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Abstract

Dynamic, heterogenous and distributively owned re-

source environments present unique challenges to the prob-

lems of resource representation, allocation and manage-

ment. Conventional resource management methods that rely

on static models of resource allocation policy and behavior

fail to address these challenges. We previously argued that

Matchmaking provides an elegant and robust solution to re-

source management in such dynamic and federated environ-

ments. However, Matchmaking is limited by its purely bilat-

eral formalism of matching a single customer with a single

resource, precluding more advanced resource management

services such as co-allocation. In this paper, we present

Gangmatching, a multilateral extension to the Matchmak-

ing model, and discuss the Gangmatching model and its as-

sociated implementation and performance issues in context

of a real-world license management co-allocation problem.

Keywords: distributed resource management, match-

making, gangmatching, heterogenous computing, Condor

1. Introduction

Federated distributed systems present new challenges to

resource management. Conventional resource managers are

based on a relatively static resource model and a centralized

allocator that assigns resources to customers. This model

does not adapt well to highly dynamic environments char-

acterized by distributed management and distributed owner-

ship. Distributed management introduces resource hetero-

geneity: Not only the set of available resources, but even the

set of resource types is constantly changing [3]. Distributed

ownership introduces policy heterogeneity: Each resource

may have its own idiosyncratic allocation policy. We pre-

viously argued that Matchmaking provides an elegant and

robust solution to the problem of heterogeneous resource

management in dynamic, distributed environments [13].

Matchmaking provides a powerful language for a consumer

to express constraints and preferences on a resource and for

the resource to express constraints and preferences on a con-

sumer.

But Matchmaking has an important limitation: It

matches each customer with a single resource. In many

important application domains, a collection of resources

may be required to perform an action. Often, complex

consistency requirements hold between the consumer and

the resources, and amongst the resources. This paper

presents Gangmatching, a formalism that extends Match-

making from a bilateral to a multilateral model, and dis-

cusses the implementation and performance issues associ-

ated with Gangmatching.

We begin with a brief introduction to Matchmaking in

Section 2, and continue in Section 3 with a discussion of the

necessity of a multilateral matchmaking model by present-

ing a real-world multi-resource problem that has no prac-

tical bilateral matchmaking solution. We then present the

Gangmatching model in Section 4 and discuss implemen-

tation and performance of the Gangmatching model in Sec-

tions 5 and 6 respectively. Related work is presented in Sec-

tion 7 and future directions are identified in Section 8.

2. Matchmaking

The underlying ideas of the matchmaking paradigm are

intuitive and very simple. In this section, we briefly describe

the fundamental processes and components of our match-

making framework. Interested readers are referred to [13]

for further details.

Agents describe their capabilities and requirements by

sending messages to a Matchmaker. These messages, which

we call classified advertisements (classads) in analogy to

their newspaper counterparts, contain both descriptive in-

formation about entities and policy constraints on compat-

ible matches. The Matchmaker finds compatible pairs of

classads and informs agents of the results. The agents may

then use bilateral protocols to establish bindings based on

these results. For example, Submission agents may inform
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the Matchmaker about Jobs waiting to be run, while Execu-

tion agents send classads describing Machines and their ca-

pabilities. Each Job classad describes the characteristics of

the Job, constraints on Machines suitable for running it, and

preferences to choose among compatible Machines. Simi-

larly, each Machine classad may impose impose constraints

and indicate preferences among Jobs it is willing to run.

When the Matchmaker finds a compatible (Job, Machine)

pair, it informs the corresponding Submission and Execu-

tions agents, which then engage in a claiming protocol to

cement the relationship and start running the Job.

Our matchmaking framework is composed of the follow-

ing components:

1. A language for specifying the characteristics, con-

straints and preferences of agents. Our framework uses

the classified advertisement (classad) language for this

purpose. Classads are semi-structured [10] records of

(name, expression) pairs which may be thought of

as “attribute lists” that describe agents. The language

has special undefined and error values, as well as spe-

cial operator semantics to operate robustly in heteroge-

neous and semi-structured environments.

2. The Matchmaker Protocol describes how entities com-

municate with the Matchmaker to post advertisements

and receive notifications.

3. The Matchmaking Algorithm is used by the Match-

maker to create matches. In the abstract, the match-

making algorithm transforms the contents of submitted

advertisements and the state of the system to the set of

matches created.

4. Claiming Protocols are activated between matched

parties to confirm the match, establish the allocation

and utilize the advertised services. Either party may

choose to withdraw from a match by rejecting a claim,

which may happen if the state of the agent has changed

since the last advertisement was posted.

The flexibility and expressiveness of the classad lan-

guage greatly contributes to the effectiveness of our Match-

making framework. Figure 1 shows a classad describ-

ing a workstation in the University of Wisconsin–Madison

Condor [7] pool.1 While most attributes in the classad

describe the machine’s characteristics, the Constraint

and Rank identify the advertising entity’s constraints and

preferences—i.e., the entity’s policy. When testing the

compatibility and preferences of two advertisements A and

B, the Matchmaker places the two advertisements in an

1The Wisconsin Condor pool is currently composed of over 900 nodes,

running seven different architecture/operating system combinations. The

pool is used continuously as a production system to provide computation

services for several research projects.

evaluation environment such that in classad A, the reference

other evaluates to B, and vice versa. If A.Constraint

and B.Constraint both evaluate to true, the two adver-

tisements are deemed compatible and the Rank expressions

of A and B may be evaluated to determine their respective

preferences.

The classad language specifies the syntax and seman-

tics of the expressions in Figure 1, while the matchmaking

protocol and algorithm give special significance to the key-

words Constraint, Rank, and other. All policy in-

formation is expressed in the Rank and Constraint ex-

pressions; the classad language and matchmaking provide

the mechanism for enforcing it. For example, the worksta-

tion in Figure 1 has the following policy: Jobs belonging to

user “riffraff” are never accepted, and jobs are only serviced

when the machine has a low load average and its console

has been idle for at least fifteen minutes. Furthermore, jobs

with low image sizes are preferred between 9am and 5pm.

[

Type = "Machine";

Activity = "Idle";

KeybrdIdle = ’00:23:12’; // h:m:s

Disk = 323.4M; // mbytes

Memory = 256M; // mbytes

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "LINUX";

KFlops = 21893;

Name = "foo.cs.wisc.edu";

Subnet = "128.105.175";

Rank = DayTime() >= ’9:00’ &&

DayTime() <= ’17:00’ ?

1/other.ImageSize : 0;

Constraint = other.Type=="Job" &&

other.Owner!="riffraff" &&

LoadAvg < 0.3 && KeybrdIdle>’00:15’

]

Figure 1. Classad describing a Machine

Many interesting and useful policies may be easily de-

fined within this framework; interested readers are referred

to reference [14] for more sophisticated examples derived

from the policies of real-world users of the Condor system.

3. Motivation for Gangmatching

One of the first indications of practical limitations to bi-

lateral matchmaking arose in the context of Condor. A Con-

dor user had purchased licenses for various software pack-

ages. Jobs that use such packages need to allocate both a

machine and a license before they can run. Licensing terms

impose a variety of constraints on running instances of an

application. For example, in addition to issuing a limited

number of licenses, some licenses may be valid only on

some workstations, while others may be valid on certain
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subnets. Other licenses may “float” throughout the site, but

once claimed on a particular machine, may be valid for sev-

eral instances of the application on that machine. In the

context of such policies, it becomes necessary to treat soft-

ware licenses as resources that must be managed with the

same degree of flexibility and robustness as other resources

in a resource management system.

Due to the dependencies between job, workstation and

license, conventional bilateral matchmaking is inadequate

for solving this problem. An attempt to work around the

problem might use two interactions with the Matchmaker.

On the first round, the submission agent would submit an

ad describing a Job and seeking a matching Machine. On

receiving a response, it could then send an ad describing the

(Job, Machine) pair and looking for a suitable license. How-

ever, if licenses are in short supply, the first match might tie

up a machine for lengthy periods while waiting for a license.

In the worst case, deadlock is possible. A similar problem

arises if the Submission agent requests the license first and

then the machine. Strategies that allocate one resource and

subsequently free it if the other other is not available are

highly inefficient and can lead to livelock and starvation.

The need for a matchmaking scheme that can marshal a

consistent aggregation of dependent classads in an atomic

operation is therefore clear.

It is important to note that we are not merely proposing a

mechanism to solve specific license management scenarios,

which may be individually solved by ad hoc mechanisms

that are simpler than our Gangmatching solution. Our goal

is to develop a single method of multilateral matchmaking

that is agnostic to the kinds of resources being matched and

thus capable of marshaling consistent resource aggregates

whose composition and inter-dependencies are not known

to the Matchmaker a priori.

4. The Gangmatching Model

The challenge of developing a multilateral matchmaking

model is in defining a solution that inherits and extends the

full generality of the bilateral matchmaking scheme. The

power of the Matchmaking model is in managing resources

whose properties and dependencies are not known a pri-

ori. In direct analogy, we required our multilateral model

to be able to marshal candidate groups in which the specific

kinds of candidates and their inter-dependencies are defined

only by the candidates themselves. There are many conse-

quences of this requirement.

The most important requirement of a multilateral match-

making model is a scheme to express the need to marshal

an arbitrary number of candidates. Since no central schema

is legislated, it is important that the “interfaces” of these

different candidate resource types be separated to prevent

namespace collisions and ambiguity. Next, the solution

must provide the ability to relate the properties of multi-

ple candidates through arbitrary constraints defined on can-

didate individuals and groups. Since the constraints may

themselves be defined in different advertisements, a mecha-

nism must be provided for properties about some candidates

to be conveyed to other candidates who might not know

the full composition of the group. For example, a com-

pute server may need information about a data file without

knowing if the file data is expressed as part of the user’s job

attributes, or if the user is marshaling in a replica from a

storage server as part of the multilateral match. Finally, the

solution must be amenable to efficient implementation.

Gangmatching is our solution to the multilateral match-

making problem. The Gangmatching model follows a dock-

ing paradigm, where aggregate “gangs of classads” are cre-

ated by binding together (i.e., “docking”) individual clas-

sads with a matching operation. Intuitively, Gangmatching

extends regular matchmaking by replacing a classad’s sin-

gle implicit bilateral match imperative with an explicit list

of required bilateral matches, with the additional ability of

allowing classads to access information from other bilateral

match localities.

Each basic docking operation occurs between ports of

classads. The port abstraction serves multiple purposes.

First, ports serve as matchmaking interfaces, allowing in-

formation to be provided to candidates independent of how

the information is generated (i.e., some constant value, or

from properties of other candidates in the gang). Second,

the port abstraction separates the namespaces of candidates,

and provides a naming scheme that allows the properties of

candidates to be accessed from other localities. Finally, the

abstraction imposes a structure on the aggregate gang that

simplifies the definition and implementation of algorithms

that operate on the entire group.

We introduce the Gangmatching model by discussing

the license management problem in context of the compo-

nents of a matchmaking framework: classad representation,

matchmaking algorithm, matchmaking protocols and claim-

ing protocols. More complex examples of the capabilities of

the Gangmatching model are provided in reference [12].

4.1. ClassAd Representation

The classad representing the job in the license manage-

ment problem is illustrated in Figure 2. The most notable

feature of the example is the Ports attribute. A classad’s

ports define the number and characteristics of matching ads

required for that classad to be satisfied. In the Gangmatch-

ing model, bilateral matchmaking occurs between the ports

of classads instead of entire classads.

Each port defines a Label that names the candidate

bound to that port, replacing the fixed other attribute of

bilateral matching. The scope of a label extends from the
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[ Type = "Job";

// some common attributes

Owner = "raman";

QDate = ’Mon Feb 28 14:22:22 2000 (CST) -06:00’;

Cmd = "run_sim";

Ports = {

[ // request a workstation

Label = cpu;

ImageSize = 28M;

Rank = cpu.KFlops/1E3 + cpu.Memory/32;

Constraint = cpu.Type=="Machine" &&

cpu.Arch == "INTEL" &&

cpu.OpSys == "LINUX" &&

cpu.Memory >= Imagesize;

],

[ // request a license

Label = license;

Host = cpu.Name; // cpu name

Rank = 0;

Constraint = license.Type=="License" &&

license.App == Cmd;

]

}

]

Figure 2. A Gangmatch request

port of declaration to the end of the port list. Thus, expres-

sions in the second port with declared label “license” can

refer to the “cpu” label declared in the first port, but not

vice versa. Furthermore, port labels are private and local

to the hosting classad, preventing namespace pollution and

collisions.

In this example, as in many cases of Gangmatching, con-

straints on some matches are influenced by the attributes of

other classads participating in the match. Specifically, the

validity of a license depends on the particular machine that

has been chosen to host the application. By allowing the

scopes of labels to extend beyond the port of declaration,

the Gangmatching mechanism allows the ability to convey

information from one match locality to another. Thus, the

license request port can convey the location of the chosen

workstation to the license offer via the Host attribute. Note

that labels of succeeding ports may not be referred to by

preceding ports, which limits the dependency relations be-

tween ports and makes the model more amenable to effi-

cient implementation. Specifically, the scoping rules guar-

antee that the first port of an advertisement is not dependent

on any other port.

Example advertisements of workstations and licenses (as

would be advertised by workstation and license agents) are

illustrated in Figures 3 and 4 respectively. The workstation

classad is very similar to its bilateral matchmaking counter-

part, except for the presence of a port to explicitly indicate

its imperative to match one entity.

The most noteworthy aspect of the license classad is the

presence of requester.Host in the Constraint ex-

pression which, refers to the Host attribute of the matching

port. Since this attribute was defined as cpu.Name in Fig-

ure 2, the referenced value is the name of the workstation

[ Type = "Machine";

Activity = "Idle";

KeybrdIdle = ’00:23:12’; // h:m:s

Disk = 323.4M; // mbytes

Memory = 256M; // mbytes

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "LINUX";

KFlops = 21893;

Name = "foo.cs.wisc.edu";

Subnet = "128.105.175";

Ports = {

[ Label = requester;

Rank = 1/requester.ImageSize;

Constraint = requester.Type=="Job" &&

requester.Owner!="riffraff" &&

LoadAvg < 0.3 && KeybrdIdle>’00:15’

]

}

]

Figure 3. Workstation Advertisement

[ Type = "License";

App = "sim_app";

ValidHost = "foo.cs.wisc.edu";

Ports = {

[ Label = requester;

Rank = 0;

Constraint = requester.Type=="Job" &&

requester.Host==ValidHost

]

}

]

Figure 4. License Advertisement

chosen to run the job. Thus, the license’s constraint is sat-

isfied only if the chosen workstation is the single valid host

“foo.cs.wisc.edu.” Clearly, more complex constraints may

be expressed in the license constraint to implement sophis-

ticated license management policies.

Note that the Gangmatching model requires the job clas-

sad to convey host information to the license classad via

the appropriate port. The license ad cannot directly access

the Name attribute of the machine ad. This scoping restric-

tion was deliberate. The license port declared in the Job

ad acts as an abstract “interface” to potential license ads.

The job classad in turn “implements” that interface by ex-

porting a matching workstation’s name through its attribute

Ports[1].Host.

4.2. Matchmaking Algorithm

The role of the Matchamking algorithm in the Gang-

matching scheme is to marshal a consistent “gang” of clas-

sads for the job classads in the system. Conceptually, a gang

is constructed by starting with a degenerate gang composed

of a single root classad, and then binding each unbound port

of the gang to a compatible port of a new classad (one not
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already in the gang) until all ports in the gang are bound and

the gang is consistent (i.e., all constraints are satisfied).

Different concrete algorithms may be employed to im-

plement this conceptualization. We describe a few specific

algorithms developed to exploit the known structure of the

Gangmatching problem in Section 5.

In the license example, a gang consists of three ads: a

job, a machine and a license. If one of the ads, for exam-

ple the license, had another port, the match would not be

complete until another ad was found to match against the

“unbound” port. In general, a match consists of a tree of

ads. Each pair of adjacent ads is bound by choosing a port

ad from each and checked by evaluating the Constraint

attributes of the two port ads. Each Constraint expres-

sion can refer to attributes of its own ad as well as attributes

of the Port ads bound to its port and earlier ports in its

containing ad.

Although this conceptual model suggests a “left-to-

right” evaluation of Constraint expressions, it does not

require it. In fact, we shall see in Section 5 that other order-

ings can be substantially more efficient.

4.3. Matchmaking Protocols

The Gangmatching model does not require any modi-

fication to the the advertisement protocol that is used by

agents to send their classads to the matchmaker. However,

the notification protocol (used by the matchmaker to no-

tify matched agents) requires a modest and straightforward

extension: The matchmaker must now notify every agent

whose classad was matched in the gang, and it must include

in the notification all relevant information about the other

ads it matched. A simple way to provide this information

is simply to send the entire gang to each agent, letting the

agents extract whatever parts of it they find useful.

4.4. Claiming Protocols

The claiming protocols for Gangmatching must proceed

in a two-phase manner to accommodate the possibility of

any agent in the gang rejecting the match. Claiming is initi-

ated by the agent whose advertisement serves as the root of

the gang (the root agent), and proceeds recursively in a top-

down manner. The root agent begins by checking whether

each of its gang neighbors is willing to participate in the

transaction. During the delay between the initial message

from the agent to the matchmaker and the time when it is

contacted during the claiming protocol, its local conditions

may have changed so that it no longer considers the match

valid. If so, it responds in the negative and the root agent

tells all members of the gang to discard the match and start

over. If the match is still valid and it is not a leaf in the

gang tree, it contacts its children to validate the match. Af-

firmative responses pass up the tree to the root. If the root

agent get affirmative responses from all its children, it en-

ters the second phase, in which claims and allocations are

established.

5. Gangmatching Implementation

Given a set of classads, Gangmatching proceeds as a pe-

riodic activity by identifying a subset of classads that will

serve as gang roots, and sorting these roots using some cri-

terion. For example, job classads may be identified as roots

and sorted by priority order. Thereafter, the Gangmatching

algorithm attempts to marshal a consistent gang for each

root (in order), eliminating matched ads from further con-

sideration. Note that our implementations handle the full

generality of the Gangmatching scheme; however, we re-

strict our descriptions to the license management problem

for purposes of clarity and simplicity.

We begin by describing a simple naive algorithm that

serves to illustrate the obvious solution, and provide con-

text to the algorithms that follow. The naive algorithm is

a simple recursive backtracking search. Given a root clas-

sad, the matchmaker proceeds sequentially through its ports

from first to last, attempting to find a candidate compatible

with that port. If a candidate is found to be incompatible,

another candidate is tried, until the a successful candidate

is discovered, or all candidates are exhausted. If no can-

didate could be found for a particular port, the algorithm

backtracks to the previous port and attempts to replace the

incumbent at that port with another compatible candidate,

proceeding forward if the attempt was successful. If the al-

gorithm reaches the end of the root’s port list, a gang has

been successfully marshaled, and if the algorithm attempts

to backtrack from the first port, no consistent gang exists.

If a matching ad has more than one port (so that the re-

sulting gang is a multi-level tree), the algorithm is called

recursively to iterate through potential sub-gangs using it as

a root.

Although the naive algorithm will give the correct re-

sult, it may be very inefficient, depending on the nature and

distribution of the available ads. In relational database ter-

minology, the Gangmatching problem is similar to a multi-

way join2. Relational database systems use two techniques

for optimizing such queries: reordering the pairwise joins,

and choosing the right algorithm for each join.

The naive algorithm performs each pairwise join using

simple nested loops. We use a classad indexing scheme that

indexes both attributes and constraints to efficiently exclude

large numbers of incompatible candidates. The basic idea is

2The difference between a database join and matchmaking is that when

multiple matches are found, a join returns them all, while matchmaking

chooses one. Also, a match “consumes” the matched ads.
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to use conventional search trees for attribute indexes and in-

terval trees to index the constituent comparison expressions

of constraints, which may be thought of as intervals over

some domain. Due to the efficiency of the indexing scheme

and its ability to provide tight supersets of candidates, it is

also used in heuristic functions to guide the strategy of the

Gangmatching algorithm by estimating candidate set sizes

for ports.

As in the case of relational queries, reordering joins can

yield orders of magnitude speedup. For example, consider

our license example when there are many compatible ma-

chines but a small number of highly selective licenses. The

naive algorithm would iterate through all matches of jobs

to machines, trying to find an appropriate license for each

such match. Most of the effort spent matching jobs to ma-

chines would be wasted. A much more efficient approach

would be to first match a job to a license, and then look

for a compatible machine. The license’s Constraint ex-

pression makes indirect reference to the Name attribute of a

machine ad, so it cannot be fully evaluated until a machine

ad is chosen. However, it can be partially evaluated. Per-

haps a license candidate can be rejected out of hand. For

example, if the clause && Owner == "solomon" were

added to the license ad of Figure 4, a match with the ad

of Figure 2 could be rejected regardless of machine. If the

partial gang cannot be rejected at this stage, it can still be

represented as a classad with a Constraint expressions

to be matched against potential machine ads. The indexing

techniques mentioned above can be use in this step as well.

Since it is always possible (and often likely) for a fixed

strategy to work extremely poorly in realistic workloads

which constantly change, it is important to develop an adap-

tive algorithm that chooses the right strategy dynamically.

We augmented the naive algorithm with heuristics to fill

ports in ascending order of candidate set sizes. Thus, for ex-

ample, if there are a large number of compatible machines

but a small set of licenses, the algorithm first chooses a li-

cense and then attempts to find a machine that is compatible

with the license, dynamically shunting constraints from the

license classad to the cpu port of the job classad to accom-

plish the task. Furthermore, if there are no licenses, the al-

gorithm can immediately terminate without having to check

for machine compatibility at all.

6. Gangmatching Performance

In this section, we present the performance of the fixed-

order, fixed-order with indexes, and dynamic algorithms.

Classads used for these experiments are similar in struc-

ture to the job, workstation and license classads presented

in Figures 2, 3 and 4, except that only architecture, operat-

ing system, physical memory and virtual memory attributes

were modeled for workstations, with corresponding con-

straints imposed on them by jobs. In addition we modeled a

memory size attribute for jobs, which is constrained by the

workstation classads.

Workloads are characterized by three parameters: N , the

number of job and workstation classads (always equal), L,

the license density (the relative number of license classads,

either 50% or 100% of N ), and S, the selectivity index of li-

cense classads (1, 2, 4 or 8). For selectivity index S, the sets

of license and workstation classads are each divided into S

disjoint equally sized partitions; licenses in each partition

are only valid on workstations from the corresponding par-

tition.

Figure 5 illustrates the elapsed time performance of the

naive fixed-order algorithm on this benchmark (Intel Pen-

tium Pro Linux workstation with 256MB RAM). Curves fall

into two bands, those with license density L of 50% (above)

and those with license density 100% (below). Two points

are worth noting: First, the naive algorithm is especially in-

efficient when matches cannot be made due to scarcity of

licenses. When licenses are scarce, the algorithm must fre-

quently backtrack, leading to a running time that is high and

grows quadratically with the number of ads. Second, the

costs of backtracking and evaluation dominate the elapsed

time so that the selectivity S has nearly no additional effect

on performance.

Figure 6 shows what happens when indexes are used to

speed up the search. As in Figure 5, the upper curve corre-

sponds to the 50% license density workloads. Although this

graph looks similar to Figure 5, the reader should note the

scale; performance is improved by an order of magnitude

overall. The indexed algorithm handles upto 4000 job clas-

sads in at most 580 seconds, compared to only 500 classads

in 800 seconds, in the worst case. Again, selectivity is not

seen to be a significant factor.

The elapsed time of the indexed algorithm is closely

aligned with the number of index probes, as shown in Fig-

ure 7. Therefore, we present the rest of our results in probe

counts rather than seconds of elapsed time, as probe counts

are less sensitive to implementation details such as proces-

sor and memory speeds.

Figure 8 exhibits the performance of the dynamic algo-

rithm on the same workload, as measured by the number of

index probes. In contrast to the previous algorithms, the per-

formance of the dynamic algorithm does not differ signifi-

cantly between the 50% and 100% license density regimes,

demonstrating the efficacy of the dynamic scheme.

To contrast the performance of the dynamic and the in-

dexed fixed order (i.e., “left-to-right”) algorithms, we com-

pare the number of probes issued by each algorithm in the

two license density regimes. Figure 9 illustrates representa-

tive curves of the number of probes issues by the two al-

gorithms in the 100% license density case with selectiv-

ity S = 1. We note that the dynamic algorithm actually
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Figure 5. Naive Algorithm Performance

issues more probes than the indexed fixed-order algorithm

due to the additional probes required by the heuristic func-

tion, which then chooses the same “left-to-right” strategy as

the fixed-order algorithm. However, the situation is drasti-

cally reversed in Figure 10, which illustrates the number of

probes issued when the license density is only 50% — the

fixed-order algorithm issues upto 425,000 probes, while the

dynamic algorithm issues less than 11,000 probes.

To highlight the performance gained by the dynamic al-

gorithm due its agility, we present the performance of a

fixed-order indexed algorithm that runs right-to-left. The

performance of the algorithm is dual to the left-to-right al-

gorithm in that it performs well in the 50% license den-

sity case. However, in the 100% workload, the algorithm

performs worse than the left-to-right algorithm in the 50%

workload. This is due to the fact that unlike workstation

that have attributes such as operating system and architec-

ture, there are no attributes to differentiate licenses from

one another. Thus, the right-to-left algorithm is severely

handicapped by having to consider every single license as a

possible candidate. Furthermore, selectivity plays a signif-

icant role in this experiment. For higher selectivity values,

the reduced machine to license ratio of the 100% workload

makes it less likely to obtain a workstation matching a job’s

constraints once a license has already been picked from a

particular partition. Thus, higher selectivity indexes pro-

voke correspondingly worse performance from the right-to-

left algorithm.

Thus, we see that the dynamic algorithm is distinctly bet-

ter than any fixed-order algorithm. The heuristic allows the

dynamic algorithm to avoid the pathological cases of the

fixed-order algorithms. The stability of the algorithm under

workload variations, as characterized by the proximity of

the 50% and 100% regime curves in Figure 8 indicate that

it is a far better choice than any fixed-order algorithm.
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7. Related Work

The concept of matchmaking is not new in itself since

the topic is widely studied for agent systems. Agents sys-

tems such as ACL [5] and RETSINA [16, 17] employ pow-

erful advertisement languages with inferencing capabilities

so that general behavioral specifications of agents may be

described and reasoned about. In contrast to the knowledge-

base representations used in these systems, the classad lan-

guage uses a database representation. Expression evaluation

semantics are simple and lightweight, facilitating efficient

and robust implementation.

The classad notation is very similar to that of general-

ized tuples found in constraint databases [4]. The bilat-

eral matchmaking operation is intuitively similar to a spa-

tial join between server and customer classads. Matchmak-

ing differs from a spatial join in that matchmaking “con-

sumes” classads during the matching process — a classad

may be matched at most once. Also, in contrast to con-

straint database systems, our framework employs a semi-

structured data model.

Globus [2, 1] defines an architecture for resource man-

agement of autonomous distributed systems with provisions

for policy extensibility and co-allocation. Customers de-

scribe required resources through a resource specification

language (RSL) that is based on a pre-defined schema of

the resources database. Although Globus provides flexible

APIs to perform more sophisticated co-allocation, these re-

quirements cannot be stated in RSL.

Most resource management systems such as LSF [18],

Prospero [11], PBS [6] and NQE [15] process user submit-

ted jobs by finding resources that have been identified either

explicitly through a job control language, or implicitly, by

submitting the job to a particular queue that is associated

with a set of resources. Jobs that require multiple resources

must be submitted to queues that can service the special re-

quirements of these jobs. There is no mechanism for a job

to marshal a unique mix of resources to service its particular

needs.

Set-matching extends the ClassAds language to provide

a multilateral matchmaking mechanism where the number

of resources is not known a priory[9]. However, the set

matching mechanism is not capable of marshaling a hetero-

geneous mix of resources.

The RedLine system casts multilateral matchmaking as

a constraint satisfaction problem[8], and is thus capable of

using many of the techniques developed for constraint pro-

gramming. The scheme borrows and extends many of the

principles and techniques developed in our matchmaking

framework, but uses a substantially more complex adver-

tising language. The recency of the system and lack of ex-

perience with it makes more detailed comparison difficult.

8. Conclusions and Future Work

Dynamic, heterogenous and distributively owned re-

source environments present unique challenges to the prob-

lems of resource representation, allocation and manage-

ment. We have previously demonstrated that the matchmak-

ing paradigm offers a natural solution to these problems,

and has been demonstrated to work well in practice. In this

paper, we have introduced a multilateral matchmaking ex-

tension to address the problem of heterogenous resource co-

allocation, motivated by the intent of solving a real problem

encountered by production users of the Condor system.

Our contribution is in defining the abstractions that com-

prise the Gangmatching scheme, and accompanying im-

plementations of multiple algorithms that implement the

model, demonstrating the feasibility of the Gangmatching

solution. A semi-structured data indexing method and a

heuristic-driven dynamic algorithm have been used to ef-

ficiently implement the Gangmatching model.

A significant goal of our future work is to incorporate

preferences into the gangmatching algorithm, and develop

more sophisticated algorithms to cope with the possibility

of larger (i.e., both “wider” and “deeper”) classad gangs.

There remain some useful extensions to be made to the

gangmatching model. A shortcoming of our current for-

mulation is that the number of resources required for a co-

allocation must be known a priori. While this restriction

is reasonable for heterogenous resource co-allocation, there

are many situations, such as workstation allocation for par-

allel computations, when a dynamic number of relatively

homogeneous resources are required. It would be interest-

ing to generalize the gangmatching model to address this

possibility.
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