
Policy-based optimization: single-step policy
gradient method seen as an evolution strategy

A Preprint

J. Viquerat∗

MINES Paristech, CEMEF
PSL - Research University

jonathan.viquerat@mines-paristech.fr

R. Duvigneau
INRIA Sophia Antipolis Méditerranée

ACUMES project-team

P. Meliga
MINES Paristech, CEMEF
PSL - Research University

A. Kuhnle
University of Cambridge

E. Hachem
MINES Paristech, CEMEF
PSL - Research University

September 29, 2021

Abstract

This research reports on the recent development of black-box optimization methods1

based on single-step deep reinforcement learning (DRL) and their conceptual similar-2

ity to evolution strategy (ES) techniques. It formally introduces policy-based opti-3

mization (PBO), a policy-gradient method that relies on a policy network to describe4

the density function of its forthcoming evaluations, and uses covariance estimation to5

steer the policy improvement process in the right direction. The specifics of the PBO6

algorithm are detailed, and the connection to evolutionary strategies (especially co-7

variance matrix adaptation evolutionary strategy) is discussed. Relevance is assessed8

by benchmarking PBO against classical ES techniques on analytic functions mini-9

mization problems, and by optimizing various parametric control laws intended for10

the Lorenz attractor. Given the scarce existing literature on the topic, this contribu-11

tion definitely establishes PBO as a valid, versatile black-box optimization technique,12

and opens the way to multiple future improvements building on the inherent flexibility13

of the neural networks approach.14

Keywords Deep reinforcement learning; Artificial neural networks; Evolution strategies; CMA-ES;15

Black-box optimization; Lorenz attractor; Parametric control law16

1 Introduction17

During the past decade, machine learning methods, and more specifically deep neural network (DNN),18

have achieved great success in a wide variety of domains. State-of-the-art neural network architectures19

have reached astonishing performance levels in a variety of tasks, i.e., image classification [1, 2], speech20

recognition [3] or generative tasks [4], to name a few. With generalized access to GPU computational21

resources through cheaper hardware or cloud computing, such advances have opened the path to a22

revolution of the reference methods in these domains, at both academic and industrial levels.23

With neural networks quickly becoming pervasive in a broad range of domains, significant progress has24

been made in solving challenging decision-making problems by deep reinforcement learning (DRL), an25

advanced branch of machine learning that couples DNNs and reinforcement learning (RL) algorithms.26

∗Corresponding author



The ability to use high-dimensional state spaces and to exploit the feature extraction capabilities of27

DNNs has proven decisive to lift the obstacles that had long hindered classical RL methods. In return,28

this yielded unprecedented efficiency in games [5, 6, 7] and in several scientific disciplines such as29

robotics [8], language processing [9], although a tremendous potential also exists for applying DRL to30

real-life applications, including autonomous cars [10, 11] or data center cooling [12].31

Although neural networks are regularly used in optimization problems, they are most often exploited32

as trained surrogates for the actual objective function [13, 14], and have long been mostly left out of33

the central optimization process, with the exception of a handful of studies [15, 16, 17]. This trend has34

been changing lately, as tweaked versions of classical DRL policy gradient algorithms have began to35

be used as black-box optimizers [18], the underlying idea being that a DNN can learn to map the same36

initial state to an optimal set by interacting only once per episode with its environment, if the policy37

to be learnt is independent of state (hence, single-step episodes, and by extension, single-step DRL).38

Such an approach has been speculated to hold a high potential for reliable optimization of complex39

systems. Nonetheless, it remains to be analyzed in full depth, as feasibility has just been assessed in a40

computational fluid mechanics (CFD) context, including shape optimization [18], drag reduction [19]41

and conjugate heat transfer control [20] (a similar concept of ”stateless DRL” has been early sketched42

in [21] for validation purpose, but was not pursued).43

This research formally introduces policy-based optimization (PBO), a novel single-step DRL algorithm44

that shares strong similarities with evolution strategies (ES). The objective is twofold: first, to deliver45

several major improvements over our previous PPO-1 algorithm, by adopting key heuristics from the46

covariance matrix adaptation evolution strategy (CMA-ES); second, to shape the capabilities of the47

method and to provide performance comparison against canonical ES algorithms on textbook and48

applied cases. One of the key novelty lies in the use of three separate neural networks to learn the49

mean, variance and correlation parameters of a multivariate normal search distribution, yielding a50

powerful, flexible optimization method (without anticipating the results, PBO compares very well51

with CMA-ES, which is all the more promising since new algorithms cannot be expected to reach right52

away the level of performance of their more established counterparts). In comparison, PPO-1 updates53

the mean and variance (the same for all variables) from a single neural network, which can prematurely54

shrink the exploration variance. While there have been previous attempts to similarly improve the55

convergence properties of classical DRL algorithm by drawing inspiration from ES [21], our literature56

review did not reveal any other study considering the generation of valid full covariance matrices from57

neural network outputs.58

The organization of the remaining of the paper is as follows: section 2 provides the needed background59

on policy gradient reinforcement learning and evolutionary strategies. The policy-based optimization60

(PBO) algorithm is introduced in section 3, where we thoroughly examine how to generate valid full61

covariance matrices from neural network outputs, and point out key similarities and differences with62

respect to CMA-ES.2 In section 4, PBO is benchmarked against standard ES algorithms on textbook63

optimization problems of analytic functions minimization. Finally, section 5 uses PBO to optimize64

a parametric control law for the Lorenz attractor, a well-known reduced version of Rayleigh–Bénard65

convection.66

2 Preliminaries67

2.1 Neural networks68

A neural network (NN) is a collection of artificial neurons, i.e., connected computational units that69

can be trained to approximate arbitrarily well the mapping function between input and output spaces70

[22]. Each connection provides the output of a neuron as an input to another neuron. Each neuron71

performs a weighted sum of its inputs, to assign significance to the inputs with regard to the task the72

algorithm is trying to learn. It then adds a bias to better represent the part of the output that is73

actually independent of the input. Finally, it feeds an activation function that determines whether and74

to what extent the computed value should affect the ultimate outcome. A fully connected network is75

generally organized into layers, with the neurons of one layer being connected solely to those of the76

immediately preceding and following layers. The layer that receives the external data is the input77

2The base code used to produce all results documented in this paper is available via a dedicated github
repository [42].

2



layer, the layer that produces the outcome is the output layer, and in between them are zero or more78

hidden layers.79

The design of an efficient neural network requires well-chosen nonlinear activation functions, together80

with a proper optimization of the weights and biases, to minimize the value of a loss function suitably81

representing the quality of the network prediction. The network architecture (e.g., type of network,82

depth, width of each layer), the meta-parameters (i.e., parameters whose value cannot be estimated83

from data, e.g., optimizer, learning rate, batch size) and the quality/size of the dataset are other key84

ingredients to an efficient learning, that must be carefully crafted to the intended purpose. For the85

sake of brevity, the reader is referred to [23] for an extended presentation of this topic.86

2.2 Reinforcement learning87

Reinforcement learning (RL) is a subset of machine learning in which an agent learns to solve decision-88

making problems by earning rewards through trial-and-error interaction with its environment. It89

is mathematically formulated as a Markov decision process in which the agent observes the current90

environment state st, takes an action at that prompts the reward received rt and the transition to the91

next state st+1, and repeats until the agent is unable to increase some form of cumulative reward. In92

practice, this is framed as an optimization problem of maximizing the discounted reward cumulated93

over a horizon T , defined as:94

R(τ) =
T∑
t=0

γtrt , (1)

where τ = (s0, a0, s1, a1, . . . , sT , aT ) is a trajectory of states and actions, and γ ∈ [0, 1] is a discount95

factor that weights the relative importance of present and future rewards.96

2.3 Policy gradient RL methods97

In policy gradient methods, the agent behavior is modeled after a stochastic policy πθ(s, a), i.e. a98

probability distribution over actions given states. The expected discounted cumulative reward J(θ) is99

maximized by gradient ascent on the policy parameters θ, updating at each iteration by a fixed-size100

step proportional to the policy gradient, whose expression derived in [24] in the context of ”vanilla”101

policy gradient reads:102

∇θJ(θ) = E
τ∼πθ

[
T∑
t=0
∇θ log πθ(st, at)R(τ)

]
. (2)

In a deep reinforcement learning context (deep RL or DRL), the policy is represented by a deep neural103

network whose weights and biases serve as free parameters to be optimized. To this end, a stochastic104

gradient algorithm is used to perform network updates from the policy loss:105

L(θ) = E
τ∼πθ

[
T∑
t=0

log πθ(st, at)R(τ)
]
, (3)

whose gradient is equal to ∇θJ(θ) (since the gradient operator in (2) acts only on the log-policy term),106

and is computed with the back-propagation algorithm [25] with respect to each weight and bias by the107

chain rule, one layer at the time from the output to the input layer.108

Multiple refinements varying in cost, complexity and purpose have been proposed to steer the policy109

improvement process in the right direction, whether it be by balancing the trade-off between bias and110

variance (actor-critic [26], generalized advantage estimate [27]) or by preventing the destructively large111

policy updates that can cause the agent to fall off the cliff and to restart from a poorly performing112

state with a locally bad policy (trust-region policy optimization, proximal policy optimization [28]).113

We shall not elaborate further on this matter, as the present implementation uses a variant of the114

vanilla policy gradient update. Hence, the interested reader is instead referred to [29] and references115

therein.116

3



(a) Identity covariance matrix (b) Diagonal covariance matrix (c) Full covariance matrix

Figure 1: Iso-density lines for multivariate normal laws with identity, diagonal and full covari-
ance matrices.

2.4 Evolution strategies117

Evolution strategies (ES) are another family of stochastic search algorithm that can learn an optimal118

parametrization by emulating organic evolution principles, without knowledge of the performance gra-119

dient. At each iteration g (called generation), the algorithm samples λ candidate solutions (x1, . . . , xλ)120

from a multivariate normal distribution N (mg,Cg) with mean mg and covariance matrix Cg, eval-121

uates the cost function at the candidate solutions, and uses a weighted recombination of the µ best122

individuals to update the search distribution for the next generation. Simply put, the mean is pulled123

into the direction of the best performing candidates, while the covariance update aims to align the den-124

sity contour of the sampling distribution with the contour lines of the objective function and thereby125

the direction of steepest descent. The range of possible models corresponds to various degrees of sophis-126

tication. For instance, (µ, λ)-ES is a rudimentary algorithm relying on identity covariance matrices,127

i.e., it assumes all variables to have the same variance and to be uncorrelated, which in turn defines an128

isotropic region of sampling for the next generation (see figure 1a). Conversely, the covariance matrix129

adaptation evolutionary strategy (CMA-ES, considered state-of-the-art in evolutionary computations)130

uses a full covariance matrix to accelerate convergence toward the optimum by exploiting anisotropy in131

the steepest descent direction (see figure 1c). Another key aspect lies in the structure of the CMA-ES132

covariance matrix update:133

Cg+1 ← (1− c1 − cµ)Cg + cµCµ + c1C1 (4)

where the first term represents a soft update from the current covariance matrix, and c1 and cµ are134

learning rates set by well-established heuristics and associated to two types of updates termed rank-135

1 and rank-µ. The rank-µ update includes information about the best individuals of the current136

generation, while the rank-1 update adds correlation information across consecutive generations via a137

so-called evolution path storing the average update direction (in a way such that correlated updates sum138

up but decorrelated updates cancel each other out). These three contributions combined ultimately139

allow CMA-ES to fast search from limited populations of individuals at each generation, without140

compromising the evaluation of the next covariance matrix, as thoroughly described in [30].141

3 Policy-based optimization (PBO)142

We review below the main features of our proposed policy-based optimization (PBO) algorithm, and143

point out the key conceptual similarities and differences with respect to the methods introduced in144

section 2. In order to provide common ground between all approaches, we refer from now on to each145

new set of evaluation as a generation g, and to each evaluation within a generation as an individual.146

Also, we denote by ni the number of individuals evaluated at each generation (i.e. the number of147

parallel environments used to collect rewards before performing a network update) and by d the search148

space dimension (i.e. the dimension of the action required by the environment).149

4



s0

Agent

πθ N (m,C) clip at ∈
[−1, 1]d

Parallel envs.

Map at
to apt

f (apt )rt

θt → θt+1

Figure 2: Action loop for the PBO method. At each generation, the same input state s0 is pro-
vided to the agent, that draws a set of actions a ∈ [−1, 1]d from the current probability distribution
function, with d the problem dimensionality. The actions are distributed to several parallel environ-
ments, and mapped to physical ranges ap. The parallel environments then evaluate the cost function
f at the physical actions, and returns a set of rewards r measuring the quality of the actions taken.
Once a sufficient amount of state-action-reward triplets has been collected, the network parameters
are updated from the policy loss (5). The process is repeated until convergence.

3.1 Single-step deep reinforcement learning150

Policy-based optimization (PBO) is a single-step policy gradient RL algorithm whose premise is that151

it is enough that the agent interacts with the environment only once per episode (defined as one152

instance of the scenario in which the agent takes actions, hence single-step) if the policy to be learnt153

is independent of state, i.e. πθ(s, a) ≡ πθ(a). This is notably the case in optimization and open-loop154

control problems (the policy in closed-loop control problems conversely depends on states thus requires155

multiple interactions per episode).156

The line of thought is as follows: where a standard policy gradient algorithm seeks the optimal θ?157

such that following πθ? maximizes the discounted cumulated reward over an episode, PBO seeks the158

optimal θ? such that a? = πθ?(s0) maximizes the instantaneous reward, with s0 being some input state159

(usually a constant vector) consistently fed to the agent for the optimal policy to eventually embody160

the optimal transformation from s0 to a?. The agent initially implements a random policy determined161

by its initial set of parameters θ0, after what it gets only one attempt per episode at finding the optimal.162

This is illustrated in figure 2, showing the agent draw a population of actions from the current policy,163

and being incentivized to update the policy parameters for the next population of actions to yield164

larger rewards. A direct consequence is that PBO uses smaller policy networks (compared to usual165

agent networks found in other DRL contributions), because the agent is not required to learn a complex166

state-action relation, but only a transformation from a constant input state to a given action.167

3.2 Gradient ascent update rule168

In practice, PBO draws actions from a probability density function. Here, we use a d-dimensional169

multivariate normal distribution N (m,C) with mean m and full covariance matrix C. As shown in170

figure 3, three independent neural networks are used to output the necessary mean, standard deviation,171

and correlation information, using hyperbolic tangent and sigmoid activation functions on the output172

layers to constrain all values in their respective adequate ranges (see section 3.3 for more details).173

Actions are then drawn in [−1, 1]d by clipping (a series of numerical experiments indicates that soft-174

limiting transfer functions such as hyperbolic tangent or soft clipping are generally not beneficial175

and yield, in certain cases, slow convergence and numerical instabilities), before being mapped to176

their relevant physical ranges ap (a step deferred to the environment as being problem-specific), as177

illustrated in figure 2. Finally, the Adam algorithm [31] runs stochastic gradient ascent on the policy178

parameters using the modified loss:179

5



s1
0

s2
0

m1
t

m2
t

σ1
t

σ2
t

ρ1,2
t

Figure 3: Policy networks used in PBO to map states to policy. Three separate networks
are used for the prediction of mean, standard deviation, and correlation parameters. All activation
functions are hyperbolic tangents, except for the output layers of the σ and ρ networks, which uses
sigmoid (please refer to section 3.3 for additional details). Orthogonal weights initialization is used
throughout the networks, with a unit gain for all layers except the output layers, for which the gain is
set to 1× 10−2. In practice, all three networks are trained separately.

L(θ) = E
a∼πθ

[
log πθ(a|s0) max

(r − r̄
r̂

, 0
)]
, (5)

where r̄ (resp. r̂) is the reward average (resp. standard deviation) over the current generation. and180

the PBO loss is thus formally identical to (3), except for the clipped generation-wise whitened reward181

substituted for the discounted cumulative reward. The rationale for this choice is as follows: as is182

customary in DRL, the discounted cumulative reward is approximated by the advantage function, that183

measures the improvement (if positive, otherwise the lack thereof) associated with taking action a in184

state s compared to taking the average over all possible actions. Because a PBO trajectory consists of185

a single state-action pair (hence (5) drops the sum over t), the discount factor can be set to γ = 1, in186

which case the advantage reduces to the reward, as further explained in [19]. The present normalization187

to zero mean and unit standard deviation introduces bias but reduces variance, and thus the number of188

actions needed to estimate the expected value. Finally, the max allows discarding negative-advantage189

actions, that may destabilize learning when performing multiple mini-batch gradient steps using the190

same data (as each step drives the policy further away from the sampled actions).191

3.3 Generating valid covariance matrices from neural network outputs192

Matrices representing correlations between variables must satisfy four basic properties to bear physical193

significance: (i) all entries must be in [−1, 1] (nothing goes beyond perfect correlation or perfect194

anticorrelation), (ii) all diagonal entries must be equal to 1 (a variable is always perfectly correlated195

with itself), (iii) the matrix must be symmetric (correlation between variables i and j is equal to196

correlation between j and i), and (iv) the matrix must be positive semidefinite (PSD, the variance of197

a weighted sum of the random variables must be positive). It follows that the above naive approach198

consisting in having a neural network directly output a set of correlation parameters in adequate199

range is vowed to fail, as there is no guarantee whatsoever that the so-obtained matrix will be PSD.200

In addition, while it is possible on paper to have the neural network repeatedly output correlation201

coefficients until a PSD matrix is obtained (which amounts to implementing the classical rejection202

sampling method), this quickly becomes inefficient as the chances of finding a valid matrix are very203

low for d > 3.204

6



PBO overcomes this issue using hypersphere decomposition, a method rooted in risk management205

theory, that generates valid correlation matrices from a set of angular coordinates on a hypersphere of206

unit radius [32, 33]. The reader interested in a detailed and comprehensive presentation of the method207

is referred to [34]. We shall just mention here that the method parameterizes a lower triangular208

elementary matrix Bd with entry:209

bij =


1 for i = j = 1
cosϕij for i > 1, j = 1
cosϕij

∏j−1
k=1 sinϕik for i > 1, j < i∏j−1

k=1 sinϕik for i > 1, j = i
0 for j > i

(6)

from a set of so-called correlative angles ϕ ∈ [0, π]D, with D = d(d−1)
2 (hence in same number as the210

correlation parameters). For instance the matrix for d = 4 reads:211

B4 =

 1 0 0 0
cosϕ2,1 sinϕ2,1 0 0
cosϕ3,1 cosϕ3,2 sinϕ3,1 sinϕ3,2 sinϕ3,1 0
cosϕ4,1 cosϕ4,2 sinϕ4,1 cosϕ4,3 sinϕ4,2 sinϕ4,1 sinϕ4,3 sinϕ4,2 sinϕ4,1

 (7)

The product of this matrix with its transpose is then guaranteed to be a valid correlation matrix, as it212

is symmetric and PSD by construction, with all entries in [−1, 1] (since all Bij are products of cosine213

and sine functions) and unit diagonal [35].214

The retained procedure to efficiently doctor neural network outputs into valid parameterization of a215

multivariate normal distribution is thus as follows: the first network outputs the mean m in [−1, 1]d216

using a hyperbolic tangent activation function on the output layer. The second network outputs the217

standard deviations σ in [0, 1]d using a sigmoid activation function on the output layer. Finally, the218

third network outputs a set of coefficients ρ in [0, 1]D, also using a sigmoid activation function on219

the output layer. Those are mapped into correlative angles ϕ = πρ and assembled into the above220

elementary matrix Bd, after which the covariance matrix is constructed as:221

C = S
(
BBt

)
S, (8)

with S = diag(σ).222

3.4 Off-policy updates223

Accurately computing the expected value in the policy loss (5) requires sampling a large number of224

state-action-reward triplets before the algorithm can proceed to update the agent parameters. At each225

generation, a set of actions drawn from the current policy πθ is thus distributed to ni environments226

running in parallel, each of which computes a reward associated to its input action, and provides it back227

to the agent. This can repeat until the agent has collected a sufficient number of state-action-reward228

triplets, Still, in many cases, it is not tractable to use a large value of ni because computing the reward229

can be a computationally-intensive task (all the more so when it requires solving high-dimensional230

discretization of partial differential equation systems), hence the number of state-action-reward triplets231

available from the current policy is generally limited. PBO therefore improves the reliability of the loss232

evaluation by incorporating the reward data available from several previous generations, using a decay233

parameter η ∈ [0, 1] to give recent generations more weight by exponentially decreasing the advantage234

history. A rule of thumb for the decay factor used in the remainder of the paper is given by235

η = 1− e−αd, (9)

with α > 0 to retain a longer memory of the previous individuals as the problem dimensionality d236

increases (very much consistent with the idea that more individuals are then needed to build a coherent237

covariance matrix). The decrease rate is set empirically to α = 0.35, hence η = 0.5 for d = 2, 0.82 for238

η = d = 5, and η = 0.98 for d = 10. In practice, each of the three neural networks are updated for ne239

7



epochs (the number of full passes of the algorithm over the entire data set) using a learning rate λr240

and a history of ng generations, shuffled and organized in nb mini-batches (whose size are in multiples241

of ni, the number of individuals sampled at each generation). An important attribute of PBO is that242

all three networks can use different meta-parameters and network architectures, which we show in the243

following can substantially impact the convergence rate.244

3.5 Connection to evolutionary strategies245

While intrinsically a single-step policy-gradient algorithm, several PBO features are reminiscent of the246

CMA-ES algorithm introduced in section 2. The main analogies are as follows:247

• Both CMAES and PBO use a multivariate normal distribution parameterized by a full co-248

variance matrix to improve the balance between exploration and exploitation. There lies the249

main progress with respect to the previous single-step PPO-1 algorithm, that samples actions250

isotropically from scalar covariance matrices (this has been shown to possibly lead to bad251

coverage of the parameter space in case of irregular topology of the cost function [19].252

• PBO computes the policy loss (5) using only the positive-advantage actions. This keeps the253

policy consistent with the collected experience data, and is reminiscent of the elitist selection254

of individuals performed in the CMA-ES update [30],255

• PBO uses history of previous generations to update the network parameters, in the same256

way CMA-ES uses an evolution path to add information about correlations across consecutive257

generations,258

• PBO exponentially decays the advantage history of older generation, which is also a well-known259

feature of CMA-ES, where scaled covariance matrices from past generations are re-used in260

future updates and the influence of previous steps decays exponentially in the evolution path261

[30].262

Ultimately, PBO can be thought as an evolution strategy without a specific update rule, in the sense263

that CMA-ES relies on internal analytical update rules to directly output the probability density264

function parameters, while the update rules of PBO are on the neural network outputs used to design265

valid probability density function parameters.266

4 Minimization of analytic functions267

4.1 Test cases268

This section considers simple minimization problems on a set of analytic functions classically exploited269

for benchmarking purposes of optimization methods:270

• the two-dimensional (2-D) parabola function, whose global minimum is in (0,0), with a search271

domain equal to [−5, 5]2 and a starting point at (2.5, 2.5):272

f(x1, x2) = x2
1 + x2

2 , (10)
• the d-dimensional (d-D) Rosenbrock function, whose global minimum is in (1, . . . , 1) and stands273

in a very narrow valley notoriously difficult to catch for optimization algorithms (three cases274

d = 2, 5 and 10 are tackled for comparison), with a search domain equal to [−2, 2]d and a275

starting point at (−1, 0) in 2-D, and (0, . . . , 0) in 5-D and 10-D:276

f(x1, . . . xd) =
d−1∑
i=1

(1− xi)2 + 100(xi+1 − x2
i )2 , (11)

• the 2-D Branin function, that has two identical global minima at (π, 2.275) and (3π, 2.275),277

with a search domain equal to [0, 15]2 and a starting point at (7.5, 7.5):278

f(x1, x2) =
(
x2 −

5.1
4π2x

2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 , (12)

8



−5 0 5
−5

0

5

1

5

10

20

x1

x
2

(a) Parabola function

−2 −1 0 1 2
−2

−1

0

1

2

15

50

50

250

250

x1

x
2

(b) Rosenbrock function

0 5 10 15
0

5

10

15

1

5
10

20

50

x1

x
2

(c) Branin function

−10 −5 0 5 10
−10

−5

0

5

10

0.2

0.8

1.5

1.9

x1

x
2

(d) Griewank function

Figure 4: 2D analytic functions used as targets for minimization problems. The global
minima and starting points are reported as the black and red dots, respectively.

• the 2-D Griewank function, that has multiple widespread, regularly distributed, identical local279

minima, and only one global minimum at (0, 0), with a search domain equal to [−10, 10]2 and280

a starting point at (5, 5):281

f(x1, x2) = 1 + x2
1 + x2

2
4000 − cos(x1) cos

(
x2√

2

)
. (13)

The 2-D functions are presented in figure 4 on their respective domains. In this section, we follow the282

CMA-ES rules of thumb and set the number of individuals per generation to:283

ni = b4 + 3 ln(d)c . (14)

For each case, PBO is benchmarked against our previous single-step PPO-1 algorithm [18, 19, 20] as284

well as (µ, λ)-ES and CMA-ES algorithms implemented in in-house production codes. To ensure a285

fair comparison, the initial parameters, number of individuals per generation and starting points are286

identical for all methods, as indicated in figure 4. Moreover, a large initial standard deviation is used287

by default, to ensure a good exploration of the optimization domain.288

9



m σ ρ

λr 5× 10−3 5× 10−3 1× 10−3

ng 1 8 16
ne 128 8 8
nb 1 4 8

Arch. [2, 2, 2] [2, 2, 2] [2, 2, 2]

Table 1: Detail of the networks achitecture and PBO meta-parameters. As mentioned in
section 3.1, λr is the learning rate, ng is the number of generations used for learning, ne is the number
of epochs, and nb is the number of mini-batches. For the architecture, only the sizes of the hidden
layers are given.

4.2 Results289

In order to emphasize flexibility and generalizability, all benchmarks are tackled without fine-tuning290

of the algorithm, i.e., all runs use the same PBO meta-parameters listed in table 1, hence the results291

documented hereafter should be understood as a baseline measure of performance for which there is292

ample room for improvement. For each considered case, we present in figure 5 the evolution of the best293

individual cost during the optimization process of a given algorithm. Performances are averaged over 10294

runs, with standard deviations shown as the light shade around. PBO can be seen to perform extremely295

well on the parabola, the Branin and the 2-D Rosenbrock functions, as it significantly outperforms296

PPO-1 and (µ, λ)-ES (both of which perform remarkably similarly) and generally achieves convergence297

rates and final cost levels similar to CMA-ES. The anisotropy of the PBO optimization process is further298

illustrated in figure 6 for the 2-D Rosenbrock function: starting in (0,−1) with a large initial variance,299

the algorithm quickly descends toward the entrance of the narrow valley, in the vicinity of (0, 0). After300

a few tens of generation for exploration, the algorithm figures out the shape of the valley entrance, the301

search distribution starts to elongate, progresses into the valley, before reaching the global minimum302

within approximately 100 generations. PBO performs worst on the Griewank function, as the solutions303

quickly become trapped by one of the local minima due to the inability to set a suitable step size for304

the local search process (but all methods considered suffer from the same lack of exploration, and305

ultimately perform almost identically under the same test conditions). In larger dimensions, PBO306

shows faster convergence and better performance at intermediate stages (here on the 5-D and 10-D307

Rosenbrock functions). This experiment confirms the capabilities of PBO to efficiently elongate its308

research area with respect to the local shape of the cost function, and to converge in moderately large309

research spaces.310

We revisit now the 2-D Rosenbrock benchmark and assess the performance sensitivity to the PBO311

meta-parameters, using the above results (obtained with those meta-parameters listed in table 1) as312

reference. It can be seen from figure 7a that a larger number of individuals per generation ni leads313

to a faster convergence. Such a finding is very much consistent with expectations as it proceeds from314

both a more accurate evaluation of the loss function (5) and a richer exploration of the search space.315

Nonetheless, the performance remains surprisingly decent with as little as 3 individuals per generation.316

The final performance levels seem to saturate around 1× 10−8, which we believe is a side-effect of the317

neural network training process. This is a point that deserves further consideration, although the318

saturation value is small enough that it likely has little to no effect in practical optimization problems.319

The architecture of the neural networks also affects performance in a major way, as we show in figure320

7b that increasing the networks depth and width can make PBO out-perform its reference benchmark321

(and thus CMA-ES). This means that PBO does indeed exploit the large network parameter state322

as a proxy to perform efficient optimization, in contrast to just optimizing the bias of the last layer323

while keeping all weights to zero. Also, PBO being a stochastic method, using deeper networks also324

substantially increases the performance stability from one run to another. Yet, beyond a certain point,325

detrimental effects are observed, which can be attributed to vanishing gradients and/or too large326

parameters states (not shown here). In the same vein, additional numerical experiments (not shown327

here) conducted on the 5-D and 10-D Rosenbrock functions suggest that these conclusions do not carry328

over easily to larger dimensional search spaces, and the reference network architecture used in section329

10



0 10 20 30 40 50
10−10

10−6

10−2

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(a) 2-D parabola function

0 50 100 150
10−9

10−5

10−1

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(b) 2-D Rosenbrock function

0 10 20 30 40 50
10−6

10−4

10−2

100

102

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(c) 2-D Branin function

0 10 20 30 40 5010−3

10−2

10−1

100

101

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(d) 2-D Griewank function

0 100 200 300
10−7

10−4

10−1

102

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(e) 5-D Rosenbrock function

0 200 400 600

10−4

10−2

100

102

104

generations

re
w

ar
d

ppo-1
es
cmaes
pbo

(f) 10-D Rosenbrock function

Figure 5: Minimization problems on analytic functions, using PBO, PPO-1, ES and CMAES. To
ensure a fair comparison, the initial parameters and starting points of the three methods are identical,
and the same number of individuals per generation is used for the four methods.

11



−2 −1 0 1 2
−2

−1

0

1

2

(a) Generation 1

−2 −1 0 1 2

(b) Generation 5

−2 −1 0 1 2

(c) Generation 20

−2 −1 0 1 2
−2

−1

0

1

2

(d) Generation 50

−2 −1 0 1 2

(e) Generation 100

−2 −1 0 1 2

(f) Generation 150

Figure 6: Successive generations of the PBO algorithm during a single minimization run of the
2D Rosenbrock function. The red dots indicate the individuals of the current generation, while gray
crosses correspond to the individuals of all previous generations.

4.2 ends up being a good overall candidate. The general picture to be drawn is that PBO exhibits330

strong performance and is very promising for use in more applied optimization problems, but that331

further characterization and fine-tuning are mandatory to outperform more advanced methods on a332

consistent basis.333

5 Parametric control laws for the Lorenz attractor334

This section considers the optimization of parametric control laws for the Lorenz attractor, a simple335

nonlinear dynamical system representative of thermal convection in a two-dimensional cell [36]. The336

set of governing ordinary differential equations reads:337

ẋ = σ(y − x),
ẏ = x(ρ− z)− y,
ż = xy − βz,

(15)

where σ is related to the Prandtl number, ρ is a ratio of Rayleigh numbers, and β is a geometric338

factor3. Depending on the values of the triplet (σ, ρ, β), the solutions to (15) may exhibit chaotic339

behavior, meaning that arbitrarily close initial conditions can lead to significantly different trajectories340

[37], one common such triplet being (σ, ρ, β) = (10, 28, 8/3), that leads to the well-known butterfly341

shape presented in figure 8. A parametric control law is introduced in the following to alleviate or curb342

3The ρ and σ used here are therefore the canonical notations of the Lorenz attractor parameters, and have
no link with the standard deviations and correlation parameters used previously in the paper.

12



0 50 100 150

10−8

10−5

10−2

101

generations

re
w

ar
d

ni = 3
ni = 6 (ref)
ni = 12

(a) Impact of the number of individuals per gen-
eration ni

0 50 100 150

10−8

10−5

10−2

101

generations

re
w

ar
d []

[2]
[2, 2]
[4, 4]
[2, 2, 2] (ref)
[4, 4, 4]
[2, 2, 2, 2]

(b) Impact of the network architectures

Figure 7: Sensitivity of the PBO convergence properties to the number of individuals per
generation and network architectures. The reference solutions obtained using the parameters
listed in table 1 and shown in figure 5 are reproduced as the orange curves.

Figure 8: Chaotic sampled solution of the Lorenz attractor, computed by time-integration of
(15) with (σ, ρ, β) = (10, 28, 8/3), from initial conditions (x0, y0, z0) = (10, 10, 10) over 30 time units.
The presented view is in the x− z phase plane.

such chaotic behavior, whose design parameters are optimized by PBO with respect each intended343

control objective.344

5.1 Parametric control law345

We build here on existing control attempts of the Lorenz system [38] and add to (15) a feedback control346

on the y variable for the controlled system to be:347

ẋ = σ(y − x),
ẏ = x(ρ− z)− y + u (ẋ, ẏ, ż) ,
ż = xy − βz,

(16)

where u is the feedback velocity defined as:348

u(ẋ, ẏ, ż) = tanh (wxẋ+ wy ẏ + wz ż + b) , (17)

in a way such that |u| < 1, and wx, wy, wz and b are the true free parameters to optimized (hence349

d = 4). The control law (17) is meant to mimic the output of an artificial neuron, with wx, wy and350

13



wz being the weights of the neuron inputs, and b representing its bias. We set the initial condition to351

(x0, y0, z0) = (10, 10, 10), and the attractor parameters to (σ, ρ, β) = (10, 28, 8/3) for the uncontrolled352

system to be chaotic. In practice, we use scaled inputs:353

(ˆ̇x, ˆ̇y, ˆ̇z
)

=
(
ẋ

xs
,
ẏ

ys
,
ż

zs

)
, (18)

using scaling factors (xs, ys, zs) = (15, 20, 40) representative of the approximate maximal amplitude354

reached by each variable of the uncontrolled problem, which allows seeking all optimal parameters w∗
x,355

w∗
y, w∗

z , and b∗ in [−1, 1] (as required by PBO). In the following, we solve system (16) using the odeint356

function of the Scipy package [39]. The system is evolved control-free for 5 time units (from t = −5357

to t = 0), after which the control kicks in for 25 time units, from t = 0 to t = 25. The integration358

time-step is fixed, and set to ∆t = 0.01 time units. All considered cases are tackled with the same359

reference meta-parameters listed in table 1 (again to highlight the robustness and versatility of the360

method before aiming to fine-tune the performance), only the number of individuals per generation ni361

is raised to 16 due to the chaotic nature of the system and the limited computational cost required to362

integrate the problem.363

5.2 Lorenz stabilizer364

Small control actuation on the ẏ evolution equation is first use to stabilize the Lorenz system in the365

x < 0 quadrant (as is done in [38]) using the reward function:366

r = ∆t
nt∑
i=0
{xi < 0} , (19)

where nt is the total number of time-steps, and {xi < 0} = 1 if xi < 0, and 0 otherwise, in a way such367

that the reward is large if and only if the x coordinate remains within the targeted domain. The reward368

function is multiplied by ∆t with the only purpose to make it independent of the time discretization.369

For the sake of clarity, the results presented in figure 9a pertain to a single run (not an average over370

runs,) which is because the chaotic behavior of the attractor yields a significantly distorted reward371

history. Even though, the PBO algorithm converges after approximately 100 generations (with good372

reward values are obtained after a few ten generations). The subsequent variations are ascribed to the373

reward function. Indeed, it is flat by design for any value x < 0, and therefore does not promote sharp374

convergence to a specific value of x, although we show in figure 9b that all four control parameters375

converge to well-defined, non-trivial values. The efficiency of the control is further illustrated in figure376

9c showing that optimally controlled attractor is successfully confined in the x < 0 bassin just 5 time377

units after the control has kicked in.378

5.3 Lorenz oscillator379

Similar small control actuation on the ẏ evolution equation is now used to maximize the number of sign380

changes of the Lorenz system, as proposed in [38]. This is done using the following reward function:381

r =
nt−1∑
i=0
{xixi+1 < 0} , (20)

in a way such that the reward is large if and only if the x coordinate changes sign in consecutive time382

steps. This function is much harder to maximize than its stabilizer counterpart (19) due to its higher383

sparsity, i.e. the larger proportions of actions yielding a zero instantaneous reward. Such sparsity is384

the reason why no sharp convergence is found over the course of a single optimization run, as shown385

in figure 10, but there is a clear diminishing trend and the optimally controlled attractor ultimately386

exhibits the expected behavior, as it is mostly confined on a narrow orbit that allows it to quickly387

oscillate between the x < 0 and the x > 0 regions.388

14



0 50 100 150 200

−20

−10

generations

re
w

ar
d

u = 0
PBO

(a) Evolution of the reward function of the Lorenz
stabilizer case over a single run. The dashed line
indicates the control-free reward level

0 50 100 150 200
−1

−0.5

0

0.5

1

generations

wx

wy

wz

b

(b) Evolution of the four control parameters over
a single run

−5 0 5 10 15 20 25
−20

−10

0

10

20

t

x

x ref.
x stabilized
u

(c) Evolution of the x component with and without optimal parametric control

(d) Plot of the Lorenz attractor with optimized stabilizer control, seen in the x− z plane

Figure 9: Results for the Lorenz attractor with optimized stabilizer control. Given the
chaotic nature of the problem, results are provided for a single run only.

15



0 100 200 300 400

−30

−20

generations

re
w

ar
d

u = 0
PBO

(a) Evolution of the reward function of the Lorenz
stabilizer case over a single run. The dashed line
indicates the control-free reward level

0 100 200 300 400
−1

−0.5

0

0.5

1

generations

wx

wy

wz

b

(b) Evolution of the four control parameters over
a single run

−5 0 5 10 15 20 25
−20

−10

0

10

20

t

x

x ref.
x stabilized
u

(c) Evolution of the x component with and without optimal parametric control

(d) Plot of the Lorenz attractor with optimized oscillator control

Figure 10: Same as figure 9 for the Lorenz oscillator optimization.

16



6 Conclusion389

This research formally introduces policy-based optimization (PBO), a novel black-box algorithm for390

optimization and open-loop control problems, at the crossroad of policy gradient methods and evolution391

strategies. PBO is single-step, meaning that the DRL agent gets only one attempt per learning episode392

at finding the optimal. It evolves a multivariate normal search distribution whose parameters (including393

especially a full covariance matrix) are learnable from neural network outputs. The method represents394

significant improvement with respect to our previous single-step PPO-1 algorithm, that samples actions395

isotropically from a scalar standard deviation (which can be detrimental when the topology of the396

cost function is distorted). PBO is shown to outperform classical isotropic ES techniques on the397

minimization problem of reference analytic functions, up to 10 dimensions. The performance is actually398

similar to that of CMA-ES, with moderate advantage on the convergence rate obtained in intermediate399

dimensions, although PBO is found capable to out-perform its reference benchmark (and thus CMA-400

ES) by adequate fine tuning of the network architecture. PBO is also applied to the optimization of401

parametric control law for the Lorenz attractor, for which it successfully stabilizes the Lorenz system402

in a given domain, or conversely enhances the ability of the system to change sign.403

Researchers have just begun to gauge the relevance of DRL techniques to assist the design of optimal404

control strategies. This research weighs in on this issue and shows that PBO holds a high potential405

as a reliable, go-to black-box optimizer inheriting from both policy gradients and evolutionary strat-406

egy methods. In this respect, the method can thus benefit from the solid background acquired in407

evolutionary computations, and from rapid progresses achieved by the DRL community. Despite the408

present achievements, further development, characterization and fine-tuning are needed to consolidate409

the acquired knowledge: multiple refinements can be considered, including extending the scope to410

deterministic policy gradient techniques [40], or using importance sampling weights [41] to replace411

the exponential decay heuristic herein proposed. We certainly welcome such initiatives and purposely412

make the source code available upon request via a dedicated Github repository [42].413

Acknowledgements414

This work is supported by the Carnot M.I.N.E.S. Institute through the M.I.N.D.S. project.415

References416

[1] W. Rawat and Z. Wang. Deep convolutional neural networks for image classification: a compre-417

hensive review. Neural Computation, 29:2352–2449, 2017.418

[2] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent architectures of deep419

convolutional neural networks. Artificial Intelligence Review, pages 2352–2449, 2020.420

[3] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. Speech recognition using deep neural421

networks: a systematic review. IEEE Access, 7:19143–19165, 2019.422

[4] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye. A review on generative adversarial networks: algo-423

rithms, theory, and applications. http://arxiv.org/abs/2001.06937, 2020.424

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.425

Playing Atari with deep reinforcement learning. http://arxiv.org/abs/1312.5602, 2013.426

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,427

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and428

D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550, 2017.429

[7] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, 2018.430

[8] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic431

for image-based robot learning. http://arxiv.org/abs/1710.06542, 2017.432

[9] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An433

actor-critic algorithm for sequence prediction. http://arxiv.org/abs/1607.07086, 2016.434

[10] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and435

A. Shah. Learning to drive in a day. http://arxiv.org/abs/1807.00412, 2018.436

17

https://blog.openai.com/openai-five/


[11] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A. Kendall. Learning to drive437

from simulation without real world labels. http://arxiv.org/abs/1812.03823, 2018.438

[12] W. Knight. Google just gave control over data center cool-439

ing to an AI. http://www.technologyreview.com/s/611902/440

google-just-gave-control-over-data-center-cooling-to-an-ai/, 2018.441

[13] G. Villarrubia, J. F. De Paz, P. Chamoso, and F. De la Prieta. Artificial neural networks used in442

optimization problems. Neurocomputing, 272:10–16, 2018.443

[14] A. M. Schweidtmann and A. Mitsos. Deterministic global optimization with artificial neural444

networks embedded. Journal of Optimization Theory and Applications, 180:925–948, 2019.445

[15] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shilling-446

ford, and N. de Freitas. Learning to learn by gradient descent by gradient descent.447

http://arxiv.org/abs/1606.04474, 2016.448

[16] X. Yan, J. Zhu, M. Kuang, and X. Wang. Aerodynamic shape optimization using a novel optimizer449

based on machine learning techniques. Aerospace Science and Technology, 86:826–835, 2019.450

[17] R. Li, Y. Zhang, and H. Chen. Learning the aerodynamic design of supercritical airfoils through451

deep reinforcement learning. https://arxiv.org/abs/2010.03651, 2020.452

[18] J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and E. Hachem. Direct shape453

optimization through deep reinforcement learning. Journal of Computational Physics, 428:110080,454

2021.455

[19] H. Ghraieb, J. Viquerat, A. Larcher, P. Meliga, and E. Hachem. Optimization and passive flow456

control using single-step deep reinforcement learning. http://arxiv.org/abs/2006.02979, 2020.457

[20] E. Hachem, H. Ghraieb, J. Viquerat, A. Larcher, and P. Meliga. Deep reinforcement458

learning for the control of conjugate heat transfer with application to workpiece cooling.459

https://arxiv.org/abs/2011.15035, 2020.460

[21] P. Hämäläinen, A. Babadi, X. Ma, and J. Lehtinen. Ppo-cma: Proximal policy optimization with461

covariance matrix adaptation. http://arxiv.org/abs/1810.02541, 2018.462

[22] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-463

proximators. Neural Networks, 2(5):359–366, 1989.464

[23] I. Goodfellow, Y. Bengio, and A. Courville. The Deep Learning Book. MIT Press, 2017.465

[24] R. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement466

learning with function approximation. Adv. Neural Inf. Process. Syst, 12, 2000.467

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating468

errors. Nature, 323:533–536, 1986.469

[26] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural information470

processing systems, pages 1008–1014, 2000.471

[27] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control472

using generalized advantage estimation. https://arxiv.org/abs/1506.02438, 2015.473

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization474

algorithms. http://arxiv.org/abs/1707.06347, 2017.475

[29] R. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.476

[30] N. Hansen. The cma evolution strategy: A tutorial. http://arxiv.org/abs/1604.00772, 2016.477

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.478

http://arxiv.org/abs/1412.6980, 2014.479

[32] R. Rebonato and P. Jäckel. The most general methodology to create a valid correlation matrix480

for risk management and option pricing purposes. Available at SSRN 1969689, 2011.481

[33] F. Rapisarda, D. Brigo, and F. Mercurio. Parameterizing correlations: a geometric interpretation.482

IMA Journal of Management Mathematics, 18(1):55–73, 2007.483

[34] K. Numpacharoen and A. Atsawarungruangkit. Generating correlation matrices based on the484

boundaries of their coefficients. PLOS One, 7(11), 2012.485

18

http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/
http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/
http://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/


[35] S. Maree. Correcting non positive definite correlation matrices. BSc Thesis Applied Mathematics,486

TU Delft, 2012.487

[36] B. Saltzman. Finite amplitude free convection as an initial value problem. Journal of atmospheric488

sciences, 19(4):329–341, 1962.489

[37] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130–141,490

1963.491

[38] G. Beintema, A. Corbetta, L. Biferale, and F. Toschi. Controlling rayleigh–bénard convection via492

reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.493

[39] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,494

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,495

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng,496

E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,497

C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt. SciPy 1.0:498

Fundamental algorithms for scientific computing in python. Nature Methods, 17:261–272, 2020.499

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.500

Continuous control with deep reinforcement learning. https://arxiv.org/abs/1509.02971v6, 2019.501

[41] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample502

efficient actor-critic with experience replay. https://arxiv.org/abs/1611.01224, 2017.503

[42] J. Viquerat. PBO git repository. https://github.com/jviquerat/pbo, 2021.504

19

https://github.com/jviquerat/pbo

	Introduction
	Preliminaries
	Neural networks
	Reinforcement learning
	Policy gradient RL methods
	Evolution strategies

	Policy-based optimization (PBO)
	Single-step deep reinforcement learning
	Gradient ascent update rule
	Generating valid covariance matrices from neural network outputs
	Off-policy updates
	Connection to evolutionary strategies

	Minimization of analytic functions
	Test cases
	Results

	Parametric control laws for the Lorenz attractor
	Parametric control law
	Lorenz stabilizer
	Lorenz oscillator

	Conclusion

