual screening

runs is evaluated using standard evaluation metrics: (a)
Receiver Operating Characteristic (ROC) curve, (b) Enrich-
ment Factor of the screened database, and (c) Hit Rate (HR).
The ROC curve depicts the true positive rate as a function of
false positive rate, and the area under the curve (AUC) is used
to quantify the shape of the ROC curve. AUC values range
between [0−1], where an AUC below 0.5 is equivalent to
random performance. Much more important metrics for
practical purposes are measures like the Enrichment Factor
(EF) and Hit Rate (HR) that are used to evaluate the
performance in the top x% of the screened library, where the
EF is defined as

=
N

N N
EF

No. of True Positives /

/
x

x x
%

%
selected

%

actives total (8)

where x represents fraction of screened library and is set to 1%,
5%, and 10% to analyze the performance for a broad range of
screened molecules in the database. We have also used HR as
an evaluation metric, which is defined as

= ×
EF

EF
HR 100x

x

x
% actual

%

ideal
%

(9)

The second set of experiments simulates the real world
scenario, where we use the PoLi pipeline to generate ligand-
binding predictions for E. coli DHFR, while excluding all
template proteins with greater than 30% sequence identity to
the target protein. Top ranked predictions in our small
molecule library are then experimentally validated using high-
throughput differential scanning fluorimetry (described below).

Experimental Validation Using Differential Scanning
Fluorimetry. Reagents. All reagents and chemicals, unless
mentioned otherwise, were procured from Sigma-Aldrich (St.
Louis, MO) with the following exceptions: HEPES, pH 7.3
buffer, was obtained from Fischer Bioreagents and dimethyl
sulfoxide (DMSO) from MP Biomedicals LLC. Sypro orange
dye was obtained from Invitrogen (Carlsbad, CA). The 96-well
PCR plates and plate seals were from Eppendorf (Eppendorf,
NY, U.S.A.). E. coli dihydrofolate reductase, DHFR, was
provided by Prof. Eugene Shakhnovich, Harvard University.
The library of small molecules and drugs containing oncology
drug set III (97 compounds), mechanistic set II (816
compounds), diversity set III (synthetic) (1597 compounds),
and natural product set (118 compounds) were provided by the
open chemical repository of Developmental Therapeutics
Program (DTP) of the National Cancer Institute (NCI),
National Institutes of Health (NIH) (http://dtp.cancer.gov).
Furthermore, a set of 400 diverse drug-like and probe-like
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compounds was provided as 10 mM stock solutions in dimethyl
sulfoxide by Medicines for Malaria Venture (MMV) (http://
www.mmv.org/malariabox). All provided compounds had been
demonstrated to possess antimalarial activity against the blood-
stage of P. falciparum and were selected to represent structural
diversity, ease of oral absorption and minimum toxicity.
Acquisition and Quantification of Thermal Shift Assays.

High-throughput thermal shift assays were carried out following
established guidelines.48,49 Briefly, samples were aliquoted in
96-well PCR plates and protein-melting curves were obtained
by heating the samples from 25 to 74 °C using a 1 °C/min
heating ramp in a RealPlex quantitative PCR instrument
(Eppendorf, NY, U.S.A.), with Sypro orange dye (Invitrogen)
as the extrinsic fluorescent reporter. A uniform final
concentration of 5X was used in all experiments. The dye
was excited at 465 nm and emission recorded at 580 nm using
the instrument’s filters. One data point was acquired for each
degree increment. Unfolding was carried out in a total reaction
volume of 20 μL, with 100 mM HEPES pH 7.3, 150 mM NaCl,
and 5 μM E. coli DHFR. Appropriate dye and protein controls
were included in each plate as an internal reference. All
experiments were done with experimental replicates, with the
mean value considered for further analysis. Furthermore, the
curves obtained were processed to subtract the background
signal from dye alone or dye-small molecule controls.
Each melting curve was assigned a quality score (Q), the ratio

of the melting-associated increase in fluorescence (ΔFmelt) to
the total fluorescence range (ΔFtotal). Q = 1 is a high-quality
curve, while Q = 0 indicates no thermal transition.49

Data analysis. The validity of the PoLi’s top 90 predictions
on E. coli dihydrofolate reductase was assessed by the thermal
melt assay methodology. Protein unfolding curves showing a
single sigmoidal thermal transition were selected and
normalized for further analysis. Initially, the curves were fit to
Boltzmann’s equation (eq 10) to obtain the melting temper-
ature, Tm, from the observed fluorescence intensity, I by

= +
−

+
−( )

I I
I I

e1
T T

a

min
max min

m

(10)

where Imin and Imax are the minimum and maximum intensities;
a denotes the slope of the curve at the unfolding transition
midpoint temperature, Tm. However, due to unfolding-
associated aggregation of the protein that resulted in decreasing
SO fluorescence at higher temperatures, the fits were
unconvincing giving wide margins of error (Figure 4A-D). To
overcome this problem and to estimate the melting temper-
ature more accurately, the first derivative of each melting curve
was derived and fit to a Gaussian whose mean gave an accurate
estimate of the Tm (Figure 4E−H). The fluorescence intensity
was used to compute the fraction unfolded ( f u) and
approximate thermodynamic parameters were estimated by
van’t Hoff50 and Gibbs−Helmholtz analyses.51 Further, rough
estimates of ligand-binding affinity at Tm were computed by
employing eq 10,52 with slight modifications.

=

−
−Δ{ }( )

K T

e

L
( )

[ ]

H

R T T

L m

1 1

m 0

(11)

where KL(Tm)is the ligand association constant and [L] is the
free ligand concentration at Tm ([LTm] ∼ [L]total), when [L]total
≫ the total concentration of protein. KD is the inverse of
KL(Tm).
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