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ABSTRACT Most works on multi-agent reinforcement learning focus on scenarios where the state of the
environment is fully observable. In this work, we consider a cooperative policy evaluation task in which
agents are not assumed to observe the environment state directly. Instead, agents can only have access to
noisy observations and to belief vectors. It is well-known that finding global posterior distributions under
multi-agent settings is generally NP-hard. As a remedy, we propose a fully decentralized belief forming
strategy that relies on individual updates and on localized interactions over a communication network. In
addition to the exchange of the beliefs, agents exploit the communication network by exchanging value
function parameter estimates as well. We analytically show that the proposed strategy allows information to
diffuse over the network, which in turn allows the agents’ parameters to have a bounded difference with a
centralized baseline. A multi-sensor target tracking application is considered in the simulations.

INDEX TERMS Belief state, distributed state estimation, multi-agent reinforcement learning, partially ob-
servable Markov decision process, value function learning.

I. INTRODUCTION
Multi-agent reinforcement learning (MARL) [1], [2] is
a useful paradigm for determining optimal policies in
sequential decision making tasks involving a group of agents.
MARL has been applied successfully in several contexts,
including sensor networks [3], [4], team robotics [5], and
video games [6], [7]. MARL owes this success in part to
recent developments in better function approximators such as
deep neural networks [8].

Many works on MARL focus on the case where agents
can directly observe the global state of the environment.
However, in many scenarios, agents can only receive par-
tial information about the state. The decentralized partially
observable Markov decision process (Dec-POMDP) frame-
work [9] is applicable to these types of situations. However,
a large body of MARL work assumes that Dec-POMDPs
observe data that are deterministic and known functions of the
underlying state, which is not the case in general. Consider,

for example, robots that receive noisy observations from their
sensors. The underlying observation model is stochastic in this
case.

Under stochastic observation models, one common strategy
is to keep track of the posterior distribution (belief) over the
set of states, which is known to be a sufficient statistic of
the history of the system [10], [11]. For single agents, this
posterior distribution can be obtained at each iteration with the
optimal Bayesian filtering recursion [12]. Unfortunately, for
multi-agent systems, forming this global posterior belief re-
quires aggregation of all data from across all agents in general.
The agents can form it in a distributed manner only when they
have access to the private information from other agents in the
network. And even when agents have access to this level of
global knowledge, the computational complexity of forming
the global posterior distribution is known to be NP-hard [13]
in addition to its large memory requirements. Moreover, ob-
taining beliefs necessitates significant knowledge about the
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underlying model of the environment, which is generally not
available in practice.

Therefore, instead of forming beliefs, most MARL algo-
rithms [14], [15], [16] resort to a model-free and end-to-end
approach where agents try to simultaneously learn a policy
and an embedding of the history that can replace the beliefs
(e.g., recurrent neural networks (RNNs)). Nevertheless, re-
cent empirical works suggest that this model-free approach
can be sub-optimal when the underlying signals of the en-
vironment are too weak to train a model such as RNN [17],
[18]. Moreover, RNNs (or alternative machine learning mod-
els) are usually treated as black boxes. In other words, these
algorithms lack model interpretability, which is critical for
trustworthy systems (see [19]). Furthermore, even though
end-to-end approaches have shown remarkable performance
empirically, they are still based on heuristics and lack theoret-
ical guarantees on their performance. Compared to modular
approaches, they are inefficient in terms of adaptability and
generalization to similar tasks.

As an alternative, there is a recent interest towards im-
proving belief-based MARL approaches [20], [21], [22].
These works have focused on emulating conventional beliefs
with generative models, or with models learned from ac-
tion/observation trajectories (in a supervised fashion). In this
paper, we also examine belief-based strategies for MARL. In
particular, we are interested in the multi-agent policy evalua-
tion problem. Our work complements [20], [21], [22] in the
sense that we assume that agents are already capable of form-
ing local beliefs with sufficient knowledge (i.e., with learned
local likelihood and transition models) or with generative
models. Our focus is on the challenge of approximating the
global Bayesian posterior in a distributed manner.

Contributions:
� We consider a setting where agents only get partial

observations from the underlying state of nature, as op-
posed to prior work on MARL over networks [23], [24],
[25], [26], [27], [28], [29], [30], [31] that assume agents
have full state information. Moreover, as opposed to
the literature on decentralized stochastic control [32],
[33], [34], [35], in our setting, agents need to learn
their value functions from data. More specifically, in
our Dec-POMDP framework, agents only know their
local observations, actions, and rewards but they are al-
lowed to communicate with their immediate neighbors
over a graph. In the proposed strategy (Algorithm 2),
agents exchange both their belief and value function
estimates.

� We show in Theorem 1 that by exchanging beliefs,
agents keep a bounded disagreement with the global pos-
terior distribution, which requires fusing all observations
and actions. Also, exchanging value function parameters
enables agents to cluster around the network centroid
for sufficiently small learning rates (Theorem 2). Fur-
thermore, we prove that the network centroid attains a
bounded difference with a strategy that requires central-
ized training (Theorem 3).

� By means of simulations, we illustrate that agents attain
a small mean-square distance from the network centroid.
Moreover, the squared Bellman error (SBE) averaged
over the network is shown to be comparable to the SBE
of the centralized strategy.

Paper Organization: In Section II, we present additional
related work. In Section III, for ease of exposition and in-
troducing notation, we describe the problem in single-agent
setting. In Section IV, we propose algorithms for multi-agent
policy evaluation. Section V includes the theoretical results,
and Section VI includes numerical simulations.

II. OTHER RELATED WORK
Our proposed strategy is based on temporal-difference (TD)
learning [36], [37], and makes use of function approximation.
TD-learning for POMDPs are considered in [38], [39], and
function approximations are incorporated in [40], [41], albeit
in single-agent setting. The main contribution of the present
work is to the networked multi-agent setting.

A plethora of work studies decentralized policy evalua-
tion over networks [23], [24], [25], [26], [27], [28], [29],
[30], [31]. Distributed versions of the TD-learning with linear
function approximations are considered in [29], [30], [31].
However, these works assume that either the global state, or
a deterministic function of it, is available to all agents. They
overlook the stochastic nature of observations that takes place
in many real-world applications. Also in deterministic set-
ting, the works [42], [43] examine distributed linear quadratic
control task when agents can observe local states only. In par-
ticular, [43] proposes a cooperative strategy for tracking the
global state that exploits networked communication between
agents. However, in this strategy, global state estimation at
each iteration is independent of the previous estimations. It ig-
nores the correlation between consecutive states. Furthermore,
communication between the agents is utilized only for global
state estimation, and not utilized for local Q-function estimate
sharing. In contrast, in the present work, (i) observations are
stochastic, (ii) agents take advantage of the transition model
of the state, and (iii) they exchange value function parameters
with their neighbors as well.

Our work is also related to the field of decentralized
stochastic control [32] and dynamic team theory [33]. This
field studies problems in which different decision-makers
have access to different sets of information while working
towards a common team goal. Typically, these problems are
defined by an information structure that specifies which agents
have access to which pieces of information (e.g., observations
or actions) [44], [45]. Some approaches to solving these prob-
lems rely on the common information that arises from partial
history sharing to all other agents [35], [46], [47]. In our
networked setting, agents exchange value function parameters
or beliefs at each iteration, without explicitly exchanging raw
data, with their immediate neighbors only. Nonetheless, re-
peated application of this procedure causes information to mix
and diffuse throughout the whole network. Moreover, most
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existing works in the decentralized stochastic control liter-
ature assume full model knowledge of the system, whereas
we consider the case of learning from data since the reward
model is not known a priori. Also, sharing value function pa-
rameters and beliefs instead of raw data makes our algorithm
advantageous in terms of privacy and scalability. A similar
approach is considered in [34], where the author proposes
a belief-sharing pattern for decentralized control, rather than
explicit information sharing as in prior work. However, they
use a belief propagation algorithm over acyclic graphs, while
we use a diffusion-based belief-sharing algorithm over cyclic
networks. In addition, [34] considers the planning problem
only whereas in this work we consider the policy evaluation
problem, which requires learning from data.

For constructing local beliefs that approximate the global
Bayesian posterior, we extend the diffusion HMM strategy
(DHS) [48], [49]. This algorithm requires only one round of
communication per state change, as opposed to other strate-
gies [50], [51] that require multiple rounds of communication
until network consensus at each iteration. Also, in contrast
to other distributed Bayesian filtering algorithms [52], it does
not combine likelihoods of data from different time instants.
Instead, likelihoods are combined with time-adjusted beliefs.
These properties make DHS communication efficient and
successful in tracking highly dynamic state transitions. Note
that [48], [49] deal with state estimation task only, and there
are no rewards or actions in their setting. Therefore, we make
proper modifications to the algorithm in the sequel.

In addition to these, the analysis in the current work
is related to literature on the distributed optimization over
networks [53], [54], [55], [56]. In particular, we adopt the
two-step approach from [57], [58], [59]. In the first step,
these works establish that agents cluster around the network
centroid, and then, they show that this centroid converges
to a neighborhood of the optimal solution, under constant
learning rates. However, their focus is on optimization and
supervised learning rather than reinforcement learning, which
creates non-trivial distinctions in the analysis.

Notation: Random variables are denoted in bold. For K
vectors w1,w2, . . . ,wK ∈ R

M of dimension M × 1 each, and
for arbitrary matrices {A, B}, the notation col{wk}K

k=1 and
diag{A, B} stand for

col{wk}K
k=1 =

⎡⎢⎢⎢⎢⎣
w1

w2
...

wK

⎤⎥⎥⎥⎥⎦ , diag{A, B} =
[

A 0

0 B

]
. (1)

The �p-norm for a vector w is represented by ‖w‖p, while
the �p-induced norm for a matrix A is represented by ‖A‖p.
To simplify the notation, we use ‖w‖ and ‖A‖ to denote the
�2-norm, without explicitly stating the subscript. The all-ones
vector of dimension K is denoted by 1K . The symbol ⊗
represents the Kronecker product. The Kullback-Leibler di-
vergence [60] between two distributions μ1, μ2 is denoted by

DKL(μ1||μ2). We use the notation “proportional to”, i.e., ∝,
whenever the LHS of the expression is the normalized version
of the RHS. For example, for s ∈ S and function f :

μ(s) ∝ f (s) ⇐⇒ μ(s) = f (s)∑
s′∈S f (s′)

. (2)

III. PRELIMINARIES
In this work, we are interested in multi-agent policy evaluation
under partially observable stochastic environments. For clarity
of the exposition and to motivate the notation, we briefly
review the procedure of single-agent policy evaluation under
both fully and partially observable states.

A. FULLY-OBSERVABLE CASE
For modeling a learning agent under fully observable and dy-
namic environments, the traditional setting is a finite Markov
Decision Process (MDP). An MDP is defined by the quintuple
(S,A,T, r, γ ), where S is a set of states with cardinality
|S| = S, A is a set of actions, T is a transition model where
T(s′|a, s) denotes the probability of transitioning from s ∈ S
to s′ ∈ S when the agent executes action a ∈ A, r(s, a, s′)
denotes the reward the agent receives when it executes action
a and the environment transitions from state s to s′, and γ ∈
[0, 1) is a discount factor that determines the importance given
to immediate rewards (γ → 0) or the total reward (γ → 1).

The goal of policy evaluation is to learn the value function
V π (s) of a target policy π (a|s), where the value function is
the expected return if the agent starts from state s and follows
policy π , namely,

V π (s) = E

[ ∞∑
i=0

γ ir(si, ai, si+1)|s0 = s

]
, (3)

where si is the state at time i and ai is the action chosen
by the agent according to the policy, ai ∼ π (a|si ). In many
applications, the state space is too large (or infinite), which
makes it impractical to keep track of the value function for all
states. Therefore, function approximations are used to reduce
the dimension of the problem. For instance, linear approxima-
tions, which are the focus of the theoretical analysis of this
work, correspond to using a parameter w◦ ∈ R

M to approx-
imate V π (s) ≈ φ(s)Tw◦, where φ : S → R

M is a pre-defined
feature mapping for representing state s.

A standard stochastic approximation algorithm to learn
w◦ from data is TD-learning [19], [36] such as the TD(0)
strategy [61] and variations thereof. If we denote the value
function estimate at w ∈ R

M by V̂ (s,w) � φ(s)Tw, then, un-
der this strategy, the agent first computes the TD-error δi at
time i by using the observed transition tuple (si, ri, si+1):

δi = ri + γ V̂ (si+1,wi ) − V̂ (si,wi ), (4)

where ri � r(si, ai, si+1) is the instantaneous reward at time i.
Subsequently, the agent uses this error to update the current
parameter estimate wi to

wi+1 = wi + αδi∇wV̂ (si,wi ), (5)
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where α > 0 is the learning rate, and

∇wV̂ (si,wi ) = φ(si ) (6)

for the linear function approximation case. This algorithm
can be viewed as a “stochastic gradient algorithm” where the
effective stochastic gradient is gi � −δiφ(si ). In this work,
we consider an �2-regularized version of the algorithm, which
changes the update step (5) to

wi+1 = (1 − 2ρα)wi + αδi∇wV̂ (si,wi ), (7)

where ρ > 0 is a constant hyper-parameter. As opposed to
supervised learning, regularization is rather under-explored in
reinforcement learning, with notable exceptions in [62], [63].
However, recent work [64], [65] suggests that regularization
can increase generalization and sample-efficiency in function
approximation with over-parameterized models.

B. PARTIALLY-OBSERVABLE CASE
In many applications, the agent does not directly observe
the state si. For instance, a robot may receive noisy and
partially informative observations from its sensors about the
environment. The observation ξi that the agent receives at time
i is generally assumed to be distributed according to some
likelihood function linking it to the unobservable state, say,
ξi ∼ L(ξ |si ), which is conditioned on si. In these scenarios,
the agent will need to estimate the latent state first from the
observations. To do so, the agent will need to learn a prob-
ability vector μi ∈ M(S) over the set of states S , which is
called the belief vector [10], [19]. Here, M(S) denotes the S-
dimensional probability simplex, and the entry μi(s) ∈ [0, 1]
of the belief vector quantifies the confidence the agent has
about state s being the true state at time i. The value of μi(s)
corresponds to the posterior probability of s conditioned on
the action-observation history (a.k.a. trajectory):

F i � {ξi, ai−1, ξi−1, . . . }, (8)

which means:

μi(s) � P(si = s|F i ). (9)

This posterior satisfies the following temporal recursion [10],
[12], [19]:

μi(s) ∝ L(ξi|s)ηi(s), (10)

where ηi(s) is the time-adjusted prior defined by

ηi(s) � P(si = s|Fa
i−1) =

∑
s′∈S

T(s|s′, ai−1)μi−1(s′). (11)

Here, Fa
i−1 is the collection of past observations and actions,

i.e.,

Fa
i−1 � {ai−1, ξi−1, ai−2, . . . }, (12)

where it is important to notice that F i = {ξi} ∪ Fa
i−1. If

beliefs are used as substitutes for hidden states, then partially-
observable MDPs (POMDPs) can be treated as continuous
MDPs, since beliefs are continuous even if the number of
states is finite. In this way, the policy evaluation problem

would correspond to evaluating V π (μ) where the value func-
tion is now defined as the expected return when the agent
starts from the belief state μ and follows the policy π (a|μ),
namely [10], [19]:

V π (μ) = E

[ ∞∑
i=0

γ iri|μ0 = μ

]
. (13)

Observe that, in contrast to the fully-observable case, the
agent now chooses action ai according to the policy ai ∼
π (a|μi ), which is conditioned on the belief vector.

Algorithm (4)–(7) can be adjusted for POMDPs by using
the belief vectors (μi, ηi+1) instead of the states (si, si+1).
Thus, we let

δi = ri + γ V̂ (ηi+1,wi ) − V̂ (μi,wi ), (14)

and

wi+1 = (1 − 2ρα)wi + αδi∇wV̂ (μi,wi ), (15)

where the approximations V̂ (μ,w) are computed by using
the feature vectors φ(μ), now dependent on μ, to evaluate
V̂ (μ,w) � φ(μ)Tw. Note that from now on φ : M(S) →
R

M is a different feature mapping that represents μ instead
of s, and agents’ goal is to learn w◦ that satisfies V π (μ) ≈
φ (μ)T w◦.

Observe from (10)–(11) that in order for the agent to update
the belief vectors (μi, ηi+1), it needs to know the transition
model T and the likelihood functions L(ξi|s) for each state.
However, the agent does not need to know the underlying
reward model r. It can use instantaneous reward samples ri

to run the algorithm. In this sense, the algorithm is a mix-
ture of model-based and model-free reinforcement learning.
Motivation for this approach is at least two-fold. First, in
some applications, learning the transition and observation
models from data is inherently easier than learning the reward
function. This is because the reward function can depend on
some latent characteristics of the environment or some human
expert, which may be challenging to estimate. One example
where this scenario can arise is autonomous cars [66]. In this
case, the observations from environmental sensors and cam-
eras are processed with a learned likelihood model such as a
convolutional neural network. The transition dynamics of the
car depends on various parameters such as speed, acceleration,
position, and incline, and can be modeled based on physics
laws and mapping of the surroundings. However, learning a
reward function for this application is notoriously difficult, as
it is challenging to cover all possible situations [67]. Second,
the agent can still run (14)–(15) even if beliefs are not formed
through (10)–(11), but estimated by some other approach, as
in [20], [21], [22].

IV. MULTI-AGENT POLICY EVALUATION
We now consider a set K of K cooperative agents that aim to
evaluate the average value function under a joint policy π =
{πk}K

k=1 that consists of individual policies πk . The framework
we consider is a decentralized POMDP (Dec-POMDP) [9],
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which is defined by the sextuple (S,Ak,Ok,T, rk, γ ). Here,
the set of states S and the transition model T are common
to all agents, where the notation T(s|s′, a) now specifies
the probability that the environment transitions from s′ to s
when the agents execute the joint action a = {ak}K

k=1. The
individual action ak of each agent k takes values from the
set Ak , and rk (s, a, s′) is the local reward k gets when
the agents execute the collection of actions a and the envi-
ronment transitions from s to s′. Note that this setting covers
general teamwork scenarios where the local reward of an
individual agent can be dependent on all actions, and not
only on its own actions. Specifically, it covers the scenarios
that all agents observe the same reward, i.e., rk (s, a, s′) =
r(s, a, s′),∀k ∈ K. Remember that agents receive instanta-
neous rewards as they progress through the POMDP, and they
are not required to know the joint action a from all agents.
Moreover, Ok is a set of private observations. At each time
instant i, agent k receives observation ξk,i ∈ Ok emitted by
state si, and assumed to be distributed according to the local
marginal likelihood Lk (ξk|si ).

Similar to the single-agent case, Dec-POMDPs can be
treated as multi-agent belief MDPs by replacing the hidden
states with joint centralized beliefs defined by [9, Chap. 2]

μi(s) � P(si = s|F i ) ∝ L(ξi|s)ηi(s). (16)

Here, F i denotes the history of all observations and past ac-
tions from across all agents until time i, where in the definition
(8), ξi � {ξk,i}K

k=1 is now the aggregate of the observations
from across the network, and ai−1 is a tuple aggregating ac-
tions from all agents at time i − 1. Moreover, under spatial
independence, the joint likelihood L(ξi|s) appearing in (16) is
given by

L(ξi|s) =
K∏

k=1

Lk (ξk,i|s). (17)

In a manner similar to the single-agent case, the belief ηi(s) is
the time-adjusted prior conditioned on Fa

i−1 (12):

ηi(s) � P
(
si = s|Fa

i−1

) =
∑
s′∈S

T(s|s′, ai−1)μi−1(s′). (18)

The goal of policy evaluation is to learn the team value
function, which is the expected average reward of all agents
starting from some belief state μ, i.e.,

V π (μ) = E

[ ∞∑
i=0

γ i

(
1

K

K∑
k=1

rk,i

)
|μ0 = μ

]
, (19)

where rk,i denotes the instantaneous local reward agent k gets
at time i.

There is one major inconvenience with this approach. In
order to compute the joint belief (16), it is necessary to fuse
all observations and actions from across the agents in a central
location. This is possible in settings where there exists a fusion
center. However, many applications rely solely on localized
processing. In the following, we discuss and compare two

strategies for multi-agent reinforcement learning under partial
observations: (i) a centralized strategy, (ii) and a fully decen-
tralized strategy.

A. CENTRALIZED STRATEGY
In the fully centralized strategy, the state estimation and policy
evaluation phases are centralized and, hence, the setting is
equivalent to a single-agent POMDP, already discussed in
Section III-B, using the joint likelihood L(ξi|s) and the av-
erage reward ri � K−1∑K

k=1 rk,i. The fusion center computes
the joint belief (16), and agents take actions based on this joint
belief, i.e., ak,i ∼ πk (ak|μi ). The fusion center then computes
the centralized TD-error:

δi = ri + γ V̂ (ηi+1,wi ) − V̂ (μi,wi ), (20)

and updates the estimate to

wi+1 = (1 − 2ρα)wi + αδi∇wV̂ (μi,wi ). (21)

This construction is listed under Algorithm 1.

Algorithm 1: Centralized Policy Evaluation Under
POMDPs.

1: set initial prior η0(s) > 0, ∀s ∈ S
2: initialize w0

3: while i ≥ 0 do
4: each agent k observes ξk,i

5: collect all observations ξi � {ξk,i}K
k=1 and evaluate

μi(s) ∝ L(ξi|s)ηi(s) (22)

6: for each agent k ∈ K do
7: Take action ak,i ∼ πk (ak|μi )
8: Get reward rk,i = rk (si, ai, si+1)
9: end for

10: then, evolve

ηi+1(s) =
∑
s′∈S

T(s|s′, ai )μi(s
′) (23)

11: average the rewards ri = 1
K

∑K
k=1 rk,i

12: update the model:
13:

δi = ri + γ V̂ (ηi+1,wi ) − V̂ (μi,wi ) (24)

wi+1 = (1 − 2ρα)wi + αδi∇wV̂ (μi,wi ) (25)

14: end while

B. DECENTRALIZED STRATEGY
The centralized strategy is disadvantageous in the sense that
(i) failure of the fusion center results in failure of the system;
(ii) there can be communication bottlenecks at the fusion cen-
ter; (iii) and agents can be spatially distributed to begin with.
Therefore, in this section, we propose a fully decentralized
strategy for policy evaluation where agents communicate with
their immediate neighbors only.
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FIGURE 1. An illustration of a network model.

1) DECENTRALIZED NETWORK MODEL
We refer to Fig. 1 and assume that the graph is strongly con-
nected [53], which means that paths exist connecting any pair
of agents (�, k) in both directions, and in addition, there exists
at least one agent in the graph that does not discard its own
information (i.e., ckk > 0 for at least one agent k). Under this
assumption, the combination matrix C = [c�k], where entry
c�k ≥ 0 scales the information agent k receives from agent
�, becomes primitive. If two agents are not connected by an
edge then c�k = 0. We assume C is symmetric and doubly-
stochastic, meaning that

K∑
�=1

c�k = 1, c�k = ck�, (26)

or in matrix notation:

C1K = 1K , C = CT. (27)

2) LOCAL BELIEF FORMATION
In the fully decentralized strategy, the agents cannot form the
joint belief (16) since they do not have access to the obser-
vations and actions of all other agents. They, however, can
construct local beliefs. To do so, we will extend the diffusion
HMM strategy (DHS) from [48] and [49], which is originally
designed for hidden Markov models, to the current POMDP
setting.

In DHS, the global belief vectors {μi, ηi} are replaced by
local belief vectors {μk,i, ηk,i}, and the latter are updated by
using local observations and by relying solely on interactions
with the immediate neighbors. The original DHS algorithm is
designed for actionless partially observable Markov chains,
and each agent can use the same global transition model.
However, in POMDPs, transition of the global state depends
on the joint action, and the agents cannot perform a central-
ized time-adjustment step as in (23) since they do not know
the actions of all agents in the network.

Therefore, one strategy is to use a transition model that is
obtained by marginalizing over actions that are unknown to
agent k. More specifically, let aNk ∈ ANk denote a tuple of

actions taken by the set of neighbors of agent k (which we are
denoting by Nk). These actions can be assumed to be known
by agent k if, for instance, agents share their actions with
their neighbors. Let ac

Nk
∈ Ac

Nk
denote the remaining actions

by all other agents in the network, so that a = aNk ∪ ac
Nk

.
Then, each agent can use the following local transition model
approximation:

T
π
k (s|s′, aNk ) ∝

∑
ac
Nk

∈Ac
Nk

T(s|s′, aNk , ac
Nk

)π (aNk , ac
Nk

|s′)

(28)
in lieu of T(s|s′, a), to time-adjust its local belief:

ηk,i(s) =
∑
s′∈S

T
π
k (s|s′, aNk ,i−1)μk,i−1(s′), (29)

Here, aNk ,i−1 is the tuple of actions taken by the neighbors of
agent k at time instant i − 1. Moreover, in (28), the notation
π (aNk , ac

Nk
|s′) represents the joint action probability:

π
(

aNk , ac
Nk

|s′
)

=
K∏

�=1

π�(a�|s′), (30)

where the notation π (a|s) is now a shorthand for π (a|μ) when

μ = [0 . . . 1 . . . 0]T, (31)

i.e., when the belief attains value 1 for state s and is 0 oth-
erwise. Note that this construction leads to a richer scenario
compared to [48], [49], with transition models that are differ-
ent across the agents. The rest of the algorithm is the same as
the DHS strategy. Following (29), and based on the personal
observation ξk,i, each agent k forms an intermediate belief
using a β-scaled Bayesian update of the form:

ψk,i(s) ∝ (Lk (ξk,i|s))βηk,i(s), (32)

where β > 0. Finally, agents in the neighborhood of k share
their intermediate beliefs, which allows agent k to update its
belief using the weighted geometric average expression:

μk,i(s) ∝
∏

�∈Nk

(
ψ�,i(s)

)c�k . (33)

This procedure of repeated updating and exchanging of
beliefs allows information to diffuse over the network.

3) DIFFUSION POLICY EVALUATION
In the fully decentralized strategy, the local belief formation
strategy is used during both training and execution phases.
Namely, the target value function in (19) represents the av-
erage return agents get when they execute the policy π with
their local beliefs formed via the DHS strategy. Moreover,
since the policy evaluation is also decentralized, during the
training phase, they again need to use DHS to approximate
the global belief state μ on top of the function approximation.
More specifically, using its local belief vectors, each agent k
computes a local TD error:

δk,i = rk,i + γ V̂ (ηk,i+1,wk,i ) − V̂ (μk,i,wk,i ), (34)
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where rk,i = rk (si, ai, si+1) is also a function of the local
beliefs since each agent k now executes the action ak,i ∼
πk (ak|μk,i ). Subsequently, each agent k forms an intermediate
parameter estimate denoted by

zk,i+1 = (1 − 2ρα)wk,i + αδk,i∇wV̂ (μk,i,wk,i ). (35)

After receiving the intermediate estimates from its neighbors,
agent k updates wk,i to

wk,i+1 =
∑
�∈Nk

c�kz�,i+1. (36)

The local adaptation step (35) followed by the combination
step (36) are reminiscent of diffusion strategies for distributed
learning [19], [53]. Observe that there are actually two combi-
nation steps involved in diffusion policy evaluation: the belief
combination (33) with geometric averaging (GA), and the
parameter combination (36) with arithmetic averaging (AA).
These choices of fusion rules are supported by recent results
in the literature [68], [69] that promote the use of GA for
probability density functions and AA for point estimates. The
listing of the proposed diffusion policy evaluation strategy for
POMDPs appears in Algorithm 2.

Algorithm 2 has the following listed advantages:
� Decentralized information structure: The algorithm is

designed to be fully decentralized, with each agent only
having access to its own private data, such as obser-
vations and rewards, without the need to share this
information with other agents. Importantly, agents do not
require knowledge of the joint distribution of observa-
tions or the network topology. They only know their own
marginal likelihood function, and their actions are only
known by (or transmitted to) their immediate neighbors.
If agents happen to know their own marginal transition
models, they do not need to know the policies of other
agents or the global transition model. However, if the
application requires them to approximate it themselves,
they require knowledge of the other policies and the
global transition model.

� Privacy: The algorithm is also advantageous in terms
of privacy since (i) communicating beliefs allows infor-
mation diffusion without explicitly sharing raw observa-
tional data, and (ii) exchanging value parameters allows
agents learn the cumulative reward across network with-
out explicitly sharing local rewards.

� Complexity: (i) The memory requirement is constant
over time, with each agent only needing to store its
value function parameter estimate (M-dimensional) and
local belief (S-dimensional), as well as the necessary
model functions. (ii) The communication requirement
is also manageable, with each agent communicating
only with its immediate neighbors through belief and
parameter sharing. The communication load is not af-
fected by the network size, making our algorithm scal-
able and avoiding communication bottlenecks. (iii) The
computational complexity depends on whether the ap-
plication at hand allows agents to have access to the

Algorithm 2: Diffusion Policy Evaluation Under
POMDPs.

1: set initial priors ηk,0(s) > 0, ∀s ∈ S and ∀k ∈ K
2: choose β > 0
3: initialize wk,0 for ∀k ∈ K
4: while i ≥ 0 do
5: each agent k observes ξk,i

6: for each agent k ∈ K and s ∈ S
ψk,i(s) ∝ (Lk (ξk,i|s))βηk,i(s) (37)

μk,i(s) ∝
∏

�∈Nk

(
ψ�,i(s)

)c�k (38)

7: end for
8: for each agent k ∈ K do
9: Take action ak,i ∼ πk (ak|μk,i )

10: Get reward rk,i = rk (si, ai, si+1)
11: end for
12: for each agent k ∈ K evolve
13: Compute T

π
k (s|s′, aNk ,i ) using (28), and

ηk,i+1(s) =
∑
s′∈S

T
π
k (s|s′, aNk ,i )μk,i(s

′) (39)

14: end for
15: for each agent k ∈ K update

δk,i = rk,i + γ V̂ (ηk,i+1,wk,i ) − V̂ (μk,i,wk,i )
(40)

zk,i+1 = (1 − 2ρα)wk,i + αδk,i∇wV̂ (μk,i,wk,i )
(41)

16: end for
17: for each agent k ∈ K combine

wk,i+1 =
∑
�∈Nk

c�kz�,i+1 (42)

18: end for
19: end while

local transition model. If this is the case, then the com-
putational complexity is equivalent to the single-agent
Bayesian filtering case, which is O(S2). The combina-
tion steps add only linear additional complexity O(S)
with fixed neighborhood size. However, if agents need to
approximate the transition model themselves, the com-
putational complexity increases with the network size,
and becomes O(KS2). This is due to the need to av-
erage over non-neighbors’ actions in (28), whose size
grows with the network size in general. Compared to
alternative approaches such as relaying raw data, incre-
mental approaches [70], or Bayesian belief forming [71],
our algorithm is much lighter in terms of complex-
ity. Relaying raw data, for example, would result in
an exponential increase of memory and communication
overload at each hop, making it highly impractical. The
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incremental approach of relaying over a cyclic path
(which is NP-hard to find [72]) that visits each agent
once would reduce the overload. However, it is not robust
against failures and not scalable, making it impractical
for a decentralized setting. The Bayesian belief forming
strategy requires knowledge of the network topology and
other agents’ functions, and known to be NP-hard, even
in the much simpler case of fixed state and no action
setting [13].

V. MAIN RESULTS
In this section, we analyze the performance of the decen-
tralized strategy in Algorithm 2. In particular, we first show
in Section V-B that the value function parameters {wk,i}
of the agents cluster around the network centroid. Then, in
Section V-C, we show that this network centroid has a
bounded difference from the parameter of a baseline strategy
(which will be presented in Algorithm 3). Our analysis relies
on bounding the disagreement between the joint centralized
belief μi and the local estimate μk,i, which is presented next.

A. BELIEF DISAGREEMENT
In a manner similar to [49], we introduce the following risk
functions in order to assess the disagreement between the local
beliefs formed via (37)–(39) with the joint centralized beliefs
formed via (22)–(23):

Jk,i � EFi DKL(μi||μk,i ), (43)

and

J̃k,i � EFa
i−1

DKL(ηi||ηk,i ). (44)

The risks in (43) and (44) measure the disagreement after
and before the joint observation ξi, respectively. Remember
that [49] considers a naive state estimation setting rather than
a POMDP. Specifically, in their setting, the transition model
does not depend on actions, and it is assumed that every agent
knows the global transition model accurately. In comparison,
in the current work, each agent uses a local approximation
for the global transition model based on (28). Therefore, we
need to make some non-trivial adjustments to the belief dis-
agreement analysis. We begin with adjusting the assumptions
from [49] to our model.

1) MODELING CONDITIONS
� Likelihood functions: Each observation has bounded in-

formation about the true state. More formally,

DKL(Lk (ξ |s)||Lk (ξ |s′)) < ∞ (45)

which ensures that likelihoods for each state pair (s, s′)
share the same support, and in addition to this,

|log Lk (ξ |s)| ≤ B (46)

over its support for each state s ∈ S and agent k ∈ K.
� Transition model: The Markov chain induced by any

joint action a ∈ A is irreducible and aperiodic. Since
the number of states is finite, this assumption implies

that the transition model T(s|s′, a) is ergodic [73, Chap.
2]. Like [49], we focus on the important class of ge-
ometrically ergodic models, which additionally satisfy
the relation κ (Ta) ≤ κ (T) for some constant κ (T) < 1.
Here, κ (Ta) is the Dobrushin coefficient [12, Chap. 2]
defined by:

κ (Ta) � sup
s′,s′′∈S

1

2

∑
s∈S

∣∣T a
ss′ − T a

ss′′
∣∣ , (47)

where T a
ss′ � T(s|s′, a) is a generic entry of the S × S

transition matrix T a. Due to space limitations, we refer
the reader to [12, Chap. 2] for a comprehensive discus-
sion on the Dobrushin coefficient κ (Ta). In short, κ (Ta)
quantifies how fast the transition model forgets its ini-
tial conditions. Namely, as κ (Ta) → 0, past conditions
are forgotten faster. Instances of geometrically ergodic
transition models include transition matrices with all
positive elements, or that satisfy the minorization condi-
tion in [12, Theorem 2.7.4]. In addition to this condition
from [48], [49], we have an additional assumption on the
transition model to regulate the disagreement stemming
from the local transition model estimates:
Assumption 1 (Transition model disagreement): For
each agent k, consider the n-hop neighbors set Nkn and
its complement N c

kn . In other words, Nkn is the set of
agents that have at most n-hop distance to the agent k.
We define the transition model approximation that uses
n-hop neighbors’ actions as follows:

T
π
k (s|s′, aNkn )

∝
∑

ac
Nkn

∈Ac
Nkn

T

(
s|s′, aNkn , ac

Nkn

)
π
(

aNkn , ac
Nkn |s′

)
.

(48)

Then, we assume that

DKL

(
T

π
k

(
s
∣∣∣s′, aNkn

) ∣∣∣∣∣∣Tπ
k

(
s
∣∣∣s′, aN

kn+1

))
< ∞,

(49)
which ensures that transition model approximations in-
duced from n-hop and (n + 1)-hop neighbors’ actions
share the same support. Moreover, we assume that over
the shared support,∣∣∣∣∣∣log

T
π
k

(
s|s′, aNkn

)
T

π
k

(
s|s′, aN

kn+1

)
∣∣∣∣∣∣ ≤ τ. (50)

for n ≥ 1.
This assumption basically makes sure that the increase in
the error of the transition model approximation of agents
due to lack of information about actions is bounded at
each geodesic distance increase to that agent.
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2) DIFFERENCE WITH CENTRALIZED STRATEGY
The following result provides upper bounds on the disagree-
ment measures in (43)–(44).

Theorem 1 (Bounds on belief disagreement): For each
agent k, the belief disagreement risks (43) and (44) get
bounded with a linear rate of κ (T). Namely, as i → ∞,

Jk,i ≤ 2
√

KβλB

1 − κ (T)
+ (K − dmin) τ

1 − κ (T)
(51)

and

J̃k,i ≤ 2κ (T)
√

KβλB

1 − κ (T)
+ (K − dmin) τ

1 − κ (T)
(52)

where dmin is the minimum degree over the graph, i.e.,
minimum number of neighbors any agent over the network
possesses, and λ � max{|1 − K

β
|, λ2} where λ2 < 1 is the

mixing rate (second largest modulus eigenvalue) of C.
Proof: See Appendix A. �
In Theorem 1, the first terms in both bounds are equivalent

to the bounds obtained in [49]. However, the terms propor-
tional to (K − dmin)τ are new, and they arise from the fact
that agents do not observe the joint actions and hence only
have a local estimate of the transition model. Nevertheless,
the bounds get smaller with increasing network connectivity,
i.e., as λ2 → 0 and dmin → K , which shows the benefit of
cooperation. In particular, if β = K and the network is fully
connected (λ2 = 0, dmin = K), then the bounds are equal to
0. In other words, local beliefs match the centralized belief
in this situation. It is important to note that the linear term
(K − dmin) represents a worst-case bound that holds true for
any strongly connected network topology. For instance, in a
scenario where each agent has N > 1 neighbors, it is straight-
forward to modify the proof and show that these linear terms
will instead be logarithmic, i.e., proportional to log K/ log N .

We use Theorem 1 in the performance analysis of the dif-
fusion policy evaluation. To that regard, we first present the
following consequence of Theorem 1, which provides a bound
in terms of disagreement norms.

Corollary 1 (Bounds on disagreement norms): Theorem 1
implies that, as i → ∞,

E
∥∥μi − μk,i

∥∥ ≤ BTV (53)

and

E
∥∥ηi − ηk,i

∥∥ ≤ B̃TV, (54)

where we introduce the constants

BTV � 2

(
1 − exp

{
−2

√
KβλB + (K − dmin) τ

1 − κ (T)

})1/2

(55)
and

B̃TV � 2

(
1 − exp

{
−2κ (T)

√
KβλB + (K − dmin)τ

1 − κ (T)

})1/2

(56)
Proof: See Appendix B. �

B. NETWORK DISAGREEMENT
In this section, we study the variation of agent parameters
from the network centroid. To that end, let us incorporate the
linear approximation V̂ (μ,w) = φ(μ)Tw into the TD-error
expression (40) to obtain the following relation:

δk,i = rk,i + γφ(ηk,i+1)Twk,i − φ(μk,i )
Twk,i. (57)

Since ∇wV̂ (μ,w) = φ(μ) for the linear case, it follows that

zk,i+1 = ((1 − 2ρα)I − αHk,i
)
wk,i + αdk,i, (58)

where

Hk,i � φ(μk,i )φ(μk,i )
T − γφ(μk,i )φ(ηk,i+1)T, (59)

and

dk,i � rk,iφ(μk,i ). (60)

To proceed, we introduce the following regularity assumption
on the feature vector.

Assumption 2 (Feature vector): The feature mapping φ(μ)
is bounded and Lipschitz continuous in the domain of the
S-dimensional probability simplex. Namely, for any vectors
μ1, μ2 ∈ M(S),

‖φ(μ1) − φ(μ2)‖ ≤ Lφ‖μ1 − μ2‖, ‖φ(μ1)‖ ≤ Bφ. (61)

�
Lemma 1 (Belief feature difference): For each agent k ∈ K,

the belief feature matrix Hk,i in (59) has bounded expected
difference in relation to the centralized belief feature matrix
H�

i , defined below, i.e.,

E‖Hk,i − H�
i ‖ ≤ 2BφLφBTV(1 + γ ), (62)

where

H�
i � φ(μi )φ(μi )

T − γφ(μi )φ(ηi+1)T. (63)

Proof: See Appendix C. �
We also assume that all rewards are non-negative and uni-

formly bounded, i.e., 0 ≤ rk,i ≤ Rmax for each agent k ∈ K,
and all time instants i. Now, we proceed to study the network
disagreement. To that end, we define the network centroid as

wc,i �
1

K

K∑
k=1

wk,i, (64)

which is an average of the parameters of all agents. The fol-
lowing result shows that the agents cluster around this network
centroid after sufficient iterations.

Theorem 2 [Network agreement]: The average distance to
the network centroid is bounded for ρ > γ BφLφ/

√
2 after suf-

ficient number of iterations. In particular, if ρ ≥ 0.75γ BφLφ ,
then

1

K

K∑
k=1

E‖wk,i − wc,i‖ ≤ αλ2ε

(1 − λ2)
+ O(α2) (65)

where ε > 0 is a constant defined by

ε � RmaxBφ

(
2BTV(1 + γ )

0.08γ
+ 1

)
. (66)
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Proof: See Appendix D. �
Theorem 2 states that the parameter estimates by the agents

cluster around the network centroid within mean �2-distance
on the order of O(αλ2) in the limit as i → ∞. This result
confirms that agents can get arbitrarily close to each other by
setting the learning rate α sufficiently small. Besides, dense
networks have in general small λ2, which results in a small
disagreement within the network.

C. PERFORMANCE OF DIFFUSION POLICY EVALUATION
We can therefore use the network centroid as a proxy for
all agents to show that the disagreement between the fully
decentralized strategy of Algorithm 2 and a baseline strategy
that requires a central processor during training is bounded.
We start by describing this baseline strategy and explain why
it is a more suitable baseline compared to using the fully
centralized strategy Algorithm 1.

In some applications, even though agents are supposed to
work in a decentralized fashion once implemented in the field,
they can nevertheless rely on central processing during the
training phase in order to learn the best policy. In the lit-
erature, this paradigm is referred to as centralized training
for decentralized execution [16], [74]. For our problem, the
crucial point is that during training the centralized processor
can form beliefs based on all observations, but it should keep
in mind that agents will execute their actions based on local
beliefs once implemented. Therefore, in the baseline strategy,
actions and rewards are based on local beliefs as in (37)–
(39), whereas parameter updates are based on the centralized
posterior as in (22)–(23). Algorithm 3 lists this baseline pro-
cedure. Notice that the algorithm consists of both local belief
construction (see (67), (68), and (70)) and centralized belief
construction (see (69) and (71)). The former is used for action
execution ak,i ∼ πk (ak|μk,i ), while the latter is used for value
function parameter updates in (72)–(73).

In the fully centralized strategy of Algorithm 1, the actions
by the agents and the subsequent rewards are based on the
centralized belief. Therefore, the target value function that
Algorithm 1 aims to learn corresponds to the average cu-
mulative reward obtained under centralized execution. In
comparison, the target value functions that Algorithms 2 and
3 try to learn are the same and they correspond to the aver-
age cumulative reward under decentralized execution. While
trying to learn the same parameter w◦, the baseline strategy
can utilize centralized processing, but the diffusion strategy
is fully decentralized. Nonetheless, the following result illus-
trates that the expected disagreement between the baseline
strategy and the fully decentralized strategy remains bounded.

Theorem 3 (Disagreement with the baseline solution): The
expected distance between the baseline strategy and the net-
work centroid is bounded after sufficient iterations for ρ >

γ BφLφ/
√

2. In particular, if ρ ≥ 0.75γ BφLφ , then

E‖w�
i − wc,i‖ ≤ BTVRmaxε

′

0.08γ BφLφ

(74)

Algorithm 3: Centralized Evaluation for Decentralized
Execution.
1: set initial priors ηk,0(s) > 0, η0(s) > 0, for ∀s ∈ S and

∀k ∈ K
2: choose β > 0
3: initialize w�

0
4: while i ≥ 0 do
5: each agent k observes ξk,i

6: for each agent k ∈ K and s ∈ S adapt and combine

ψk,i(s) ∝ (Lk (ξk,i|s))βηk,i(s) (67)

μk,i(s) ∝
∏

�∈Nk

(
ψ�,i(s)

)a�k (68)

7: end for
8: to form centralized belief with joint observation

ξi � {ξk,i}K
k=1, adapt

μi(s) ∝ L(ξi|s)ηi(s) (69)

9: for each agent k ∈ K do
10: Take action ak,i ∼ πk (ak|μk,i )
11: Get reward rk,i = rk (si, ai, si+1)
12: end for
13: average the rewards r�

i = 1
K

∑K
k=1 rk,i

14: for each agent k ∈ K evolve
15: Compute T

π
k (s|s′, aNk ,i ) using (28), and

ηk,i+1(s) =
∑
s′∈S

T
π
k (s|s′, aNk ,i )μk,i(s

′) (70)

16: end for
17: evolve the centralized belief

ηi+1(s) =
∑
s′∈S

T(s|s′, ai )μi(s
′) (71)

18: update value function parameter

δ�i = r�
i + γ V̂ (ηi+1,w

�
i ) − V̂ (μi,w

�
i ) (72)

w�
i+1 = (1 − 2ρα)w�

i + αδ�i ∇wV̂ (μi,w
�
i ) (73)

19: end while

after i ≥ i0 = o(1/(αγ BφLφ )) iterations, where ε′ > 0 is a
constant defined by

ε′ � 2Bφ (1 + γ )

0.08γ
+ Lφ. (75)

Proof: See Appendix E. �
Theorem 3 implies that the disagreement between the net-

work centroid, around which agents cluster, and the baseline
strategy is on the order of BTV. This means that if the local
beliefs are similar to the centralized belief, agents get closer to
the baseline parameter. In this regard, from the definition (55)
of BTV, it can be observed that BTV gets smaller with increas-
ing network connectivity (i.e., decreasing λ2), as β → K . In
fact, it is equal to zero for fully-connected networks with the
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FIGURE 2. Experimental scenario. For visual purposes, the procedure is shown for only one agent. In fact, all agents execute the same procedure
simultaneously.

choice of β = K and c�k = 1/K . Therefore, by changing β

and c�k , the fully decentralized strategy can match the value
function estimates of a centralized training strategy that can
gather all observations and actions in a fusion center. In the
next section, by means of numerical simulations, we further
compare the value function estimate accuracies of all Algo-
rithms 1, 2 and 3 by using squared Bellman error (SBE).

VI. SIMULATION RESULTS
For numerical simulations, we consider a multi-agent target
localization application. The implementation is available on-
line1. We use a set of K = 8 agents and a moving target
in a 10 × 10 two-dimensional grid world environment. The
locations of the agents are fixed and their coordinates are
randomly assigned at the beginning of the simulation. The
goal of the agents is to cooperatively evaluate a given policy
for hitting the target. Agents cannot observe the location (i.e.,
state) of the target accurately, but instead receive noisy ob-
servations based on how far they are from the real location of
the target. The target is moving according to some pre-defined
transition model that takes the actions (i.e., hits) of agents into
account. Specifically, the target is trying to evade the hits of
agents.

1[Online]. Available: https://github.com/asl-epfl/DecPOMDP_Policy_
Evaluation_w-Belief_Sharing

A possible scenario for this setting is a network of sensors
and an intruder (e.g., a spy drone) — see Fig. 2. The sensors
try to localize the intruder based on noisy measurements and
belief exchanges. Moreover, in order to disrupt the communi-
cation between the intruder and its owner, each sensor sends
a narrow sector jamming beam towards its target location
estimate. However, the intruder is capable of detecting energy
abnormalities and determines its next location by favoring
distant locations from the jamming signals. We now describe
the setting in more detail.

Combination matrix: The entries of the combination ma-
trix are set such that they are inversely proportional to the
�1-distance between the agents. That is to say, the further the
agents are from each other, the smaller the value of the weight
that is assigned to the edge connecting them. Weights smaller
than some threshold are set to 0, which implies that agents
that are too far from each other do not need to communicate.
The resulting communication topology graph is illustrated in
Fig. 3(a).

Transition model: The target is moving between cells in a
grid (i.e., states) randomly. The probability of a cell being the
next location of the target depends on the current location of
the target and the location of the agents’ hits. Namely, each
state in the grid is assigned a score based on its �1-distance to
the current location of the target and to the average location
of the agents’ hits — see Table 1. For example, observe from
Table 1 that the cells that are in the proximity of the target’s
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FIGURE 3. (a) Graph structure underlying the communication of agents. (b) Evolution of agreement error (defined in Eq. (76)) over time for fully
decentralized strategy. (c) Evolution of squared Bellman error (SBE) (defined in Eq. (77)) over time for Algorithms 1–3.

TABLE 1. The table of scores used in the transition model. Each candidate
state for next state (location) of the target gets a score based on the initial
position of the target and the average action of agents.

TABLE 2. The table of scores used in the likelihood function model. Each
state, when observed, gets a score that determines the likelihood of the
presence of the target within the state, based on the position of the target
and the average action of agents.

current location and also far away from the agents’ strikes are
given the highest score. These scores are normalized to yield
a probabilistic transition kernel.

Likelihood function: Agents cannot observe where the tar-
get is. They can only receive noisy observations. Each agent
gets a more accurate observation of the target’s position if
the target is in close proximity to the agent. Otherwise, the
larger the distance between the agent and the target, the higher
the noise level. Depending on how close the target is to the
agent, and in order to construct the likelihood function, we
first assign scores to each cell in the grid that reflect how
probable it is to find the target in that cell — see Table 2.

Following that, the scores are normalized in order to yield
a distribution function. For instance, if the target lies at an
�1-distance that is less than 3 grid squares from the location
of the agent, the actual position of the target gets a likelihood
score of 400, cells within an �1 distance of 2 grid squares from
the agent get a likelihood score of 200, and cells within an �1

distance of 4 grid squares from the agents get a likelihood
score of 30.

Reward function: The reward function in the environment
is such that an agent receives a reward of 1 if the agent is
able to hit the position of the target. The agent also receives a
reward of 0.2 if the �1-distance between the predicted location
and the actual location of the target is less than 3 grid units.
Otherwise, it gets 0 reward. Agents do not know the reward
model, and use the instantaneous rewards instead.

Policy: We fix the policy that the agents evaluate as the
maximum a-posteriori policy. Namely, agents detect (hit) a
location if it corresponds to the maximum entry in their belief
vector.

We use the belief vectors as the features directly, i.e., φ is
an identity transformation. We set α = 0.1, ρ = 0.0001, and
β = K = 8, and average over 3 different realizations for all
cases. In Fig. 3(b), the average mean-square distance to the
network centroid, i.e.,

Agreement error � 1

K

K∑
k=1

E‖wk,i − wc,i‖2, (76)

is plotted over time for the fully decentralized strategy. Con-
firming Theorem 2, it can be seen that agreement error rapidly
decreases and converges to a small value.

In Fig. 3(c), we plot the evolution of the average squared
Bellman error (SBE) in the log domain, where the SBE
expression is given by:

SBE � 1

K

K∑
k=1

δ2
k,i, (77)
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and similarly for the centralized cases. It measures the net-
work average of instantaneous TD-errors. It can be seen that
all approaches converge, and in particular, diffusion strategy
(Algorithm 2) yields a comparable performance with CD
(Algorithm 3). This observation is in line with Theorem 3,
which states that the disagreement between the fully de-
centralized strategy and the baseline centralized training for
decentralized execution strategy is bounded. Notice also that
CC (Algorithm 1) results in a higher SBE compared to the
diffusion and CD, despite being a fully centralized strategy.
This is because, CC evaluates a different policy, namely, the
centralized execution policy. Therefore, as argued in Sec-
tion V-C, the SBE of CC is not a suitable baseline for the
diffusion strategy.

VII. CONCLUDING REMARKS
In this paper, we proposed a policy evaluation algorithm
for Dec-POMDPs over networks. We carried out a rigorous
analysis that established: (i) the beliefs formed with local in-
formation and interactions have a bounded disagreement with
the global posterior distribution, (ii) agents’ value function
parameters cluster around the network centroid, and (iii) the
decentralized training can match the performance of the cen-
tralized training with appropriate parameters and increasing
network connectivity.

There are two limitations of the current work that can be
addressed in future work. First, we assume that agents know
the local likelihood and transition models accurately. One
possible question is if agents have approximation errors for
the models, how would these affect the analytical results.
Second, an implication of Theorem 3 is that there is necessity
for regularization (ρ > 0). We leave the question of whether
one can get bounds that does not require this, possibly with
more assumptions on the model, to future work.

APPENDIX
A. PROOF OF THEOREM 1
We can rewrite the risk function as

Jk,i = EFi DKL(μi‖μk,i )

= EFi

[∑
s∈S

μi(s) log
μi(s)

μk,i(s)

]

(a)= EFi

[∑
s∈S

P(si = s|F i ) log
μi(s)

μk,i(s)

]
(b)= EFi

[
Esi|Fi

(
log

μi(si )

μk,i(si )

)]
= EFi,si

[
log

μi(si )

μk,i(si )

]
, (78)

where (a) follows from definition (9), (b) follows from the
definition of conditional expectation with respect to si given

F i. Merging the diffusion adaptation step (37) and the com-
bination step (38) together yields the following form:

μk,i(s) ∝
∏

�∈Nk

(L�(ξ�,i|s))βc�k (η�,i(s))c�k , (79)

which, combined with the update (22) for the centralized
solution, results in:

log
μi(s)

μk,i(s)
=
∑
�∈Nk

c�k

(
log

L(ξi|s)

(L�(ξ�,i|s))β
+ log

ηi(s)

η�,i(s)

)

+ log
∑
s′∈S

⎛⎝∏
�∈Nk

(L�(ξ�,i|s′))βc�k
∏

�∈Nk

(η�,i(s
′))c�k

⎞⎠
− log mi(ξi ). (80)

Here, we have introduced the marginal distribution of new
observation given the past observations and actions:

mi(ξi ) � P
(
ξi = ξi|Fa

i−1

) =
∑
s∈S

P
(
ξi = ξi, si = s|Fa

i−1

)
=
∑
s∈S

L(ξi|s)P
(
si = s|Fa

i−1

)
=
∑
s∈S

L(ξi|s)ηi(s). (81)

First, observe that the expectation of the log-likelihood ratio
terms in (80) satisfies:∑

�∈Nk

c�kEξi,si

[
log

L(ξi|si )

(L�(ξ�,i|si ))β

]

(a)= Eξi,si

[
K∑

�=1

log L�(ξ�,i|si )

]

−
∑
�∈Nk

c�kEξ�,i,si

[
β log L�(ξ�,i|si )

]

= Eξi,si

[
K∑

�=1

(1 − βc�k ) log L�(ξ�,i|si )

]
(82)

where in (a) we used the spatial independency of the obser-
vations. Second, the expectation of the time-adjusted terms in
(80) can be rewritten as:∑
�∈Nk

c�kEFi,si

[
log

ηi(si )

η�,i(si )

]
(a)=
∑
�∈Nk

c�kEFi,si

[
log

ηi(si )

η̃�,i(si )
+ log

η̃�,i(si )

η�,i(si )

]

=
∑
�∈Nk

c�kEFa
i−1,si

[
Eξi|Fa

i−1,si

(
log

ηi(si )

η̃�,i(si )
+ log

η̃�,i(si )

η�,i(si )

)]
(b)=
∑
�∈Nk

c�kEFa
i−1,si

[
log

ηi(si )

η̃�,i(si )
+ log

η̃�,i(si )

η�,i(si )

]
(83)
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where in (a) we define the agent-specific distribution:

η̃�,i(s) �
∑
s′∈S

T(s|s′, ai−1)μ�,i−1(s′), (84)

and (b) follows from the fact that the arguments are deter-
ministic given the current state and the history of actions
and observations. The first term of (83) can be written as a
KL-divergence because of the following:∑

�∈Nk

c�kEFa
i−1,si

[
log

ηi(si )

η̃�,i(si )

]

=
∑
�∈Nk

c�kEFa
i−1

[
Esi|Fa

i−1

(
log

ηi(si )

η̃�,i(si )

)]

=
∑
�∈Nk

c�kEFa
i−1

[∑
s∈S

P(si = s|Fa
i−1) log

ηi(s)

η̃�,i(s)

]

(11)=
∑
�∈Nk

c�kEFa
i−1

[∑
s∈S

ηi(s) log
ηi(s)

η̃�,i(s)

]

=
∑
�∈Nk

c�kEFa
i−1

[
DKL(ηi‖̃η�,i )

]
. (85)

This expected KL-divergence can be bounded by using the
strong-data processing inequality [75]:∑

�∈Nk

c�kEFa
i−1

[
DKL(ηi‖̃η�,i )

]
≤
∑
�∈Nk

c�kκ (T)EFi−1

[
DKL(μi−1‖μ�,i−1)

]︸ ︷︷ ︸
J�,i−1

. (86)

The second term of (83) arises due to transition model dis-
agreement with the centralized belief. To bound it, we first
introduce the LogSumExp function f with vector arguments
ν ∈ R

S:

f (ν) � log
∑
s∈S

exp{ν(s)}. (87)

Its gradient is given by

∇ν f (ν) � col

{
∂ f (ν)

∂ν(s)

}
s∈S

= col

{
exp{ν(s)}∑
s′ exp{ν(s′)}

}
s∈S

.

(88)
Observe that if we define the vectors

ν̃�,i � col
{
log
(
T(si|s, ai−1)μ�,i−1(s)

)}
s∈S (89)

and

ν�,i � col
{
log
(
T

π
� (si|s, aN�,i−1)μ�,i−1(s)

)}
s∈S , (90)

then, we can rewrite the second expression of (83) as follows:∑
�∈Nk

c�kEFa
i−1,si

[
log

η̃�,i(si )

η�,i(si )

]

=
∑
�∈Nk

c�kEFa
i−1,si

[
f (̃ν�,i ) − f (ν�,i )

]
. (91)

Applying mean value theorem to this difference yields

EFa
i−1,si

[
f (̃ν�,i ) − f (ν�,i )

]
= EFa

i−1,si

[
(∇ν f (ν�,i ))

T · (̃ν�,i − ν�,i )
]

(88)= EFa
i−1,si

[
col

{
exp{ν�,i(s)}∑
s′ exp{ν�,i(s′)}

}T

s∈S
· (̃ν�,i − ν�,i )

]

(89),(90)= EFa
i−1,si

[
col

{
exp{ν�,i(s)}∑
s′ exp{ν�,i(s′)}

}T

s∈S

·col

{
log

T(si|s, ai−1)

T
π
�

(si|s, aN�,i−1)

}
s∈S

]
(92)

for some ν�,i between ν̃�,i and ν�,i. The term in (92) is bounded
as follows:∣∣∣∣∣EFa

i−1,si

[
col

{
exp{ν�,i(s)}∑
s′ exp{ν�,i(s′)}

}T

s∈S

·col

{
log

T(si|s, ai−1)

T
π
�

(si|s, aN�,i−1)

}
s∈S

]∣∣∣∣∣
(a)≤ EFa

i−1,si

∣∣∣∣∣col

{
exp{ν�,i(s)}∑
s′ exp{ν�,i(s′)}

}T

s∈S

·col

{
log

T(si|s, ai−1)

T
π
�

(si|s, aN�,i−1)

}
s∈S

∣∣∣∣∣
(b)≤ EFa

i−1,si

[∥∥∥∥col

{
exp{ν�,i(s)}∑
s′ exp{ν�,i(s′)}

}
s∈S

∥∥∥∥
1

·
∥∥∥∥∥col

{
log

T(si|s, ai−1)

T
π
�

(si|s, aN�,i−1)

}
s∈S

∥∥∥∥∥∞

]

(c)= Esi,ai−1

∥∥∥∥∥col

{
log

T(si|s, ai−1)

T
π
�

(si|s, aN�,i−1)

}
s∈S

∥∥∥∥∥∞
(93)

where (a) follows from the Jensen’s inequality, (b) follows
from the Hölder’s inequality, and (c) follows from the fact
that ∥∥∥∥col

{
exp{ν�,i(s)}∑

s′∈S exp{ν�,i(s′)}
}∥∥∥∥

1

= 1. (94)

Furthermore, due to Assumption 1 and to the fact that the
number of maximum hops outside Nk is (K − |Nk|), we have∣∣∣∣log

T(si|s, ai−1)

T
π
k (si|s, aNk ,i−1)

∣∣∣∣ ≤ (K − |Nk|) τ

≤ (K − dmin) τ. (95)

If we combine (86), (91), and (95), the expectation of the time-
adjusted terms in (80) can be bounded as:∑

�∈Nk

c�kEFa
i−1,si

[
log

ηi(si )

η�,i(si )

]
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≤ (K − dmin) τ +
∑
�∈Nk

c�kκ (T)J�,i−1 (96)

Next, we bound the expectation of the remaining normaliza-
tion terms in (80), which follows similar steps to what was
done in [49]:

EFi

⎡⎣log
∑
s′∈S

⎛⎝∏
�∈Nk

(L�(ξ�,i|s′))βc�k
∏

�∈Nk

(η�,i(s
′))c�k

⎞⎠⎤⎦
− EFi

[
log mi(ξi )

]
(a)≤ EFi

⎡⎣log
∑
s′∈S

⎛⎝∏
�∈Nk

(L�(ξ�,i|s′))βc�k
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
− EFi

[
log mi(ξi )

]
= EFi

⎡⎣log
∑
s′∈S

⎛⎝∏
�∈Nk

(L�(ξ�,i|s′))βc�k
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
− EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
+ EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
− EFi

[
log mi(ξi )

]
(b)≤ EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

(L�(ξ�,i|s′))βc�k
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
− EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
(97)

where (a) follows from the arithmetic-geometric mean in-
equality, (b) follows from:

− EFi

⎡⎣log
mi(ξi )∑

s′∈S
(∏K

�=1 L�(ξ�,i|s′)
∑

�∈Nk
c�kη�,i(s′)

)
⎤⎦

= −EFa
i−1

Eξi|Fa
i−1

[
log

mi(ξi )

m†
i (ξi )

]
= −EFa

i−1
DKL(mi(ξi )‖m†

i (ξi ))

≤ 0 (98)

where we use the definition:

m†
i (ξi ) �

∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠ , (99)

which is a density (or mass function if observations are dis-
crete) since:∫

ξi

m†
i (ξi )dξi =

∫
ξi

∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠ dξi

=
∑
s′∈S

⎡⎢⎢⎢⎢⎣
∫

ξi

K∏
�=1

L�(ξ�,i|s′)dξi︸ ︷︷ ︸
1

K∑
�=1

c�kη�,i(s
′)

⎤⎥⎥⎥⎥⎦
=
∑
s′∈S

[
K∑

�=1

c�kη�,i(s
′)

]

=
K∑

�=1

c�k

[∑
s′∈S

η�,i(s
′)

]
= 1. (100)

Notice that the expression in (97) can be rewritten as

EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

(L�(ξ�,i|s′))βc�k
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
− EFi

⎡⎣log
∑
s′∈S

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎤⎦
= EFi

[
f (ϑk,i )

]− EFi

[
f (̃ϑk,i )

]
, (101)

if we use the LogSumExp function f from (87) and use the
definitions:

ϑk,i � col

⎧⎨⎩log

⎛⎝ K∏
�=1

(L�(ξ�,i|s′))βc�k
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎫⎬⎭
s′∈S
(102)

and

ϑ̃k,i � col

⎧⎨⎩log

⎛⎝ K∏
�=1

L�(ξ�,i|s′)
∑
�∈Nk

c�kη�,i(s
′)

⎞⎠⎫⎬⎭
s′∈S

.

(103)
Following the steps in (92) and (93), this difference can be
bounded as:

EFi

[
f (ϑk,i )

]− EFi

[
f (̃ϑk,i )

]
≤ Eξi

∥∥∥∥∥col

{
K∑

�=1

(βc�k − 1) log L�(ξ�,i|s′)

}
s′∈S

∥∥∥∥∥
∞

. (104)

Moreover, by assumptions on the graph topology (27) and on
the likelihood functions (46), this expression can be further
bounded as [49]:∥∥∥∥∥col

{
K∑

�=1

(βc�k − 1) log L�(ξ�,i|s′)

}
s′∈S

∥∥∥∥∥
∞

≤
√

KβλB

(105)
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Subsequently, if we insert the bounds (82), (96), and (105) to
(80), we arrive at the bound on the risk function:

Jk,i ≤ Eξi,si

[
K∑

�=1

(1 − βc�k ) log L�(ξ�,i|si )

]

+ κ (T)
∑
�∈Nk

c�kJ�,i−1 +
√

KβλB + (K − dmin) τ

(105)≤ κ (T)
∑
�∈Nk

c�kJ�,i−1 + 2
√

KβλB + (K − dmin) τ.

(106)

Expanding this recursion over time yields:

Jk,i ≤ (2
√

KβλB + (K − dmin) τ )
i−1∑
j=0

(κ (T)) j

+ (κ (T))i
K∑

�=1

[Ci]�kJ�,0

= 1 − (κ (T))i

1 − κ (T)
(2

√
KβλB + (K − dmin) τ )

+ (κ (T))i
K∑

�=1

[Ci]�kJ�,0, (107)

which implies that if κ (T) < 1, the risk function is bounded
as i → ∞:

lim sup
i→∞

Jk,i ≤ 2
√

KβλB + (K − dmin) τ

1 − κ (T)
. (108)

By (96), this also implies that

lim sup
i→∞

J̃k,i ≤ (K − dmin)τ + κ (T) lim sup
i→∞

Jk,i

≤ (K − dmin)τ

1 − κ (T)
+ κ (T)

2
√

KβλB

1 − κ (T)
. (109)

B. PROOF OF COROLLARY 1
In view of the Bretagnolle-Huber inequality [76], it holds that∑

s∈S

∣∣μi(s) − μk,i(s)
∣∣ ≤ 2

(
1 − exp{−DKL(μi‖μk,i )}

) 1
2 .

(110)
If we take the expectation of both sides, we get:

E

[∑
s∈S

∣∣μi(s) − μk,i(s)
∣∣] ≤ 2E

(
1−exp{−DKL(μi‖μk,i )}

) 1
2

(a)≤ 2
(
1−E exp{−DKL(μi‖μk,i )}

) 1
2

(b)≤ 2
(
1−exp{−Jk,i}

) 1
2 , (111)

where (a) and (b) follow from Jensen’s inequality. Together
with Theorem 1, this implies that

E
∥∥μi − μk,i

∥∥
1 ≤ BTV, (112)

where we use the definition (55). Furthermore, on account of
the fact that �2 norm is no greater than �1 norm in R

S , it is
also true that

E
∥∥μi − μk,i

∥∥ ≤ BTV. (113)

With similar arguments, it can be shown that

E
∥∥ηi − ηk,i

∥∥ ≤ B̃TV, (114)

where we use the definition (56).

C PROOF OF LEMMA 1
Inserting the definitions (59) and (63), the expected difference
can be expanded as

E‖Hk,i − H�
i ‖ = E

∥∥∥φ(μk,i )φ(μk,i )
T − γφ(μk,i )φ(ηk,i+1)T

− φ(μi )φ(μi )
T + γφ(μi )φ(ηi+1)T

∥∥∥
≤ E

∥∥∥φ(μk,i )φ(μk,i )
T − φ(μi )φ(μi )

T
∥∥∥

+ γE

∥∥∥φ(μk,i )φ(ηk,i+1)T−φ(μi )φ(ηi+1)T
∥∥∥,

(115)

where the last step follows from the triangle inequality. Here,
the first term can be bounded as∥∥∥φ(μk,i )φ(μk,i )

T − φ(μi )φ(μi )
T
∥∥∥

≤
∥∥∥φ(μk,i )(φ(μk,i )

T − φ(μi )
T)
∥∥∥

+
∥∥∥(φ(μk,i ) − φ(μi ))φ(μi )

T
∥∥∥

≤ ∥∥φ(μk,i )
∥∥ ∥∥φ(μk,i ) − φ(μi )

∥∥
+ ∥∥φ(μk,i ) − φ(μi )

∥∥ ‖φ(μi )‖
(a)≤ BφLφ‖μk,i − μi‖ + BφLφ‖μk,i − μi‖, (116)

where (a) follows from Assumption 2. Taking expectations
and using (53) and (116), it follows that

E

∥∥∥φ(μk,i )φ(μk,i )
T − φ(μi )φ(μi )

T
∥∥∥ ≤ 2BφLφBTV. (117)

Similarly, the second term in (115) can be bounded as∥∥∥φ(μk,i )φ(ηk,i+1)T − φ(μi )φ(ηi+1)T
∥∥∥

≤
∥∥∥φ(μk,i )(φ(ηk,i+1)T − φ(ηi+1)T)

∥∥∥
+
∥∥∥(φ(μk,i ) − φ(μi ))φ(ηi+1)T

∥∥∥
≤ ∥∥φ(μk,i )

∥∥ ∥∥φ(ηk,i+1) − φ(ηi+1)
∥∥

+ ∥∥φ(μk,i ) − φ(μi )
∥∥ ‖φ(ηi+1)‖

(a)≤ BφLφ‖ηk,i+1 − ηi+1‖ + BφLφ‖μk,i − μi‖ (118)
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where (a) follows from Assumption 2. Using (53) and (54) we
get:

E

∥∥∥φ(μk,i )φ(ηk,i+1)T − φ(μi )φ(ηi+1)T
∥∥∥

≤ BφLφ (BTV + B̃TV). (119)

Combining (117) and (119) in addition to the fact that B̃TV ≤
BTV (since κ (T) < 1) yields:

E‖Hk,i − H�
i ‖ ≤ 2BφLφBTV(1 + γ ). (120)

D PROOF OF THEOREM 2
For compactness of notation, it is useful to introduce the
following quantities, which collect variables from across all
agents:

W i � col
{
w1,i, . . . ,wK,i

}
(121)

C � C ⊗ IM (122)

Hi � diag
{
Hk,i

}K
k=1 (123)

H�
i � IK ⊗ H�

i (124)

d i � col
{
dk,i
}K

k=1 (125)

Then, the equations (40)–(42) can be written as:

W i+1 = CT ((I (1 − 2αρ) − αHi ) W i +αd i ) . (126)

Moreover, we can define the following K-times extended cen-
troid vector:

Wc,i � 1K ⊗ wc,i =
(

1

K
1K1

T
K ⊗ I

)
W i . (127)

If we decompose Hi into its centralized component H�
i and

the respective disagreement matrix �i � Hi − H�
i , we ob-

tain:

W i+1 −Wc,i+1

=
(
CT − 1

K
1K1

T
K ⊗ I

)
((I (1 − 2αρ) − αHi ) W i +αd i )

=
(
CT − 1

K
1K1

T
K ⊗ I

)
((

I (1 − 2αρ) − αH�
i − α�i

)
W i +αd i

)
=
(
CT − 1

K
1K1

T
K ⊗ I

)
((

I (1 − 2αρ) − αH�
i

)
(W i −Wc,i ) − α�i W i +αd i

)
,

(128)

where the last step follows from the fact that

CT (I (1 − 2αρ) − αH�
i

)
Wc,i

=
(

1

K
1K1

T
K ⊗ I

) (
I (1 − 2αρ) − αH�

i

)
Wc,i . (129)

Furthermore, taking the norms of both sides in (128) leads to∥∥W i+1 −Wc,i+1
∥∥

≤
∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥∥∥(I (1 − 2αρ) − αH�
i

)
(W i −Wc,i ) − α�i W i +αd i

∥∥
≤
∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ ∥∥I (1 − 2αρ) − αH�
i

∥∥‖W i −Wc,i ‖

+ α

∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ (‖�i‖‖W i ‖ + ‖d i‖) . (130)

Since the combination matrix C is a primitive stochastic ma-
trix, it follows from the Perron-Frobenius theorem [53], [77]
that its maximum eigenvalue is 1, and all other eigenvalues
are strictly smaller than 1 in absolute value. Moreover, C is
assumed to be symmetric, therefore its eigenvalue decompo-
sition has the following form:

C = U�U�

=
[
u1 u2 · · · uK

]
⎡⎢⎢⎢⎢⎣

1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λK

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u�
1

u�
2
...

u�
K

⎤⎥⎥⎥⎥⎦
where U is the orthogonal matrix of eigenvectors {uk}, and �

is the diagonal matrix of eigenvalues. Additionally, the powers
of C converge (because it is primitive) to the scaled all-ones
matrix (because it is doubly-stochastic):

lim
i→∞

Ci =
[
u1 u2 · · · uK

]
⎡⎢⎢⎢⎢⎣

1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u�
1

u�
2
...

u�
K

⎤⎥⎥⎥⎥⎦

= 1

K

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤⎥⎥⎥⎥⎦ = 1

K
1K1

�
K

Therefore, the difference of these matrices becomes:

C − 1

K
1K1

�
K = U

⎡⎢⎢⎢⎢⎣
0 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λK

⎤⎥⎥⎥⎥⎦U�, (131)

which implies: ∥∥∥∥C − 1

K
1K1

�
K

∥∥∥∥ = λ2 (132)

where λ2 is the second largest modulus eigenvalue of C. More-
over, the Kronecker product with the identity matrix does not
change the spectral norm, hence:∥∥∥∥CT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ = λ2 < 1. (133)
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Moreover, we know from Lemma 1 that

E‖�i‖ ≤ 2BφLφBTV(1 + γ ). (134)

Additionally, in Appendix F, we establish (135)–(138) which
hold for any realization (with probability one). From (161),
note that: ∥∥I (1 − 2αρ) − αH�

i

∥∥ < 1 (135)

whenever ρ > γ LφBφ/
√

2. Specifically, if ρ ≥ 0.75γ LφBφ ,
then ∥∥I (1 − 2αρ) − αH�

i

∥∥ ≤ (1 − 0.08αγ LφBφ ). (136)

In addition, we show in Lemma 2 that

‖W i‖ ≤
√

KRmax

0.08γ Lφ

(137)

and in expression (162) that

‖d i‖ ≤
√

KRmaxBφ. (138)

Inserting these results into (130) yields the following norm
recursion:

E
∥∥W i+1 −Wc,i+1

∥∥
≤ λ2(1 − 0.08αγ BφLφ )E

∥∥W i −Wc,i
∥∥+ αλ2

√
Kε. (139)

Let us define the constant λ̃2 � λ2(1 − 0.08αγ BφLφ ). Iterat-
ing (139) over time, we arrive at

E
∥∥W i+1 −Wc,i+1

∥∥
≤ λ̃i+1

2 ‖W0 −Wc,0 ‖ + αλ2
√

Kε

i+1∑
j=1

λ̃
i+1− j
2

≤ λ̃i+1
2 ‖W0 −Wc,0 ‖ + αλ2

√
Kε

1

1 − λ̃2

(a)≤ αλ2
√

Kε
1

1 − λ̃2
+ O(α2) (140)

where (a) holds whenever:

λ̃i
2‖W0 −Wc,0 ‖ ≤ cα2

⇐⇒ i log λ̃2 ≤ 2 log α + log c − log ‖W0 −Wc,0 ‖

⇐⇒ i ≥ 2 log α

log λ̃2
+ O(1) = O(log α) = o(1/α), (141)

where c is an arbitrary constant.

E PROOF OF THEOREM 3
We begin by rewriting the baseline strategy recursion (72)–
(73) in the form:

w�
i+1 = ((1 − 2ρα)I − αH�

i

)
w�

i + αd�
i , (142)

where H�
i is defined in (63), and

d�
i �

(
1

K

K∑
k=1

rk,i

)
φ(μi ). (143)

We introduce the K-times extended versions of the vectors:

D�
i � 1K ⊗ d�

i , W�
i = 1K ⊗ w�

i . (144)

Then, the baseline recursion (142) transforms into

W�
i+1 = ((1 − 2ρα)I − αH�

i

)
W�

i +αD�
i . (145)

It follows from the extended network centroid definition (127)
and (145) that

W�
i+1 −Wc,i+1

= (I (1 − 2αρ) − αH�
i

)
(W�

i −Wc,i )

− α

(
1

K
1K1

T
K ⊗ I

)
�i W i +α

(
1

K
1K1

T
K ⊗ I

)
(D�

i − d i )

(146)

where we used the facts that(
1

K
1K1

T
K ⊗ I

)
D�

i = D�
i , (147)

and (
1

K
1K1

T
K ⊗ I

)
H�

i W i = H�
i Wc,i . (148)

Next, if we define the following average agent disagreement
relative to the baseline term

d̃ i �
1

K

K∑
k=1

(d�
i − dk,i ), (149)

it holds that

D̃i � 1K ⊗ d̃ i =
(

1

K
1K1

T
K ⊗ I

)
(D�

i − d i ). (150)

Subsequently, taking the norm of both sides in (146) and
applying the triangle inequality, we get∥∥W�

i+1 −Wc,i+1
∥∥

≤ ∥∥I (1 − 2αρ) − αH�
i

∥∥ ∥∥W�
i −Wc,i

∥∥
+ α

∥∥∥∥ 1

K
1K1

T
K ⊗ I

∥∥∥∥ ‖�i‖ ‖W i‖ + α
∥∥D̃i

∥∥ . (151)

First, observe that ∥∥∥∥ 1

K
1K1

T
K ⊗ I

∥∥∥∥ = 1. (152)

Moreover, from Assumption 2 and Corollary 1, it holds that

E

∥∥∥̃d i

∥∥∥ = E

∥∥∥∥∥ 1

K

K∑
k=1

rk,i(φ(μi ) − φ(μk,i ))

∥∥∥∥∥
≤ RmaxLφBTV, (153)

and accordingly,

E
∥∥D̃i

∥∥ ≤
√

KRmaxLφBTV. (154)

By using the same bounds (135)–(138) from Appendix D for
the other terms (which are established in Lemma 1, Lemma 2,
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(161), and (162)), we arrive at the recursion:

E
∥∥W�

i+1 −Wc,i+1
∥∥

≤ (1 − 0.08αγ BφLφ )E
∥∥W�

i −Wc,i
∥∥+ α

√
Kε�,

(155)

where

ε� � RmaxBTV

(
2Bφ (1 + γ )

0.08γ
+ Lφ

)
. (156)

Iterating over time, we get:

E
∥∥W�

i+1 −Wc,i+1
∥∥

≤ (1 − 0.08αγ BφLφ )i+1‖W�
0 −Wc,0 ‖

+ α
√

Kε�

i+1∑
j=1

(1 − 0.08αγ BφLφ )i+1− j

≤ (1 − 0.08αγ BφLφ )i+1‖W�
0 −Wc,0 ‖ +

√
Kε�

0.08γ BφLφ

(a)≤
√

Kε�

0.08γ BφLφ

+ o(1) (157)

where (a) holds whenever

(1 − 0.08αγ BφLφ )i+1
∥∥W�

0 −Wc,0
∥∥ = o(1)

⇐⇒ i log(1 − 0.08αγ BφLφ ) = o(1)

⇐⇒ i ≥ o(1)

log(1 − 0.08αγ BφLφ )
≥ o

(
1

αγ BφLφ

)
. (158)

F AUXILIARY RESULTS
In the following lemma, we prove that the value function
parameters are bounded in norm.

Lemma 2 (Bounded parameters): For each agent k ∈ K,
the iterate wk,i is bounded in norm if ρ > γ BφLφ/

√
2, with

probability one. In particular, if ρ ≥ 0.75γ BφLφ , then

‖W i‖ ≤
√

KRmax

0.08γ Lφ

(159)

after i ≥ i0 = o(1/(αγ BφLφ )) iterations.

Proof: Taking the norms of both sides of (126) yields:

‖W i+1‖ =
∥∥∥CT (((1 − 2αρ)I − αHi ) W i +αd i )

∥∥∥
≤
∥∥∥CT
∥∥∥ ‖((1 − 2αρ)I − αHi ) W i +αd i‖

(a)≤ ‖((1 − 2αρ)I − αHi ) W i +αd i‖
≤ ‖(1 − 2αρ)I − αHi‖ ‖W i‖ + α ‖d i‖ (160)

where (a) follows from the fact that the singular values of
doubly-stochastic matrices are equal to one. Note that∥∥(1 − 2αρ)I − αHk,i

∥∥
=
∥∥∥(1 − 2αρ)I − αφ(μk,i )φ(μk,i )

T + αγφ(μk,i )φ(ηk,i+1)T
∥∥∥

=
∥∥∥(1 − 2αρ)I − α(1 − γ )φ(μk,i )φ(μk,i )

T

− αγφ(μk,i )
(
φ(μk,i )

T − φ(ηk,i+1)T
)∥∥∥

≤
∥∥∥(1 − 2αρ)I − α(1 − γ )φ(μk,i )φ(μk,i )

T
∥∥∥

+ αγ ‖φ(μk,i )‖
∥∥∥φ(μk,i )

T − φ(ηk,i+1)T
∥∥∥

(a)≤ (1 − 2αρ) + αγ ‖φ(μk,i )‖
∥∥∥φ(μk,i )

T − φ(ηk,i+1)T
∥∥∥

(b)≤ (1 − 2αρ) + αγ BφLφ

∥∥μk,i − ηk,i+1
∥∥

(c)≤ (1 − 2αρ) + αγ BφLφ

√
2 (161)

where (a) follows from the equality of spectral norm and
maximum eigenvalue for symmetric matrices, (b) follows
from Assumption 2, and (c) follows from the fact that the
mean-square distance cannot exceed 2 over the probability
simplex. The upper bound in (161) is smaller than 1 whenever
ρ > γ BφLφ/

√
2. Moreover,∥∥dk,i
∥∥ = ∥∥rk,iφ(μk,i )

∥∥ ≤ RmaxBφ. (162)

As a result, if ρ ≥ 0.75γ BφLφ , we get:

‖W i+1‖
(161)≤ (1 − 0.08αγ BφLφ ) ‖W i‖ + α ‖d i‖
(162)≤ (1 − 0.08αγ BφLφ ) ‖W i‖ + α

√
KRmaxBφ.

(163)

Iterating this recursion starting from i = 0 results in

‖W i+1‖ ≤ α
√

KRmaxBφ

i+1∑
j=1

(1 − 0.08αγ BφLφ )i+1− j

+ (1 − 0.08αγ BφLφ )i+1 ‖W0‖

≤
√

KRmax

0.08γ Lφ

+ (1 − 0.08αγ BφLφ )i+1 ‖W0‖

=
√

KRmax

0.08γ Lφ

+ o(1), (164)
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where the last step holds whenever

(1 − 0.08αγ BφLφ )i+1 ‖W0‖ = o(1)

⇐⇒ i log(1 − 0.08αγ BφLφ ) = o(1)

⇐⇒ i ≥ o(1)

log(1 − 0.08αγ BφLφ )
≥ o

(
1

αγ BφLφ

)
.

(165)
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policy evaluation in distributed reinforcement learning over networks,”
Automatica, vol. 136, 2022, Art. no. 110092.

[28] Y. Lin, G. Qu, L. Huang, and A. Wierman, “Multi-agent reinforcement
learning in stochastic networked systems,” in Proc. Adv. Neural Inf.
Process. Syst., 2021, vol. 34, pp. 7825–7837.

[29] G. Wang, S. Lu, G. Giannakis, G. Tesauro, and J. Sun, “Decen-
tralized TD tracking with linear function approximation and its
finite-time analysis,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 13762–13772.

[30] J. Sun, G. Wang, G. B. Giannakis, Q. Yang, and Z. Yang, “Finite-
time analysis of decentralized temporal-difference learning with linear
function approximation,” in Proc. Int. Conf. Artif. Intell. Statist., 2020,
pp. 4485–4495.

[31] Q. Lin and Q. Ling, “Decentralized TD(0) with gradient tracking,” IEEE
Signal Process. Lett., vol. 28, no. 4, pp. 723–727, Apr. 2021.

[32] A. Mahajan and M. Mannan, “Decentralized stochastic control,” Ann.
Operations Res., vol. 241, no. 1–2, pp. 109–126, 2016.

[33] A. A. Malikopoulos, “On team decision problems with nonclassical
information structures,” IEEE Trans. Autom. Control, early access, Jul.
29, 2022, doi: 10.1109/TAC.2022.3195126.

[34] S Yuksel, “Stochastic nestedness and the belief sharing information
pattern,” IEEE Trans. Autom. Control, vol. 54, no. 12, pp. 2773–2786,
Dec. 2009.

[35] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochas-
tic control with partial history sharing: A common information ap-
proach,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1644–1658,
Jul. 2013.

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[37] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Trans. Autom. Control,
vol. 42, no. 5, pp. 674–690,1997, doi: 10.1109/9.580874.

[38] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Learning without state-
estimation in partially observable markovian decision processes,” in
Proc. Mach. Learn., 1994, pp. 284–292.

[39] A. Rodriguez, R. Parr, and D. Koller, “Reinforcement learning using
approximate belief states,” in Proc. Adv. Neural Inf. Process. Syst.,
1999, vol. 12, pp. 1036–1042.

[40] H. Kimura, K. Miyazaki, and S. Kobayashi, “Reinforcement learning
in POMDPs with function approximation,” in Proc. Int. Conf. Mach.
Learn., 1997, vol. 97, pp. 152–160.

[41] Q. Cai, Z. Yang, and Z. Wang, “Reinforcement learning from partial
observation: Linear function approximation with provable sample effi-
ciency,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 2485–2522.

[42] Y. Li, Y. Tang, R. Zhang, and N. Li, “Distributed reinforcement learn-
ing for decentralized linear quadratic control: A derivative-free policy
optimization approach,” IEEE Trans. Autom. Control, vol. 67, no. 12,
pp. 6429–6444, Dec. 2022.

[43] H. Wang, S. Lin, H. Jafarkhani, and J. Zhang, “Distributed Q-learning
with state tracking for multi-agent networked control,” in Proc. Int.
Conf. Auton. Agents Multi-Agent Syst., 2021, pp. 1692–1694.

144 VOLUME 2, 2023

https://dx.doi.org/10.1109/TAC.2022.3195126
https://dx.doi.org/10.1109/9.580874


[44] A. Mahajan, N. C. Martins, M. C. Rotkowitz, and S. Yüksel, “Infor-
mation structures in optimal decentralized control,” in Proc. IEEE 51st
Conf. Decis. Control, 2012, pp. 1291–1306.

[45] N. Saldi and S. Yüksel, “Geometry of information structures, strate-
gic measures and associated stochastic control topologies,” Probability
Surv., vol. 19, pp. 450–532, 2022.

[46] J. Arabneydi and A. Mahajan, “Reinforcement learning in decentralized
stochastic control systems with partial history sharing,” in Proc. IEEE
Amer. Control Conf., 2015, pp. 5449–5456.

[47] A. Nayyar and D. Teneketzis, “Common knowledge and sequen-
tial team problems,” IEEE Trans. Autom. Control, vol. 64, no. 12,
pp. 5108–5115, Dec. 2019.

[48] M. Kayaalp, V. Bordignon, S. Vlaski, and A. H. Sayed, “Hidden
Markov modeling over graphs,” in Proc. IEEE Data Sci. Learn. Work-
shop, 2022, pp. 1–6.

[49] M. Kayaalp, V. Bordignon, S. Vlaski, V. Matta, and A. H. Sayed, “Dis-
tributed Bayesian learning of dynamic states,” 2022, arXiv:2212.02565.
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