
Policy-Gradient Algorithms for

Partially Observable Markov

Decision Processes

Douglas Alexander Aberdeen

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

April 2003

c© Douglas Alexander Aberdeen

Typeset in Computer Modern by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Douglas Alexander Aberdeen

25 April 2003

Acknowledgements

Academic

Primary thanks go to Jonathan Baxter, my main advisor, who kept up his supervision

despite going to work in the “real world.” The remainder of my panel was Sylvie

Thiébaux, Peter Bartlett, and Bruce Millar, all of whom gave invaluable advice. Thanks

also to Bob Edwards for constructing the “Bunyip” Linux cluster and co-authoring the

paper that is the basis of Chapter 11.

I thank Professors Markus Hegland, Sebastian Thrun, Shie Mannor, Alex Smola,

Brian Anderson and Yutaka Yamamoto for their time and comments. Thanks also to

Phillip Williams for mathematical assistance.

Nine of my most productive months were spent at Carnegie Mellon University.

Thank-you to the people that made that experience possible, especially Sebastian

Thrun and Diane Stidle.

The money came from the Australian government in the form of an Australian Post-

graduate Award, and from the Research School of Information Science and Engineering

at the ANU.

Sanity

Working on one project for several years is bound to lead to periods when you wish you

were doing anything else but your project. Thanks to my friends and family for being

there to take my mind to happier places during those periods. In particular, my parents

Sue and Allan, Hilary McGeachy and “that lot,” Belinda Haupt, John Uhlmann, and

Louise Sutherland. Also, my two Aussie mates in Pittsburgh who housed me and kept

me smiling: Vijay Boyapati and Nigel Tao.

My fellow students must be thanked for their roles as idea sounding boards and

sympathetic ears. Especially Cheng Soon Ong, Ed Harrington, and Dave Davies, who

all proof-read parts of this thesis.

Abstract

Partially observable Markov decision processes are interesting because of their ability

to model most conceivable real-world learning problems, for example, robot navigation,

driving a car, speech recognition, stock trading, and playing games. The downside of

this generality is that exact algorithms are computationally intractable. Such compu-

tational complexity motivates approximate approaches. One such class of algorithms

are the so-called policy-gradient methods from reinforcement learning. They seek to

adjust the parameters of an agent in the direction that maximises the long-term aver-

age of a reward signal. Policy-gradient methods are attractive as a scalable approach

for controlling partially observable Markov decision processes (POMDPs).

In the most general case POMDP policies require some form of internal state, or

memory, in order to act optimally. Policy-gradient methods have shown promise for

problems admitting memory-less policies but have been less successful when memory

is required. This thesis develops several improved algorithms for learning policies with

memory in an infinite-horizon setting. Directly, when the dynamics of the world are

known, and via Monte-Carlo methods otherwise. The algorithms simultaneously learn

how to act and what to remember.

Monte-Carlo policy-gradient approaches tend to produce gradient estimates with

high variance. Two novel methods for reducing variance are introduced. The first uses

high-order filters to replace the eligibility trace of the gradient estimator. The second

uses a low-variance value-function method to learn a subset of the parameters and a

policy-gradient method to learn the remainder.

The algorithms are applied to large domains including a simulated robot navigation

scenario, a multi-agent scenario with 21,000 states, and the complex real-world task of

large vocabulary continuous speech recognition. To the best of the author’s knowledge,

no other policy-gradient algorithms have performed well at such tasks.

The high variance of Monte-Carlo methods requires lengthy simulation and hence

a super-computer to train agents within a reasonable time. The ANU “Bunyip” Linux

cluster was built with such tasks in mind. It was used for several of the experimental

results presented here. One chapter of this thesis describes an application written for

the Bunyip cluster that won the international Gordon-Bell prize for price/performance

in 2001.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Why Study POMDPs? . 1

1.1.2 Our Approach . 4

1.2 Thesis Contributions . 6

1.3 Notation . 9

2 Existing POMDP Methods 11

2.1 Modelling the World as a POMDP . 11

2.2 Agents with Internal State . 13

2.3 Long-Term Rewards . 15

2.4 Methods for Solving MDPs . 16

2.5 Learning with a Model . 18

2.5.1 Exact Methods . 18

2.5.1.1 Belief States . 19

2.5.1.2 Value Function Representation 20

2.5.1.3 Policy Representation 21

2.5.1.4 Complexity of Exact Methods 22

2.5.2 Approximate Value Function Methods 23

2.5.2.1 Heuristics for Exact Methods 23

2.5.2.2 Grid Methods . 24

2.5.3 Factored Belief States . 25

2.5.3.1 Efficiently Monitoring Belief States 26

2.5.3.2 Factored Value Functions 26

2.5.4 Classical Planning . 27

2.5.5 Simulation and Belief States . 27

2.5.6 Continuous State and Action Spaces 28

2.5.7 Policy Search . 29

x Contents

2.5.8 Hybrid Value-Policy Methods . 30

2.6 Learning Without a Model . 31

2.6.1 Ignoring Hidden State . 31

2.6.2 Incorporating Memory . 32

2.6.2.1 HMM Based Methods 32

2.6.2.2 Finite History Methods 33

2.6.2.3 RNN Based Methods 34

2.6.2.4 Evolutionary Methods 35

2.6.2.5 Finite State Controllers 36

2.6.3 Policy-Gradient Methods . 38

2.7 Further Issues . 40

2.7.1 Variance Reduction for POMDP Methods 40

2.7.1.1 Importance Sampling 40

2.7.1.2 Reward Baselines . 41

2.7.1.3 Fixed Random Number Generators 41

2.7.2 Multi-Agent Problems . 42

2.8 Summary . 42

3 Stochastic Gradient Ascent of FSCs 47

3.1 The Global-State Markov Chain . 47

3.2 Conditions for the Existence of ∇η . 48

3.3 Generating Distributions with the Soft-Max Function 50

3.4 Agent Parameterisations . 51

3.4.1 Lookup Tables . 51

3.4.2 Artificial Neural Networks . 51

3.5 Conjugate Gradient Ascent . 53

3.6 Summary . 53

4 Model-Based Policy Gradient 55

4.1 Computing ∇η with Internal State . 55

4.2 The GAMP Algorithm . 58

4.3 Asymptotic Convergence of GAMP . 60

4.4 GAMP in Practice . 62

4.5 A Large Multi-Agent Problem . 63

4.5.1 Experimental Protocol . 64

4.5.2 Results . 65

4.6 Discussion . 66

4.7 Related Work . 67

Contents xi

4.8 Summary . 67

5 Model-Free Policy Gradient 69

5.1 Gathering Experience from the World 69

5.2 The IState-GPOMDP Algorithm . 70

5.3 Complexity of IState-GPOMDP . 72

5.3.1 Per Step Complexity . 72

5.3.2 Mixing Time . 73

5.4 Summary . 73

6 Internal Belief States 77

6.1 Hidden Markov Models for Policy Improvement 77

6.1.1 Predicting Rewards . 78

6.1.2 The IOHMM-GPOMDP Algorithm 78

6.1.2.1 Augmenting Policies with IOHMMs 78

6.1.2.2 Training Using IOHMM-GPOMDP 81

6.1.3 Convergence of the IOHMM-GPOMDP Algorithm 83

6.1.4 Drawbacks of the IOHMM-GPOMDP Algorithm 84

6.2 The Exp-GPOMDP Algorithm . 86

6.2.1 Complexity of Exp-GPOMDP . 87

6.2.2 An Alternative Exp-GPOMDP Algorithm 89

6.2.3 Related Work . 89

6.3 Summary . 90

7 Small FSC Gradients 93

7.1 Zero Gradient Regions of FSCs . 93

7.2 Sparse FSCs . 95

7.3 Empirical Effects of Sparse FSCs . 97

7.3.1 Random Weight Initialisation . 97

7.3.2 Changing the Out-Degree . 99

7.4 Summary . 99

8 Empirical Comparisons 101

8.1 Load/Unload . 101

8.1.1 Experimental Protocol . 102

8.1.2 Results . 103

8.2 Heaven/Hell . 104

8.2.1 Experimental Protocol . 105

8.2.2 Results . 107

xii Contents

8.2.3 Discounted GAMP . 108

8.3 Pentagon . 110

8.3.1 Experimental Protocol . 110

8.3.2 Results . 112

8.4 Summary . 114

9 Variance Reduction 117

9.1 Eligibility Trace Filtering . 117

9.1.1 Arbitrary IIR Trace Filters . 118

9.1.2 Convergence with IIR Trace Filters 119

9.1.3 Preliminary Experiments . 120

9.1.3.1 Experimental Protocol 121

9.1.3.2 Results . 122

9.2 GPOMDP-SARSA Hybrids . 125

9.3 Importance Sampling for IState-GPOMDP 125

9.4 Fixed Random Number Generators . 126

9.4.1 Application to Policy-Gradient Methods 127

9.4.2 Caveat: Over-Fitting . 127

9.5 Summary . 128

10 Policy-Gradient Methods for Speech Processing 131

10.1 Classifying Non-Stationary Signals with POMDPs 131

10.2 Classifying HMM Generated Signals . 133

10.2.1 Agent Parameterisation . 134

10.2.1.1 Policy Parameterisation 134

10.2.1.2 FSC Parameterisation 134

10.2.2 Classifying Pre-Segmented Signals 135

10.2.2.1 Experimental Protocol 136

10.2.2.2 Results . 139

10.2.3 Classifying Unsegmented Signals 141

10.2.3.1 Experimental Protocol 141

10.2.3.2 Results . 142

10.3 Phoneme level LVCSR . 143

10.3.1 Training Procedure . 143

10.3.1.1 Learning Emission Likelihoods 144

10.3.1.2 Learning Transition Probabilities 147

The Viterbi Algorithm . 147

Exp-GPOMDP using Viterbi Probabilities 148

Contents xiii

Computing the Gradient 150

Reward Schedule . 152

Summary of Transition Probability Training 154

10.3.1.3 Eligibility Trace Filtering for LVCSR 154

10.3.2 LVCSR Experiments . 157

10.3.2.1 Emission Training Protocol 157

10.3.2.2 Emission Training Results 158

10.3.2.3 Trace Filtering Protocol 158

10.3.2.4 Trace Filtering Results 159

10.3.2.5 Transition Probability Training Protocol 160

10.3.2.6 Transition Probability Training Results 161

10.3.3 Discussion . 162

10.4 Summary . 163

11 Large, Cheap Clusters: The 2001 Gordon-Bell Prize 165

11.1 Ultra Large Scale Neural Networks . 165

11.2 “Bunyip” . 166

11.2.1 Hardware Details . 167

11.2.2 Total Cost . 167

11.3 Emmerald: An SGEMM for Pentium III Processors 168

11.3.1 Single Precision General Matrix-Matrix Multiply (SGEMM) . . . 169

11.3.2 SIMD Parallelisation . 170

11.3.3 Optimisations . 172

11.3.4 Emmerald Experimental Protocol 172

11.3.5 Results . 173

11.4 Training Neural Networks using SGEMM 173

11.4.1 Matrix-Matrix Feed Forward . 174

11.4.2 Error Back Propagation . 174

11.4.3 Training Set Parallelism . 176

11.5 Using Bunyip to Train ULSNNs . 177

11.6 Japanese Optical Character Recognition 178

11.6.1 Experimental Protocol . 178

11.6.2 Results . 179

11.6.2.1 Classification Accuracy 179

11.6.2.2 Communication Performance 180

11.6.2.3 Price/Performance Ratio 181

11.7 Summary . 181

xiv Contents

12 Conclusion 183

12.1 Key Contributions . 183

12.2 Long-Term Future Research . 183

Glossary of Symbols 187

A Proofs 189

A.1 GAMP Proofs . 189

A.1.1 Proof of Theorem 2 . 189

A.1.2 Proof of Theorem 3 . 193

A.2 IState-GPOMDP Proofs . 194

A.2.1 Proof of Theorem 5 . 194

A.2.2 Proof of Theorem 4 . 195

A.3 Zero-Gradient Regions of FSC Agents 197

A.3.1 Conditions for Zero Gradients . 198

A.3.2 Conditions for Perpetual Zero Gradient 200

A.4 FIR Trace Filter Proofs . 205

A.4.1 Proof of Theorem 8 . 205

A.4.2 Proof of Theorem 7 . 207

A.5 Proof of Theorem 9 . 208

B Gradient Ascent Methods 211

B.1 The GSEARCH Algorithm . 211

B.2 Quadratic Penalties . 213

C Variance Reduction Continued 217

C.1 GPOMDP-SARSA Hybrid Details . 217

C.1.1 The SARSA(λ) Algorithm . 217

C.1.2 The IGPOMDP-SARSA Algorithm 218

C.1.3 Convergence of IGPOMDP-SARSA 221

C.1.4 Preliminary Experiments . 221

C.1.4.1 Experimental Protocol 221

C.1.4.2 Results . 222

C.1.5 Discussion . 222

C.2 Over-Fitting on Fixed Random Sequences 223

C.2.1 Experimental Protocol . 225

C.2.2 Results . 225

C.2.3 Discussion . 225

Contents xv

D Hidden Markov Models 229

D.1 Standard Hidden Markov Models . 229

D.1.1 The Baum-Welch Algorithm . 231

D.1.2 The Viterbi Algorithm . 233

D.2 Input/Output HMMs . 235

E Discriminative and Connectionist Speech Processing 239

E.1 Overview . 239

E.2 The Speech Problem . 240

E.3 Discriminative Methods for ANN and HMM training 242

E.3.1 Maximum Mutual Information 242

E.3.1.1 Gradient Descent for MMI 244

E.3.1.2 MMI for HMMs . 245

E.3.2 Minimum Classification Error . 246

E.3.2.1 Gradient Descent for MCE 246

E.3.2.2 MCE for HMMs . 247

E.3.3 Results Comparison . 247

E.4 Neural Network Speech Processing . 248

E.4.1 Big, Dumb, Neural Networks . 250

E.4.1.1 Alternative Cost Functions for MAP Estimation 251

E.4.1.2 Implementation Issues 251

E.4.2 Time-Delay Neural Networks . 252

E.4.3 Recurrent Neural Networks . 252

E.4.3.1 Modelling Likelihoods with RNNs 254

E.4.3.2 Bi-Directional Neural Networks 254

E.4.4 Representing HMMs as ANNs . 254

E.4.5 Alphanets . 255

E.4.6 Other uses of Neural Networks for Speech 256

E.5 Hybrid Speech Processing . 256

E.5.1 Estimating Observation Densities with ANNs 257

E.5.1.1 MAP Estimation with ANN/HMM Hybrids 258

E.5.2 Global Optimisation of ANN/HMM Hybrids 258

E.6 Summary . 259

F Speech Experiments Data 261

F.1 Cases for HMM classification . 261

F.2 Bakis Model Signal Segmentation . 262

F.2.1 Experimental Protocol . 262

xvi Contents

F.2.2 Results . 263

F.3 TIMIT Phoneme Mapping . 264

G Bunyip Communication 265

G.1 Communication Costs . 265

G.2 Optimising Reductions . 266

Chapter 1

Introduction

The question of whether a computer can think is no

more interesting than the question of whether a sub-

marine can swim.

—Edsger W. Dijkstra

The ultimate goal of machine learning is to be able to place an agent in an unknown

setting and say with confidence “go forth and perform well.” This thesis takes a step

toward such a goal, implementing novel finite-memory policy-gradient methods within

the framework of partially observable Markov decision processes.

1.1 Motivation

The framework of partially observable Markov decision processes, or POMDPs, is so

general and flexible that devising a “real world” learning problem that cannot be cast

as a POMDP is a challenge in itself. We now introduce POMDPs by example, exploring

the difficulties involved with learning within this framework.

1.1.1 Why Study POMDPs?

To introduce POMDPs let us consider an example based on the work of McCallum

[1996], where an agent learns to drive a car in New York. The agent can look forward,

backward, left or right. It cannot change speed but it can steer into the lane it is

looking at. Observations from the world take multiple forms. One task of the agent is

to learn to fuse or ignore different forms as appropriate. Different types of observation

in the New York driving scenario include:

• the direction in which the agent’s gaze is directed;

• the closest object in the agent’s gaze;

• whether the object is looming or receding;

• the colour of the object;

• whether a horn is sounding.

2 Introduction

gaze

Figure 1.1: The agent is in control of the middle car. The car behind is fast and will not

slow down. The car ahead is slower. To avoid a crash the agent must steer right. However,

when the agent is gazing to the right, there is no immediate observation that tells it about the

impending crash.

To drive safely the agent must steer out of its lane to avoid slow cars ahead and fast

cars behind, as depicted in Figure 1.1. This is not easy when the agent has no explicit

goals beyond “performing well,” and no knowledge of how the observations might aid

performance. There are no explicit training patterns such as “if there is a car ahead

and left, steer right.” However, a scalar reward at each time step is provided to the

agent as a performance indicator. The agent is penalised for colliding with other cars

or the road shoulder. The only goal hard-wired into the agent is that it must maximise

a long-term measure of the rewards.

Two significant problems make it difficult to learn under these conditions. The first

is solving the temporal credit assignment problem. If our agent hits another car and

is consequently penalised, how does the agent reason about which sequence of actions

should not be repeated, and in which circumstances? For example, it cannot assume

that the last action: “change lane,” was solely responsible because the agent must

change lanes in some circumstances.

The second problem is partial observability. If the agent is about to hit the car

ahead of it, and there is a car to the left, then circumstances dictate the agent should

steer right. However, when the agent looks right in preparation for the lane change, it

no longer receives sensory information about the cars ahead or to its left. There is no

§1.1 Motivation 3

immediate sensory impetus for the lane change. Alternatively, if the agent has memory

then it builds up knowledge of the state of the world around it and it remembers that

it needs to make the lane change.

Partial observability takes two forms: absence of important state information in

observations and extraneous information in observations. The agent must use memory

to compensate for the former, and learn to ignore the latter. For our car driving agent

the colour of the object in its gaze is extraneous (unless red cars really do go faster)

If the agent has access to the complete state — such as a chess playing machine

that can view the entire board — it can choose optimal actions without memory. This

is possible because of the Markov property which guarantees that the future state of

the world is simply a function of the current state and action.

This driving example is non-trivial yet easily breaks down into the simple compo-

nents of a POMDP:

• world state: the position and speed of the agent’s car and all other cars;

• observations: hearing a horn honk or observing a slow car ahead;

• memory (agent state): remembering out-of-gaze car locations;

• actions: shifting gaze and steering;

• rewards: penalties for collisions.

To emphasise the generality of the POMDP model, consider the following real-life

learning problems in a POMDP framework:

• Learning to walk. Babies learn to walk by observing other people do it, imi-

tating them, and being rewarded by the attention of their parents or their ability

to reach up to the chocolate cake on the kitchen bench.

• Learning to understand speech. Babies learn to understand the sounds they

hear and respond in kind. Temporal credit assignment is hard. For example, it

is difficult to associate being chastised with the action of stealing the chocolate

cake half-an-hour before. These abstract examples can be made more concrete

by considering how to teach robots to walk and understand human speech.

• Maximising the yield of a manufacturing plant [Smallwood and Sondik,

1973]. Decisions about how often to test manufacturing equipment, or how often

to replace parts, affect the yield of the plant. Waiting too long causes expensive

delays while failures are fixed. Replacing and testing too often is also costly. Par-

tial observability arises because the presence of faulty equipment might only be

4 Introduction

observable through a high failure rate at quality check points. The instantaneous

reward is the yield of the plant during the last time period.

The generality of POMDPs makes the learning problem inherently difficult. Markov

Decision Processes (MDPs) and early POMDP methods made assumptions that sim-

plified the problem dramatically. For example, MDPs assume the state of the world is

known (full observability), or that the dynamics of the world are completely known.

As algorithms have become more sophisticated, and computers faster, the number of

simplifying assumptions have been reduced.

However, the problem of finding the optimal policy given partial observability is

PSPACE-hard [Cassandra, 1998], with exact algorithms running in exponential time

and polynomial space in the number of state variables and observations. This motivates

the use of three of the approximations applied in this thesis: a fixed number of bits of

memory, the use of function approximators for controlling memory and actions, and

local optimisation.

Because POMDP algorithms learn from rewards they are sometimes collectively

referred to as reinforcement learning. Provided the reward signal is constructed care-

fully, agents will not be biased toward a particular way of achieving the goal; they

can learn concepts that their programmers had never thought of. POMDP methods

therefore have great potential in domains where human understanding is incomplete or

vague. Examples include learning to play games [Tesauro, 1994, Baxter et al., 2001b],

network routing [Tao et al., 2001], call admission control [Baxter et al., 2001a], simulat-

ing learning in the brain [Barlett and Baxter, 1999], medical diagnosis and treatment

[Smallwood et al., 1971], and moving target tracking [Pollock, 1970]. In Chapter 10 we

will examine speech recognition as a difficult and novel application of POMDPs.

On the other hand, supervised machine learning methods such as error back prop-

agation only learn concepts embedded in training patterns: they are only as good as

their teacher. Tesuro [1990] trained the NeuroGammon system using previously played

games as training examples. This system reached a high intermediate level. The use of

explicitly supervised learning limited NeuroGammon to tactics captured by the training

examples, ensuring it never developed original and superior tactics. The next attempt

was TD-Gammon [Tesauro, 1994] which used reinforcement learning. This resulted in

a world champion backgammon machine.

1.1.2 Our Approach

We present four algorithms for training agents in the POMDP framework. The first

algorithm assumes knowledge of the probability distributions governing world state

transitions and observations. The others sit in the hardest class of POMDPs: those

§1.1 Motivation 5

where information can only be gathered through interacting with the world and where

memory is required to perform well. The algorithms all share three features:

1. Finite state controllers for agent memory. The agent has a finite set of

memory states, or internal states. When the agent receives an observation it

can make a transition from one internal-state to another. During training the

agent learns to control these transitions so that the internal states provide useful

information about past observations and actions. Key advantages of this method

over others are:

• the ability to remember key events indefinitely;

• the ability to ignore irrelevant events;

• per-step complexity that is at worst quadratic in the number of world states,

actions, observations, and internal states.

2. Gradient ascent of the long-term average reward. The agent’s behaviour

depends on a set of internal parameters. Our goal is to adjust these parameters to

maximise the long-term average reward. We do this by estimating the gradient

of the long-term average reward with respect to the agent parameters. Some

parameters control the internal-state transitions, and others control the actions

the agent chooses at each time step. Key advantages of this method are:

• convergence to at least a local maximum is assured under mild conditions;

• the agent learns to choose correct actions without the complex intermediate

step of learning the value of each action;

• system memory usage that is proportional to the number of internal param-

eters rather than the complexity of the POMDP.

Potential disadvantages of gradient ascent methods include:

• many trials or simulations of the scenario may be needed to achieve conver-

gence;

• we cannot usually guarantee convergence to the global maximum.

The first disadvantage arises from problems such as high-variance in the gradient

estimates. This thesis looks at several methods to reduce the number of trials

needed. The second disadvantage is typical of local optimisation and we accept

this approximation to reduce the algorithmic complexity.

3. Infinite-horizon rewards. The temporal credit assignment problem can be

solved in two ways: (1) model the system with at least one recurring state that

6 Introduction

bounds the implications of actions on the reward, (2) introduce an “effective

horizon” that is tuned to the problem. The first solution corresponds to the

finite-horizon assumption, essentially saying that the POMDP is guaranteed to

reset itself periodically. The second solution is the infinite-horizon setting, which

is more general because it does not require that an observable recurrent state can

be identified, or even that one exists. The recurrent state must be observable

so that the agent can reset its credit assignment mechanism when the state is

encountered. Even when observable recurrent states can be identified, they may

occur so infrequently that algorithms that use the finite-horizon assumption may

perform poorly.

Effective horizons can be introduced by assuming the reward received was in

response to a “recent” action. Alternatively, higher order filters can encode in-

formation about the credit assignment problem. The most common approach is

to assume that rewards are exponentially more likely to be due to recent actions.

Effective horizons satisfy our intuition that we can learn to act well by observing

a short window of the overall task. Consider learning to play a card game at a

casino. The game may go on indefinitely but a few hands are sufficient to teach

someone the basics of the game. Many hands give a player sufficient experience

to start to reasoning about long-term strategy.

Chapter 2 will review alternative approaches to implementing memory and training

agents.

1.2 Thesis Contributions

This section summarises the contributions of the thesis, simultaneously outlining the

rest of the document. Chapter 2 provides a formal introduction to partially observable

Markov decision processes, describing historical approaches and placing our work in

context. Chapter 3 states some mild assumptions required for convergence of stochas-

tic gradient ascent and describes how they can be satisfied. Chapters 4 to 6 introduce

our novel policy-gradient algorithms. Chapters 7 and 8 provide some practical im-

plementation details and experimental comparisons. The remaining three chapters are

largely independent, presenting variance reduction methods, applications of our policy-

gradient methods to speech recognition, and fast training using the “Bunyip” Beowulf

cluster. The research contributions of each chapter are:

• Chapter 4:

– We introduce the GAMP algorithm for approximating the gradient of the

long-term average reward when a discrete model of the world is available. It

§1.2 Thesis Contributions 7

uses a series matrix expansion of the expression for the exact gradient. The

algorithm works in the infinite-horizon case, uses finite state controllers for

memory, and does not need to gather experience through world interactions.

The algorithm takes advantage of sparse POMDP structures to scale to tens-

of-thousands of states.

– Using GAMP we demonstrate that a noisy multi-agent POMDP with 21,632

states can be solved in less than 30 minutes on a modern desktop computer.

• Chapter 5:

– This chapter introduces IState-GPOMDP, an algorithm that approximates

the gradient when a model of the world is not available. In this case learning

can only proceed by interacting with the world. It scales to uncountable

state and action spaces and operates in an infinite-horizon setting. This is

in contrast to similar previous algorithms that are restricted to finite-horizon

tasks. The complexity of each step does not depend on the size of the state

space and is linear in the number of internal states.

• Chapter 6:

– The IOHMM-GPOMDP algorithm uses hidden Markov models (HMMs) to

estimate the state hidden by partial observability. Existing methods that

use HMMs ignore the most useful indicator of performance: the reward.

IOHMM-GPOMDP learns to predict rewards, thus revealing the hidden state

that is relevant to predicting the long-term average reward.

– IState-GPOMDP gathers experience using a single trajectory through world

states and internal states. Exp-GPOMDP is an alternative that still samples

world states but takes the expectation over all internal-state trajectories.

This reduces the variance of gradient estimates at the cost of making the

per step complexity quadratic in the number of internal states.

• Chapter 7:

– The literature devoted to finite state controller (FSC) methods uses toy

examples with a few tens of states and one or two bits of memory. We

analyse why existing policy-gradient based FSC methods fail to scale to

more interesting scenarios. This analysis suggests a method for scaling to

larger POMDPs by using sparse FSCs.

8 Introduction

• Chapter 8:

– We present empirical results on a variety of POMDPs, some larger than

previous FSC results in the literature, demonstrating the use of sparse FSC

methods on difficult scenarios.

• Chapter 9:

– We introduce two novel methods that reduce the variance of gradient es-

timates. The first details how to estimate gradients using infinite impulse

response filters to encode domain knowledge. The second proposes learning

a subset of the parameters with value-function methods to take advantage

of their relatively low variance.

– The application of an existing variance reduction method to our gradient

estimates is described. This method uses a fixed sequence of random num-

bers to perform Monte-Carlo estimates. Our investigation shows that this

method must be used with care because it can introduce a form of over-

fitting.

• Chapter 10:

– We investigate the use of our algorithms on a large-scale, difficult, real-world

problem: speech recognition. We list some advantages of POMDP models

over existing speech frameworks. A series of experiments are conducted

starting with the simple problem of discriminating binary sequences, moving

onto discriminating between spoken digits, and ending with a foray into

large vocabulary connected speech recognition (LVCSR). We demonstrate

results that are competitive with methods using similar models but trained

traditionally.

• Chapter 11:

– The scale of problems such as LVCSR requires the use of super-computing

time. Our small budget demanded ingenuity in constructing a cost-effective

super-computer. We outline the hardware and software behind the team

effort that won a Gordon-Bell prize in 2001, creating the world’s first sub

USD $1 per MFlop/s super-computer: the “Bunyip” Beowulf-cluster. This

cluster was used for many of the experiments in this thesis.

Each chapter contains its own summary and ideas for future work, so we conclude in

Chapter 12 with a vision of how disparate state-of-the-art methods for POMDPs could

be combined to achieve a powerful and practical learning system.

§1.3 Notation 9

1.3 Notation

This section describes notation conventions and shortcuts used throughout the thesis.

Calligraphic letters refer to a set and an element of that set is represented by the

corresponding lowercase letter. A concession to convention is the set of states S with

elements represented by i ∈ S. When two elements of the same set are referred to, the

second element uses the next letter in the alphabet, or a time subscript, to distinguish

them. For example, g ∈ G, h ∈ G or gt ∈ G, gt+1 ∈ G. Summations over multiple

sets will often just use the subscripts to indicate which sets the summation is over, for

example, ∑

i,g

means
∑

i∈S

∑

g∈G

.

Functions of the form µ(u|θ, h, y) should be understood as the probability of event

u ∈ U as a function of the variables to the right of the ‘|’. If one of the variables is

omitted we mean that the probability of u is independent of that variable, for example,

µ(u|θ, y) means h plays no part in evaluating the probability of u in the context of

the surrounding material. The quantities θ ∈ Rnθ and φ ∈ Rnφ represent vectors of

adjustable parameters.

Much of this work is concerned with state transitions and trajectories of states.

The former will usually be discussed with consecutive alphabetic letters, for example,

a transition from state i to state j. When talking about trajectories we use the first

letter and time subscripts, for example, a transition from state it to state it+1. Thus

ω(h|φ, g, y) means the same thing as ω(gt+1|φ, gt, yt) except the former could be any

transition in the trajectory and the latter is the transition at time t.

Uppercase letters always refer to matrices. Lowercase letters can refer to scalars or

column vectors. Subscripts generally refer to a value at time t, for example, it means

the value of i at time t. When referring to the value of the i’th element of the vector a

at time t we use the notation at(i). Occasional exceptions to any of these conventions

will be clarified in the text. Page 187 contains a glossary of the main symbols used

throughout the text.

10 Introduction

Chapter 2

Existing POMDP Methods

Oh yes, and don’t forget the other important rule

of CS dissertations construction: always include a

quote from Lewis Carroll.

—Spencer Rugaber

In this chapter we introduce our view of agents interacting with the world. Past

approaches are discussed and we motivate our use of finite-memory policy-gradient

methods as a means of training agents. The chapter covers a broad range of algorithms,

forming a snapshot of research into POMDPs.

After formalising the framework that we will use throughout this thesis, Section 2.5

discusses exact and approximate methods for solving POMDPs when the underlying

POMDP parameters are known. Section 2.6 discusses methods that assume these

parameters are not known. This thesis describes novel algorithms for both settings.

Section 2.7 describes miscellaneous methods for variance reduction and multi-agent

settings.

2.1 Modelling the World as a POMDP

Our setting is that of an agent taking actions in a world according to its policy. The

agent receives feedback about its performance through a scalar reward rt received at

each time step.

Definition 1. Formally, a POMDP consists of:

• |S| states S = {1, . . . , |S|} of the world;

• |U| actions (or controls) U = {1, . . . , |U|} available to the policy;

• |Y| observations Y = {1, . . . , |Y|};

• a (possibly stochastic) reward r(i) ∈ R for each state i ∈ S.

For ease of exposition we assume S,Y, and U are finite. Generalisations to un-

countably infinite cases are possible for many algorithms, however, the mathematics is

considerably more complex and unlikely to deepen our understanding of the underlying

12 Existing POMDP Methods

Agent

POMDP MDP

Partial Observability

world−

state

ν(yt|it)

it

r(it+1)

it+1

yt

rt+1

ut

q(it+1|it, u)

Figure 2.1: Diagram of the world perspective of POMDP showing the underlying MDP, and

the stochastic process ν(yt|it) mapping the current state it to an observation yt, thus hiding

the true state information.

algorithms. Baxter and Bartlett [2001] provide a convergence proof for uncountable

state and action spaces for the algorithm that is the parent of those in this thesis.

Each action u ∈ U determines a stochastic matrix [q(j|i, u)]i=1...|S|,j=1...|S|, where

q(j|i, u) denotes the probability of making a transition from state i ∈ S to state j ∈ S

given action u ∈ U . For each state i, an observation y ∈ Y is generated independently

with probability ν(y|i). The distributions q(j|i, u) and ν(y|i), along with a description

of the rewards, constitutes the model of the POMDP shown in Figure 2.1.

Conceptually, the world issues rewards after each state transition. Rewards may de-

pend on the action and the previous state rt+1 = r(it, ut); but without loss of generality

we will assume rewards are a function of only the updated state rt+1 = r(j) = r(it+1)

so that r1 is the first reward, received after the first action.1

If the state is not hidden, that is, there is an observation y for each world state

and ν(y|i) = 1 if y = i, then we are in the MDP setting. This setting is significantly

easier than the POMDP setting with algorithms running in time that is O(|S|2) per

iteration, or O(|S|3) for a closed form solution [Bellman, 1957]. MDP research was

the precursor to the study of POMDPs so in Section 2.4 we briefly mention some of

the most influential MDP algorithms. POMDPs may be episodic, where the task ends

upon the agent entering a state i∗ which is in the set of termination states S∗ ⊂ S.

1The more general case can be obtained by augmenting the state with information about the last
action (and optionally the last state), implicitly making the reward a function of the last action.

§2.2 Agents with Internal State 13

r = 1 0 0 0 0 1
U LN N N N

(a)

Left Right

L

U

UL

NULLNULL

(b)

Figure 2.2: 2.2(a) The Load/Unload scenario with 6 locations. The agent receives a reward

of 1 each time it passes through the unload location U, or the load locationL, after having

first passed through the opposite end of the road. In each state the agent has a choice of two

actions: either left or right. The three observations are Y = {U, N, L}, which are issued

in the unloading state, the intermediate states and the loading states respectively. 2.2(b) The

policy graph learned for the Load/Unload scenario. Each node represents an internal state.

The “Left” state is interpreted as: I have a load so move left, and the “Right” state as: I

dropped my load so move right. The dashed transitions are used during learning but not by the

final policy.

More generally, they may be infinite-horizon POMDPs that conceptually run forever.

2.2 Agents with Internal State

We have already asserted that agents generally require internal state, or memory, to

act well. To make this concept concrete, consider the Load/Unload scenario [Peshkin

et al., 1999] shown in Figure 2.2(a). The observations alone do not allow the agent to

determine if it should move left or right while it occupies the intermediate N observation

states. However, if the agent remembers whether it last visited the load or unload

location (1 bit of memory) then it can act optimally.

We now introduce a generic internal-state agent model that covers all existing

algorithms. We will use it to compare algorithms and introduce our novel algorithms.

The agent has access to a set of internal states g ∈ G = {1, . . . , |G|} (I-states for

short). Finite memory algorithms have finite G. Alternatively, exact infinite-horizon

algorithms usually assume infinite G.2 For example, one uncountable form of G is the

2It is an abuse of notation to write g ∈ G = {1, . . . , |G|} when G could be uncountably infinite,
however, we ignore this since it is immaterial to the discussion. Our algorithms assume G is finite.

14 Existing POMDP Methods

set of all belief states: distributions over world state occupancy in the |S| dimension

simplex. The cross product of the world-state space S and the internal-state space G

form the global-state space.

The agent implements a parameterised policy µ that maps observations y ∈ Y,

and I-states h ∈ G, into probability distributions over the controls U . We denote the

probability under µ of control u, given I-state h, observation y, and parameters θ ∈ Rnθ ,

by µ(u|θ, h, y). Deterministic policies emit distributions that assign probability 1 to

action ut and 0 to all other actions. Policies are learnt by searching the space of

parameters θ ∈ Rnθ .

The I-state evolves as a function of the current observation y ∈ Y, and I-state

g ∈ G. Specifically, we assume the existence of a parameterised function ω such that

the probability of making a transition to I-state h ∈ G, given current I-state g ∈ G,

observation y ∈ Y, and parameters φ ∈ Rnφ, is denoted by ω(h|φ, g, y). The I-state

transition function may be learnt by searching the space of parameters φ ∈ Rnφ.

An important feature of our model is that both the policy and the I-state transitions

can be stochastic.

Some algorithms do not learn the I-state transition function, fixing φ in advance.

Examples include the exact methods of Section 2.5.1, where we can write down the

equations that determine the next belief state from the previous belief state and cur-

rent observation. Algorithms that learn the internal-state transitions include the class

of methods we use in this thesis, that is, policy-gradient methods for learning finite

state controllers. Throughout this section we compare algorithms in terms of how the

ω(h|φ, g, y) and µ(u|θ, h, y) functions work and how they are parameterised. Tables 2.1

and 2.2 summarise these differences at the end of the chapter.

The agent’s view of the POMDP is represented by Figure 2.3. The POMDP evolves

as follows:

1. let i0 ∈ S and g0 ∈ G denote the initial state of the world and the initial I-state

of the agent respectively;

2. at time step t, generate an observation yt ∈ Y with probability ν(yt|it);

3. generate a new I-state gt+1 with probability ω(gt+1|φ, gt, yt);

4. generate action ut with probability µ(ut|θ, gt+1, yt);

5. generate a new world state it+1 with probability q(it+1|it, ut);

6. t = t+ 1, goto 2.

§2.3 Long-Term Rewards 15

I−state

Agent

µ(ut|θ, gt+1, yt)

ω(gt+1|φ, gt, yt)

g

World

rt+1

gt+1

yt ut

ν rQ

Figure 2.3: POMDP from the agent’s point of view. The dashed lines represent the extra

information available for model-based algorithms.

2.3 Long-Term Rewards

Our algorithms attempt to locally optimise θ ∈ Rnθ and φ ∈ Rnφ , maximising the

long-term average reward:

η(φ, θ, i, g) := lim
T→∞

1

T
Eφ,θ

[
T∑

t=0

r(it)|i0 = i, g0 = g

]
, (2.1)

where Eφ,θ denotes the expectation over all global trajectories {(i0, g0), . . . , (iT , gT)}

when the agent is parameterised by φ and θ. An alternative measure of performance

is the discounted sum of rewards, introducing a discount factor β ∈ [0, 1)

Jβ(φ, θ, i, g) := Eφ,θ

[
∞∑

t=0

βtr(it)|i0 = i, g0 = g

]
. (2.2)

The exponential decay of the impact of past rewards is equivalent to the assumption

that actions have exponentially decaying impact on the current performance of the

agent as time goes on. Alternatively, this can be viewed as the assumption that rewards

are exponentially more likely to be generated by the most recent actions.

We prefer the long-term average because it gives equal value to all rewards received

throughout the evolution of the POMDP. However, the discounted version is useful

because it allows the solution of the temporal credit assignment problem in infinite-

horizon POMDPs by enforcing an effective horizon [Sutton and Barto, 1998]. Fortu-

16 Existing POMDP Methods

nately, when the agent is suitably mixing, maximising one is equivalent to maximising

the other. Suitably mixing means that η(φ, θ, i, g) is independent of the starting state

(i, g) and so may be written η(φ, θ). In other words, the POMDP is ergodic. In this

case, there is also a unique stationary distribution over world/internal state pairs. The

conditions necessary to ensure ergodicity are mild and will be given in Chapter 3. We

denote the expectation over this stationary distribution with Ei,g. For ergodic POMDPs

the long-term average reward and the discounted reward are related by [Baxter and

Bartlett, 2001]

Ei,gJβ(θ, φ, i, g) =
1

1− β
Ei,gη(φ, θ, i, g).

2.4 Methods for Solving MDPs

In this section we describe dynamic programming methods that apply when the state is

fully observable, that is, the MDP setting. We will restrict ourselves to the discounted

reward setting though the methods can often also be applied to average rewards.

If we have a method of determining the long-term value of each state then the agent

can act by choosing the action that leads to the state with the highest value. The value

is the expected discounted reward for entering state i under the optimal policy. Bellman

[1957] describes a procedure known as dynamic programming (DP) which allows us to

determine the value J∗
β(i) for each state i ∈ S. We drop the dependency of J ∗

β(i) on

φ and θ for this section because DP computes the optimal value directly rather than

the value gained by a particular agent. The MDP assumption means that memory is

not necessary. This is equivalent to having a single internal state, making the memory

process ω(h|φ, g, y) trivial. Such agents are said to implement reactive policies. DP is

described by the Bellman equation, where β ∈ [0, 1) is a discount factor that weights

the importance of the instantaneous reward against the long-term reward

J∗
β(i) = max

u

r(i) + β

∑

j∈S

q(j|i, u)J∗
β (j)

 . (2.3)

Assuming we can store a value estimate for each state, DP proceeds by replacing J ∗
β(i)

with an estimate Jβ(i) and iterating

Jβ(i)← max
u

r(i) + β

∑

j∈S

q(j|i, u)Jβ(j)

 . (2.4)

In the limit as the number of iterations goes to infinity, Jβ(i) converges to J∗
β(i) [Bert-

§2.4 Methods for Solving MDPs 17

sekas and Tsitsiklis, 1996]. Once J ∗
β(i) is known the optimal policy is given by

u∗i = arg max
u

r(i) + β

∑

j∈S

q(j|i, u)J∗
β (j)

 .

To reflect full observability, and the absence of internal state, we write the policy as

µ(u|θ, i) instead of µ(u|θ, h, y). For MDPs the optimal µ is deterministic and equal to

µ(u|θ, i) = χu(u∗i), (2.5)

where χm(k) is the indicator function

χm(k) :=

1 if k = m,

0 otherwise.
(2.6)

Recall that the vector θ parameterises the policy. In the MDP case θ could represent the

value of each state i ∈ S or it could represent the mapping of states to actions derived

from those values. In the later case θ would be a vector of length |S|, representing a

table mapping states directly to the optimal action for that state. When the state and

action spaces are large we resort to some form of function approximator to represent

the table. For example, the parameters θ could be the weights of an artificial neural

network (ANN) that maps states to actions. Function approximation for DP was in

use by Bellman et al. [1963] and possibly earlier.

Iterating Equation (2.4) until convergence, and forming a policy from Equation (2.5)

is the basis of value iteration [Howard, 1960]. Alternatively, policy iteration [Bellman,

1957] learns the value of states under a particular agent, denoted Jβ,µ(i). Once the

value of the policy has been learnt the policy is updated to maximise Jβ,µ(i), followed

by a re-evaluation of Jβ,µ(i) under the new policy. This is repeated until the policy does

not change during maximisation. Policy iteration resembles Expectation-Maximisation

(EM) methods [Dempster et al., 1977] because we estimate the expected value for state

i, then alter the policy to maximise the expected value for i.

Evaluating (2.4) has complexity O(|U||S|2) per step which, while polynomial, is

infeasible for very large state spaces. Also, the transition probabilities q(j|i, u), which

are part of the model, may not always be available. These two observations moti-

vate Monte-Carlo methods for computing J ∗
β(i). These methods learn by interacting

with the world and gathering experience about the long-term rewards from each state.

Q-learning is one algorithm for learning value function Q(i, u) : S × U 7→ R, which

represents the value of taking action u in state i and then acting optimally. It is sum-

marised by the following update rule [Sutton et al., 1999] that introduces a step size

18 Existing POMDP Methods

γt ∈ [0, 1)

Q(it, ut)← Q(it, ut) + γt[rt+1 + βmax
u′

Q(it+1, u
′)−Q(it, ut)],

which states that the value Q(it, ut) should be updated in the direction of the error

[rt+1 + βmaxu′ Q(it+1, u
′)] − Q(it, ut). The values converge provided an independent

value is stored for each state/action pair, each state is visited infinitely often, and

γ is decreased in such a way that
∑

t γt = ∞ and
∑

t γ
2
t < ∞ [Mitchell, 1997]. Q-

learning is an off-policy method, meaning the optimal policy can be learnt by following

a fixed alternative policy. This allows a reduction of the number of expensive world

interactions by repeatedly re-using experience gathered under an old policy to improve

the current policy.

The complexity of learning J ∗
β(i) or Q(i, u) can be reduced by automatically aggre-

gating states into clusters of states, or meta-states, at the cost of introducing partial

observability [Singh et al., 1995, Engel and Mannor, 2001].

Readers interested in MDPs are referred to books such as Puterman [1994], which

covers model-based algorithms and many variants on MDPs. Bertsekas and Tsitsik-

lis [1996] provides an analysis of the convergence properties of MDP algorithms and

Kaelbling et al. [1996] describes the algorithms from the reinforcement learning point

of view.

2.5 Learning with a Model

This section describes existing methods for producing POMDP agents when the model

of the POMDP is known, which is equivalent to knowing ν(y|i), q(j|i, u) and r(i).

These include exact methods that are guaranteed to learn the optimal policy given

sufficient, possibly infinite, time and memory. We define the optimal agent as the

agent that obtains the maximum possible long-term (average or discounted) reward

given that the agent does not have access to the true state of the system. The long-

term reward of optimal MDP methods upper bounds the reward that can be obtained

after introducing partial observability [Hauskrecht, 2000].

2.5.1 Exact Methods

The observation process may not reveal sufficient state to allow reactive policies to

choose the optimal action. One solution is to model an agent that remembers its

entire observation/action history ȳ. This fits within our framework by setting G to

be the sequence of all past observations and actions ȳ = {(y0, u0), . . . , (yt, ut)}. Using

ȳ may allow the agent to determine the true state and hence act optimally. Even

§2.5 Learning with a Model 19

if ȳ does not allow the agent to determine the true state, it may help to reduce the

entropy of the agent’s belief of which state it occupies, consequently improving the

probability that the agent will act correctly. In this case G is the possibly infinite set

of all observation/action trajectories and ω(h|φ, g, y) is a deterministic function that

simply concatenates the last observed (yt, ut) to ȳ.

Consider an agent in a symmetric building. If it only receives observations about

what is in its line of sight, then many places in the building will appear identical.

However, if it remembers the last time it saw a landmark, such as the front doors

of the building, then it can infer where it is in the building from its memory of how

it moved since seeing the landmark. This is the approach taken by methods such as

utile distinction trees [McCallum, 1996] and prediction suffix trees [Ron et al., 1994].

These methods do not necessarily assume knowledge of the POMDP model and will

be discussed in Section 2.6.

2.5.1.1 Belief States

Explicitly storing ȳ results in inefficient memory use because we potentially need to

store an infinite amount of history in infinite-horizon settings. Åström [1965] described

an alternative to storing histories which is to track the belief state: the probability

distribution over world-states, S, given the observation and action history ȳ. The

belief state is a sufficient statistic in the sense that the agent can perform as well as if

it had access to ȳ [Smallwood and Sondik, 1973]. We use the notation bt(i|ȳt) to mean

the probability that the world is in state i at time t given the history up to time t.

Given a belief state bt, an action ut, and an observation yt, the successor belief state is

computed using

bt+1(j|ȳt) =
ν(yt|j)

∑
i∈S bt(i|ȳt)q(j|i, ut)∑

y′∈Y ν(y′|j)
∑

i∈S bt(i|ȳt)q(j|i, ut)
. (2.7)

In this setting G is the possibly uncountable set of belief states the system can reach.

From this point on we will use B instead of G to refer to the set of reachable belief states,

allowing us to keep the belief state distinct from other forms of internal state such as

finite state controller I-states. Each element b ∈ B is a vector in an |S| dimensional

simplex. The function ω(bt+1|φ, bt, y) is deterministic, giving probability 1 to vector

bt+1 defined by Equation (2.7).

The set B defines the states of an equivalent MDP on which DP can be performed

by replacing the states in Equation 2.3) with belief states [Smallwood and Sondik,

20 Existing POMDP Methods

1973, Cassandra et al., 1994]

J̄β(b′)← max
u

[
r̄(b′) + β

∑

b∈B

q̄(b|b′, u)J̄β(b)

]
, (2.8)

which converges in finite time to within ǫ of the optimal policy value [Lovejoy, 1991].

The bar on J̄β(b) indicates that we are learning values of belief states b instead of

world states i. The simplicity of this equation is misleading because J̄β , r̄, and q̄

are represented in terms of their MDP counterparts in Equation (2.3). For example,

r̄(b) =
∑

i∈S bir(i). When the set of reachable belief states can be infinite, J̄β(b) is

significantly more complex than Jβ(i), which is the subject of the next section.

2.5.1.2 Value Function Representation

Maintaining and updating independent values for infinitely many belief states is infea-

sible. Fortunately, it has been shown for finite horizons that the value over all belief

states can be represented exactly by a convex piecewise linear function [Smallwood and

Sondik, 1973]. Such a representation is shown for a 2 state system in Figure 2.4. The

set L contains the hyperplanes needed to represent the value function. Each l ∈ L is

an |S| dimensional vector such that the value of hyperplane l for belief state b is b · l.

The value of J̄β(b) is the maximum over all hyperplanes

J̄β(b) = max
l∈L
{b · l}.

To be useful, a hyperplane l must be the maximum for some b. If L contains only

useful hyperplanes then it is called a parsimonious set [Zhang, 1995].

Estimating the value function proceeds by using value iteration on belief states

chosen to be points in the belief simplex that have a unique maximuml l, and that

have not yet converged to their true value. These points, as found by the Witness

algorithm, are called witness points [Cassandra et al., 1994]. This term is now often

used to describe any belief state upon which it is useful to perform a DP update.

Such updates generate new vectors to be added to L. A difficult task — and the way

in which most exact POMDP algorithms differ — is determining the witness points

efficiently. This is often done by solving a set of linear programs. Once a single round

of value iteration has been performed L is examined to remove useless vectors, creating

a parsimonious set ready for the next round.

The simplest exact method is Sondik/Monahan’s enumeration algorithm [Monahan,

1982], which enumerates all hyperplanes in L and performs a DP update on each one.

This method results in a large number of new vectors. In rough order of increasing

§2.5 Learning with a Model 21

common

action u

Belief state space

useless
hyperplane

l1

l2

l3

l5

l4

J̄
β
(b

)

b0 = 1 − b1

Figure 2.4: Convex piecewise linear representation of a value function for a continuous belief

state with |S| = 2. The plot is a slice from a 3-dimensional plot defined by valid points in the

the 2-dimensional simplex, that is, where b0 = 1− b1. If the set L is parsimonious then each ln
defines a line segment which is maximum in some partition of belief space. Each such partition

has a unique optimal action u∗
n.

sophistication other algorithms include the One-Pass algorithm of Sondik [1971], the

Linear Support algorithm of Cheng [1988], the Witness algorithm of Cassandra et al.

[1994], and the Incremental Pruning algorithm of Zhang and Liu [1996]. Cassandra

[1999] provides a non-mathematical comparison of these algorithms.

2.5.1.3 Policy Representation

POMDP agents can be represented by a policy graph that is a directed and possibly

cyclic graph. Each node is labelled with a single action and transitions out of each

node are labelled with observations. All nodes map to a polyhedral partition in the

value function. Partitions are defined by the region where a single hyperplane l ∈ L

maximises J̄β(b) [Cassandra et al., 1994]. Transitions between nodes in the policy graph

are a deterministic function of the current observation. Actions are a deterministic

function of the current node. If the optimal policy can be represented by a cyclic graph

with a finite number of nodes, then the POMDP is called finitely transient [Sondik,

1978].

A policy can be represented by µ(u|θ, h, y) in several ways. The parameters θ could

be used to store hyperplanes in L, in which case µ(u|θ, bt+1, yt) gives probability 1

22 Existing POMDP Methods

to the action associated with the hyperplane that maximises the value at bt. If the

policy is finitely transient it can be represented more compactly by the policy graph.

In this case the internal states G are equivalent to the policy-graph nodes. The I-state

(internal state) update ω(h|φ, g, y) uses y to index the correct transition from node g

to node h. The policy µ(u|θ, h) is simply a lookup table that gives the optimal action

for each node h. Thus, φ represents policy-graph transitions, and θ maps policy-graph

nodes to actions.

In many cases it is possible for large infinite-horizon POMDPs to be controlled well

by simple policy graphs. Consider the Load/Unload scenario [Peshkin et al., 1999]

shown in Figure 2.2(a). The optimal policy graph is shown in Figure 2.2(b). This

policy graph suffices no matter how many intermediate locations there are between the

load and unload locations. As the number of intermediate locations increases, the value

function becomes more complex but the optimal policy graph does not. This example

partially motivates the idea (discussed in Section 2.5.7) of searching in the space of

policy graphs instead of learning value functions.

2.5.1.4 Complexity of Exact Methods

There are two problems with exact methods that make them intractable for problems

with more than a few tens of states, observations, and actions. To discuss the first we

introduce the concept of state-variables. State variables describe the state in terms of

features that are true or false, which is an arguably more intuitive description than

enumerating states. Consider a system with v boolean state variables. The number

of POMDP states is |S| = 2v, thus |S| grows exponentially with the number of state

variables. For example, two state variables might be “is it raining?” and “is the

umbrella open?” requiring 4 states to encode.

Since DP for POMDPs involves updating belief states, the complexity of POMDP

algorithms grows exponentially with the number of state variables. This makes belief-

state monitoring infeasible for large problems [Boyen and Koller, 1998, Sallans, 2000].

The second problem is representing J̄t(b), the value function after t steps of DP.

Let Bt be the set of belief states reachable at time t. Recall that |Y| is the number of

possible observations. Assuming |B0| = 1, that is, a single known initial belief state,

then after t steps of a greedy policy we potentially have |Y|t belief states in Bt. Thus,

the problem of representing J̄β(b) grows exponentially in the horizon length. Since

the belief-state space is infinite for infinite horizons, exact methods perform DP on

the hyperplanes in L. This representation grows exponentially in the observations

since a single DP step in the worst case results in |Lt+1| = |U||Lt|
|Y| [Cassandra, 1998].

Furthermore, evaluating if there exists a belief state b for which an l ∈ Lt+1 is dominant

§2.5 Learning with a Model 23

requires solving expensive linear programs.

Even for simplified finite-horizon POMDPs, the problem of finding the optimal

policy is PSPACE-hard [Papadimitriou and Tsitsiklis, 1987]. Learning a policy graph

with a constrained number of nodes is NP-hard [Meuleau et al., 1999a]. Infinite-

horizon POMDPs can result in an infinite number of belief states or hyperplanes l,

resulting in the problem of determining convergence being undecidable [Madani et al.,

1999]. Even worse, determining ǫ-convergence is undecidable in polynomial time for

finite-horizon POMDPs [Lusena et al., 2001]. Despite this gloomy theoretical message,

empirical results, such as those in this thesis, show that it is possible to learn reasonable

policies in reasonable time for POMDPs of ever increasing complexity. We avoid the

intractable computational complexity of exact methods by abandoning the requirement

that policies be optimal, while retaining the requirement that agents should at least

converge to a fixed policy.

2.5.2 Approximate Value Function Methods

This section introduces model-based methods that learn approximations to J ∗
β(i). For

a more detailed survey of these methods see Hauskrecht [2000].

2.5.2.1 Heuristics for Exact Methods

A number of methods simplify the representation of J̄β(b) by assuming the system

is an MDP and learning the underlying Q-function Q(i, u). This must be done via

model-based methods or by computer simulation because the partial observability of

the real world does not allow i to be known during real-world interaction.

One choice for the policy is [Nourbakhsh et al., 1995]

ū∗(b) = arg max
u

Q(arg max
j
b(j), u), µ(u|θ, b) = χu(ū∗(b)),

which assumes the agent is in the most likely state (MLS), known as the MLS heuristic.

This approach completely ignores the agent’s confusion about which state it is in. The

voting heuristic [Simmons and Koenig, 1995] weights the vote for the best action in

each state by the probability of being in that state

u∗(j) = arg max
a

Q(j, a), ū∗(b) = arg max
u

∑

j∈S

b(j)χu(u∗(j))Q(j, u∗(j)).

The popular QMDP heuristic [Littman et al., 1995] takes into account the belief state

24 Existing POMDP Methods

for one step and then assumes that the state is entirely known [Cassandra, 1998]

ū∗(b) = arg max
u

∑

j∈S

b(j)Q(j, u).

These heuristics will perform poorly if the belief state is close to uniform. Due to

the convexity of the value function, J̄β(b) generally grows as the entropy of b decreases.

The highest expected payoffs occur at the simplex corners. This motivates choosing

actions that decrease the entropy of the belief state in the hope that the heuristics

above will perform better with a peaked belief. For example, consider a robot that

must reach the other side of a featureless desert [Roy and Thrun, 2001]. If it goes

straight across it will quickly become lost due to lack of landmarks and movement

errors. The better policy is to skirt the desert, taking longer but remaining certain

of reaching the goal because the robot is certain of its location. Cassandra [1998]

shows how to use the entropy of b to switch between information gathering policies

and exploitive policies. The entropy can also be used to weight two policies that trade

off information gathering and exploitation. These heuristics may be misleading if the

minimum of J̄β(b) does not occur at the point of greatest entropy, that is, the uniform

belief state.

An alternative family of heuristics are based on simplified versions of the full DP

update. For example, determining maximising vectors in L for each state, rather than

over all states, produces the fast informed bound of Hauskrecht [1997]. The heuristics

in this section are also useful as upper bounds on J ∗
β , allowing them to direct tree

search procedures used in classical planning approaches (see Section 2.5.4).

2.5.2.2 Grid Methods

Value functions over a continuous belief space can be approximated by values at a

finite set of points along with an interpolation rule. Once a set of grid points has been

chosen an equivalent MDP can be constructed where the states are the grid points. This

POMDP can be solved in polynomial time [Hauskrecht, 2000]. The idea is equivalent

to constructing a policy graph where each node is chosen heuristically to represent

what might be an “interesting” region of belief state space. The two significant issues

are how to choose grid points and how to perform interpolation.

Regular grids are an obvious choice but they fail to scale for large state spaces

[Lovejoy, 1991]. Methods for choosing irregular grids include the use of simulation to

determine useful grid points [Hauskrecht, 1997] and adding points where large vari-

ations in values are detected for two local points that have observations in common

§2.5 Learning with a Model 25

[Brafman, 1997].3

Interpolation schemes should maintain the convex nature of the value function and

hence are typically of the form

J̄β(b) = arg max
u

∑

g∈G

λg,bf(g, u), (2.9)

where
∑

g∈G λg,b = 1 and λg,b ≥ 0 ∀g, b. The function f(g, u) represents the value

grid point g under action u. Examples include nearest neighbour, linear interpolation,

and kernel regression [Hauskrecht, 2000]. The MLS heuristic can be thought of as a

grid method with points at the belief-simplex corners and a simple 1-nearest-neighbour

interpolation (assuming an L∞ distance measure) [Brafman, 1997].

Recently, ǫ-convergence was shown for a grid method by using ǫ-covers under a

specifically chosen distance metric [Bonet, 2002]. Within our knowledge it is the only

provably optimal grid based algorithm. It is still intractable because the number of

grid points required grows exponentially with the size of the state space.

Alternatively, grid point value estimation steps can be interleaved with exact hy-

perplane DP updates in order to speed up DP convergence without sacrificing policy

optimality [Zhang and Zhang, 2001].

In the context of grid methods the ω(bt+1|φ, bt, yt) process still performs a deter-

ministic update on the belief state, but now µ(u|θ, bt+1, yt) represents the choice of

action based on the interpolated value from (2.9). The θ parameters store the values

of actions at the grid points.

2.5.3 Factored Belief States

Using the state variable description of a POMDP (discussed in Section 2.5.1.4) is some-

times referred to as belief factorisation, especially when the factorisation is not exact.

The value of a state variable Xt may depend (approximately) on a small subset of the

state variables at the previous time steps. Transition probabilities can be represented

by a two-slice temporal Bayes net (BN) that models the dependencies between state

variables over successive time steps as a 2 layer acyclic graph [Dean and Kanazawa,

1989] (see Figure 2.5). Each node contains a conditional probability table showing how

its parents affect the probability of the state variable being true.

Alternatively, the state variable dependencies can be represented by a tree structure

such as an algebraic decision diagrams (ADD) [Bahar et al., 1993]. BNs and ADDs are

applied to POMDPs by Boutilier and Poole [1996] to simplify both the belief monitoring

3The mutual observations requirement is an interesting heuristic that may identify whether belief
states between the two existing points can be reached.

26 Existing POMDP Methods

Z

X’

X Y

Z’Y’

Figure 2.5: Two-slice temporal Bayes network showing dependencies between state variables

over successive time steps. X and Z depend only on themselves but Y is influenced by itself and

X . This conditional dependence structure can be exploited to efficiently model the transition

probabilities of a POMDP.

problem and the value function representation problem. We now describe how recent

work has used belief factorisation to solve each of these problems.

2.5.3.1 Efficiently Monitoring Belief States

Boyen and Koller [1998] observed that representing belief states as BNs can lead to

an accumulation of errors over many time steps that result in the belief state approxi-

mation diverging. The authors show that projections of the BN that produce strictly

independent groups of state variables results in converging belief-states, allowing re-

covery from errors. These projections can be searched to automatically determine BNs

that perform well under a specified reward criterion. Heuristic methods to determine

factorisations were introduced by Poupart and Boutilier [2000]. These were improved

in Poupart and Boutilier [2001] which presents a vector-space analysis of belief-state

approximation, providing a formally motivated search procedure for determining belief-

state projections with bounded errors. This expensive off-line calculation speeds up

on-line belief state tracking.

An alternative method of searching for the optimal belief factorisation is to learn a

dynamic sigmoid belief network [Sallans, 2000]. Stochastic gradient ascent is performed

in the space of BNs with a fixed number of dependencies, minimising the error between

the belief state and the approximation. This algorithm has been applied to the large

New York driving problem of McCallum [1996] which was sketched out in Section 1.1.

Unlike the algorithms considered so far, which apply a fixed I-state update through

ω(h|φ, g, y), this algorithm can be viewed as learning ω(h|φ, g, y) by adjusting the belief

network parameterised by φ.

2.5.3.2 Factored Value Functions

So far we have discussed piecewise linear value functions represented by sets of hy-

perplanes L. Koller and Parr [2000] note that even if compact BN representations of

§2.5 Learning with a Model 27

the transition model are found, they may not induce a similar structure on the value

function. The same paper discusses factored value functions implemented as weighted

linear combinations of polynomial basis functions. The weights are chosen to minimise

the squared error from the true value. In our model of agents the weights would be

represented by θ.

This idea is combined with BNs for belief monitoring by Guestrin et al. [2001a].

With approximate belief monitoring and factored linear value functions, DP methods

become more feasible since learning reduces to solving systems of linear equations

instead of a linear program for every vector in L. The empirical advantages of factored

value functions are studied in [Hansen and Feng, 2000] which uses algebraic decision

diagrams to represent J̄β(b).

2.5.4 Classical Planning

The link between classical planning algorithms such as C-Buridan [Draper et al., 1994]

and POMDP algorithms is summarised by Blythe [1999]. One planning approach is to

search the tree of possible future histories ȳ to find the root action with the highest

expected payoff. Branch and bound approaches such as the AO∗ algorithm [Nilsson,

1980, §3.2] can be used, searching the tree to a finite depth and pruning the search

by eliminating branches that have upper bounds below the best current lower bound.

At the leaves the upper and lower bounds can be estimated using QMDP and the

value-minimising-action respectively [Washington, 1997].

This idea is applied to factored finite-horizon POMDPs by McAllester and Singh

[1999]. While avoiding the piecewise linear value function, the algorithm is still ex-

ponential in the horizon due to the tree search procedure. Furthermore, since there

is no concise policy representation the exponential complexity step is performed dur-

ing normal policy execution instead of only during a learning phase. In this case

ω(bt+1|φ, bt, yt) is responsible for deterministically tracking the factored belief state,

and µ(u|θ, b) is responsible for performing the tree search in order to find the best u.

The parameters θ are not learnt, but φ could be learnt to optimise factored belief state

tracking, as in Section 2.5.3.1.

2.5.5 Simulation and Belief States

The full DP update of Equation (2.8) is inefficient because all states are assumed

equally important. Simulation algorithms learn value functions from real experience,

concentrating learning effort on the states most likely to be encountered. This idea

can be applied to learning Q-functions for finite-horizon POMDPs by simulating a

path through the POMDP while monitoring the current belief state and performing

28 Existing POMDP Methods

an iteration of (2.8) for the current point in belief state space instead of the associated

l ∈ L [Geffner and Bonet, 1998]. This algorithm, called RTDP-Bel, does not address the

problem of representing Q(b, u) for many belief states over large horizons. However, it

has been applied to solving finite-horizon POMDPs with hundreds of states and long-

term memory. In particular, it has been applied to the Heaven/Hell scenario that we

shall investigate in Chapter 8.

Usually we need to learn Q-functions that generalise to all b. A simple approach is

Linear-Q which defines Q(b, u) = φu ·b [Littman et al., 1995]. This method is equivalent

to training a linear controller using stochastic gradient ascent with training patterns

given by inputs bt and target outputs r + βmaxuQ(bt+1, u). The SPOVA algorithm

[Parr and Russell, 1995] is essentially the same scheme, using simulation to generate

gradients for updating the smooth approximate function

J̄β(b) =

[∑

l∈L

(b · l)k

] 1
k

,

where k is a tunable smoothing parameter and the number of hyperplanes |L| is fixed.

Artificial neural networks (ANNs) can also be used to approximate value functions with

either the full belief state or a factored representation used as the input [Rodŕıguez

et al., 2000]. Both Linear-Q and SPOVA learn the θ parameters but not φ.

2.5.6 Continuous State and Action Spaces

Thrun [2000] extends value iteration for belief states into continuous state spaces and

action spaces. Since infinite memory would be needed to exactly represent belief states,

Thrun uses a sampled representation of belief states. The algorithm balances accuracy

with running time by altering the number of samples n used to track the belief state.

The belief state is updated using a particle filter [Fearnhead, 1998] that converges to

the true belief state as n → ∞, for arbitrary continuous distributions q(j|i, u) and

ν(y|i). Approximate continuous belief states are formed from the samples using Gaus-

sian kernels. The hyperplane value-function representation cannot be used because

the belief state is a continuous distribution, equivalent to infinitely many belief state

dimensions. Even function approximators like neural networks cannot trivially con-

tend with continuous belief states. Instead, the value function is approximated using

a nearest neighbour method where the output value is the average of the k nearest

neighbours (KNN) of previously evaluated infinite-dimension belief states.

Particle filters can also be used to monitor the belief state during policy execution.

Poupart et al. [2001] analyses the value loss incurred by using particle filters once a

value function has already been learnt. The paper uses this analysis to develop an

§2.5 Learning with a Model 29

adaptive scheme for choosing n based on the probability of choosing an approximately

optimal action. These methods may also help in finite domains with many states.

2.5.7 Policy Search

The approaches we have discussed so far have learnt values for each state and action.

Values can be explicitly encoded in θ or used to manufacture a more compact policy

graph. This section introduces methods that learn policies directly, sometimes avoiding

value estimation at all. For example, we can attempt to learn a set of parameters θ

that directly encodes a policy graph.

There are several reasons to prefer policy search methods to value function methods,

particularly in the presence of partial observability. Informally, Occam’s Razor can be

invoked in favour of policy search methods by noting that it is intuitively simpler to

determine how to act instead of the value of acting. For example, Section 2.5.1.3

demonstrated that a 2 node policy graph can optimally control an arbitrarily large

POMDP. The value function representation would require storing or approximating a

value for each state.

More formally, approximate value function methods can perform poorly in POMDP

settings because they usually find deterministic policies (by application of the max func-

tion in Equation (2.8)). Approximate POMDP methods generally require stochastic

policies [Singh et al., 1994]. Value methods in function approximation settings also lack

convergence guarantees because small changes to state values can cause discontinuous

changes to the policy [Bertsekas and Tsitsiklis, 1996].

However, policy search is still difficult. Even for restricted classes of policies, the

search is NP-hard [Meuleau et al., 1999a]. Value function methods have the advantage

of imposing the useful Bellman constraint. Consequently, value functions are likely to

remain useful for small to medium size problems.

Policy search can be implemented using policy iteration [Bertsekas and Tsitsiklis,

1996, §2.2.3]. The first step is to evaluate the current policy and the second step is pol-

icy improvement. Sondik [1978] described how policy evaluation could be performed by

representing the policy as a set of polyhedral partitions in belief space. Instead, Hansen

[1998] uses the policy-graph representation, greatly simplifying the task of evaluating

the policy. Evaluating the policy is performed by solving a set of linear equations that

gives the hyperplane representation of the value function J̄β(b). Policy improvement

works by adding or merging policy graph nodes based on how the set of vectors in L

changes after a single hyperplane update on the evaluated policy. Hansen also describes

a branch and bound tree search procedure that can be used to approximate the DP

step, achieving an order of magnitude speed-up.

30 Existing POMDP Methods

The nodes of a policy graph can be interpreted as states of an internal MDP that is

observable by the agent. The process defined by the cross product of world states with

policy-graph states is Markov [Hansen, 1998]. The value of the cross product MDP can

be computed using value iteration. Meuleau et al. [1999a] finds optimal policy graphs

within a constrained space using a branch and bound search method, computing the

value of complete policies at the leaves only when needed.

The same paper also shows how gradient ascent can be used to search the space of

stochastic policy graphs, which we refer to as finite state controllers (FSCs). FSCs are

described in detail in Section 2.6.2.5. Given a model, the gradient of the discounted

sum of rewards can be computed directly, requiring large matrix inversions. This is

the first algorithm discussed so far that does not evaluate values explicitly. Because it

does this with gradient ascent it is our first example of a policy-gradient method. It is

also our first example of a stochastic internal-state function.

The simulation methods of Section 2.5.5 can be used to generate policies instead of

value functions. For example, if the belief state is tracked during simulation and used

as an input to a neural network, then network outputs can be mapped to a distribution

over actions. We demonstrate this method in Chapter 8. We will use policy search

methods throughout this thesis.

2.5.8 Hybrid Value-Policy Methods

MDP Value methods may fail to converge for POMDPs or when using function approx-

imation in the MDP setting. In contrast, policy-gradient methods converge to a local

maximum under mild conditions. However, policy-gradient methods exhibit high vari-

ance [Marbach and Tsitsiklis, 2000]. One reason for high variance is that they ignore

the Bellman equation which is a useful constraint for agents [Peshkin et al., 1999, Baird

and Moore, 1999]. In an attempt to combine the low variance of value based methods

with the convergence to local maximum guarantees of policy-gradient methods, Baird

and Moore [1999] introduced VAPS. This algorithm specifies a parameter ρ ∈ [0, 1] that

gives a pure Q-learning algorithm when ρ = 0 — satisfying the Bellman equation — and

a pure policy search algorithm when ρ = 1 — locally maximising the long-term reward

using the Williams’ REINFORCE algorithm [Williams, 1992] described in Section 2.6.3.

Intermediate values of ρ invoke an hybrid algorithm that is guaranteed to converge

even for POMDPs.

However, it is not clear how to choose ρ given a POMDP, and because VAPS is

not a pure gradient ascent it may not converge to a locally optimal policy when ρ < 1

[Sutton et al., 2000]. An alternative introduced by Sutton et al. [2000], which does

converge to a locally optimal policy, incorporates a learnt Q-function directly into the

§2.6 Learning Without a Model 31

gradient estimation of ∇J̄β or ∇η. In this case the Q-function works like a critic aiding

the actor to learn a policy [Konda and Tsitsiklis, 2000].

Both Williams’ REINFORCE and VAPS were developed in the context of solving

MDPs using function approximation. They can be extended to POMDPs either by

assuming that observations map directly to world states — implying the assumption

that a reactive policy is sufficient — and learning the policy µ(u|θ, y), or by using

the model and ω(bt+1|φ, bt, yt) to track belief states that are fed to the hybrid policy

represented by µ(ut|θ, bt+1).

Coarse grained value estimates can be used as a seed for fine grained policy-search

methods, avoiding the disadvantages of the curse of dimensionality for DP and the high

variance of policy-search in the early stages. This approach is demonstrated on a real

robot using a continuous time model by Roy and Thrun [2001].

Konda and Tsitsiklis [2000] present hybrid algorithms as actor-critic algorithms.

The actor uses a policy-gradient approach to learn a policy as a function of a low-

dimension projection of the exact value function. The projection of the value function

is learnt by the critic. Convergence is shown for arbitrary state/action spaces with

linear critics. The paper shows that the value function projection that should be used

by the critic is determined by the how the actor is parameterised.

2.6 Learning Without a Model

From this point on we do not assume knowledge of the underlying MDP dynamics

q(j|i, u), the observation probabilities ν(y|i), or the rewards r(i). To learn good policies

the agent interacts with the world, comparing observation/action trajectories under

different policies. With enough samples, rewards can be correlated with actions and

the probability of choosing good actions increased. Section 2.4 briefly described Q-

learning which is one example of a model-free algorithm for MDPs. It is also a starting

point for model-free POMDPs.

2.6.1 Ignoring Hidden State

We can modify MDP Q-learning to learn the value of observations instead of states, that

is, Q(y, u) instead of Q(i, u). This is equivalent to learning values over distributions

of states instead of single states [Singh et al., 1994]. Such reactive policies generally

need to be stochastic. If the agent is uncertain about the state then it may be optimal

to choose actions stochastically. Examples can be constructed for which a stochas-

tic reactive policy is arbitrarily better than the optimal deterministic reactive policy

[Williams and Singh, 1999]. This method is used with stochastic-policy iteration by

Jaakkola et al. [1995], converging to a local maximum when Q(y, u) is parameterised

32 Existing POMDP Methods

by a table. A similar result is shown [Singh et al., 1994] that also has convergence

results for a modified TD(0) MDP algorithm [Sutton and Barto, 1998].

In this memory-less setting |G| = 1 making ω(h|φ, g, y) trivial. Consequently, the

policy reduces to µ(u|θ, y).

2.6.2 Incorporating Memory

When the POMDP model is not available agents cannot track the belief state. The

alternative to reactive policies is to use memory of the past observations and actions to

resolve the hidden world state. This section describes several mechanisms for adding

memory to agents.

2.6.2.1 HMM Based Methods

Solving POMDPs can be re-cast as the problem of determining the hidden state of the

world and then applying MDP methods. A natural approach is to use hidden Markov

models which have been successfully applied to many other hidden state estimation

problems [Poritz, 1988]. Hidden Markov models are briefly introduced in Appendix D.

This approach was taken by Chrisman [1992] where HMMs are used to predict observa-

tions based on the observation/action history ȳ. A nice feature of this algorithm is the

ability to grow the number of states in the HMM until performance stops improving.

HMMs for predicting observations were also studied by McCallum [1996].

A problem with this approach is that the hidden state revealed by modelling obser-

vations is not guaranteed to reveal the state necessary to maximise the reward. One

alternative studied in this thesis uses HMMs to model rewards. Also, gradient ascent

of HMMs can be used to model action generation [Shelton, 2001a,b]. All of the HMM

methods discussed in this section use a generalisation of HMMs introduced by Bengio

and Frasconi [1995] called Input/Output HMMs (IOHMMs). The state transitions of

IOHMMs can be driven by a signal other than the one being modeled.

In these models B is the set of reachable belief states over HMM states. This

internal-state belief is equivalent to the forward probability over states α, used during

Baum-Welch training of HMMs [Rabiner and Juang, 1986]. The probability of occupy-

ing each HMM state is updated using ω(h|φ, g, y) given current assumed internal belief

g and input observation y (or the previous action if observations are being modeled).

The policy µ(u|θ, h, y) maps the belief state over HMM states to actions. For ex-

ample, if the HMM is trained to emit actions then µ(u|θ, h, y) represents the emission

probabilities of HMM-state h [Shelton, 2001a]. In this case φ parameterises HMM

transition probabilities and θ parameterises emission densities for predicted observa-

tions or generated actions. The internal-state belief update is deterministic, but the

§2.6 Learning Without a Model 33

policy is stochastic. Alternatively, µ(u|θ, h, y) can be learnt by DP, estimating values of

internal-state beliefs. This is the approach used by Chrisman [1992] where the QMDP

heuristic is used to assign values to internal-state beliefs.

2.6.2.2 Finite History Methods

Finite history methods produce policies that are functions of a finite window of past

observations/actions. They have existed in the context of POMDPs at least since

Brown [1972]. Window-Q uses an artificial neural network (ANN) to learn Q-values

where the ANN inputs are the last n observations and actions [Lin and Mitchell, 1992].

Time-delay neural networks incorporate n steps of history into each node of the neural

network [Lin, 1994]. In either case ω(h|φ, g, y) deterministically records a finite window

of ȳ, and µ(u|θ, ȳ) uses an ANN parameterised by θ to assign probability 1 to the action

that maximises the value.

Adaptive history methods grow or shrink the number of past events that are needed

to reveal the hidden state. Probabilistic Suffix Automata [Ron et al., 1994] model

partially observable Markov decision processes using a tree. The history defines a path

through the tree starting at the root. The root corresponds to the earliest history

element. The leaf can be used to predict the next symbol, or it can be labelled with

the optimal next action given the history. McCallum [1996] uses the latter approach in

the UTREE algorithm (see Figure 2.6) to control large POMDPs such as the New York

Driving problem. A statistical test is applied to leaf nodes to determine if the long-term

reward can be improved by growing the tree, automatically determining the amount of

memory needed. Observation branches can be selected by a subset of the observation

vector, filtering out useless distinctions between observations. Tree methods have not

been extended to continuous observation/action spaces within our knowledge. Here

µ(u|θ, ȳ) applies the UTREE algorithm, where the tree is represented by θ. The length

of history recorded is given by the maximum depth of the tree.

A similar algorithm to UTREE was described by Dutech [2000], with an enhance-

ment for cases when a deterministic POMDP model is known. The enhancement grows

the UTREE when an examination of the POMDP model determines that a path down

the tree still results in an ambiguous world-state, and therefore a possibly ambiguous

action.

Deterministically assigning actions to history tree leaves can lead to large trees and

over-fitting in noisy worlds. Suematsu and Hayashi [1999] uses Bayesian inference to

construct future reward and observation models as a function of a learnt history tree,

providing a smoother model than UTREE. The policy can be constructed by performing

DP on the history tree model, similar to performing DP on HMMs.

34 Existing POMDP Methods

r

r

r l l

l

A

l

B

r

A

A

l

A B B

l

B

l r

BAA

Observation

Action

t

t−1

t−2

Figure 2.6: A history tree learnt by UTREE for some POMDP with Y = {A, B} and U = {l,

r}. Leaves are labelled with optimal actions and a sample path is shown for the history

{(A,r)(B,l)(A,·)} choosing action r. The most recent observation gives the first branch to

take from the root of the tree.

2.6.2.3 RNN Based Methods

Recurrent neural networks (RNNs) augment the output of an ANN with continuous

state outputs that are fed back into a previous layer of the network (see Figure 2.7).

The network has a continuous internal-state space allowing a POMDP to be controlled

by presenting observations as inputs and interpreting outputs as action distributions

(Recurrent-model [Lin and Mitchell, 1992]), Q-values (Recurrent-Q [Lin and Mitchell,

1992]), or by learning a second function mapping the internal state and future input

predictions to actions [Schmidhuber, 1991].

The agents in this section learn both φ: the recurrent state model, and θ: the

Q-value or action outputs. Here G is the set of vectors in Rn that are the n RNN

outputs fed back to the previous layer. The internal-state update is deterministic and

the actions may be chosen deterministically or stochastically.

One RNN training algorithm is back-propagation through time (BPTT) [Rumelhart

et al., 1986, §8] that unfolds the network over T steps then uses the standard error back

propagation algorithm for ANNs. This means that the network can only be explicitly

trained to have a T step memory. However, during operation the internal state may

carry relevant information for more than T steps. Real-time recurrent learning (RTRL)

[Williams and Zipser, 1989] overcomes this problem by efficiently propagating errors

§2.6 Learning Without a Model 35

�✁��✁��✁�✂✁✂✂✁✂✂✁✂ ✄✁✄✄✁✄✄✁✄☎✁☎☎✁☎☎✁☎
Observations

Q(_.u)

Recurrent state

Hidden layer

Figure 2.7: A simple recurrent neural network for learning Q-values.

back to time 0. These algorithms have been applied to speech recognition [Bourlard and

Morgan, 1994], hinting that speech processing can be studied in a POMDP framework.

RNNs are more throughly introduced in Appendix E.4.3.

Unfortunately BPTT and RTRL have difficulty learning long-term memory because

the back propagated error signals tend to blow up or vanish depending on the feed-

back weights. Learning long term memory appears to be a problem for all model-free

POMDP algorithms. History compression [Schmidhuber, 1992] uses an RNN to filter

out short term information by attempting to predict its own next input as well as

learning actions. When the RNN prediction fails the input is passed to a higher level

RNN that concentrates on modelling long-term features of the input.

Alternatively, long short-term memory (LSTM) introduces complex neurons that

learn to turn on or off their memory inputs and outputs. Another feature of LSTM

is that the back-propagated error signal does not explode or vanish [Hochreiter and

Schmidhuber, 1997]. LSTM has been applied to navigation POMDPs constructed to

require up to 70 steps of memory [Bakker, 2001]. The LSTM network learns Q-values

and uses the interesting idea of adapting the Q-learning exploration probability by

training a non-recurrent ANN to predict the variance of the Q-values.

2.6.2.4 Evolutionary Methods

Evolutionary methods create populations of agents and use combination and mutation

rules to generate new populations. The long-term average reward is the natural fitness

measure of an agent. Methods include rule based agents [Kwee et al., 2001], lookup-

36 Existing POMDP Methods

table agents [Moriarty et al., 1999], and probabilistic program agents [Sa lustowicz

and Schmidhuber, 1997]. The last two both have the advantage of allowing stochastic

agents. There is a strong connection between reactive Q-learning and some evolutionary

classifier algorithms [Lanzi, 1997].

Evolutionary algorithms can resolve partial observability by adding memory regis-

ters that the agent can learn to set. One successful example is a POMDP algorithm

that evolves stochastic RNNs to control large POMDPs such as the New York driving

scenario [Glickman and Sycara, 2001]. The hidden units of the RNN each choose an

output of 1 or 0 from a distribution controlled by the squashed sum of the weighted

inputs. A single output unit causes one of 3 actions to be chosen depending on which

of 3 ranges the output value falls in. In this case φ represents the weights of the hidden

units, and θ represents the weights of the output unit. We will discuss this method

in more detail in Section 7.1 since there is a close relationship between Glickman’s

approach, the approach of this thesis, and the methods discussed in the next section.

2.6.2.5 Finite State Controllers

The idea behind finite state controllers (FSCs) is that past events which are relevant

to choosing optimal actions can be remembered indefinitely by a directed cyclic graph

of internal states. Each node of the FSC is an I-state from G. This model uses φ

to parameterise probabilities of I-state transitions based on the current I-state and

observation. The next state is chosen stochastically from the distribution ω(·|φ, g, y).

Similarly, θ parameterises learnt action probabilities for each I-state, so that u is cho-

sen stochastically from µ(·|θ, h, y). This is the internal-state model we adopt for the

algorithms in this thesis so we devote some time to motivating it.

The agent learns to use the I-states to remember only what is needed in order to

act optimally. This process can be viewed as an automatic quantisation of the belief

state space to provide the optimal policy representable by |G| I-states. As |G| → ∞ we

can represent the optimal policy arbitrarily accurately [Bonet, 2002].

Another way to view this process is as direct learning of a stochastic policy graph

[Meuleau et al., 1999b]. Recall from Section 2.5.1.3 that the nodes of a policy graph are

synonymous with the I-states of an FSC. However, exact algorithms compute policy

graphs with deterministic I-state transitions equivalent to a deterministic ω(h|φ, g, y)

function. Furthermore, they permit only one action per node. We allow stochastic

I-state transitions and the policy µ(u|θ, h, y) allows a different action distribution for

each I-state and each observation. This means we can compute optimal policies with

far fewer I-states than the equivalent policy graph. We will give a concrete example

when investigating the Heaven/Hell scenario in Section 8.2.

§2.6 Learning Without a Model 37

forward

check

compass

turn

right

turn

left

NorthWest

Lost

LostLost

East/
South

(a)

forward

check

compass

turn

left

North

Lost

West
South/
East/

Lost

(b)

check

compass

Lost

East/
South/
West

North/

Lost

forward

turn left

(c)

Figure 2.8: Figure 2.8(a) shows the optimal policy graph fragment for a lost agent that must

move north. If the number of I-states is reduced to 3 (2.8(b)) then the policy is still deterministic

but degraded because it may turn left 3 times instead of right once. In Figure 2.8(c) the agent

cannot determine if it is facing north when it is in the upper I-state, thus must sometimes move

forward and sometimes turn.

A third way to view the process is as a grid method (recall Section 2.5.2.2) where

the number of points is fixed, but the location of the points can move around to best

cover the interesting regions of belief state space.

Though it is a small comfort, training an agent from the class of algorithms based

on restricted FSCs has NP-hard complexity instead of the PSPACE-hard complexity

of exact algorithms [Meuleau et al., 1999a].

The FSC framework encompasses other algorithms that differ by how they learn

ω(h|φ, g, y). For example, Peshkin et al. [1999] and Peshkin [2000], where the action

space of SARSA or VAPS is augmented with external-memory-setting actions. Also,

the algorithms of Sections 2.6.2.1–2.6.2.4 can be cast as FSC methods. FSCs can also

be learnt by depth first search in constrained spaces of FSC [Meuleau et al., 1999b].

Section 2.6.1 discusses the necessity of stochastic policies for POMDPs in the ab-

sence of memory. Stochasticity is also needed when |G| is too small. When there is

insufficient memory to resolve the uncertainty about the current state there is insuffi-

cient information for determining which action is best. Consider Figure 2.8, showing a

fragment of an FSC in which a lost agent uses a compass to face north before moving

on. As the number of I-states is reduced the policy degrades until for |G| = 2 the agent

cannot decide between moving forward or turning, which is a stochastic policy. Only

finitely transient POMDPs (see Section 2.5.1.3) have optimal deterministic FSCs, that

is, an optimal policy that can be represented by a policy graph.

Finite state controllers have been proposed as a useful method for fully observable

MDPs with very large state spaces where the optimal reactive policy is too hard to

38 Existing POMDP Methods

represent. Kim et al. [2000] uses VAPS to perform policy-search in the space of FSCs

where the state is fully observable but factored as described in Section 2.5.3.

Finite state controllers exhibit difficulties when learning non-trivial I-state func-

tions such as those requiring long-term memory. When all I-state trajectories are

nearly equally likely to occur for any world-state trajectory, there can be little correla-

tion between a particular I-state trajectory and a high reward, hence no single I-state

trajectory is reinforced. This explanation for difficulties with long term memory was

proposed for value function methods by Lanzi [2000] and termed aliasing on the pay-

offs. We analyse this problem for policy-gradient methods in Chapter 7, and propose

a solution that worked for the experiments reported in this thesis.

2.6.3 Policy-Gradient Methods

This section introduces policy-gradient methods for model-free agent training — one of

the approaches we take in this thesis. Policy gradient methods compute (or estimate)

the gradient of η(φ, θ) (2.1) with respect to the parameters of the agent φ and θ. This

allows η to be maximised by some form of gradient ascent procedure. In Section 2.5.7 we

discussed some advantages of using policy-gradient methods instead of value-function

methods. Another advantage is that gradient ascent is a local optimisation method.

This means means we can avoid the computation complexity of exact POMDP methods.

However, the trade-off is that we cannot guarantee convergence to the global maximum

of η(φ, θ). Consideration must also be given to the conditions under which the gradient

is well defined. In Chapter 3 we will make mild assumptions about the world and

the agents to ensure the gradient exists. Broadly speaking, we assume the world-

state Markov process is ergodic, and the processes ω(h|φ, g, y) and µ(u|θ, h, y) are

differentiable.

It is easy to add domain knowledge to agents in the policy-gradient setting. Hard-

wired rules can modify the distributions ω(h|φ, g, y) and µ(u|θ, h, y) additively, hence

having no impact on the gradient computation. Domain knowledge can also be used

to shape the rewards [Laud and DeJong, 2002], or to factor the observations.

Early algorithms that estimated gradients of performance measures using Monte-

Carlo like methods include the likelihood-ratio method [Aleksandrov et al., 1968, Ru-

binstein, 1969]. Extensions of the likelihood-ratio method to regenerative processes

(including Markov Decision Processes) were given by Glynn [1986, 1990], Glynn and

L’Ecuyer [1995], Reiman and Weiss [1986], and Reiman and Weiss [1989]; and indepen-

dently for finite-horizon MDPs by Williams [1992]. Glynn showed that the gradient

could be estimated by sampling a trajectory through the state space for a T step

episode of an finite-horizon MDP. The estimated gradient extended to the POMDP

§2.6 Learning Without a Model 39

setting is given by

∇̂η =

(
T∑

t=1

rt

)
T∑

t=1

∇µ(ut|θ, yt)

µ(ut|θ, yt)
, (2.10)

where the gradient is with respect to the policy parameters θ. This is a memory-less

agent which assumes that yt reveals sufficient world-state to act well. This scheme

requires ∇µ(ut|θ,yt)
µ(ut|θ,yt)

be well behaved. This is the case if µ(ut|θ, yt) is parameterised so

that ∇µ(ut|θ, yt) and µ(ut|θ, yt) go to zero at the same rate. We discuss one such

choice of µ(ut|θ, yt), the soft-max function, in Section 3.2. Once the gradient has

been estimated a stochastic gradient ascent algorithm can be used to maximise η.

Equation (2.10) does not take into account the causality of rewards, that is, rewards

gathered before time t can contribute to the gradient induced by actions after time

t. A simple fix to this is implemented by Meuleau et al. [2001], replacing the sum of

rewards with the sum of rewards up to time t.

Williams’ REINFORCE is unbiased. It converges to the true gradient over many

episodes. Williams’ REINFORCE only works for episodic tasks because the algorithm

awards equal credit for the reward up to time t to each action. If we attempted to

use Williams’ REINFORCE on an infinite-horizon POMDP, using a single infinitely-

long sample trajectory through state space, we cannot assign credit to specific actions

because there are infinitely many of them. In order to apply Williams’ REINFORCE

to POMDPs it is necessary to be able to identify when the system enters a recurrent

state, indicating the end of an episode and bounding the implications of actions on the

long-term reward. This is non-trivial when the true state is masked by the observation

process ν(y|i).

If the agent cannot observe visits to recurrent states, or if visits occur infrequently,

we resort to biased estimates of the gradient. A number of researchers introduced

discounted eligibility traces [Marbach and Tsitsiklis, 2000, Kimura et al., 1997] to bound

the implications of actions, but the discount factor introduces a bias. The eligibility

trace acts as memory, telling the agent what proportion of the current reward each

previous action should be credited with.

The similar approach of Baxter and Bartlett [2001] is to derive, from scratch, an

algorithm that directly approximates ∇η for infinite-horizon POMDPs. This derivation

also introduces a discounted eligibility trace with discount factor β ∈ [0, 1), showing

that in the limit as β → 1 the approximated gradient converges to ∇η. The algorithm

is summarised by the following expression that can be unrolled to form the core of the

GPOMDP algorithm [Baxter and Bartlett, 2000, Barlett and Baxter, 2000, Baxter and

40 Existing POMDP Methods

Bartlett, 2001]

∇̂η = lim
T→∞

1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ(ut|θ, yt)

T∑

s=t+1

βs−t−1rs.

The left hand side is the approximation of the true gradient. As β → 1 the approxima-

tion becomes perfect, but the variance goes to∞. When β < 1 we make the assumption

that the effect of actions on the reward decays exponentially with time, allowing the

temporal credit assignment problem to be solved. Other methods of bounding the

period in which rewards can be linked to actions are valid but the exponential decay

model is easy to analyse and implement.4 Baxter et al. [2001a] shows that the variance

of the estimate scales with 1/ [T (1− β)], which reflects the fact that as the credit for

rewards is spread over a longer time, the temporal credit assignment problem becomes

harder, until the case of β = 1 gives us no discounting and the variance is infinite. The

GPOMDP algorithm was proved to extend to the setting of infinite state and action

spaces. An example of a continuous action space is given by Kimura and Kobayashi

[1998]. Convergence rates for GPOMDP in terms of the POMDP mixing time have also

been established [Bartlett et al., 2000, Bartlett and Baxter, 2002].

Williams’ REINFORCE has been used as a policy-gradient algorithm for learning

FSCs [Peshkin, 2000] but in its basic form is restricted to POMDPs for which a re-

current state can be identified. One of the contributions of this thesis is to extend

GPOMDP to learning FSCs, allowing policy-gradient methods to learn FSCs for con-

trolling infinite-horizon POMDPs.

2.7 Further Issues

This section presents useful ideas for improving most POMDPs methods.

2.7.1 Variance Reduction for POMDP Methods

Monte-Carlo algorithms for POMDPs have high-variance, policy-gradient methods in

particular. This section describes established methods for reducing the variance.

2.7.1.1 Importance Sampling

Importance Sampling (IS) is a method for improving estimates of functions of arbi-

trary distributions that are known only up to a normalising constant. The idea is to

sample from an appropriately selected known distribution. Samples are weighted by

the ratio of the probability under their true distribution to their probability under the

sampling distribution. The sampling distribution should be our best guess of the true

4This is true of a broad class of reinforcement learning algorithms that use discount factors.

§2.7 Further Issues 41

distribution. This means the weights reflect the relative importance of each sample

of the unknown distribution. Variance reduction occurs when more weight is given to

the areas of the sampling distribution where the bulk of the unknown distribution’s

probability mass is concentrated.

The application of IS to Monte-Carlo methods is discussed by Glynn [1996] and

applied to Williams’ REINFORCE and VAPS by Meuleau et al. [2000]. IS can be used

to implement off-policy policy-gradient methods [Peshkin and Shelton, 2002], reducing

the number of world interactions required as described in Section 2.4. These methods

permit computation of bounds on the probability of finding an ǫ-approximation of the

true value using a finite number of samples from the world [Peshkin and Shelton, 2002,

Peshkin, 2002]. IS and Williams’ REINFORCE have been used in conjunction with

learning finite state controllers (Section 2.6.2.5) as well as reactive policies [Shelton,

2001c,b]. It should be possible to use IS with the methods described in this thesis, but

Section 9.3 shows that the same method that can be applied to Williams’ REINFORCE

cannot be naively applied to our algorithms unless the stationary distribution over

states is known.

IS has also been extended to monitoring belief states with transitions modeled by

BNs, directly minimising the variance of the belief state estimates, combining the ideas

of Sections 2.5.3.1 and 2.5.6 [Ortiz and Kaelbling, 2000].

2.7.1.2 Reward Baselines

Marbach and Tsitsiklis [1999] use rt − η as a performance indicator at each time step

instead of just the long-term reward η. The difference between rt and the reward

baseline η indicates whether the reward was above or below average. Intuitively, this

indicates whether positive or negative reinforcement is required, providing variance

reducing information. Weaver and Tao [2001] proved that η is the optimal baseline

for policy-gradient algorithms. Greensmith et al. [2002] show that the widely used Jβ

baseline is sub-optimal. That paper also analyses the use of general additive control

variates, such as actor-critic methods, to reduce variance. These ideas are similar to the

actor-critic style estimates proposed by Sutton et al. [2000] and Konda and Tsitsiklis

[2000]. These methods can be applied immediately to the algorithms in this thesis

though we have not yet investigated the effect of doing so.

2.7.1.3 Fixed Random Number Generators

A source of variance in value-function or policy-gradient estimates arises from uncer-

tainty in the transitions, that is, it is possible to execute T policy steps starting from

the same start state and obtain different average rewards. Ng and Jordan [2000] extend

42 Existing POMDP Methods

the work of Kearns et al. [1999], developing the PEGASUS algorithm that is applicable

to POMDPs simulated with a controlled source of randomness. It transforms arbitrary

POMDPs into POMDPs with deterministic transitions by augmenting the state space

with a record of the random numbers that will be used to generate the state and ob-

servation trajectories. Long-term rewards are then estimated starting from m initial

states drawn at random. The m needed to obtain ǫ-convergence of the value-function

scales polynomially with the discount factor and the complexity of the policy space,

but not with the number of states in the POMDP. In practice this method can be

applied by re-seeding the simulator’s random number generator to a fixed value before

each episode. PEGASUS is similar to paired statistical tests for policy evaluation and

is compared to them under various optimisation methods by Strens and Moore [2001].

We apply the method to our Monte-Carlo policy-gradient algorithms, reducing the

variance in gradient estimates. The variance reduction is not free since the method

can introduce false local maxima. We are not aware of any literature discussing this

phenomenon so Section 9.4 describes it.

2.7.2 Multi-Agent Problems

All the algorithms discussed in this thesis can be easily extended to multiple agents.

The idea is to alter the set of actions U such that it contains the cross product

of all the actions available to each agent, that is, for n agents, U = {U1 × U2 ×

· · · × Un}. If the agent parameters are independent, then each agent independently

chooses actions that are combined to form the meta-action. For stochastic policies,

the overall action distribution is just the joint distribution of actions for each agent,

µ(u1, u2, . . . |θ1, θ2, . . . , h1, h2, . . . , y1, y2, . . .).

Examples of multi-agent learning in the policy-gradient setting include training

independent neurons in the brain [Barlett and Baxter, 1999] and training multiple

network routers for maximum throughput [Tao et al., 2001]. Dutech et al. [2001] uses

an on-line version of the GPOMDP algorithm to incrementally train more and more

agents, in larger and larger worlds. By using value functions, multiple automated

guided vehicles have been trained to operate in a factory [Makar et al., 2001].

We investigate one multi-agent problem in Section 4.5, showing how our model-

based algorithm can train two robots to interact on a factory floor without explicit

communication.

2.8 Summary

Table 2.1 summarises the model-based algorithms described in this chapter. Table 2.2

correspondingly summarises the model-free algorithms. Particular attention is paid

§2.8 Summary 43

to comparing the how the ω(h|φ, g, y) and µ(u|θ, h, y) processes are parameterised for

each algorithm.

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I POMDP methods can be split along several axes:

• model-based learning or model-free learning;

• exact or approximate agents;

• policies inferred from values or learnt directly;

• policies computed analytically or via simulation.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II Exact methods are PSPACE-hard so we need tractable approximate meth-

ods.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III POMDP agents need memory to act optimally.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV Policy-gradient methods do not waste effort learning and representing values

that are discarded after the policy is formed.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ V Policy-gradient methods guarantee convergence to at least a local maximum,

but they may take longer to do so than value methods due to high variance

in the gradient estimates.

Some fields of POMDP research have been left out of this discussion because they

are not pertinent to this thesis. They include:

• Frameworks that sit between MDPs and POMDPs [Pendrith and McGarity, 1998,

Zubeck and Dietterich, 2000];

• Hierarchical POMDPs [Dietterich, 2000, Theocharous et al., 2000, Hernandez-

Gardio and Mahadevan, 2001, Thiébaux et al., 2002];

• Multiple time scale and continuous time POMDPs [Precup, 2000, Ghavamzadeh

and Mahadevan, 2001].

The remainder of this thesis is only concerned with policy-gradient methods where

memory is provided by FSCs or HMMs.

44 Existing POMDP Methods

Table 2.1: A summary of the model-based algorithms described in this chapter. The ω

column contains d if the internal state update is deterministic and s if the update is stochastic.

Similarly, the µ column indicates if the choice of action is deterministic of stochastic. Uppercase

D indicates that the function is fixed instead of learnt. The last column describes how φ

parameterises ω(h|φ, g, y) and θ parameterises µ(u|θ, h, y).

Method ω µ
φ parameters

θ parameters

MDP [§2.4] e.g.
Value Iteration

d d
Fully observable, therefore no memory required

θ stores long-term value of each state

Exact [§2.5.1] e.g.
Incremental Pruning

D d
I-state is bt, φ represented by q(j|i, u) and ν(y|i)

Piecewise linear hyperplanes or policy graph

Heuristic [§2.5.2.1] D d
As for exact

Approximation to piecewise linear hyperplanes

Grid [§2.5.2.2] D d
As for exact

µ(u|θ, h, y) interpolates grid point values stored by θ

Factored belief
[§2.5.3.1]

d d
φ encodes Bayesian network or algebraic decision tree

Could be any of the previous parameterisations

Factored value
[§2.5.3.2]

d d
Any of previous, including exact and factored

Linear combinations of basis functions or ADDs

Planning [§2.5.4] d D
Any belief state tracking method

µ(u|b, y) searches space of future trajectories

RTDP-Bel [§2.5.5] d d
Any method to track sampled beliefs bt

θ stores value of all visited belief states

SPOVA & Linear-Q

[§2.5.5]
d d

Any method to track sampled beliefs bt

Smooth approx. of exact J̄β learnt by gradient ascent

Particle Filters
[§2.5.6]

d d
φ represents tracked bt as n particles

KNN to infer value for bt represented by particles

Policy Iteration
[§2.5.7]

d d
φ is a policy graph (PG) converted to J̄β for learning steps

θ maps policy graph nodes to actions, learnt during DP

Depth first PG
search [§2.5.7]

d d
φ chosen by search of a tree of constrained PGs

θ maps PG nodes to actions

Gradient ascent of
PGs [§2.5.7]

s s
φ is PG transition probs. learnt by gradient ascent

θ stochastically maps PG nodes to actions

Approx. Gradient
PG [§2.5.7]

s s
PG transition probabilities controlled by ANN

ANN maps PG nodes to action probabilities

Actor-Critic &
VAPS[§ 2.5.8]

D s
Usually no internal state

θ is policy learnt by gradient ascent and value-iteration

§2.8 Summary 45

Table 2.2: A summary of the model-free algorithms described in this chapter. Each column

has the same meaning as Table 2.1. The tables are not a complete summary of all POMDP

algorithms.

Method ω µ
φ parameters

θ parameters

JSJ Q-learning

[§2.6.1]
D s

Assume yt = it, so no internal state

θ stores long-term values of each observation

HMM methods
[§2.6.2.1]

d s
φ is HMM transition probabilities

θ is action probs. or value of HMM belief states

Window-Q [§2.6.2.2] D d
φ deterministically records last n observations ȳ

θ is ANN weights mapping ȳ to values

UTREE [§2.6.2.2] D d
φ deterministically records last n observations ȳ

θ represents tree; follow ȳ branch to get ut

RNNs [§2.6.2.3] d d
RNN maps yt & RNN state output to new state output

RNN maps yt & RNN state output to actions or values

Evolutionary
[§2.6.2.4]

s D
φ is RNN trained using EAs & stochastic sigmoid outputs

θ weights sigmoid outputs to select actions

FSCs [§2.6.2.5] s s
φ is prob. of I-state transition g → h

θ is prob. of ut given I-state h

Williams’
REINFORCE [§2.6.3]

s s
I-states may be changed by memory setting actions

Grad ascent of θ that maps yt → ut

GPOMDP [§2.6.3] s s
Learning φ is the subject of Chapter 5

Grad ascent of θ that maps yt → ut for infinite-horizons

46 Existing POMDP Methods

Chapter 3

Stochastic Gradient Ascent of

FSCs

He had bought a large map representing the sea,

Without the least vestige of land:

And the crew were much pleased when they found it to be

A map they could all understand.

—Charles Lutwidge Dodgson

Our aim is to maximise η(φ, θ, i, g), the long-term average reward (2.1), by adjusting

the parameters of the agent in the direction of the gradient ∇η(φ, θ, i, g). Before

Chapters 4–6 describe several algorithms for doing this, we use this chapter to state

the key quantities and assumptions we rely on to ensure the existence of ∇η(φ, θ, i, g).

Firstly, we show how to construct a single Markov chain from the world-state, the

I-state in the form of a finite state controller (FSC), and the policy. Then we show

how to construct the functions ω(h|φ, g, y) and µ(u|θ, h, y) to represent an FSC and

policy such that the necessary assumptions are satisfied. This is achieved using the

soft-max function that generates distributions from the real valued output of a function

approximator. The soft-max function is used for all the experiments documented in this

thesis. We also briefly describe our conjugate gradient ascent procedure with details

deferred to Appendix B.

3.1 The Global-State Markov Chain

Recall from Section 2.1 that the transition probabilities governing the world-state

Markov process are described by q(j|i, u). Similarly, the transition probabilities be-

tween I-states are described by the FSC transition probabilities ω(h|φ, g, y). From

Meuleau et al. [1999a, Thm.1], the evolution of global states (world-state and I-state

pairs (i, g)) is also Markov, with an |S||G|×|S||G| transition probability matrix P (φ, θ).

The entry in row (i, g) and column (j, h) is given by

p(j, h|φ, θ, i, g) =
∑

y∈Y

∑

u∈U

ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u). (3.1)

48 Stochastic Gradient Ascent of FSCs

This equation computes the expectation over all observations and actions of global

state transition (i, g) → (j, h). The model of world given by ν(y|i) and q(j|i, u) must

be known before P (φ, θ) can be computed explicitly.

A step in computing ∇η(φ, θ, i, g) needs the gradient of the global-state transition

matrix

∇P = [∇φP,∇θP] (3.2)

=

[
∂P

∂φ1
, . . . ,

∂P

∂φnφ

,
∂P

∂θ1
, . . . ,

∂P

∂θnθ

]
. (3.3)

The partial derivative of the matrix P with respect to parameter φl where l ∈ {1, . . . , nφ}

is the element-wise derivative

∂P

∂φl
=

∂p(1,1|φ,θ,1,1)
∂φl

· · · ∂p(|S|,|G||φ,θ,1,1)
∂φl

...
. . .

...
∂p(1,1|φ,θ,|S|,|G|)

∂φl
· · · ∂p(|S|,|G||φ,θ,|S|,|G|)

∂φl

 .

Each element of each ∂P
∂φl

is given by

∂p(j, h|φ, θ, i, g)

∂φl
=
∑

y,u

ν(y|i)
∂ω(h|φ, g, y)

∂φl
µ(u|θ, h, y)q(j|i, u). (3.4)

The corresponding entries for ∂P
∂θc

, where c ∈ {1, . . . , nθ}, are

∂p(j, h|φ, θ, i, g)

∂θc
=
∑

y,u

ν(y|i)ω(h|φ, g, y)
∂µ(u|θ, h, y)

∂θc
q(j|i, u). (3.5)

3.2 Conditions for the Existence of ∇η

As we did for P , we drop the explicit dependence of the long-term average reward,

η(θ, φ, i, g), on the parameters θ and φ. We shall see in this section that, under our

assumptions, η is also independent of i and g. Thus, η is a scalar that depends implicitly

on only the parameters θ and φ. The gradient of η has nφ + nθ components

∇η = [∇φη,∇θη]

=

[
∂η

∂φ1
, . . . ,

∂η

∂φnφ

,
∂η

∂θ1
, . . . ,

∂η

∂θnθ

]
.

Section 4.1 describes how to compute ∇η, however, to ensure ∇η is well defined we

assume the following conditions. As we shall discuss, the conditions are either mild or

surmountable.

§3.2 Conditions for the Existence of ∇η 49

Assumption 1. Each P (φ, θ) has a unique stationary distribution

π(φ, θ) := [π(1, 1|φ, θ), . . . , π(|S|, |G||φ, θ)]′ ,

satisfying the balance equations. This implies that π(φ, θ) is the leading left eigenvector

of P (φ, θ). We use ′ to denote the transpose operator.

π′(φ, θ)P (φ, θ) = π′(φ, θ). (3.6)

Assumption 2. The rewards are uniformly bounded by |r(i)| < R <∞ ∀i ∈ S.

Assumption 3. The derivatives, ∂ω(h|φ,g,y)
∂φl

and ∂µ(u|θ,h,y)
∂θc

are uniformly bounded by

Q <∞ and U <∞ respectively ∀g, h ∈ G, u ∈ U , y ∈ Y, θc ∈ R, and φl ∈ R.

Assumption 4. The ratios

∣∣∣∂ω(h|φ,g,y)
∂φl

∣∣∣
ω(h|φ, g, y)

and

∣∣∣∂µ(u|θ,h,y)
∂θc

∣∣∣
µ(u|θ, h, y)

are uniformly bounded by B < ∞ and D < ∞ respectively ∀g, h ∈ G, u ∈ U , y ∈ Y,

φl ∈ R, and θc ∈ R.

Assumption 1 ensures that the Markov chain generated by P (φ, θ) has a unique

recurrent class (an ergodic Markov chain), which mainly just makes the statement of

the theorems more compact. In the non-unique case the theorems can be generalised by

considering each recurrent class of global states independently. Alternatively, ergodicity

can be guaranteed by modifying P to include small fixed probabilities of transitions to

random states.

Recall Equation (2.1), the expression for η(φ, θ, i, g). We now show that under

Assumption 1, η(φ, θ, i0, g0) is independent of the starting state (i0, g0) and is equal to

η(φ, θ) = π′(φ, θ)r (3.7)

=
∑

i∈S

∑

g∈G

π(φ, θ, i, g)r(i)

where r := [r(1, 1), . . . , r(|S|, |G|)]′ and r(i, g) := r(i) ∀g ∈ G. To demonstrate that

η is independent of the starting state we use the Ergodic Theorem to show that with

probability 1 η equals the expected reward over an infinite sample of the global-state

Markov process {St, Gt} ∼ π(φ, θ). Recall that χi(St) is the indicator function (2.6),

50 Stochastic Gradient Ascent of FSCs

which is 1 when St = i and 0 otherwise, thus

∑

i,g

π(φ, θ, i, g)r(i) =
∑

i,g

Eφ,θχi(St)χg(Gt)r(St)

= lim
T→∞

1

T

T∑

t=0

∑

i,g

χi(St)χg(Gt)r(St) w.p.1

= lim
T→∞

1

T

T∑

t=0

r(St) w.p.1,

where the Ergodic Theorem takes us from the first line to the second. The result is

true for all sample sequences {(i0, g0), (i1, g1), . . . , (iT , gT)} except those with measure

zero. Because the rewards are bounded by Assumption 2 we can apply Lebesgue’s

Dominated Convergence Theorem to take the expectation over all sample sequences to

obtain (2.1)

η(φ, θ, i, g) := lim
T→∞

1

T
Eφ,θ

[
T∑

t=1

r(it)|i0 = i, g0 = g

]
.

After this chapter will usually drop the explicit dependence on φ, θ for brevity, however,

it is always implied.

3.3 Generating Distributions with the Soft-Max Function

Assumption 4 might seem to prevent deterministic policies. Fortunately, some choices

of µ(u|θ, h, y) and ω(h|φ, g, y) satisfy Assumptions 3 and 4 while still allowing determin-

istic policies, provided we make the appropriate limiting definition of 0
0 . For example,

any function that uses a soft-max distribution based on underlying real parameters will

satisfy these conditions, as will many others. Thus, the soft-max function is a useful

distribution which becomes deterministic in the limit as the real parameters diverge to

infinity.

Definition 2. Given a vector ρ ∈ Rn, the probability of event m ∈ {1, . . . , n} according

to the soft-max distribution generated by ρ is

Pr(m) : =
exp(ρm)∑n

m′=1 exp(ρm′)
. (3.8)

∂ Pr(m)

∂ρc
= Pr(m)(χc(m)− Pr(c)). (3.9)

We typically compute the derivative of the soft-max function with respect to the real

parameters φl or θc after sampling an event m from the soft-max generated distribution.

§3.4 Agent Parameterisations 51

3.4 Agent Parameterisations

Except for the LVCSR speech recognition experiments, we restrict ourselves to the

following two forms of agent parameterisation.

3.4.1 Lookup Tables

Unless otherwise stated, all experiments use FSCs and policies parameterised by tables

indexed by the current I-state and observation, (g, y). Each index provides a vector

of |G| or |U| real parameters for ω(h|φ, g, y) and µ(u|θ, h, y) respectively. Thus, each

parameter can be labelled with the index (I-state g and observation y), and either the

next I-state h or action u that it represents. For example, the parameter φgyh is a real

number that controls the relative probability of making the I-state transition g → h

having observed y. The soft-max function is used to generate distributions from the

indexed vector. Applying Equation (3.8) gives us

ω(h|φ, g, y) =
exp(φgyh)∑

h′∈G exp(φgyh′)

µ(u|θ, h, y) =
exp(θhyu)∑

u′∈U exp(θhyu′)
.

Applying Equation (3.9), gives us the gradient ratios

∂ω(h|φ,g,y)
∂φgyh̄

ω(h|φ, g, y)
=χh̄(h)− ω(h̄|φ, g, y), (3.10)

∂µ(u|θ,h,y)
∂θhyū

µ(u|θ, h, y)
=χū(u)− µ(ū|θ, h, y).

We have computed the gradient of the log of ω(h|φ, g, y) and µ(u|θ, h, y), which is the

quantity required by our algorithms. When lookup tables are infeasible, usually due to

large or infinite |Y|, we will use artificial neural networks to parameterise the agent.

3.4.2 Artificial Neural Networks

The lookup-table controller uses |G|2|Y| parameters to encode ω(h|φ, g, y) and |G||Y||U|

parameters to encode µ(u|θ, h, y). If we wish to use many I-states, or there are many

(possibly continuous) observations, the lookup table approach falls prey to the curse

of dimensionality. For real-world problems we resort to approximations of tables such

as artificial neural networks (ANNs).

There are many conceivable ANN architectures that could be used. Our choice is

illustrated by Figure 3.1. The I-state is passed in using 1-in-n encoding, such that

52 Stochastic Gradient Ascent of FSCs

Soft−max

|G| output nodes

|Y| inputs = y |G| inputs = g

nh hidden nodes

o|G|o1

ω(h = 1|φ, g, y) ω(h = |G||φ, g, y)

Figure 3.1: The ANN architecture used to represent ω(h|φ, g, y) when lookup tables are

impractical. There are |Y| inputs indicating which input was observed, and |G| inputs encoding

the current I-state. If the observations are continuous and multi-dimensional, then we can

replace the |Y| inputs with an input for each element of the observation vector.

I-state input gt is 1, and all other I-state inputs are 0. The same scheme can be used

for the observations if they are finite, otherwise the observation can be passed directly

to the ANN.

Step one in computing the ratios ∇ω(h|φ,g,y)
ω(h|φ,g,y) and ∇µ(u|θ,h,y)

µ(u|θ,h,y) is evaluating ω(·|φ, g, y)

and µ(·|θ, h, y). Concentrating on ω(h|φ, g, y), we evaluate the soft-max distribution

for each possible future I-state h using the real-valued ANN outputs {o1, . . . , o|G|}

ω(h|φ, g, y) =
exp(oh)∑

h′∈G exp(oh′)
.

Next we chose an h from this distribution. Step two is to compute the log gradient for

this choice of h by applying the chain rule

1

ω(h|φ, g, y)

∂ω(h|φ, g, y)

∂φl

=
1

ω(h|φ, g, y)

∑

h′∈G

∂ω(h|φ, g, y)

∂oh′

∂oh′

∂φl

=
∑

h′∈G

(
χh′(h)− ω(h′|φ, g, y)

) ∂oh′

∂φl
.

The first factor in the summation is derived from Equation (3.9) and the second factor

§3.5 Conjugate Gradient Ascent 53

is the gradient of the ANN outputs with respect to each ANN weight. The whole

expression is implemented similarly to error back propagation, which is a standard

procedure for training ANNs [Haykin, 1999]. However, instead of back propagating the

gradient of an error measure, we back propagate the soft-max gradient for the agent’s

choice of h. We derive ∇µ(u|θ,h,y)
µ(u|θ,h,y) in the same way, evaluating the soft-max distribution

for each possible action u by using the real-valued ANN outputs {o1, . . . , o|U|}.

3.5 Conjugate Gradient Ascent

This section presents an overview of the gradient ascent procedure used for all the

experiments reported in this thesis. The methods are not novel so detailed descriptions

are deferred to Appendix B.

All the experiments reported in this thesis used the Polak-Ribiére conjugate gra-

dient ascent algorithm [Fine, 1999, §5.5.2] described in Appendix B.1. This algorithm

returns a search direction θ∗ (which we assume encompasses all parameters) that is

orthogonal to any previous search direction.

Unless stated, all experiments used the GSEARCH algorithm [Baxter et al., 2001a]

to conduct a line search along the direction θ∗ for the best step size γ. Traditional

line search methods estimate η for each trial step size, attempting to find two values

of γ that bracket the maximum of η(θ + γθ∗). Instead, GSEARCH computes the sign

of the dot product between the search direction and local gradient estimates for each

trial step size. When the sign of the dot product changes, it indicates that we stepped

past the local maximum we are searching for. Empirically, GSEARCH is more robust

in the presence of noise than value-bracketing methods. Reasons for this are discussed

in Appendix B.1, along with the details of the GSEARCH algorithm.

Quadratic weight penalties [Kushner and Clark, 1978, §5.2] were used in our experi-

ments to prevent the parameters entering sub-optimal maxima of the soft-max function.

Maxima occur whenever the parameters grow large, saturating the soft-max function.

See Appendix B.2 for details. The benefits of using penalty terms is demonstrated and

discussed as part of the first experiment in Section 4.5.1.

3.6 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I The FSC and the world-state induce a global-state Markov chain with tran-

sition matrix P (φ, θ) = [p(j, h|φ, θ, i, g)].

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II If P (φ, θ) has a unique stationary distribution π(φ, θ), and if ω(h|φ, g, y),

54 Stochastic Gradient Ascent of FSCs

unknown dynamics

known dynamics

IState−GPOMDP

IOHMM−GPOMDP

Exp−GPOMDP

known dynamics

GAMP

World state

In
te

rn
al

 s
ta

te

Alternative Exp−GPOMDP

Figure 3.2: The relationship between the algorithms covered in the next three chapters. If a

model of the world is available then we can use the algorithms on the right of the world-state

axis, otherwise we are restricted to the left hand side. On the left there is a choice of algorithms

that make varying degrees of use of the internal-state model.

µ(u|θ, h, y), and r(i) are well behaved, then the derivative of the long-term

average reward ∇η exists.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III Distributions generated using the soft-max function allow deterministic poli-

cies. They are used for most of the experiments reported in this thesis.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV We use a standard conjugate gradient ascent method. The line search is

unusual because it avoids using estimates of η, improving the robustness of

the line search.

Sneak Preview

The next three chapters present our novel policy-gradient algorithms that were

originally presented in Aberdeen and Baxter [2002]. All can incorporate internal state

to allow them to cope with partially observable environments. Figure 3.2 classifies the

algorithms by their use of knowledge of the global dynamics. On right of the world-

state axis q(j|i, u), ν(y|i), and r(i), are assumed to be known. On the left the dynamics

are completely hidden. Similarly, the algorithms on top of the internal-state axis make

use of knowledge of the internal-state transition probabilities ω(h|φ, g, y).

The GAMP algorithm is covered in Chapter 4. The IState-GPOMDP algorithm is

covered in Chapter 5. The remaining algorithms in the top-left of Figure 3.2 are covered

in Chapter 6.

xd

Chapter 4

Model-Based Policy Gradient

Research is what I’m doing when I don’t know what

I’m doing.

—Wernher von Braun

Without a model of the world there is little choice but to learn through interaction

with the world. However, if we are able to at least approximately model the world then

gradients can be computed without simulation. For example, manufacturing plants may

be reasonably well modeled by hand or models can be estimated using methods from

state identification theory [Ogata, 1990]. Given a model we can compute zero-variance

gradient approximations quickly and with less bias than Monte-Carlo methods. This

chapter introduces one such approximation: the GAMP algorithm. GAMP is feasible

for many thousands of states. This is an order of magnitude improvement over model-

based value-function algorithms that can handle tens to hundreds of states [Geffner

and Bonet, 1998].

We begin with a generic description of how ∇η is computed analytically, then in

Section 4.2 we describe GAMP, followed by some experimental results in Sections 4.4

and 4.5.

4.1 Computing ∇η with Internal State

For the purposes of this discussion the model of the POMDP is represented by the

global-state transition matrix P (φ, θ). The parameter vector φ parameterises the FSC

model ω(h|φ, g, y) and θ parameterises the policy model µ(u|θ, h, y). The entries of

P (φ, θ) are given by Equation (3.1). This matrix has square dimension |S||G| and

incorporates our knowledge of the world-state transitions given by q(j|i, u), the ob-

servation hiding process ν(y|i), the reward r(i), and the current parameters θ and

φ.

Recall that the stationary distribution of the global state is π(φ, θ), a column vector

of length |S||G|. The reward in each global state is assumed known and given by the

column vector r. Let e be a length |S||G| column vector of all ones. Dropping the

explicit dependence on φ and θ, π′e is a scalar with value 1. The symbol ′ is used to

56 Model-Based Policy Gradient

denote the transpose of a matrix. Also, eπ ′ is the outer product of e with π, that is, a

rank-1 |S||G| × |S||G| matrix with the stationary distribution in each row.

We now derive an exact expression for the gradient of η with respect to the agent’s

parameters. The rest of this section follows the original derivation by Baxter and

Bartlett [2001]. We start by rewriting the scalar long-term average reward (3.7) and

its gradient as

η = π′r

∇η = (∇π′)r. (4.1)

We can derive an expression for (∇π′) by differentiating both sides of the balance

equation (3.6)

∇π′ = ∇(π′P)

= (∇π′)P + π′(∇P)

∇π′ − (∇π′)P = π′(∇P)

(∇π′) [I − P] = π′(∇P), (4.2)

which should be understood as a set of linear equations for each of the nφ +nθ param-

eters. For example, for parameter θc we have

[
∂π(1,1)

∂θc
· · · ∂π(|S|,|G|)

∂θc

]

1− p(1, 1|φ, θ, 1, 1) · · · −p(|S|, |G||φ, θ, 1, 1)
...

. . .
...

−p(1, 1|φ, θ, |S|, |G|) · · · 1− p(|S|, |G||φ, θ, |G|, |S|)

 =

[
π(1, 1) · · · π(|S|, |G|)

]

∂p(1,1|φ,θ,1,1)
∂θc

· · · ∂p(|S|,|G||φ,θ,1,1)
∂θc

...
. . .

...
∂p(1,1|φ,θ,1,1)

∂θc
· · · ∂p(|S|,|G||φ,θ,|S|,|G|)

∂θc

 .

This system is under-constrained because [I−P] is not invertible; which can be shown

by re-arranging the balance equation to reveal a leading left eigenvector with zero

eigenvalue (all 0 vectors and matrices are represented by [0])

π′ = π′P

π′[I − P] = [0]. (4.3)

We avoid this problem by conditioning [I − P] as follows. Recall that eπ ′ is the

§4.1 Computing ∇η with Internal State 57

|S||G| × |S||G| matrix with the stationary distribution π ′ in each row. Since

(∇π′)e =
∑

i,g

∇π(i, g)

= ∇
∑

i,g

π(i, g)

= ∇1

= 0,

we obtain (∇π′)eπ′ = [0]. Thus, adding eπ′ to I − P adds 0 to (∇π′) [I − P] and we

can rewrite (4.2) as

(∇π′)
[
I − P + eπ′

]
= π′(∇P).

To show that [I − P + eπ′] is invertible we call upon a classic matrix theorem:

Theorem 1 (Theorem 1, §4.5, Kincaid and Cheney [1991]). Let A be an n× n

matrix with elements aij . Let ‖A‖p be the subordinate matrix norm induced by the

vector p-norm. For example

‖A‖∞ := max
i

n∑

j=1

|aij |,

then for any p, if limn→∞ ‖A
n‖p = 0, we have

[I −A]−1 =

∞∑

n=0

An. (4.4)

We now demonstrate that A = (P − eπ′)n converges to [0] as n → ∞, hence that

[I − (P − eπ′)] is invertible. The first step is showing (P − eπ ′)n = Pn − eπ′. This is

trivially true for n = 1, now we assume it is true for some n and demonstrate it is true

for n+ 1

(P − eπ′)n+1 = (Pn − eπ′)(P − eπ′) , from assumption

= Pn+1 − eπ′P − Pneπ′ + eπ′eπ′

= Pn+1 − eπ′ − Pneπ′ + e1π′ , from π′P = π′ and π′e = 1

= Pn+1 − Pneπ′

= Pn+1 − eπ′ , from Pe = e, (4.5)

58 Model-Based Policy Gradient

and by induction it is true for all n. As n→∞ we have P n → eπ′, so

lim
n→∞

An = lim
n→∞

Pn − eπ′ = eπ′ − eπ′ = [0].

Thus [I − (P − eπ′)] is invertible and we can write

(∇π′) = π′(∇P)
[
I − P + eπ′

]−1
.

So, applying Equation (4.1),

∇η = π′(∇P)
[
I − P + eπ′

]−1
r. (4.6)

4.2 The GAMP Algorithm

Computing [I − P + eπ′]−1 exactly is O(|S|3|G|3) hence intractable for more than a few

100’s of states. However, we can closely approximate the inversion using a series matrix

expansion that, when taking advantage of sparse data structures, becomes feasible for

many thousands of states. Similarly, we approximate π by iteration instead of com-

puting the leading left eigenvector of P . Using these two approximations is the essence

of the Gradient Approximation for Modeled POMDPs (GAMP) method outlined by

Algorithm 1.

Using (4.4), plus the fact that (P −eπ ′)n = Pn−eπ′, we can rewrite Equation (4.6)

as

∇η = lim
N→∞

π′(∇P)

[
N∑

n=0

(
Pn − eπ′

)
]
r (4.7)

= lim
N→∞

π′(∇P)

[(
N∑

n=0

Pn

)
−

(
N∑

n=0

eπ′

)]
r

= lim
N→∞

π′

[
(∇P)

(
N∑

n=0

Pn

)
−

(
N∑

n=0

(∇P)eπ′

)]
r

= lim
N→∞

π′(∇P)

N∑

n=0

Pnr, (4.8)

where the last line follows from (∇P)e = [0] for the same reason as (∇π ′)e = 0. Let

xN be the summation up to the N ’th term

xN =

N∑

n=0

Pnr. (4.9)

§4.2 The GAMP Algorithm 59

Now we simply define the GAMP gradient approximation as Equation (4.8) with the

truncated summation xN

∇̂Nη := π′(∇P)xN .

We evaluate xN by iterating

v0 = r, vn+1 = Pvn

x0 = [0], xn+1 = xn + vn.

Because this is a series of matrix-vector multiplications, and matrix additions, we end

up with an algorithm that has worst case complexity O(|S|2|G|2N). This is a form of

Richardson iteration, a simple iterative method for solving systems of linear equations

[Kincaid and Cheney, 1991, §4.6].

The matrix P is usually sparse since only a small number of states j ∈ S have

non-zero probabilities of being reached from some state i. For example, in the robot

navigation domain of Cassandra [1998] the move forward action leads to one of at most

3 next states, regardless of the size of the world. Using sparse matrix data structures

and sparse multiplication algorithms, the practical complexity is O(c|S||G|N) where

c≪ |S||G| and depends on the degree of sparsity exhibited by P .

Evaluating π involves computing the leading left eigenvector of P , which is expen-

sive if done exactly. We use the power method [Anton and Rorres, 1991, §9.5] which

comprises of iterating π′
n+1 = π′nP . We stop the iteration when the error ‖π ′

n+1−π
′
n‖∞

falls below some threshold ǫπ. Sparse matrix multiplication again reduces the complex-

ity to O(c|S||G|n) where c≪ |S||G|.

A surprisingly expensive operation is evaluating Equations (3.4) and (3.5) for each

element of each matrix ∂P/∂φl and each element of each matrix ∂P/∂θc. In the worst

case this has complexity O(|S|2|G|2(nφ + nθ)|Y||U|). Since q(j|i, u) and ν(y|i) are

often 0, practical complexities are O(c|S||G|(nφ + nθ)|U|) where c≪ |S||G||Y|. Simple

tricks such as pre-computing all values of ∇ω(h|φ, g, y) and ∇µ(u|θ, h, y), combining

the operations of computing ∇P with multiplication by π ′ and xN , and using sparsity,

allows systems of |G||S| > 20, 000 to be feasibly tackled on modern desktop computers.

With reference to Algorithm 1, lines 2–7 compute P ; 8–13 compute xN using

Richardson iteration; 14–18 estimate π ′ using the power method and 19–29 compute

π′(∇P)xN . Combining the computation of ∇P with the final step of multiplying

π′(∇P)xN avoids explicitly storing nφ + nθ matrices that each have |S|2|G|2 elements.

Practical implementations require sparse data representations and matrix multiplica-

tions. The loops for computing P and ∇P in Algorithm 1 are shown in a simplified

form for clarity. They should be constructed to take maximum advantage of the factors

60 Model-Based Policy Gradient

in lines 5, 11, 23, and 26 that are often 0.1

4.3 Asymptotic Convergence of GAMP

Because P is an ergodic matrix, PN converges exponentially quickly to eπ ′. The exact

rate is governed by the mixing time τ of the POMDP, which we define similarly to

Barlett and Baxter [2000].

Definition 3. The total variation distance between two discrete probability distribu-

tions P, Q on a set S is

d(p, q) =
∑

j∈S

|p(j) − q(j)|.

Definition 4. We say that a stochastic process with unique stationary distribution

π(φ, θ), is exponentially mixing with time constant τ (τ -mixing for short) if ∀i

d(PN
i , π) ≤ exp(−⌊

N

τ
⌋), (4.10)

where PN
i is the i’th row of PN . The mixing time of the POMDP is defined to be the

smallest τ such that P is τ -mixing.

Intuitively, τ can be thought of as a measure of how long it takes to obtain a

“representative” sample from the Markov chain. The mixing time depends on the

stationary distribution, which depends on the current agent parameters. Thus, as the

agent’s policy evolves, the mixing time changes. The following theorem bounds the

error in the GAMP gradient estimates as a function of τ . Recall from Section 4.1 that

R bounds rewards, Q bounds ∇ω(h|φ, g, y) and U bounds ∇µ(u|θ, h, y).

Theorem 2.

‖∇φη −
̂
∇φ

Nη‖∞ ≤ QR|G|τ
exp(−

⌊
N
τ

⌋
)

1− exp(−1)

‖∇θη − ∇̂θ
Nη‖∞ ≤ UR|U|τ

exp(−
⌊

N
τ

⌋
)

1− exp(−1)

This theorem is proved in Appendix A.1.1. The difficulty of calculating τ for an

arbitrary POMDP makes it hard to use this theorem to establish N in advance. In

1Specifically, thought must be given to the loop ordering. The most complex loop is lines 19–29.
From outer-most to inner-most we loop over i, y, g, h, {θc, φl}, u, j. The inner loops are only entered if
none of the factors in lines 23 or 26 have already evaluated to 0. For example, the two outermost loops
over i and y allow us to evaluate ν(y|i), which, if it is 0, means we increment y without entering the
deeper loops. Sparse matrix representations of q(j|i, u) make the inner-most loop efficient.

§4.3 Asymptotic Convergence of GAMP 61

Algorithm 1 GAMP

1: Given:

• State transition probabilities q(j|i, u) ∀j, i ∈ S, u ∈ U .

• Observation probabilities ν(y|i) ∀i ∈ S, y ∈ Y.

• Rewards r(i, g) ∀i ∈ S, g ∈ G.

• Policy µ(u|θ, h, y) parameterised by θ ∈ Rnθ .

• FSC ω(h|φ, g, y) parameterised by φ ∈ Rnφ .

• Iteration termination thresholds ǫx, ǫπ.

2: for each (i, g), (j, h) do
3: p(i,g)(j,h) = 0
4: for each {(y, u)|ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u) 6= 0} do
5: p(i,g)(j,h) = p(i,g)(j,h) + ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u)
6: end for
7: end for
8: v = r, x = r, x̄ = 0
9: while max(i,g) |x(i, g) − x̄(i, g)| > ǫx do

10: x̄ = x
11: v = Pv
12: x = x+ v
13: end while
14: π̄ = 1

|G||S|, π
′ = π̄P

15: while max(i,g) |π(i, g) − π̄(i, g)| > ǫπ do
16: π̄ = π′

17: π′ = π̄P
18: end while
19: ∆ = [∆θ,∆φ] = [0]
20: for each {(i, g), (j, h)|x(j, h) 6= 0}) do
21: for each {(y, u)|ν(y|i)q(j|i, u) 6= 0} do

22: for each {θc ∈ θ|ω(h|φ, g, y)∂µ(u|θ,h,y)
∂θc

6= 0} do

23: ∆θ
c = ∆θ

c + π(i, g)ν(y|i)ω(h|φ, g, y) ∂µ(u|θ,h,y)
∂θc

q(j|i, u)x(j, h)
24: end for
25: for each {φl ∈ φ|

∂ω(h|φ,g,y)
∂φl

µ(u|θ, h, y) 6= 0} do

26: ∆φ
l = ∆φ

l + π(i, g)ν(y|i)∂ω(h|φ,g,y)
∂φl

µ(u|θ, h, y)q(j|i, u)x(j, h)
27: end for
28: end for
29: end for
30: ∇̂Nη = ∆

62 Model-Based Policy Gradient

practice we check for convergence of x by stopping when ‖xN+1 − xN‖∞ ≤ ǫ. The

following theorem shows that ‖xN+1 − xN‖∞ is decreasing; a necessary property if it

is to be used as stopping criterion.

Theorem 3.

‖xN+1 − xN‖∞ ≤ ‖xN − xN−1‖∞. (4.11)

The proof is straightforward and located in Appendix A.1.2.

4.4 GAMP in Practice

Figure 4.4 demonstrates empirically how quickly the GAMP algorithm converges on

an internal-state problem with 1045 global states. We computed the exact matrix

inversion [I − P + eπ′]−1 for the Pentagon problem with |S| = 209 and |G| = 5. The

details of this scenario are deferred until Section 8.3 since they are not important for

understanding this experiment. The agents were parameterised with tables of real

numbers as described in Section 3.4.1. The initial parameters were set such that θc =

φl = 0, ∀c, l.

The Pentagon problem allows all observations from all states by adding observation

noise, removing the gain we would normally achieve from sparse observations. Noise

is also added to the world-state transitions. The added noise and internal state make

this a good challenge for GAMP but, despite noise, the global-state transition prob-

abilities are still sparse with only 25,875 of 1,092,025 elements of P having non-zero

probabilities.

This experiment was run on an unloaded Pentium II @ 433 MHz. When computing

the exact gradient, finding π′ requires 315 s (wall clock time),2 the matrix inversion

requires 10.5 s and ∇P requires 36 s. When computing the approximate gradient with

N = 500, the Richarsdon Iteration inversion requires 1.41 s. A larger saving comes

from approximating π′. For this experiment we used a π iteration stopping threshold of

ǫπ = 0.0001. This required 1319 iterations, taking 3.50 s instead of 315 s. The angular

error in the gradient at N = 500 is 0.420◦ taking 11.3% of the time the true gradient

requires. The speedup becomes greater as |S||G| grows. If π ′ is computed exactly, but

Richardson Iteration is still used, the error is reduced by 0.016◦, demonstrating that

in this case approximating π accounts for only a small portion of the error.

2We used the dgeev routine of LAPACK to compute all eigenvectors exactly. We could determine
π faster with an algorithm that exactly computes only the leading left eigenvector.

§4.5 A Large Multi-Agent Problem 63

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Iterations (N)

E
rr

o
r

(d
e

g
re

e
s
)

Figure 4.1: Angular error between the GAMP estimate after N iterations and the exact

gradient. This plot is based on the Pentagon POMDP with |S| = 209 and |G| = 5 making P a

1045× 1045 element matrix.

4.5 A Large Multi-Agent Problem

Model based methods for POMDPs have been restricted to at most a few hundred

states with 10’s of observations and actions [Geffner and Bonet, 1998]. This section

demonstrates that GAMP can learn the optimal policy for a noisy multi-agent POMDP

with 21,632 states, 1024 observations and 16 actions.

The scenario is shown in Figure 4.2: a factory floor with 13 grid locations to

which 2 robots have access. The robots are identical except that one is given priority

in situations where both robots want to move into the same space. They can turn

left or right, move 1 position ahead, or wait where they are. One agent learns to

move unfinished parts from the left shaded area to the middle area, where the part is

processed instantly, ready for the second agent to move the processed part from the

middle to the right shaded area. The middle processing machine can only handle 1

part at a time, so if the first agent drops off a part at the middle before the second

agent has picked up the last part dropped at the middle, the new part is discarded.

The large state space arises from the combined state of the two independent agents

plus the global state. Each agent can be loaded or unloaded in 13 states with 4

orientations, giving each agent 2× 13× 4 = 104 states. The global state indicates if a

part is waiting at the middle processing machine and the state of the 2 agents, giving

2× 1042 = 21, 632 states.

A reward of 1 is received for dropping off a processed part at the right. The agents

64 Model-Based Policy Gradient

✆✝✆✝✆✝✆✆✝✆✝✆✝✆✆✝✆✝✆✝✆
✞✝✞✝✞✝✞✞✝✞✝✞✝✞✞✝✞✝✞✝✞

✟✝✟✝✟✝✟✟✝✟✝✟✝✟✟✝✟✝✟✝✟
✠✝✠✝✠✝✠✠✝✠✝✠✝✠✠✝✠✝✠✝✠

✡✝✡✝✡✡✝✡✝✡✡✝✡✝✡
☛✝☛✝☛☛✝☛✝☛☛✝☛✝☛

Agent1 Agent2

Figure 4.2: Plan of the factory floor for the multi-agent problem. The dashed arrows shows

one of the routes traced by the final agents.

only need to exit the loading or drop off locations to pick up or drop loads. To receive

the maximum reward the agents must cooperate without explicit communication, the

actions of the first agent allowing the second agent to receive rewards.

The observations for each agent consist of 4 bits describing whether their path is

blocked in each of the 4 neighbouring positions, and a 5th bit describing if the agent

is in the uppermost corridor (which is necessary to break the symmetry of the map).

The combined observations are 10 bits, or |Y| = 1024.3 The actions for each agent are

{move forward, turn left, turn right, wait}, resulting in a total of |U| = 16

actions.

Uncertainty is added with a 10% chance of the agents’ action failing, resulting in

no movement, and a 10% chance of the agents’ sensors completely failing, receiving a

“no walls” observation. This problem was designed to be solved by a reactive policy.

Section 8 demonstrates GAMP on problems that require memory to solve.

4.5.1 Experimental Protocol

These experiments were run on an unloaded AMD Athlon @ 1.3 GHz. GAMP required

less than 47 Mbytes of RAM to run this problem. Compare this to just storing every

element of ∇P explicitly, which would require 893 Giga bytes of ram.

The agents were parameterised with tables of real numbers as described in Sec-

tion 3.4.1. There are |Y| × |U| = 128 parameters per agent. We set θc = 0 ∀c. There

are no φ parameters since the scenario can be solved without I-states. A quadratic

penalty of ℘ = 0.0001 was used to stop the parameters settling in a local maximum too

early (see Appendix B.2). The quadratic penalties for all the experiments in this thesis

were chosen by trial and error. We determined penalties that prevented the weights

growing past approximately 0.5 before the penalty is automatically reduced for the first

time. Penalty reduction occurs after three line search iterations without improvement

of the average reward. We chose ǫx = ǫπ = 0.0001, which was the largest value (for

3Not all 1024 observations can occur, contributing the sparseness of the system.

§4.5 A Large Multi-Agent Problem 65

Table 4.1: Results for multi-agent factory setting POMDP. The values for η are multiplied by

102.

Algorithm mean η max. η var. secs to η = 5.0

GAMP 6.51 6.51 0 1035

Hand 6.51

the fastest approximation) tested that allowed the agent to consistently converge to an

agent with equivalent performance to the best hand coded policy.

Exact algorithms based on factored belief states could work well for this scenario

since it decomposes into a state variables [Boutilier and Poole, 1996, Hansen and Feng,

2000, Poupart and Boutilier, 2001], however we do not assume that the state-variable

model is known. We shall discuss some possibilities for factored versions of GAMP at

the end of this chapter.

4.5.2 Results

The agents learnt to move in opposing circles around the factory (shown by the dashed

lines in Figure 4.2). This policy reduces the chances of collision. They also learnt to

wait when their sensors fail, using the wait action to gather information. Table 4.1

shows a comparison between GAMP with no memory and the best policy we designed

by hand.4

Without applying quadratic penalties training terminated in substantially sub-

optimal local maxima. This is because the early gradient estimates tended to point in

sub-optimal directions, dominated by concepts that are easy to learn, such as “don’t

run into walls,” or “moving forward is good.” These gradients drive parameters to

very large values. The soft-max function enters a local maximum when the parameters

diverge to ±∞, so the agent quickly becomes stuck having learnt only the most simple

concepts. The quadratic penalty keeps parameters near 0. This forces the ω(·|φ, g, y)

and µ(·|θ, h, y) distributions to stay close to uniform, which encourages exploration.

The most common local maxima occurred when the agents learnt early in training

that forward is a generally useful action, even when the sensors fail and the agent

should wait for more information. Because the move forward concept was learnt so

strongly the soft-max derivative for the relevant parameters was close to 0.

We attempted to run the exact Incremental Pruning algorithm [Zhang and Liu,

1996] on the Factory problem. The code aborted during the first iteration of dynamic

4An mpeg visualisation of trained agents is available from the author, or from http://discus.anu.

edu.au/~daa/files/factory.mpg.

66 Model-Based Policy Gradient

programming after consuming all 256 MB of memory.5 Storing just one double precision

belief state of length 21,632 requires 169 Kb and exact value-function-based algorithms

quickly generate many thousands of vectors for large problems.

4.6 Discussion

Even though GAMP enumerates the state space it does not suffer from the curse of

dimensionality as severely as exact methods because of three features: local optimisa-

tion, approximations to the gradient, and the ability to take full advantage of sparsity

in the POMDP model.

However, if the state space grows very large then simulation will out-perform GAMP

unless a form of state space pruning is used. This arises from a nice feature of Monte-

Carlo algorithms: their ability to focus search on the relevant parts of state space

[Kaelbling et al., 1996]. Except in the early stages of training, Monte-Carlo methods

encounter only those states that are entered by a reasonable agent, effectively learning

in a pruned state space. GAMP always considers the entire state space, even those

states that are unreachable given a start state.

For this reason it is important to ensure Assumption 1 from Section 3.2 is not

violated when applying GAMP. For example, when designing the Factory problem,

care was taken to ensure that impossible situations, such as two robots occupying the

same location, have transitions to legal situations even though Monte-Carlo algorithms

would not enter those states. This discussion assumes that the regions of state space

ignored by Monte-Carlo algorithms are truly irrelevant to performance, an assumption

that is often violated. Quadratic penalties are also useful to ensure that Monte-Carlo

methods do not ignore regions of state space without sufficient exploration.

To scale to hundreds-of-thousands of states more advanced iteration methods are

worthy of investigation. For example, the GMRES algorithm is a Krylov subspace

method for computing xN . It is similar to Richardson iteration but computes estimates

of xN+1 based on multiple previous estimates {x0, . . . , xN} [Greenbaum, 1997, §2][Ipsen

and Meyer, 1998]. For computing π, the Lanczos method [Greenbaum, 1997, §2.5],

which is related to Krylov subspace methods, is available.

Finally, we emphasise that the advantage of GAMP lies in its ability to compute

gradients of η without interacting with the world. Interactions are slow and can be

expensive and dangerous. Fewer samples may be needed to estimate the model pa-

rameters, prior to running GAMP, than to run model-free algorithms. For example, an

agent that learns to drive a car using Monte-Carlo methods will require thousands of

driving hours and could crash a few times along the way. However, sophisticated driv-

5We used Anthony Cassandra’s pomdp-solve V4.0 code.

§4.7 Related Work 67

ing models exist that take into account car dynamics, driving conditions, and traffic;

for example, state-of-the-art computer games. A better approach is to let the agent

learn off-line using the approximate model, and then refine its policy on the road.

4.7 Related Work

Monte-Carlo policy-gradient algorithms have been well studied, but little work has

examined policy-gradient approaches when given a model. The Linear-Q [Littman

et al., 1995] and SPOVA [Parr and Russell, 1995] algorithms use gradient ascent to

perform parameter updates for function approximators that learn values of belief states.

Apart from being value-based, this work differs from GAMP because simulation is used,

incurring the associated variance penalty but working for very large state spaces.

Meuleau et al. [1999a] used a similar approach to ours, computing the gradient

of the discounted reward Jβ . They avoid computing π because of discounting, but

this necessitates an iterative matrix inverse for each parameter. During each gradient

calculation GAMP performs two iterative solves compared to the nφ+nθ matrix inverses

performed to compute ∇Jβ . The paper of Meuleau noted that the VAPS Monte-Carlo

approach out-performed the exact gradient as the discount factor approached 1, even

for the trivial Load/Unload scenario, limiting its usefulness to larger scenarios that

require high discount factors. As we demonstrate in Section 8, GAMP outperforms

our Monte-Carlo approaches on a variety of infinite-horizon scenarios, without using

discount factors.

4.8 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I GAMP uses a discrete model of the world to approximate ∇η.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II GAMP does not need to interact with the world during learning.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III GAMP can be used to train agents for worlds with tens-of-thousands of states

on a modern desktop computer.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV GAMP can be applied to discretised versions of continuous state, observation

and action spaces.

Future Work

Computing ∇P is the current bottleneck. Using factored representations of the

POMDP (Section 2.5.3) will speed up computation of ∇P and all other phases due

68 Model-Based Policy Gradient

to compact representations of the matrices in terms of state variables. This may in-

troduce further approximation error due to imperfect factorisation. One method for

constructing matrices from state variables is to use algebraic decision diagrams (ADDs).

Methods for performing matrix addition and multiplication using ADDs are given by

Bahar et al. [1993], and ADDs have been previously applied to MDP value methods

by Hoey et al. [1999].

GMRES for computing xN and the Lanczos method of computing π will be beneficial

for scaling to larger POMDPs than the factory problem.

If the model of the world is only approximate then GAMP can be used during

a preliminary training phase. Once a “rough draft” agent has been produced using

GAMP and the approximate model, it could be refined in the real world by using the

Monte-Carlo algorithms described in following chapters.

Chapter 5

Model-Free Policy Gradient

Those who can, do. Those who can’t, simulate.

—Anon.

Without knowledge of the POMDP transition and observation model we resort to

Monte-Carlo methods for estimating ∇η(φ, θ). These methods experience trajectories

through the POMDP, gathering noisy information about the true gradient at each step.

Much work has been done in this area for MDPs, including the value-based TD(λ)

[Sutton and Barto, 1998] and SARSA(λ) (see Appendix C.1.1) families of algorithms.

As discussed in Section 2.2, agents require internal state to act optimally in partially

observable environments. The key idea of this chapter is to augment the world state

with a set of fully observable internal states that the agent can manipulate to use as

memory. Through Monte-Carlo trials, the agent learns to use its finite state controller

(FSC) to update the internal state in a useful way. Initially the agent’s internal state

transitions are random and do not help the agent. However, the internal state transition

parameters φ adjust and learn to record parts of the agent’s history which are relevant

to choosing better actions. Once the internal state becomes relevant to the agent,

the action selection parameters θ adjust to take advantage of the internal state, hence

increasing the long-term reward.

Peshkin et al. [1999] and Peshkin [2002] used a similar approach in extending

Williams’ REINFORCE to policies with memory. We now extend this to the infinite-

horizon setting by modifying the memory-less GPOMDP algorithm of Baxter and

Bartlett [2001]. We shall derive our memory enabled version from scratch so an un-

derstanding of GPOMDP is not necessary. However, a brief introduction to GPOMDP

can be found in Section 2.6.3.

Experiments are deferred until Chapter 8, where we compare all our algorithms.

5.1 Gathering Experience from the World

The task is now to estimate the gradient of the long-term average reward by interacting

with the world. Model-free algorithms are sometimes referred to as simulation methods

70 Model-Free Policy Gradient

because learning can be implemented by letting the agent interact with a computer

simulation of the world. This terminology is slightly misleading because model-free

methods usually make no distinction between learning from a simulation of the world,

and learning from the real world. For this reason we prefer the term Monte-Carlo

methods for model-free algorithms that can learn using simulators or the real world. In

both cases we sample trajectories through the state space, but simulators do this using a

random number generator instead of nature’s randomness. The distinction is important

because Section 9.4 discusses an existing variance reduction method that manipulates

the random number generator directly, requiring simulation of state transitions. The

ability to simulate transitions implies a known model (although the agent does not

have access to it).

Interaction begins by placing the agent in a random global state (i0, g0). The

assumption of a unique stationary distribution means the effect of the initial state on

the gradient estimate will become negligible with time. Assuming the agent is in global

state (it, gt) at time t, one step of interaction progresses as follows:

1. the agent observes yt sampled from the distribution ν(·|it);

2. the agent chooses its next I-state gt+1 from the distribution ω(·|φ, gt, yt);

3. the agent chooses an action ut from the distribution µ(·|θ, gt+1, yt);

4. the next world state is sampled from the distribution q(·|it, ut).

5. the reward rt+1 = r(it+1) is sent to the agent;

6. in training mode the agent updates its gradient estimate.

This chapter focuses on the last step.

5.2 The IState-GPOMDP Algorithm

Algorithm 2 estimates ∆T := [∆φ
T ,∆

θ
T], which in turn approximates the gradient

∇η = [∇φη,∇θη]. We describe the estimate in a bottom-up fashion, describing the

algorithm and then providing the theoretical guarantees that the algorithm converges

to an estimate of ∇η.

At each step an observation yt is received and the distribution ω(·|φ, gt, yt) is sam-

pled to choose gt+1. The gradient of logω(gt+1|φ, gt, yt) is added into an eligibility

trace zφ
t , which is discounted by β ∈ [0, 1) at each step. The eligibility trace performs

the temporal credit assignment, giving more credit to recent I-state choices. At time t

§5.2 The IState-GPOMDP Algorithm 71

the eligibility trace is equal to the nφ element column vector

zφ
t =

∂ log ω(gt+1|φ,gt,yt)
∂φ1

+ β ∂ log ω(gt|φ,gt−1,yt−1)
∂φ1

+ β2 ∂ log ω(gt−1|φ,gt−2,yt−2)
∂φ1

+ . . .
...

∂ log ω(gt+1|φ,gt,yt)
∂φnφ

+ β ∂ log ω(gt|φ,gt−1,yt−1)
∂φnφ

+ β2 ∂ log ω(gt−1|φ,gt−2,yt−2)
∂φnφ

+ . . .

 .

The same process is followed with the new I-state to choose an action ut, adding the

gradient of log µ(ut|θ, gt+1, yt) to the eligibility trace zθ
t . At each step the immediate

reward after action ut is multiplied by the current traces and averaged to form the

gradient estimate. The discount factor β reflects the assumption that rewards are ex-

ponentially more likely to be generated by recent actions. It can be viewed as imposing

an artificial horizon on the POMDP. Algorithms such as Williams’ REINFORCE avoid

discount factors by assuming finite-horizon POMDPs, bounding the period in which

actions can affect rewards.

The following theorem establishes that IState-GPOMDP estimates an approximation

of ∇η. The exact expression for ∇η is given by Equation (4.6). The IState-GPOMDP

estimate converges to the approximate gradient as the number of estimation steps goes

to ∞. Recall that Jβ is the average discounted reward defined by Equation (2.2).

Theorem 4. Let ∆T :=
[
∆θ

T ,∆
φ
T

]
be the estimate produced by IState-GPOMDP after

T iterations. Then under Assumptions 1–4 from Section 3.2,

lim
T→∞

∆T = π′(∇P)Jβ with probability 1.

This is proved in Appendix A.2.2. The next theorem establishes that as the discount

factor β → 1, the approximation is exact.

Theorem 5. For P (θ, φ)

lim
β→1

π′(∇P)Jβ = ∇η.

The proof does not depend on how P is parameterised so it is unchanged from

the original memory-less proof [Baxter and Bartlett, 2001] which is reproduced in Ap-

pendix A.2.1. Theorem 4 is a generalisation from the memory-less GPOMDP algorithm.

GPOMDP is retrieved from IState-GPOMDP by setting |G| = 1.

We now have ∆T
T→∞
−−−−→ π′(∇P)Jβ

β→1
−−−→ ∇η, however the variance of ∆T scales with

1/ [T (1− β)]. This reflects the increasing difficulty of the credit assignment problem

as the horizon lengthens and β increases.

Fortunately, it was proven for the memory-less setting [Baxter and Bartlett, 2001]

that π′(∇P)Jβ is guaranteed to be a good approximation to ∇η if 1/(1 − β) exceeds

τ , modulo constants and log factors. Recall that τ is the mixing time of the transition

72 Model-Free Policy Gradient

matrix P defined by Equation (4.10). The same guarantee holds for IState-GPOMDP,

but we use the mixing time of the global-state, that is, the mixing time of the cross

product of the world-state space with the internal-state space. To see that the guarantee

holds, observe that an agent with FSC memory can be transformed into an equivalent

memory-less agent. The transformation involves moving the FSC from the agent to

the world, allowing the agent to update the FSC state with external memory 1 setting

actions. We implicitly perform this transformation when we compute the global-state

transition matrix P (φ, θ). This transformation argument can also be used as a simple

alternative proof for Theorem 4 given the theorem is true for the non-memory setting.

5.3 Complexity of IState-GPOMDP

The training complexity of policy-gradient Monte-Carlo algorithms can be factored

into two components: the complexity of each step of Algorithm 2, and the number of

steps required to gather a good estimate.

5.3.1 Per Step Complexity

The complexity of each step is dominated by the complexity of lines 5–8 in Algorithm 2.

The distributions ω(·|φ, gt, yt) and µ(·|θ, gt+1, yt) must be evaluated and sampled, then

the log gradients computed for the samples. The exact complexity depends on the

choice of parameterisation. For example, using the lookup table scheme described in

Section 3.4.1 the complexity is O(|G|+ |U|), representing the complexity of evaluating

two soft-max functions and their derivatives, one with |G| parameters and the other with

|U| parameters. The artificial neural network scheme of Section 3.4.2 has complexity

O(|G|+ |U|+ nφ + nθ).

Another example is distributions modeled by a Gaussian, requiring only four pa-

rameters — the mean and variance for ω and µ — for each combination of (g, y). In

this case the step complexity is the cost of sampling a single variable Gaussian and

computing its gradient at the sample point. The gradient is with respect to the mean

and variance of the sampled Gaussian.

IState-GPOMDP is memory efficient, requiring a minimum of only 2nφ + 2nθ units

of memory: a copy of the current parameters, and the eligibility traces zφ
t and zθ

t .

1The external memory model was used by Peshkin et al. [1999]. It has some appeal because there
is anecdotal evidence that people use “auxiliary” memory in a similar way. For example, writing
notes to themselves, or leaving medicine bottles in a different place after the medicine has been taken
[Examiner, 2003]. We prefer the internal memory model because people have a clear concept of their
own memory which is independent of the external world. The internal memory model also provides
a clear distinction between the process of updating and using memory, and performing actions which
alter the world state. However, the two models are mathematically equivalent.

§5.4 Summary 73

Compare this with exact algorithms that are PSPACE-complete (Section 2.5.1.4).

5.3.2 Mixing Time

Using |G| I-states results in a global-state space that is |G| times larger than the world-

state space. This can cause an increase in the mixing time τ . Because 1/(1 − β)

must exceed O(τ) to provide good estimates, and because the variance scales with

1/ (T (1− β)), we come to the natural conclusion that increasing |G| can potentially

increase the variance of the gradient estimates. We also come to the conclusion that

increasing the number of estimation steps can compensate for the added variance. Re-

active policy-gradient methods are already slow to converge, so increasing the number

of estimation steps to compensate for adding memory is not a good solution.

The problem is quite severe in practice. Partly because the initial I-state transitions

are usually close to uniform. This means that one trajectory through the world-states

could invoke any trajectory through the I-state space. This requires large numbers

of trials (estimation steps T) to thoroughly explore all combinations of world and I-

state trajectories. In Chapter 7 we shall see that a large number of high probability

I-state trajectories causes other problems. We consequently propose a fix that should

also reduce the mixing time τ . Also, the next chapter introduces alternative methods

of incorporating I-states into memory-less GPOMDP that are specifically designed to

reduce the variance of gradient estimates.

To allow comparison of all our algorithms we defer experimental results until Chap-

ter 8. The results will demonstrate that IState-GPOMDP can successfully learn to use

memory in infinite-horizon settings, also demonstrating the effect of variance in the

gradient estimates.

5.4 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I Agents implementing IState-GPOMDP interact with the world, using Monte-

Carlo methods to estimate an approximation to ∇η. IState-GPOMDP does

not require knowledge of the POMDP model.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II IState-GPOMDP adds internal-state to the reactive GPOMDP algorithm of

Baxter and Bartlett [2001].

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III It extends the algorithms of Peshkin et al. [1999] to infinite-horizon POMDPs.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV The discount factor β can be used to trade-off the bias and variance of

IState-GPOMDPs estimates of ∇η.

74 Model-Free Policy Gradient

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ V Adding I-states exacerbates the high-variance of policy-gradient methods.

Future Work

Variance reduction methods such as additive control variates [Greensmith et al.,

2002], Actor-Critic methods [Konda and Tsitsiklis, 2000], and others described in Sec-

tion 2.7.1, will improve IState-GPOMDP performance. We discuss some novel variance

reduction methods in Chapter 9.

Rather than fix |G| before training we would like to dynamically grow |G| un-

til the agent’s performance stops improving. Chrisman [1992] and McCallum [1996]

provide methods of doing this based on statistical tests over a finite amount of the

observation/action history. Optimal agents can often be represented by deterministic

policy-graphs [Sondik, 1978], suggesting that stochastic elements of ω(h|φ, g, y) and

µ(u|θ, h, y) sometimes indicate that too few I-states were used. For example, stochas-

tic I-states that transition to I-state g or h after observation y could be split into two

I-states: one that transitions to g after observing y and one that transitions to h after

observing y.

Provided Assumptions 3 and 4 of Section 3.2 are met we can build in domain

knowledge into the FSC and policy to shape ω(h|φ, g, y) and µ(u|θ, h, y). For example,

if the last n observations often reveal relevant state we can build a finite history window

of length n into the agent for short-term memory and use the FSC for long-term

memory. The finite history can be provided to both ω(h|φ, g, y) and µ(u|θ, h, y) to

improve performance. Hard-wired rules can also be easily encoded in ω(h|φ, g, y) and

µ(u|θ, h, y) to provide an initial policy.

Finally, let τS be the mixing time of the world-state transitions under the worst-case

fixed FSC. Similarly, let τG be the mixing time of the I-state transitions under the worst-

case fixed world. It would be useful to bound the global-state mixing time τ in terms

of these quantities. For example, if τ ≤ τS + τG then we know that the combination of

a well behaved world and well behaved FSC will be well behaved together.

§5.4 Summary 75

Algorithm 2 IState-GPOMDP

1: Given:

• A parameterised class of stochastic FSCs {ω(h|φ, g, y) : φ ∈ Rnφ} ; g ∈ G;h ∈
G; y ∈ Y.

• A parameterised class of stochastic policies {µ(u|θ, h, y) : θ ∈ Rnθ} ;h ∈
G; y ∈ Y.

• A POMDP that when controlled by ω(h|φ, g, y) and µ(u|θ, h, y), generates I-
state and world-state trajectories distributed according to P (φ, θ), satisfying
Assumption 1 (see Section 3.2).

• Discount factor β ∈ [0, 1).

• Arbitrary initial state i0 and I-state g0.

• Observation sequence {y0, y1, . . . } generated by the POMDP, I-state sequence
{g0, g1, . . . } generated randomly according to ω(·|φ, gt, yt), and action se-
quence {u0, u1, . . . } generated randomly according to µ(·|θ, gt+1, yt).

• Bounded reward sequence {r(i1), r(i2), . . . }, where {i0, i1, . . . } is the (hidden)
sequence of states of the world.

• Estimation steps T , such that T > τ .

2: Set zφ
0 = [0], zθ

0 = [0],∆φ
0 = [0], and ∆θ

0 = [0] (zφ
0 ,∆

φ
0 ∈ Rnφ , zθ

0 ,∆
θ
0 ∈ Rnθ)

3: while t < T do
4: Observe yt from the world
5: Choose gt+1 from ω(·|φ, gt, yt)
6: Choose ut from µ(·|θ, gt+1, yt)

7: zφ
t+1 = βzφ

t + ∇ω(gt+1|φ,gt,yt)
ω(gt+1|φ,gt,yt)

8: zθ
t+1 = βzθ

t + ∇µ(ut|θ,gt+1,yt)
µ(ut|θ,gt+1,yt)

9: ∆φ
t+1 = ∆φ

t + 1
t+1

[
r(it+1)zφ

t+1 −∆φ
t

]

10: ∆θ
t+1 = ∆θ

t + 1
t+1

[
r(it+1)zθ

t+1 −∆θ
t

]

11: Issue action ut

12: t← t+ 1
13: end while

76 Model-Free Policy Gradient

Chapter 6

Internal Belief States

I bet the human brain is a kludge.

—Marvin Minsky

So far we have assumed that the internal memory of the system consists of a finite

state machine and that the agent stochastically updates its I-state at each time step.

Multiple steps describe a sample trajectory through the I-state space of the finite state

controller. The key idea of this section is that we do not need to sample I-states. The

finite state controller is completely observable, allowing us to compute expectations

over all possible I-state trajectories. At each time step we can update the probability

of occupying each I-state and use this belief over I-states as our controller memory.

A related advantage is that probability distributions over I-states are more informa-

tive than sampled I-states. When sampling I-states we throw away information about

how likely the I-state trajectory is. Passing I-state beliefs to the policy µ may permit

the use of fewer I-states compared to algorithms that sample the I-state.

This section covers two methods for learning when the internal memory is rep-

resented as a belief over I-states. The first approach uses hidden Markov models to

uncover hidden state. This approach failed to control POMDPs as well as IState-

GPOMDP, even given an infinite number of HMM states. The essential problem, to be

demonstrated in detail, is that learning an HMM that models the world well does not

imply that the HMM can influence the long-term reward. This initial failure prompted

a shift away from HMM methods to the second method which we view as a partial

Rao-Blackwellisation of IState-GPOMDP.

6.1 Hidden Markov Models for Policy Improvement

Because partial observability hides the true state of the world, we can use existing

algorithms that reveal hidden state to improve the performance of POMDP methods.

Hidden Markov models (HMMs) are a candidate that have previously been used in

conjunction with value-function methods and, more recently, policy-gradient methods.

Appendix D introduces the basic HMM background required for understanding this

chapter. HMMs are a generative model, that is, they model stochastic sequences

78 Internal Belief States

without being driven by the available data. In the POMDP setting we may wish to

model the sequence of observations yt, or actions ut, or, as we shall see in this Section,

rewards rt+1; but the predictions should be driven by the available information, such

as the last observation and action.

Bengio and Frasconi [1996] describe an extension to HMMs, called Input/Output

HMMs, that can model one sequence while being driven by a related sequence. The

idea is that the driving sequence contains information useful to prediction of the se-

quence being modeled. More recently, statistical models driven by observations have

been studied under the name conditional random fields [Lafferty et al., 2001, McCallum

et al., 2000]. Appendix D.2 describes our simple implementation of IOHMMs. The mes-

sage of this chapter only requires understanding that IOHMMs are a straightforward

generalisation of HMMs that allow an external sequence to drive transitions.

IOHMMs have been used to solve small POMDPs where actions drive the IOHMM

state transitions and the IOHMM predicts the observations yt [Chrisman, 1992, Mc-

Callum, 1996]. HMMs can also be layered at different time scales for hierarchical

reinforcement learning [Theocharous et al., 2000]. An alternative scheme, which was

implemented using policy-gradient methods, drives IOHMM-state transitions with ob-

servations yt then generates actions ut [Shelton, 2001b,a].

6.1.1 Predicting Rewards

A problem with previous IOHMM methods is that estimation of the hidden state ig-

nores the most useful indicator of policy performance: the reward. Predicting rewards

reveals the hidden state relevant to predicting policy performance, and that may con-

sequently be relevant to choosing actions that lead to high rewards.

To include the reward we initially investigated using the IOHMM to predict rewards

instead of observations. The IOHMM-state transition probabilities are driven by the

observations and, optionally, the actions. The idea is that the hidden state revealed by

predicting rewards is the most relevant to maximising the long-term average reward η.

The remainder of Section 6.1 introduces this approach and describes the drawbacks of

this algorithm that motivate the approach of the next section.

6.1.2 The IOHMM-GPOMDP Algorithm

We first describe the step-by-step operation of the algorithm, assuming training is

complete. Then we describe how the agent is trained.

6.1.2.1 Augmenting Policies with IOHMMs

The IOHMM

§6.1 Hidden Markov Models for Policy Improvement 79

The function of ω(h|φ, g, y) is now performed by an IOHMM, as shown in Fig-

ure 6.1. The I-states are simply the IOHMM states. There are 3 IOHMM-states in

Figure 6.1. We compute and store the probability of being in each IOHMM-state

at the current time. This vector of IOHMM-state probabilities at time t is denoted

by αt. It tells us the probability of each IOHMM-state given the observation history

ȳt−1 = {y0, . . . , yt−1}, the observed reward sequence r̄t−1 = {r1, . . . , rt−1}, and the

IOHMM parameters φ. The dependencies are only up to time t − 1 because of the

convention that αt is the internal-belief at the start of a time step, prior to receiving

observation yt. In HMM terminology the vector αt is known as the forward probability

of r̄t−1. We will usually refer to αt as the I-state belief.

In Section 2.2 we defined G to be the set of I-states. For the FSCs considered in

previous chapters there is a one-to-one correspondence between the number of I-states

and the number of states in the FSC. Now, because α is a vector of real numbers, G is

infinite under the original definition. For convenience we slightly alter the definition of

G in the context of internal belief states to mean the number of nodes in the internal

system, that is, the number of IOHMM-states. For example, the IOHMM shown in

Figure 6.1 has 3 IOHMM-states so |G| = 3. This satisfies the intuition that an FSC with

|G| I-states has similar architectural complexity to an IOHMM with |G| IOHMM-states.

An IOHMM consists of IOHMM-state transition probabilities, denoted ω(h|φι, g, y);

and IOHMM-state reward emission probabilities, denoted by ξ(r|φξ, g). The use of

these two functions is illustrated in Figure 6.1. The I-state update parameters split

into two subsets φ = [φι, φξ]. The parameter subset φι controls how the input drives

the transitions. The parameter subset φξ describes how the output is generated. The

IOHMM-state transition probability function ω(h|φι, g, y) is exactly the same as the

FSC I-state transition probability function ω(h|φ, g, y) except that only the subset φι

of φ is used to compute the transition probabilities. If we used normal HMMs instead

of IOHMMs, ω(h|φι, g, y) would have no dependence on y.

Recall that ȳt is the history of observations up to time t, r̄t is the history of rewards

up to time t, rt is the scalar instantaneous reward for time t and h is the proposed

next I-state. With these definitions the IOHMM-state belief (equivalent to the I-state

belief) update is

αt+1(h|φ, ȳt, r̄t) =
∑

g∈G

αt(g|φ, ȳt−1, r̄t−1)ξ(rt|φξ, g)ω(h|φι, g, yt). (6.1)

This equation computes the probability of I-state h at time t + 1 by computing the

sum of probabilities of g → h over all possible previous I-states g. The probability

of emitting the observed reward rt in each g is also factored into the update. The

value of the vector αt generally vanishes over time, so practical IOHMM algorithms

80 Internal Belief States

Soft−max

|G| = 3

µ(1) µ(|U|)

o|U|o1

yt

µ(u|θ, α, y)

yt

ω(αt+1|φ, αt, yt)

predicted rt+1

ξ(r|φξ , g)

ω(h|φι, g, y)

αt+1(1) αt+1(2) αt+1(3)

Figure 6.1: The architecture of the IOHMM-GPOMDP algorithm. The observation is passed

to both the IOHMM and the policy µ(u|θ, h, y). The policy is shown here as an artificial neural

network (ANN). During each step the first phase is to compute αt+1 from αt, yt, and rt. Then

αt+1 and yt are passed to the ANN that outputs a vector of real numbers. The output vector

is transformed into a probability distribution over actions by the soft-max function.

must re-normalise at each step. Methods of doing this in the context of HMMs are

well studied [Rabiner, 1989] and will not be considered further. The update implies

that there is no stochastic component for the update of the internal state information,

that is, the I-state belief update is deterministic. Compare this to the IState-GPOMDP

update that samples an I-state h given the current I-state and observation.

An alternative definition of Equation (6.1), using more traditional HMM terminol-

ogy, can be found in Appendix D.2. The definition here is slightly unusual because it

computes the reward emission probability of a state before making a transition. This

§6.1 Hidden Markov Models for Policy Improvement 81

is because the quantity we are modelling, rt+1, is not received until after computing

αt and issuing action ut. The first time rt+1 can be used to update α is the start of

the next step, when it is labelled rt.

To parameterise ω(h|φι, g, y) we use a table with one probability for each combina-

tion of (g, h, y), as described in Appendix D.2. The probabilities summed over all next

states h, given g and y, sum to one. This scheme requires Y to be relatively small.

We parameterise ξ(r|φξ, g) using tables in one experiment, and a single Gaussian

in another. These are both standard methods for parameterising HMM and IOHMM

emission probabilities. Using a table for to parameterise ξ(r|φξ, g) implies there is a

finite set of reward values that the POMDP can issue. Gaussian parameterisations can

model continuous distributions of rewards.

The Policy

The policy µ(u|θ, α, y) computes a distribution over actions given the I-state belief

and the observation. Because the I-state belief is a vector of real numbers, we must

use function approximation to evaluate µ(u|θ, α, y). We use artificial neural networks

(ANNs). The internal belief αt is passed to the ANN using |G| inputs, while the other

inputs encode yt. Our IOHMM-GPOMDP experiments all have small finite Y, so we

use 1-in-n encoding for presentation of yt to the ANN.

Once the distribution has been evaluated, a u is sampled from the distribution and

issued as action ut. The details of computing the gradient of µ(ut|θ, αt+1, yt) are given

in Section 3.4.2. Then the world-state is updated and reward rt+1 is received to end

the step. The reward is used in Equation (6.1) to compute αt+1 during the next step.

6.1.2.2 Training Using IOHMM-GPOMDP

Algorithm 3 describes the training process. It interleaves phases of IOHMM training

(see Appendix D.2) with memory-less IState-GPOMDP (see Algorithm 2). We refer to

memory-less IState-GPOMDP as just GPOMDP. Lines 3–13 execute the current policy,

storing all observations1 and rewards. In line 14, the stored history, that is Tiohmm

steps long, is used to update the IOHMM parameters. We have deliberately left the

training details of the IOHMM unspecified because there are many well established

training procedures. The novel contribution of the IOHMM-GPOMDP algorithm is to

use IOHMMs for predicting rewards. We assume that the chosen training procedure

will maximise the likelihood of the reward sequence r̄ given the observation sequence.

An IOHMM training phase ends when consecutive IOHMM iterations do not increase

the likelihood of r̄.

1We assume that observations can always be augmented with the last action if actions should also
be taken into account.

82 Internal Belief States

Algorithm 3 IOHMM-GPOMDP

1: Given:

• Parameterised class of randomised policies {µ(u|θ, α, y) : θ ∈ Rnθ} ;α ∈
[0, 1]|G|; y ∈ Y.

• An IOHMM with |G| IOHMM-states, driving inputs yt ∈ Y, emission symbols
in [−R,R], transition probabilities ω(h|φι, g, y), reward emission probabilities
ξ(r|φξ, g), all parameterised by φ = [φι, φξ] initialised to small random values.

• Arbitrary initial world state i0 ∈ S and uniform internal belief α0 ∈ R|G|.

• Observation sequence y0, y1, . . . generated by the POMDP, I-state belief se-
quence α0, α1, . . . generated deterministically according to (6.1), and action
sequence u0, u1, . . . generated randomly according to µ(·|θ, αt+1, yt).

• [−R,R] bounded reward sequence r1 = r(i1), r2 = r(i2), . . . , where i1, i2, . . .
is the hidden sequence of states of the environment.

• IOHMM sample length Tiohmm.

• IState-GPOMDP estimation length Tgrad; discount β ∈ [0, 1); step size γ > 0.

2: while ‖∆Tgrad
‖ > ǫ do

3: t = 0
4: ȳ = r̄ = ∅
5: while t < Tiohmm do
6: Observe yt

7: Append yt to ȳ
8: αt+1(h|φ, ȳt, r̄t) =

∑
g∈G αt(g|φ, ȳt−1, r̄t−1)ξ(rt|φξ, g)ω(h|φι, g, yt)

9: Choose ut from µ(·|θ, αt+1, yt)
10: Receive rt+1

11: Append rt+1 to r̄
12: t← t+ 1
13: end while
14: train IOHMM to convergence(φ ,ȳ, r̄)
15: Set z0 = 0, and ∆0 = 0 (z0,∆0 ∈ Rnθ)
16: t = 0
17: while t < Tgrad do
18: Observe yt

19: αt+1(h|φ, ȳt, r̄t) =
∑

g∈G αt(g|φ, ȳt−1, r̄t−1)ξ(rt|φξ, g)ω(h|φι, g, yt)
20: Choose ut from µ(·|θ, αt+1, yt)

21: zt+1 = βzt + ∇µ̄(ut|θ,αt+1,yt)
µ̄(ut|θ,αt+1,yt)

22: ∆t+1 = ∆t + 1
t+1 [rt+1zt+1 −∆t]

23: t← t+ 1
24: end while
25: θ ← θ + γ∆Tgrad

26: end while

§6.1 Hidden Markov Models for Policy Improvement 83

Lines 15–24 use the newly estimated IOHMM parameters to compute an estimate of

∇η with respect to the parameters θ. The observations yt for GPOMDP are augmented

by the internal state αt as provided by the IOHMM.

Finally, in line 25, the gradient estimate is used to update the parameters θ, com-

pleting the cycle of independently updating φ then θ. In practice we do not fix the

step size γ, but use the conjugate-gradient procedure outlined in Section 3.5.

Our IOHMM implementation fixes |G| before training. Methods that could be

applied to automatically grow |G| during training are discussed by Chrisman [1992]

and McCallum [1996]. Such methods keep statistics about how successful each IOHMM

state is at predicting rewards. If the prediction for a state is unreliable, or the output

reward distribution is multi-modal, it indicates that the state may need to be split.

If rewards can take a wide number of values in [R,−R], then continuous emission

distributions such as mixtures of Gaussians [Rabiner, 1989] for each state are preferable.

Using a single Gaussian per state to model rewards is equivalent to the assumption that

each state’s emission distribution is peaked around a single reward. If there are only

a small number of instantaneous reward values then discrete output IOHMMs can

also be used. As suggested by Rabiner [1989], we found it important to use good

initialisations of the emission distributions in order to obtain IOHMM convergence to

a good maximum. Good initialisations are often easy to devise using the assumption

that each IOHMM-state models a particular POMDP reward value.

6.1.3 Convergence of the IOHMM-GPOMDP Algorithm

Line 14 of Algorithm 3 runs IOHMM training until the φ parameters converge to a

local maximum.2 If the next gradient estimation phase for the policy produces a near

zero estimate then the θ parameters will not change. When this happens we declare the

whole system converged since the IOHMM φ parameters and the policy θ parameters

are both at local maxima. Barring the effects of using different samples, neither the φ

or θ can change during future training.

Unfortunately, the re-estimation of the IOHMM parameters in line 14 can lead to

an arbitrarily large decrease in the performance of the policy. Consider a world with

a straight road 5 sections long and assume the optimal policy is to move from one end

to the other (essentially the Load/Unload problem of Figure 2.2(a)). Initially both the

IOHMM and µ(u|θ, α, y) are initialised with random parameters. The following can

occur:

1. With random µ(u|θ, α, y) the IOHMM learns that rewards are more likely when

2Baum-Welch training or gradient ascent training for HMMs and IOHMMs converges to a local
maximum of the likelihood function.

84 Internal Belief States

move left actions occur after the “L” observation, or move right actions occur

after the “U” observation.

2. µ becomes a good policy based on the current IOHMM, obtaining rewards every

5 steps.

3. The change in policy parameters θ, changes the extrema of the IOHMM. Con-

sequently the IOHMM can move into a different local maximum based on the

sample ȳ gathered using the old φ. The IOHMM may learn that a reward usually

occurs every 5 steps.

4. The policy represented by θ is no longer optimal under the IOHMM represented

by the new φ. The reward may drop to a level worse than the uniform random

policy.

5. The policy is no longer near optimal and rewards no longer occur every 5 steps,

thus the IOHMM must re-learn the concept it learnt in the first step.

Thus, allowing the IOHMM and µ(u|θ, α, y) to bootstrap from each other can result

in learning cycles that do not converge. The fundamental reason is that the IOHMM

maximises the likelihood of r̄, but GPOMDP maximises a different criterion: the long-

term average reward η. If, during Step 4, GPOMDP quickly learns a new policy that is

good under the new φ, then we may achieve convergence. However we do not usually

want GPOMDP to completely converge in one iteration because it will generally end

up in a poor maximum.

6.1.4 Drawbacks of the IOHMM-GPOMDP Algorithm

We have just described how IOHMM-GPOMDP may fail to converge. A second draw-

back is that being able to successfully predict rewards does not necessarily reveal the

hidden state necessary for optimal policies. Consider the POMDP shown in Fig-

ure 6.2(a). Solid lines are deterministic transitions. Dotted lines are followed with

probability 0.5. Actions only impact rewards when the current observation is a. To

chose the optimal action we must recall one past observation. If we observe the sequence

da, then execute action u2; if we observe ea, then execute u1. This is a simple policy

requiring |G| = 2 and it is easily learnt by the IState-GPOMDP algorithm of Section 2.

Now consider the task of learning an IOHMM to predict rewards. Figure 6.2(b) shows

an optimal IOHMM with |G| = 3. This IOHMM waits for observation c or b while

predicting 0 reward. Observation c always implies a reward of -1 after the next action

and b always implies a reward of 1 after the next action. This IOHMM successfully

reveals the hidden state associated with observation r because the IOHMM forward

§6.1 Hidden Markov Models for Policy Improvement 85

c

r=−1

aa e

r

r=1

u2 u1

u1 u2

d

r

b

(a)

r=0

r=1

r=−1

a,r,d,e

a,r,d,e

a,r,d,e

c

b

b

c

b

c

(b)

Figure 6.2: 6.2(a) A POMDP with U = {u1, u2} and Y = {a,b,c,d,e,r}. The states with

observation r have non-zero rewards shown. This POMDP can always be solved by IState-

GPOMDP with |G| = 2 but will not be solved by the optimal reward prediction IOHMM shown

in Figure 6.2(b), or any IOHMM with more or less states.

probability will indicate which of the two r world states we are in. However, it does

not allow us to implement an optimal policy because we need to know whether to issue

action u1 or u2 before seeing observation c or b. Adding states to the IOHMM does

not help because the IOHMM is not required to remember the critical observations d

and e in order to optimise its performance.

In short, IOHMM-GPOMDP suffers from the same difficulties as value-function

methods: the agent can learn to predict rewards well while failing to learn a good

policy. These two drawbacks cause poor performance of IOHMM-GPOMDP on non-

trivial problems, which we will observe in Chapter 8.

Other configurations of HMMs are possible. For example, the HMM can predict

world states as well as rewards, or observations and rewards. The state transitions

ω(h|φι, g, yt) could also be driven by actions. Alternative HMMs might provide optimal

performance but still suffer from a lack of direct optimisation of the long-term reward.

One consequence of indirect optimisation is that many more HMM states than FSC

states might be necessary. The HMM might have to explicitly model all world states

to provide sufficient information to the agent, but an FSC driven by maximising the

reward can filter out information irrelevant to the long-term reward.

86 Internal Belief States

6.2 The Exp-GPOMDP Algorithm

One reason for the high variance of existing policy-gradient methods is the noise intro-

duced through estimating the gradient by sampling a trajectory through the environ-

ment state space.3 In Chapter 5 we viewed the I-states as augmenting the world-state

space, resulting in the method of sampling trajectories through both world-states and

I-states. However, we can do better than simply sampling one long I-state trajectory.

Recall the reasons for introducing sampling in the first place:

1. The POMDP model may not be available;

2. dynamic programming becomes infeasible for large |S|.

Since I-state transitions are controlled by the known function ω(h|φ, g, y), and the num-

ber of I-states is typically small compared to the world-state space, the main reasons

for using simulation do not apply. In short, we can use the FSC model ω(h|φ, g, y) to

compute the expectation of the gradient over all possible I-state trajectories.

The Exp-GPOMDP algorithm shown in Algorithm 4 is a partly Rao-Blackwellised

version of IState-GPOMDP; computing the expectation over I-state trajectories but not

world-state trajectories. Rao-Blackwellisation of Monte-Carlo estimators reduces their

variance [Casella and Robert, 1996].

We proceed by replacing µ(ut|θ, gt+1, yt) with µ̄(ut|φ, θ, ȳt) which parameterises

action probabilities based on the current I-state belief and observation. The I-state

update is still parameterised by a stochastic FSC described by φ, but the update to

the I-state belief is not stochastic. Let αt(g|φ, ȳt−1) be the probability that gt = g

given the current parameters and all previous observations. The recursive update for

the I-state belief is

αt+1(h|φ, ȳt) =
∑

g∈G

αt(g|φ, ȳt−1)ω(h|φ, g, y). (6.2)

This is similar to the forward probability update given by Equation (6.1) but contains

no component modelling emission likelihoods (so no normalisation is required). We

have written αt(g|φ, ȳt−1) with an explicit dependence on all past observations ȳt−1.

We do not explicitly store all past observations because the Markov nature of the

process mean αt and yt summarise all the information necessary to update the belief

to αt+1. In other words, the dependence on ȳt could be replaced by (αt−1, yt), but we

use the former for brevity.

3The GAMP algorithm of Section 4.2 is an exception since it avoids simulating trajectories by direct
gradient estimation from the POMDP model.

§6.2 The Exp-GPOMDP Algorithm 87

The new form of the policy that takes the expectation of µ over internal states is

µ̄(u|φ, θ, ȳt) :=
∑

h∈G

αt+1(h|φ, ȳt)µ(u|θ, h, yt). (6.3)

We can view these equations as representing a form of IOHMM, where µ̄ is the probabil-

ity of emitting symbol (action) u given all previous observations. To finish the algorithm

we need to compute ∇µ̄
µ̄

for the choice of ut. We use it in the IState-GPOMDP algorithm

in place of ∇µ
µ

. This is straight forward after noting that, for each h, ∇αt+1(h|φ, ȳt)

can be updated recursively from all ∇αt(g|φ, ȳt−1) by applying the product rule to

Equation (6.2), as shown in line 10 of Algorithm 4. The gradient of µ̄ is split into the

φ and θ components
∇µ̄

µ̄
=

[
∇φµ̄,∇θµ̄

]

µ̄
,

where the φ components are

∇φµ̄

µ̄
=

[
∂µ̄
∂φ1

, . . . , ∂µ̄
∂φnφ

]

µ̄

=

∑
g∈G (∇αt+1(h|φ, ȳt))µ(u|θ, h, yt)∑

g∈G αt+1(h|φ, ȳt)µ(u|θ, h, yt)
,

and the θ components are

∇θµ̄

µ̄
=

[
∂µ̄
∂θ1

, . . . , ∂µ̄
∂θnθ

]

µ̄

=

∑
g∈G αt+1(g|φ, ȳt)∇µ(u|θ, g, yt)∑
g∈G αt+1(g|φ, ȳt)µ(u|θ, g, yt)

.

Another way to think of this algorithm is as resembling IState-GPOMDP, but with

no explicity memory process ω(h|φ, g, y). Instead, we embed a deterministically up-

dated memory vector directly into the policy. The whole process is still Markov because

the next global-state (including the current internal-belief), is only a stochastic function

of the current global-state.

6.2.1 Complexity of Exp-GPOMDP

The combination of Equations (6.2) and (6.3) imply that each step now has a complexity

of O(|G||U|+ |G|2) if we are using lookup-tables for ω(h|φ, g, y) and µ(u|θ, h, y). Recall

from Section 5.3.1 that IState-GPOMDP has a complexity of O(|U| + |G|) per step

for the same parameterisation. The complexity can be reduced by using alternative

parameterisations, but the summations over the I-states in Equations (6.2) and (6.3)

88 Internal Belief States

Algorithm 4 Exp-GPOMDP

1: Given:

• Same requirements as IState-GPOMDP (Algorithm 2).

• The joint process {αt ∈ R|G|, it ∈ S} is ergodic.

2: Set z0 = [zφ
0 , z

θ
0] = [0], and ∆0 = [∆φ

0 ,∆
θ
0] = [0] (z0,∆t ∈ Rnφ+nθ ∀t).

3: for each internal state g do
4: Set α0(g) = 1/|G| and

∇α0(g) = [∇φα0(g),∇φα0(g)] = [0] (∇αt(g) ∈ Rnφ+nθ ∀t).
5: end for
6: while t < T do
7: Observe yt from the world.
8: for each internal state h do
9: αt+1(h|φ, ȳt) =

∑
g∈G αt(g|φ, ȳt−1)ω(h|φ, g, yt)

10: ∇αt+1(h|φ, ȳt) =∑
g∈G(∇αt(g|φ, ȳt−1)ω(h|φ, g, yt)) + αt(g|φ, ȳt−1)∇ω(h|φ, g, yt)

11: end for
12: Choose ut from µ̄(u|θ, φ, ȳt) =

∑
g∈G αt+1(h|φ, ȳt)µ(u|θ, h, yt)

13: zt+1 = βzt + ∇µ̄(ut|θ,φ,ȳt)
µ̄(ut|θ,φ,ȳt)

14: ∆t+1 = ∆t + 1
t+1 [r(it+1)zt+1 −∆t]

15: Issue action ut

16: t← t+ 1
17: end while

mean that Exp-GPOMDP will always have greater complexity than IState-GPOMDP by

a factor of |G|. The memory use of Exp-GPOMDP is also higher due to the need to

store the extra set of gradients ∇αt(g|φ, ȳt−1) for each g.

Experimental results in Section 8 show that while the wall clock time of Exp-

GPOMDP may be greater than IState-GPOMDP, Exp-GPOMDP requires fewer simu-

lation steps, which is desirable when world interactions are expensive. This provides

evidence that taking the expectation over I-states partially alleviates the problem of

increased variance due to addition of I-states. See Section 5.3.2 for the original discus-

sion.

Finally, we believe the Exp-GPOMDP gradient estimate has the same convergence

guarantees as IState-GPOMDP (see Theorem 4, Section 5.2). Specifically, in the limit as

the number of estimation steps T →∞, the gradient estimate converges to π ′(∇P)Jβ .

At the current time the proof exists in sketch form [Baxter, 2002]. The outline of

the proof is the same as that for IState-GPOMDP (see the proof of Theorem 4, Ap-

pendix A.2.2). However, the details are more complex for Exp-GPOMDP because the

internal-state belief αt is uncountably infinite. The increased complexity is reflected

§6.2 The Exp-GPOMDP Algorithm 89

by the extra assumption in Algorithm 4 that the joint process {αt, it} is ergodic.4

6.2.2 An Alternative Exp-GPOMDP Algorithm

There may be alternative ways to Rao-Blackwellise Exp-GPOMDP that result in new

algorithms. For example, an algorithm that tracks the I-state belief, but instead of

generating actions based on the expectation over all I-states (6.3), we could sam-

ple an I-state gt+1 from αt+1(·|φ, ȳt), and then sample the action distribution from

µ(ut|θ, gt+1, yt) only. Using such a scheme, the execution of a single step at time t

might be:

1. update the I-state belief using (6.2);

2. sample gt+1 from αt+1(·|φ, ȳ);

3. sample ut from µ(·|θ, gt+1, yt);

4. compute the gradient contributions for the eligibility trace.

Suppose at time t we sample I-state gt+1 from αt+1, then the algorithm would compute

the expectation over all I-state trajectories that lead to I-state gt+1, instead of over

all I-state trajectories. Such an algorithm would be useful due to its lower per-step

complexity than Exp-GPOMDP, while hopefully still having lower variance than IState-

GPOMDP. Because the alternative algorithm makes partial use of αt, we plotted it half

way up the I-state axis of Figure 3.2. The derivation and convergence properties of

such algorithms need to be investigated.

6.2.3 Related Work

Using a recursively updated forward probability variable α to compute an expectation

over all possible paths through a state lattice is an important aspect of hidden Markov

Model training [Rabiner, 1989]. By viewing state transitions as being driven by the

observations, and viewing actions as symbols generated by the HMM, Exp-GPOMDP

becomes a method for training Input/Output HMMs without using the backward prob-

ability component of HMM training. An important difference compared to HMM train-

ing is that Exp-GPOMDP does not seek to maximise the conditional likelihood of any

particular sequence.

Exp-GPOMDP is similar to the finite-horizon algorithm presented by Shelton [2001b],

which is a gradient-ascent HMM algorithm where emissions are actions. In that paper

the HMM backward probability is used as well as the forward probability α. In the

4This assumption is probably automatically satisfied under the existing assumption that the process
{gt, it} is ergodic (see Assumption 1, Section 3.2), but this is yet to be proven.

90 Internal Belief States

infinite-horizon setting there is no natural point to begin the backward probability

calculation so our algorithm uses only α.

6.3 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I IOHMM-GPOMDP uses IOHMMs to predict rewards, attempting to reveal

the hidden state relevant to predicting rewards. Memory-less IState-GPOMDP

then learns a policy based on the IOHMM-state belief and the current ob-

servations.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II IOHMM-GPOMDP is not guaranteed to converge to a local maximum of the

long-term reward η, and the IOHMM may not reveal enough hidden state

to allow the best policy to be learnt.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III The I-state model is given by the known function ω(h|φ, g, y), thus we can

compute the expectation over I-state trajectories.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV Exp-GPOMDP does this, reducing the variance of the estimate.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ V Exp-GPOMDP complexity scales quadratically with the number of I-states,

preventing large numbers of I-states being used.

Future Work

Further analysis is required to determine POMDPs for which the IOHMM-GPOMDP

method will converge and work better than Exp-GPOMDP. The further work discussion

for IState-GPOMDP also applies to Exp-GPOMDP, that is, many variance reduction

methods from the literature can be applied. The alternative Exp-GPOMDP algorithm

needs to be implemented and tested on the scenarios described in Chapter 8.

We compute µ̄(·|φ, θ, ȳt) by taking the expectation of µ(u|θ, h, y) over all I-states for

each action. We could implement µ̄(·|θ, φ, ȳt) directly, using function approximation.

For example, we could build a neural network implementing µ̄(·|φ, θ, ȳt), propagating

gradients back to the α inputs to compute derivatives with respect to φ. This could

result in improved policies because the action choice can take into account features

such as the relative probability of each I-state. We apply a more direct implementation

of µ̄(u|φ, θ, ȳt) for the speech recognition experiments of Section 10.3.

Finally, we have claimed without proof that Exp-GPOMDP has lower variance

than IState-GPOMDP. Casella and Robert [1996] proves that Rao-Blackwellisation ap-

plied to Monte-Carlo methods has a variance reducing effect. We hope to use similar

§6.3 Summary 91

proof methods to provide theoretical guarantees about the degree of variance reduc-

tion achieved by using Exp-GPOMDP instead of IState-GPOMDP. Chapter 8 provides

empirical evidence for the variance reduction.

92 Internal Belief States

Chapter 7

Small FSC Gradients

If an algorithm is going to fail, it should have the

decency to quit soon.

—Gene Golub

Previous advocates of direct search in the space of FSCs [Meuleau et al., 1999a,b,

Peshkin et al., 1999, Lanzi, 2000] report success, but only on POMDPs with a few tens-

of-states that only need a few bits of memory to solve. The Load/Unload problem (see

Figure 2.2(a)) is a common example. Meuleau et al. [1999a] and Lanzi [2000] comment

briefly on the difficulties experienced with larger POMDPs. In this chapter we analyse

one reason for these difficulties in the policy-gradient setting. Our analysis suggests a

trick that allows us to scale FSCs to more interesting POMDPs, as demonstrated in

Chapter 8.

7.1 Zero Gradient Regions of FSCs

In our early experiments we observed that policy-gradient FSC methods initialised

with small random parameter values failed to learn to use the I-states for non-trivial

scenarios. This was because the gradient of the average reward η, with respect to the

I-state transition parameters φ, was too small. Increasing maxl |φl| (the range of the

random number generator) helps somewhat, but increasing this value too much results

in the agent starting near a local maximum because the soft-max function is saturated.

The fundamental cause of this problem comes about because, with small random

parameters, the I-state transition probabilities are close to uniform. This means the

I-states are essentially undifferentiated. If, in addition to the I-state transitions being

close to uniform, the action probabilities are similar for each I-state g, then varying the

trajectory through I-states will not substantially affect the reward. The net result is

that the gradient of the average reward with respect to the I-state transition parameters

will be close to 0. Hence, policies whose starting distributions are close to uniform will

be close to a point of 0 gradient with respect to the internal-state parameters, and will

tend to exhibit poor behaviour in gradient-based optimisation. The following theorem

formalises this argument.

94 Small FSC Gradients

Theorem 6. If we choose θ and φ such that ω(h|φ, g, y) = ω(h|φ, g ′, y) ∀h, g, g′, y and

µ(u|θ, h, y) = µ(u|θ, h′, y) ∀u, h, h′, y then ∇φη = [0].

This theorem is proved in Appendix A.3. Even if the conditions of the theorem

are met when we begin training, they may be violated by updates to the parameters

θ during training, allowing a useful finite state controller to be learnt. Appendix A.3

also analyses this situation, establishing an additional condition for perpetual failure

to learn a finite state controller, despite changes to θ during learning. The additional

condition for lookup tables is ω(h|φ, g, y) = 1/|G| ∀g, h, y, which is satisfied by a table

initialised to a constant value, such as 0.

The same problem has been observed in the setting of learning value functions when

the policy can set memory bits [Lanzi, 2000]. Multiple trajectories through the memory

states have the same reward, which Lanzi calls aliasing on the payoffs. A solution was

hinted at by Meuleau et al. [1999a] where it was noted that finite state controllers were

difficult to learn using Monte-Carlo approaches unless strong structural constraints

were imposed. Imposing structural constraints without using domain knowledge is the

essence of our proposed solution to small FSC gradients.

Recurrent neural networks (RNNs) provide an alternative memory mechanism that

is described in Section 2.6.2.3. Like FSC agents, the RNN can be decomposed into a

component that makes internal-state transitions and a component that chooses actions.

However, the internal state is a vector of real numbers rather than an element from

a finite set. This introduces its own problems, such as internal-state gradients that

vanish or explode [Hochreiter and Schmidhuber, 1997], resulting in implementations

that can handle no more I-states than FSC agents [Lin and Mitchell, 1992].1

One interesting exception to the poor performance of FSC methods is Glickman

and Sycara [2001], where an Elman network — an RNN where all outputs are fed back

to the hidden layer — parameterises an agent for the New York Driving scenario. This

POMDP has over 21,000 states and requires multiple bits of memory. Surprisingly,

Elman networks trained using an evolutionary algorithm outperformed the UTREE al-

gorithm (see Section 2.6.2.2). The best performance was achieved using hidden units

that emitted 1 or 0 stochastically. Output distributions for each hidden unit are gener-

ated by a sigmoid function of the weighted sum of inputs for each hidden unit. Because

the hidden units output 1 or 0, the set of possible feedback vectors into the Elman net-

work is finite and the transition from one feedback vector to another is stochastic.

For this reason we can consider Glickman’s stochastic Elman networks to be an FSC

algorithm. Performance dropped when non-stochastic RNN hidden units were used.

1Lin and Mitchell [1992] does apply RNN methods to the reasonably hard Pole Balancing scenario,
but it is not clear that memory is necessary to solve this task. Lin’s results also show that using finite
histories worked better than RNNs for this scenario.

§7.2 Sparse FSCs 95

These results show that FSC methods can perform better than other RNNs and

finite history methods, and that FSCs can scale to interesting problems. The results

also raise the following question: why is policy evolution immune to the undifferentiated

I-state problem seen in policy gradient and value function approaches? One explanation

is that evolutionary methods do not get stuck in local maxima. Evolutionary systems

keep generating random agents until one works.

Normally, gradient methods rely on converging to a local maximum from some set

of initial parameters that makes as few assumptions as possible about the scenario.

In the case of policy-gradient algorithms this is the set of parameters that generates

uniform ω(·|φ, g, y) and µ(·|θ, g, y) distributions. However, Theorem 6 tells us that this

initialisation will result in ∇φη = 0. We tried to apply the trick used in neural networks

for similar situations: initialising the weights with small random values. However, to

obtain a reasonable gradient we had to start with large weights that begin to saturate

the soft-max function. Consequently, the system again starts near a poor maximum.

Thus, we are caught between two competing sets of maxima: (1) FSC transi-

tion gradients are small for small weights, (2) FSC transition gradients are small for

large weights. Empirically we found the best middle point was to initialise weights

randomly between [−0.5, 0.5], however convergence was unreliable. For example, the

trivial Load/Unload scenario would fail to converge around 50% of the time. The next

section describes a simple trick that allows us to obtain reliable convergence on the

Load/Unload scenario and allows us to scale FSC methods to more complex scenarios.

7.2 Sparse FSCs

Theorem 6 tells us what conditions to avoid when choosing initial parameters for our

agent. Our proposed initialisation scheme adds necessary structure, and at the same

time reduces the computational complexity of each step, by taking advantage of the

fact that the imposed structure reduces the number of parameters that need to be

estimated.

We propose a modified I-state representation: a large sparse FSC where all I-states

have out-degree k ≪ |G|. We randomly disable all but k transitions out of each I-

state for each observation. We minimise the chance that I-state trajectories overlap for

different observation trajectories by ensuring that, for all I-states, no two observations

share the same set of outward transitions. Figure 7.1 illustrates a |G| = 3 FSC fragment

with transitions from node g to node h. The upper figure shows the fully connected

FSC with non-uniform transition probabilities. The lower figure shows the sparse

version with k = 2. The probabilities and gradients for the disabled transitions are not

computed and are effectively 0.

96 Small FSC Gradients

g

h=1

h=3h=3

g

h=1

h=2h=2

ω(h = 3|φ, g, y = 1) = 0.3

ω(h = 1|φ, g, y = 1) = 0.6

ω(h = 3|φ, g, y = 2) = 0.2

ω(h = 1|φ, g, y = 2) = 0.4

ω(h = 2|φ, g, y = 2) = 0.4ω(h = 2|φ, g, y = 1) = 0.1

(a)

g

h=1

h=3

g

h=1

h=3

h=2h=2

ω(h = 1|φ, g, y = 1) = 0.7

ω(h = 3|φ, g, y = 1) = 0.3

ω(h = 1|φ, g, y = 2) = 0.5

ω(h = 2|φ, g, y = 2) = 0.5

(b)

Figure 7.1: This figure demonstrates a transition from I-state g → h for an FSC with 3

I-states. Figure 7.1(a) shows the fully connected version. The distribution on the left side is

generated by observation y = 1; the distribution on the right side is generated by observation

y = 2. Figure 7.1(b) shows one possible sparse version of this FSC. It is important that the

possible transitions for observation y = 1 are different to the transitions for y = 2.

This trick imposes the necessary constraints on the FSCs without requiring domain

knowledge, and without requiring parameters to be initialised to non-zero values. Using

sparse FSCs observation/action trajectories will generate minimally overlapping dis-

tributions of I-state trajectories. Intuitively, this allows the correlation of high-reward

observation/action trajectories to a set of I-state trajectories, resulting in the system

automatically maximising the probability that those I-state transitions are followed.

The complexity of each IState-GPOMDP step for a lookup table parameterisation is

reduced from O(|U|+ |G|) to O(|U|+ k), allowing the use of many I-states to offset the

loss in FSC flexibility. The complexity reduction comes about because if every I-state

has only k out transitions, then only k out of |G| components of the I-state distributions

§7.3 Empirical Effects of Sparse FSCs 97

and gradients need to be computed. Exp-GPOMDP has complexity O(|G||U| + |G|k).

The additional complexity factor of |G| restricts the number of I-states it is practical

to use. For both algorithms increasing |G| results in more parameters when using

the lookup table representation, requiring more sample steps during early training to

gather sufficient statistical evidence to form accurate gradient estimates.

Setting k = 1 is an interesting case that forces an observation/action trajectory to

always generate the same I-state trajectory. However, I-state trajectories may not be

unique, or may merge, so that the FSC “forgets” previous observations. If we use k = 1

we need to apply large |G| to avoid non-unique and merging I-state trajectories. This

approach is valid for finite-horizon tasks and is equivalent to an agent that records its

entire history ȳ.

7.3 Empirical Effects of Sparse FSCs

Theorem 6 shows that the gradient magnitude of the stochastic finite state controller is

0 when the transition probabilities are independent of the internal state. This includes

the apparently sensible choice of an initial controller that sets all transitions to equal

probability (equivalent to θc = φl = 0 ∀k, l for common parameterisations). A natural

question is what happens to the gradient as we approach the uniform case. The next

two sections investigate this question empirically, first by using random weight initial-

isations in a fully connected FSC, and secondly by increasing the degree k of a sparse

FSC.

7.3.1 Random Weight Initialisation

Figure 7.2 shows how the magnitude of the initial gradient estimate can vary with

the maximum parameter value. The test was conducted using several variants of

IState-GPOMDP and IOHMM-GPOMDP. We used the Load/Unload scenario (see Fig-

ure 2.2(a)), with |G| = 4. Lookup tables were used as the parameterisation (see

Section 3.4.1). The gradient smoothly degraded as we approached uniform distri-

butions, that is, [0] weights. The curve marked “Dense ω” shows results for the worst

case scenario of a fully-connected FSC. The rightmost point on this curve represents

θc = φl = 0 ∀k, l. The curve marked “Sparse ω” shows results for an FSC with out

degree k = 2. The curve marked “Det µ” shows the effect of fixing µ(u|θ, h, y) to be

a deterministic function of (y, g). For this test µ chooses the left action if the I-state

is 1 or 3, and the right action if the I-state is 2 or 4. This is an alternative way to

break the zero gradient conditions but makes stronger assumptions about the best FSC

policy. In particular, it assumes that the best policy is deterministic. The IOHMM

98 Small FSC Gradients

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1/(.3 + max φ)

|∆
 η

|

IOHMM

Det µ

Sparse ω

Dense ω 0 0.01 .05
.1

.5

1

2

5 10

Figure 7.2: Degradation of the magnitude of the gradient for IState-GPOMDP as FSC distri-

butions and action distributions approach uniformity. The lower curves have points labelled

with the range of the random initial values for parameters. Results are averaged over 100 runs.

Error bars show one standard deviation. The x-axis uses the non-linear scaling 1/(0.3+maxφl)

to best illustrate the gradient at the extremes of possible parameterisations.

curve shows the magnitude of the θ gradients, computed using IOHMM-GPOMDP after

one IOHMM parameter estimation phase.

The results show that moving from a fully connected FSC to a sparse FSC prevents

the gradient tending to 0 as the weights approach [0]. It also shows that using a

deterministic µ is even more effective, showing no degradation due to small parameter

values. The large magnitude of the IOHMM-GPOMDP gradient estimate shows the

benefit of computing estimates for smaller set of parameters (the θ parameters only).

The dive in gradients for maxl φl = maxc θc > 2 shows the effect of pushing the

parameters into a region where the soft-max function saturates. The peaked shape

of these curves illustrates the problem described in Section 7.1, where we are caught

between two sets of local maxima.

§7.4 Summary 99

7.3.2 Changing the Out-Degree

Our definition of sparse FSCs introduces an extra parameter, the out-degree of each

I-state k. Figure 7.3 shows how the magnitude of the gradient varied as k was increased

for the Load/Unload scenario. Recall that the Load/Unload problem requires only 1

bit of internal state to represent the optimal policy; though in this experiment we chose

|G| = 10 to demonstrate the effect of changing k. The top curve represents ‖∇η‖ and

the lower curve is ‖∆T ‖, estimated using Exp-GPOMDP with an estimation time of

T = 105 steps and β = 0.8. The initial parameters were set to [0]. At the start of

each run a new set of random FSC transitions was selected according to the current

value of k. We performed 30 runs for each value of k. As k was increased the gradient

magnitude fell until, at k = 10, the FSC was dense and ‖∇η‖ was within machine

tolerance of 0. At that point ‖∆T ‖ = 3.13 × 10−7, which indicates the level of noise

in the estimate because the true gradient magnitude is 0. The strongest gradient was

at k = 1. For infinite-horizon tasks this choice of k is unsuitable because the agent

needs to learn useful loops in the FSC, which is impossible if it has no choice of I-state

transitions. Thus, k = 2 or k = 3 seem the most reasonable choices.

Introducing sparsity necessarily restricts the class of agents that can be learnt.

The transitions to disable are chosen uniformly at random. This may create an FSC

that cannot result in a good policy. It might be useful to generate sparse FSCs using

heuristics such as “I-states should always be able to make self-transitions,” representing

the situation where no additional information needs to be stored at that step. Domain

knowledge can also be encoded in the choice of initial FSC.

Section 8.2 demonstrates the effect that using sparse FSCs has on convergence of the

Heaven/Hell scenario. Without using sparse FSCs we could not achieve convergence

for this POMDP, even using the GAMP algorithm that has access to the model. This

evidence, and Theorem 6, shows that the problem is fundamental to the design of the

controller and is not merely an artefact of sampling.

7.4 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I Initially undifferentiated I-states, or “aliasing on the payoffs,” results in fail-

ures when trying to learn non-trivial FSCs.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II Initialising the FSC to a large, sparse random structure ensures that the

FSC gradient is not initially zero, allowing useful FSCs to be learnt.

100 Small FSC Gradients

1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

k

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e

∇ η
∆

T

Figure 7.3: Effect of increasing the connectivity for the Load/Unload problem with |G| = 10.

Results are averaged over 30 runs.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III The gradient drops to zero as the FSC approaches a fully-connected graph

with uniform transition probabilities.

Future Work

Making FSCs sparse means the optimal FSC may not be representable. Increasing

the FSC size can compensate. In the extreme case of an infinite number of I-states

and k = 1, we can end up history based methods because the I-state can encode the

full history ȳ. The challenge is to design sparse FSCs for which observation/action

trajectories generate minimally overlapping I-state trajectories; and to do this with a

finite number of I-states.

It would be interesting to attempt the New York Driving problem to compare our

methods to the evolutionary approach of Glickman and Sycara [2001]. The Elman

network used has 12 hidden units, thus |G| = 212 = 4096. Our algorithms would

not need this many I-states because our policies can make use of the I-states and

observations. The actions emitted by the Elman network are a function of the I-state

only.

Chapter 8

Empirical Comparisons

The meta-Turing test counts a thing as intelligent if

it seeks to devise and apply Turing tests to objects of

its own creation.

—Lew Mammel, Jr.

This section examines the relative performance of GAMP, IState-GPOMDP, IOHMM-

GPOMDP, and Exp-GPOMDP, on three POMDPs from the literature. We begin with

the simple Load/Unload scenario, move on to the small but challenging Heaven/Hell

scenario and finish with a medium-size robot navigation scenario. All three scenarios

are cast as infinite-horizon problems to highlight the ability of the algorithms to work

in that context. Within our knowledge, the Heaven/Hell and robot navigation scenar-

ios represent the most difficult POMDPs that have been solved using gradient ascent

of FSCs.1

Unless otherwise stated, all the agents trained in this section use ω(h|φ, g, y) and

µ(u|θ, h, y) functions parameterised by lookup tables and the soft-max function as

described in Section 3.4.1. The table parameters are always initialised to φ = θ = [0].

8.1 Load/Unload

Our favourite example, the Load/Unload problem of Peshkin et al. [1999], is described

in Figure 2.2(a). The version used in our experiments has 5 locations, the load and

unload locations, and 3 intermediate locations that share the same null observation.

Because the agent can be loaded or unloaded in any of the 5 locations, there are

|S| = 10 world states. It is one of the simplest POMDPs that requires memory to solve

(provided the agent does not know what its last action was). There is no noise added

to the problem and we require |G| = 2, that is, 1-bit, to represent the best finite state

controller. This deterministic finite state controller is illustrated by the policy graph

in Figure 2.2(b).

1All the POMDPs in this thesis, except the speech experiments, are available in Anthony Cassan-
dra’s POMDP format from http://csl.anu.edu.au/~daa/pomdps.html

102 Empirical Comparisons

8.1.1 Experimental Protocol

With the exception of IOHMM-GPOMDP, all the algorithms in this thesis will reliably

solve the simple Load/Unload problem given sufficient resources. For the trajectory

sampling algorithms we set the number of gradient estimation steps to be T = 5000,

deliberately under-estimating the number of steps required to help gauge the relative

performance of the algorithms. A discount factor of β = 0.8 is sufficient for this simple

problem. All runs used |G| = 4 for a total of 4 × 10 = 40 states. We did not use the

minimum possible |G| = 2 because this value is too small to allow a sparse FSC with

k > 1.

Recall from Section 3.5 that a quadratic penalty on the parameters can be applied to

help avoid poor maxima. For the Load/Unload experiments we did not apply penalties

because the scenario is trivial enough to allow good solutions without them, and over-

penalising can mask the true performance of the algorithms. Quadratic penalties were

necessary to get good results for the Heaven/Hell and robot navigation experiments.

For the IOHMM-GPOMDP runs we took samples of 1000 steps in order to re-

estimate the IOHMM parameters. We used an IOHMM training algorithm that is

a minor modification of the Baum-Welch procedure for standard HMMs. The pro-

cedure is described in Appendix D.2 and Algorithm 9. The Load/Unload IOHMM

indexes state transitions distributions by the current observation and IOHMM state.

In order to achieve convergence the IOHMM had to distinguish between rewards for

loading and rewards for unloading. To do this we used a reward of 1.0 for loading

and 2.0 for unloading. This allowed us to use discrete emission distributions with 3

symbols: rt = 0, rt = 1 and rt = 2. This does not change the optimal policy and the

quoted results have been adjusted back to the normal reward schedule.

The total number of parameters for all but the IOHMM-GPOMDP algorithm was

56 for dense FSCs and 32 for sparse FSCs. IOHMM-GPOMDP cannot use the lookup-

table parameterisation for µ(u|θ, h, y) because the I-state input h is replaced by αt,

the belief vector for IOHMM-state occupancies. Instead, we parameterised µ(u|θ, α, y)

using an ANN, depicted in Figure 6.1. The computation of ∇µ(u|θ, h, y) was described

in Section 3.4.2. Using a linear ANN (no hidden layer), IOHMM-GPOMDP required

|G|2|Y| = 48 IOHMM parameters and |U|(|G| + |Y| + 1) = 16 ANN parameters, for a

total of 64 parameters. The +1 term comes from the constant bias input supplied to

the ANN.

The Incremental Pruning algorithm [Zhang and Liu, 1996] results are provided to

allow comparison with exact methods. We used Anthony Cassandra’s pomdp-solve

V4.0 source code that performs value iteration, learning value functions represented by

convex piecewise linear functions as described in Section 2.5.1.2. This code outputs a

§8.1 Load/Unload 103

policy graph that can be loaded by our code to obtain results for comparison.

8.1.2 Results

Table 8.1 summarises the results for this problem on all the algorithms described in

this thesis, using both sparse FSCs and dense FSCs. The rightmost column represents

the mean time in seconds taken to converge to a value of η that represents a reasonable

policy. Only those runs that achieve the cut-off value are included in the convergence

time results, but all runs are included in the mean and variance statistics. The number

of runs that reach the cut-off is written in brackets next to the convergence time. This

allowed a comparison of the running times of different algorithms that may not always

achieve the best policy.

Several interesting observations arise from Table 8.1. The first is the complete

failure of GAMP to learn when a dense initial FSC is used. This is an expected con-

sequence of Theorem 6 which tells us that the gradient of the φ parameters is always

0 in this case. As expected, the dense Exp-GPOMDP algorithm also failed, but both

algorithms do well when we use sparse FSCs. The IState-GPOMDP algorithm with

a dense FSC occasionally succeeds because noise in the gradient estimates move the

parameters so that Theorem 6 no longer applies. This does not often happen for GAMP

and Exp-GPOMDP, probably due to their lower variance.

The GAMP algorithm performs consistently well for sparse FSCs and is the fastest

algorithm. The GAMP gradient estimates have zero variance, but there is variance in

the long-term average reward due to the random choice of sparse FSC. As expected, the

sparse version of Exp-GPOMDP performs significantly better than the sparse IState-

GPOMDP algorithm.

We could not get the IOHMM-GPOMDP algorithm to converge reliably, and al-

though it outperforms the IState-GPOMDP algorithm in this experiment, simply in-

creasing the gradient estimation time allowed IState-GPOMDP to converge on every

run. This is consistent with the problems identified in Section 6.1.4. Figure 8.1 shows

how quickly the three simulation based algorithms converge for sparse FSCs. Exp-

GPOMDP clearly outperforms the other two. According to a single-tailed t-test the

IOHMM-GPOMDP algorithm is statistically better than IState-GPOMDP with a con-

fidence of 95%. The Exp-GPOMDP result is significantly better than IState-GPOMDP

with a 99% confidence interval. Although not shown on the graph, the GAMP result is

statistically significantly better than Exp-GPOMDP with 99% confidence.

Unsurprisingly, the exact Incremental Pruning method works well on this small

problem, always obtaining the optimal policy. Using VAPS in an episodic setting of

the Load/Unload problem achieved convergence within around 20,000 steps [Peshkin

104 Empirical Comparisons

Table 8.1: Results over 100 training runs on the Load/Unload scenario with 5 positions. η

values are multiplied by 10. The variance has also been scaled to match. Mean η is the mean

of all η values achieved over the 100 agents. Max η is the η achieved by the best of the 100

agents trained. Five of the seven algorithms (excluding Incremental Pruning) trained at least

one agent to optimum performance.

Algorithm mean η max. η var. secs to η = 2.0

GAMP dense 0.500 0.500 0 — (0)
GAMP k = 2 2.39 2.50 0.116 0.22 (96)
IState-GPOMDP dense 0.540 2.48 0.0383 2.75 (1)
IState-GPOMDP k = 2 1.15 2.50 0.786 2.05 (31)
Exp-GPOMDP dense 0.521 0.571 6.05 × 10−4 — (0)
Exp-GPOMDP k = 2 2.18 2.50 0.340 9.75 (82)
IOHMM-GPOMDP 1.41 2.50 0.696 5.53 (46)
Inc. Prune. 2.50 2.50 0 3.27 (100)

Optimum 2.50

et al., 1999]. Their version of the problem provided information about which position

the agent was in on the road, rather than the null observations we give for non-end

points. It is not clear if this would help or hinder the agent in the long run because

the extra parameters needed to handle the extra observations may slow learning down.

The finite-horizon setting used in that paper makes the problem easier because unbi-

ased Monte-Carlo gradient estimates can be computed. Relatively short episodes can

be used to prevent the temporal credit assignment problem becoming too hard, and

the variance can kept low by averaging gradients over many episodes to form a final

estimate.

8.2 Heaven/Hell

The Heaven-Hell problem of Geffner and Bonet [1998], and Thrun [2000], is shown in

Figure 8.2. The agent starts in either position shown with probability 0.5. The location

is completely observable except that the agent does not initially know if it is in the

left world or the right world. The agent must first visit the signpost that provides this

information, and remember the sign direction until the top-middle state. The agent

should then move in the direction the signpost points to receive a reward of 1, or -1

for the wrong direction. In theory, 3 I-states are sufficient for optimal control: one for

“sign post not visited,” one for “sign post points left,” and one for “sign post points

right.”

Although this problem has only 20 world states, it contains two features that make

§8.2 Heaven/Hell 105

0 2 4 6 8 10

x 10
5

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Simulation steps

η

IOHMM−GPOMDP
Exp−GPOMDP
IState−GPOMDP

Figure 8.1: Selected convergence plots for the Load/Unload scenario, comparing 100 runs

of IState-GPOMDP and Exp-GPOMDP. We used 4 I-states and a connectivity of k = 2. This

figure also shows the results for IOHMM-GPOMDP trained using an IOHMM with 4 states and

1000 observations per re-estimation. The variance bars show 0.2×standard deviation to reduce

clutter.

it a difficult task. Firstly, it requires long-term memory. The signpost direction must

be remembered for 5 time steps. Secondly, the temporal credit assignment problem is

hard because the actions critical to receiving a consistent reward happen up to 11 steps

before receiving the reward. There is nothing in the immediate reward structure that

informs the agent that visiting the signpost is good, that is, for a random policy the

same average reward of 0 is received regardless of whether the agent saw the signpost.

8.2.1 Experimental Protocol

The global state space comprised of 20 world states and 20 I-states, for a total of

|S||G| = 400. We used more I-states than necessary to increase the ease with which

the sparse FSC learnt cycles in the policy-graph of the appropriate length. An analogy

can be drawn with neural networks where convergence can be hastened by using more

hidden units than is strictly necessary.

IState-GPOMDP used a discount factor of β = 0.99, and gradient estimation times

106 Empirical Comparisons

r=1 r=−1 r=1r=−1

Figure 8.2: The Heaven/Hell problem: the optimal policy is to visit the signpost to find out

whether to move left or right at the top-middle state in order to reach heaven.

of 107 steps. To choose β we incorporated a discount factor into GAMP2 and exper-

imented with different values of β. Discounted GAMP produces gradient estimates

that are equivalent to IState-GPOMDP or Exp-GPOMDP estimates with infinite esti-

mation times. As β → 1 the estimate converges the true gradient. We reached the

conclusion that β = 0.99 is roughly the smallest discount factor that still allowed reli-

able convergence. Conjugate-gradient convergence took more than twice as long using

GAMPwith β = 0.99 than it took using un-discounted GAMP. The long-term reward η

often reached a plateau and took a long time to start improving again. The smallest

feasible discount factor is important because the variance of the gradient estimates

increases with β, as described in Section 5.2. We discuss discounted GAMP further in

Section 8.2.3.

The lookup table for ω(h|φ, g, y) and µ(u|θ, h, y) contained a total of 1540 param-

eters when the out degree of the I-states was k = 3. Quadratic penalties were used to

avoid local maxima. GAMP used a penalty of ℘ = 1 × 10−7. Good convergence was

found to be sensitive to the penalty, with more runs failing when the penalty was set

to 1 × 10−6 or 1 × 10−8. IState-GPOMDP was less sensitive to the penalty, which we

set to ℘ = 1× 10−4.

We ran Incremental Pruning for this problem, however it failed to converge after

running for 100,000 seconds, producing policy graphs with |G| > 2000 states when

the optimal infinite-horizon policy graph can be represented with |G| = 8.3 This poor

performance resulted from the failure of Incremental Pruning to identify that the task

was actually episodic and that the belief state should be reset after receiving a reward.

Using a fixed number of I-states forces our algorithms to identify useful cycles in the

2A discount factor can be added to GAMP by replacing Line 11 of Algorithm 1 with v = βPv.
3Exact algorithms compute policy graphs equivalent to a deterministic policy, only allowing one

action per node. Because we make the policy µ(u|θ, h, y) a function of current observation as well as
the I-state (equivalent to a policy-graph node), we can compute optimal policies with far fewer I-states.
In the case of Heaven/Hell, |G| = 3 is sufficient.

§8.2 Heaven/Hell 107

Table 8.2: Results over 10 runs for the Heaven/Hell scenario. Values for η have been multiplied

by 102.

Algorithm mean η max. η var. secs to η = 5.0

GAMP k = 3 9.01 9.09 0.0514 34 (10)
GAMP dense 5.24 × 10−3 5.24× 10−3 0 — (0)
IState-GPOMDP k = 3 6.49 9.09 10.8 11436 (8)
IState-GPOMDP dense 0.0178 0.0339 3.23 × 10−5 — (0)

Optimum 9.09

policy graph, hence identifying the episodic qualities of the POMDP such as the 11

step cycle of the optimal agent.

8.2.2 Results

The experiments were run with dense initial FSCs (5280 parameters) and with sparse

random FSCs of out degree k = 3 (1540 parameters). The stochasticity in the results

reported for the GAMP algorithm comes from the random choice of initial FSC.

Table 8.2 shows the results of these experiments. Both GAMP and IState-GPOMDP

found the optimal agent, but only GAMP found it consistently. The 2 failed IState-

GPOMDP runs had η ≈ 0. All GAMP runs with k = 3 succeeded. All the runs with

dense FSCs failed. For a dense FSC, the initial gradient magnitude estimated by GAMP

is within machine tolerance of 0. In successful runs the agents typically learnt to use

about half of the available I-states, never making transitions to the unused-states.

The wall clock times to convergence quoted for these experiments are not directly

comparable. The IState-GPOMDP experiments were run using 94 processors of a 550

MHz dual CPU PIII Beowulf cluster. The GAMP experiments were run on a 1.3 GHz

Athlon, roughly equivalent to 3 CPUs of the cluster. It is extraordinary that GAMP

converged in a small fraction of the time required by IState-GPOMDP, with better

results. This demonstrates the advantage of having a model of the world.

We verified that Exp-GPOMDP can learn to visit the signpost. However, since 1 run

takes more than 2 days on our cluster, we were prohibited from a formal comparison.

Both IState-GPOMDP and Exp-GPOMDP tended to spend about half the total number

of estimation steps stuck near their starting point before locking onto a possible solution

and improving rapidly.

The same scenario was tackled by Geffner and Bonet [1998] and a continuous state

space version was tackled by Thrun [2000]. Both of those papers assumed knowledge

of the POMDP model and that the scenario is episodic. Within our knowledge this is

the first time the Heaven/Hell scenario has been solved using a model-free algorithm.

108 Empirical Comparisons

We could not get IOHMM-GPOMDP to solve Heaven/Hell.

8.2.3 Discounted GAMP

Using the GAMP estimator to choose an appropriate value of β for our IState-GPOMDP

experiments is worth extra discussion. Choosing β using discounted GAMP is not

generally feasible unless we could have trained the agent using GAMP in the first place.

However, it is instructive to explore the gradient ascent performance of discounted

GAMP. A GAMP estimate with discount β is equivalent to an IState-GPOMDP or Exp-

GPOMDP estimate with the same β and an infinite number of steps T . This eliminates

one source of uncertainty about our estimates. For example, we can compare the GAMP

gradient estimates for β = 1.0 and β = 0.99 to determine the true bias induced by the

discount factor. We no longer have the added uncertainty of noise in the estimates.

Baxter and Bartlett [2001] show that 1/(1 − β) must be greater than the mixing

time τ to achieve good estimates. Therefore, discounted GAMP could be used as an

empirical tool to estimate the mixing time τ of the POMDP. By plotting the angle

between GAMP estimates with β = 1 and β < 1, we can estimate τ by looking at

the value of β where estimates start becoming “close” to the true gradient. However,

the mixing time changes as the parameters converge. We could plot the error in the

estimate for one or more values of β over the duration of training to gather an insight

into how τ varies as the agent improves.

The poor performance of GAMP when β < 0.99 indicates that the mixing time of

the Heaven/Hell scenario is at least hundreds of steps. Intuitively, this means it takes

hundreds of steps for the effects of previous actions to stop having a significant impact

on the current state. This fits well with our understanding of why the scenario is hard.

For example, rewards are delayed by a minimum of 11 steps from the relevant actions.

We also mentioned that the value of η tends to plateau when GAMP with β = 0.99

is used during gradient ascent. We expect that these plateau regions correspond to

parameter settings that demonstrate mixing times even larger than a few hundred

steps. Figure 8.3 shows that this is the case. We performed one conjugate-gradient

ascent training run of the Heaven/Hell scenario using GAMP with a discount factor

of β = 0.99. All the other parameters were the same as those used to generate the

GAMP results reported in Table 8.2. At the start of training the discount/bias curve

indicates that β = 0.99 induces an error of only 0.42◦ in the gradient estimate.4 After

training for a few seconds on a single processor machine, the long-term average reward

increased from the start value of 0 (within machine precision) to 2.74 × 10−6. At this

point training reached a plateau and we re-calculated the discount/bias curve. The

4Additionally, at the start of training undiscounted GAMP has an error of 0.0003◦ compared to the
true gradient computed by evaluating Equation (4.6) directly.

§8.2 Heaven/Hell 109

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

1/(1−β)

E
rr

o
r

(d
e

g
re

e
s
)

β=0.99 β=0.9999

Start of training

Plateau

Figure 8.3: An illustration of how the discount factor introduces bias into the GAMP estimates

for the Heaven/Hell scenario. The lower curve represents the discount/bias curve at the start

of training. The upper curve represents the discount/bias curve when training was observed to

have reached a plateau in performance. The x-axis can be thought of as the proposed mixing

time τ , modulo constants and log factors. Training was performed using β = 0.99. This is

sufficient at the start of training, but results in a large bias in the region of parameter space

corresponding to the upper curve.

bias for a β = 0.99 is now 86.8◦. To bring the bias under 1◦ requires β > 0.99999.

Given this result, it is impressive that IState-GPOMDP found the optimal policy with

β = 0.99. The local minimum in the plateau curve around β = 0.65 is an interesting

feature. This may indicate that if short term rewards are allowed to dominate (using

β = 0.65) then the gradient is “somewhat right,” and considering medium term rewards

just confuses the estimate; but to get the true gradient, long term rewards must be

considered. The bias is lower at the start of training because the gradient is dominated

by “easy” to learn concepts.5 Once the easy concepts are learnt, the long mixing time

of the scenario becomes apparent. When β = 1.0, conjugate-gradient ascent led quickly

to the optimal agent. Because we used a particular random FSC, this is an illustrative

5We analysed the agent’s behaviour after it reached the plateau. It had learnt a slight preference
for moving left or right at the intersection, depending on which I-state it is was in. The FSC had
not evolved any discernable structure. We interpret this as meaning there was some initial correlation
between the I-states and which way the sign-post pointed (if it was visited), but the gradient signal
for the φ parameters was very weak. The FSC transitions that would increase the correlations were
not being reinforced.

110 Empirical Comparisons

example rather than a representative experiment.

Because the variance of IState-GPOMDP estimates scales with 1/ (T (1− β)), a good

knowledge of how β should be set allows the variance to be controlled by selection of

an appropriate estimation time T .

8.3 Pentagon

An interesting problem domain is defined by Cassandra [1998]. In these scenarios a

robot must navigate through corridors to reach a goal. The world is mapped into

discrete locations. The robot occupies a location and points North, South, East or

West. The actions it can take are U = {move forward, turn left, turn right,

declare goal}. Actions do nothing with 11% probability, or move/turn one too many

steps with 1% probability. This models the unreliability of the movement systems.

There are 28 observations that indicate whether the locations immediately to the front

and sides of the robot are reachable. The observations have a 12% chance of being

misleading, modelling sensor uncertainty. We modified the problem slightly from the

original definition to make it an infinite-horizon task and to make rewards control-

independent. The behaviour is changed so that a declare goal action in the goal

location causes a transition to an added state where a reward of 1 is received prior to

the agent being taken back to the start state. No penalty is received, and the agent is

not returned to the start state, for the declare goal action in the wrong state. There

is no cost associated with movement because to obtain the highest average reward in

the infinite-horizon setting the agent must minimise the number of movements. In this

experiment the agent always starts in the same place but the noise means the agent

can quickly become confused about its location even if it has a perfect memory of past

observations and actions.

Figure 8.4 shows the Pentagon navigation scenario where the robot must move

from the bottom left state to the walled state in the middle region. This problem

exhibits a lot of symmetry, meaning the agent finds many states hard to distinguish by

observations alone.

8.3.1 Experimental Protocol

This scenario has 52 locations, 4 directions plus one “goal obtained” state, for a total

of 209 states. Using 20 I-states the global-state space size is 20× 209 = 4180 states.

The IState-GPOMDP algorithm required a gradient estimation time of 2×106 steps

to achieve gradient estimates that were consistently within 90◦ of each other. This

scenario required estimating up to 3920 parameters. Random directions sampled from

such high-dimension parameter spaces tend to be orthogonal with probability close to

§8.3 Pentagon 111

Figure 8.4: The Pentagon robot navigation problem maze.

1. Thus, any degree of consistency in the gradient estimates indicates a gradient signal

is being extracted from the noise. Exp-GPOMDP required 106 steps, demonstrating

an effective reduction in variance. Each point in the gradient-ascent line search used

an estimation time of one quarter of the standard estimation time. This speeds up

convergence, taking advantage of the GSEARCH algorithm’s robustness against variance

during the line search (see Appendix B.1). For the Monte-Carlo algorithms a quadratic

penalty of ℘ = 10−4 was used. A discount factor of β = 0.99 was chosen to match that

used by Cassandra [1998]. GAMP used a penalty of ℘ = 10−5.

The experiment labelled Belief in Table 8.3 used a different algorithm to those de-

scribed so far. Belief uses the POMDP model and the observations to maintain a belief

state over the 209 world states. Recalling Section 2.5.1.1, we denote the world-state

belief with bt. The belief state bt is passed to IState-GPOMDP in place of the observa-

tions yt. As the belief state is a sufficient statistic for all past events [Åström, 1965],

the optimal policy needs no memory, and so we set the number of I-states to 1. Be-

cause belief states are vectors in [0, 1]|S|, we cannot use tables to parameterise policies.

Instead we use a linear controller policy with 209 inputs and 4 outputs passed through

a soft-max function to generate action distributions, as described in Section 3.4.2.

This is similar to the IOHMM-GPOMDP algorithm with one major and one mi-

nor difference. The major difference is that instead of learning the parameters of an

IOHMM, the POMDP model provides the transition and emission probabilities of an |S|

state IOHMM. The q(j|i, u)’s give the transition probabilities, and the ν(y|i)’s give the

emission probabilities. The world-state belief update is given by Equation (2.7). The

minor difference is that the ANN no longer needs to receive the observation yt because

it is sufficiently summarised by the belief state. The Belief experiment uses a deter-

ministic belief state update ω(bt+1|φ, bt, yt) = 1, and the stochastic policy µ(ut|θ, bt+1).

112 Empirical Comparisons

Table 8.3: Results over 10 runs for various algorithms on the Pentagon scenario. Values for η

have been multiplied by 102.

Algorithm |G| k mean η max. η var. secs to η = 2.0

GAMP 5 2 2.55 2.70 0.0102 611 (10)
10 2 2.50 2.63 0.0128 4367 (10)
20 2 2.50 2.80 0.0250 31311 (10)
20 3 2.89 3.00 0.00613 47206 (10)

IState-GPOMDP 5 2 2.06 2.42 0.281 649 (9)
10 2 2.18 2.37 0.0180 869 (9)
20 2 2.12 2.28 0.0137 1390 (9)
20 3 2.15 2.33 0.0138 1624 (9)

Exp-GPOMDP 5 2 1.96 2.33 0.401 1708 (7)
10 2 2.19 2.40 0.0151 6020 (9)
20 2 2.11 2.27 0.0105 29640 (8)
20 3 2.26 2.36 0.00448 48296 (10)

IOHMM-GPOMDP 1 1.26 1.39 0.130 — (0)
IOHMM-GPOMDP 5 1.47 1.63 0.365 — (0)

IState-GPOMDP 1 1 1.35 1.37 0.000324 — (0)
Belief 2.67 3.65 0.778 2313 (7)
MDP 4.93 5.01 0.00148 24 (10)
Noiseless 5.56 5.56 NA

As in the Load/Unload experiment, the IOHMM experiment used discrete transi-

tion distributions indexed by IOHMM-state and observation yt. Unlike the Load/Unload

experiment, reward emissions were generated by a single Gaussian for each state,

bounded to [−1, 1]. Because a Gaussian is described by two parameters, the mean

and variance, we achieve a more compact model of the rewards when the POMDP can

emit a large or continuous range of rewards. In the case of our definition of the Pentagon

problem, there is no compelling reason to prefer the Gaussian representation because

only rewards of 1 or 0 are issued. We used it to demonstrate the alternative to the dis-

crete distributions used for the Load/Unload experiment. Training Gaussian emission

distributions for IOHMMs is no different to training them for standard HMMs. The

details are provided in Appendix D.2 and Algorithm 9 was used for IOHMM training.6

8.3.2 Results

The lower part of Table 8.3 provides baseline results for comparisons. Unless we can

guarantee that we have provided enough I-states to represent the optimal policy, using

6Algorithm 9 is the IOHMM training procedure for discrete distributions. The only modification
needed for the Gaussian reward distributions is to replace Line 20 with Equations (D.5) and (D.6).

§8.3 Pentagon 113

an FSC will only provide an approximation to the optimal agent. Recall that the

optimal agent is defined as best agent we could train assuming access to the full belief

state. The Belief algorithm uses the full belief state, thus the Belief result of η = 3.65

(from Table 8.3) is a rough empirical upper bound for the η we should be able to achieve

using a large FSC. On the other hand, IState-GPOMDP with |G| = 1 is a memory-less

policy that provides a rough empirical lower bound of 1.37 for the results we expect

to achieve using FSCs.

The long-term average rewards that are between these empirical bounds for |G| > 1

show that FSCs can be used to learn better than memory-less policies by using a finite

amount of memory. The MDP row gives the results for learning when the agent is told

the true state of the world, giving us an empirical value for the best policy achievable

in a fully observable environment. The Noiseless row is the theoretical maximum MDP

reward that can be achieved if no observation or transition noise is present.

The Incremental Pruning algorithm aborted after 5 value-iteration steps, consuming

all 256 MB of memory on an Athlon 1.3 GHz machine in 10,800 seconds. Cassandra

[1998] contains results for the Pentagon problem that were obtained using the most

likely state heuristic (see Section 2.5.2.1). This method uses the belief state only to

identify the most likely current state, then performs value updates based on the as-

sumption that the system is in that state. This heuristic greatly simplifies the problem

of representing the value function. To perform a comparison we ran our trained policies

on the original POMDP and used the sum of discounted rewards criterion as specified

in Cassandra’s thesis. The maximum Belief result of 3.65 gives a discounted reward

of 0.764. This result sits between Cassandra’s results of 0.791 for a known start state

and 0.729 for a uniform initial belief state. We do not reset the I-state after receiv-

ing rewards so the state in the initial position is not fixed, however the probability

of occupying each I-state is not uniform, thus Cassandra’s results bracketing ours is a

reasonable outcome.

Because the Belief algorithm had access to the world-state belief (using the model),

it is unsurprising that it obtained the best maximum η. GAMP also used a model but

restricted memory to |G| states, resulting in the second highest maximum. GAMP may

sometimes be preferable to Belief because of its zero-variance (the variance in the tables

is due to the random choice of sparse FSC), supported by the fact that for |G| = 20 the

GAMP mean is better than Belief’s (but not with more than 90% t-test confidence).

Increasing |G| and the FSC connectivity k generally improves the results due to the

increasing richness of the parameterisation, however, IState-GPOMDP performed best

for |G| < 20 because we did not scale the number of gradient estimation steps with |G|.

Exp-GPOMDPs reduced variance allowed it to improve consistently as |G| was increased,

while still using fewer estimation steps than IState-GPOMDP. Figure 8.5 shows that for

114 Empirical Comparisons

0 1 2 3 4 5 6 7

x 10
8

0

0.005

0.01

0.015

0.02

0.025

Simulation steps

η

IState−GPOMDP
Exp−GPOMDP

Figure 8.5: Convergence of IState-GPOMDP and Exp-GPOMDP on the Pentagon problem

with |G| = 20 and k = 3. Results are averaged over 10 runs.

|G| = 20, Exp-GPOMDP produced a superior result in fewer steps than IState-GPOMDP.

The mean result of Exp-GPOMDP is better than IState-GPOMDP with greater than

95% confidence. Setting k > 3 caused failures due to small gradients.

8.4 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I We can use FSCs to learn non-trivial tasks with long-term memory and hard

temporal credit assignment.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II The sparse FSC trick works, allowing agents to consistently use multiple bits

of memory to their advantage.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III GAMP performs better than our other algorithms and requires a fraction of

the time, demonstrating the advantage of having a model of the world.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV Exp-GPOMDP learns with fewer world interactions than IState-GPOMDP but

requires roughly |G| times longer to process each observation. This processing

time will often be negligible compared to the time required to carry out an

action and get the next observation from the real world.

§8.4 Summary 115

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ V The IOHMM-GPOMDP algorithm works for the toy Load/Unload scenario

but we could not achieve competitive convergence in more complex domains.

Future Work

Much more experimentation needs to be done to determine the effectiveness of FSC

methods over a broad range of domains. In particular, the following questions need

further investigation:

• How does η scale with the number of I-states for POMDPs that benefit from a

large amount of memory?

• Are there methods for generating sparse FSCs that improve performance without

increasing |G|?

• How much lower is Exp-GPOMDPs variance compared to IState-GPOMDPs?

• How much harder are these problems made by putting them in infinite-horizon

settings?

We have done some brief comparisons with the Incremental Pruning exact algo-

rithm. More appropriate comparisons might be with algorithms such as UTREE (Sec-

tion 2.6.2.2) and evolutionary training of stochastic recurrent neural networks (Section

7.1). In particular, both of these methods have been applied to the New York Driving

scenario of McCallum [1996], providing an obvious choice for future empirical investi-

gation of our Algorithms.

The Belief algorithm was introduced to provide a basis for comparison between

our finite-memory algorithms and an algorithm that tracks the full belief state. Belief

is another form of model-based policy-gradient estimator. Unlike GAMP, it is still a

Monte-Carlo method. Because it is trivial to incorporate belief state factorisation —

by providing the state-variable beliefs to the ANN inputs directly — Belief has the

potential to work well for large problems without enumerating the state space. This

idea was applied to training an ANN to output belief-state values [Rodŕıguez et al.,

2000].

If we could extend GAMP to work with continuous observation spaces Y, we could

use factored belief states as ANN inputs instead of a finite number of observations. This

would provide a relatively fast, zero-variance, low-bias gradient estimator for factored

belief-state policy search.

The reader is hopefully convinced that the high variance of the Monte-Carlo gra-

dient estimates can lead to slow convergence. Chapter 9 is devoted to some methods

for reducing the variance of the gradient estimates.

116 Empirical Comparisons

Chapter 9

Variance Reduction

[The] error surface often looks like a taco shell.

—Gunnar Rätsch

The results of the previous chapter demonstrate the problems that arise due to the

high variance of gradient estimates, that is, we require powerful computers and lots

of time to solve problems of any interest. This chapter discusses ways to reduce the

variance of these estimates, starting with two novel methods and concluding with some

remarks on existing methods.

The first method describes how to add domain knowledge in the form of an infinite

impulse response (IIR) filter that replaces eligibility traces. The second briefly outlines

how to combine low-variance value function methods to learn the policy, while IState-

GPOMDP or Exp-GPOMDP are used to learn the FSC. Then importance sampling

is discussed and we show that its application to infinite-horizon problems does not

follow immediately from its application to finite-horizon algorithms such as Williams’

REINFORCE. Finally, we show that a common variance reduction trick for value-based

Monte-Carlo methods can be applied to policy-gradient methods. However, it can

cause a form of over-fitting for both value-methods and policy-gradient methods.

9.1 Eligibility Trace Filtering

Lines 4 and 5 of the IState-GPOMDP (see Algorithm 2, Section 5.2) show how to update

the eligibility trace z at each time step. This update can be viewed as a first order

infinite impulse response (IIR) filter that has an exponential response to an impulse

input, plotted in Figure 9.1 [Baxter and Bartlett, 2001]. Impulse response plots, such

as Figure 9.1, show the filter output after a filter input of 1 at t = 0 and 0 for all t > 0.

For the remainder of the thesis τ denotes the delay between the action at time t = 0

and future rewards that are reaped as a consequence of that action.

The eligibility trace acts as memory, telling the agent what proportion of the current

reward each previous action should be credited with. Implicit in this trace update

is the assumption that an action is considered to have exponentially less impact on

the immediate reward the longer ago the action occurred. This assumption is often

118 Variance Reduction

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

C
re

di
t a

ss
ig

ne
d

Figure 9.1: The first 25 points of the infinite impulse response generated by the exponential

discounting credit assignment model with β = 0.9. Exponential impulse responses are generated

by using the filter coefficients a = [1.0,−β] and b = [1.0] in Equation (9.1).

violated, as the experiments of this section will demonstrate. In this section we treat

the eligibility trace as an arbitrary infinite impulse response filter, thereby allowing

domain specific knowledge about credit assignment to be used.

9.1.1 Arbitrary IIR Trace Filters

Exponential discounting of rewards to actions has nice analysis properties, however in

many RL applications we have prior knowledge about the delay between the execution

of an action ut and when rewards rt+τ are affected by that action. An example is a

chemical factory. It takes some time for any new catalyst introduced to have an impact

on the yield, thus the temporal credit assignment should ignore actions taken in the

intervening time.

By using higher order filters in any reinforcement learning algorithm that uses

eligibility traces, we can encode prior knowledge about the correct temporal credit

assignment. The result is a reduction in the variance of the gradient (or value) es-

timates. This happens because irrelevant and confusing actions are not considered

as candidates to be credited for generating rewards. In effect, we hope to subtract

a zero-mean, non-zero variance process from the gradient estimate. IIR filters are a

natural choice because the translation from domain knowledge to a good filter is in-

tuitive and extensive literature exists on the design of IIR filters, for example, Elliott

[2001]. IIR filters have long been popular for digital signal processing problems such

§9.1 Eligibility Trace Filtering 119

as transmission line equalisation and noise filtering.

Consider the eligibility trace update in line 7 of Algorithm 2. If we let xt =
∇ω(gt+1|φ,gt,yt)
ω(gt+1|φ,gt,yt)

the general IIR form of line 7 is

zt+1 = −

|a|−1∑

n=1

aizt+1−i

+

|b|−1∑

n=0

bixt−i

 , (9.1)

where a = [a0, a1, . . . , a|a|−1] and b = [b0, b1, . . . , b|b|−1] are vectors of filter taps with

|a| − 1 being the number of past z’s that must be stored and |b| is how many x’s must

be stored. The tap a0 is assumed to be 1, which can be ensured by appropriate nor-

malisation. Line 8 of Algorithm 2 can be altered similarly, possibly using a different

filter. The extension to any other eligibility trace algorithm, such as SARSA(λ) (see

Appendix C.1.1), or Williams’ REINFORCE (see Section 2.6.3), is similarly straightfor-

ward. We denote the IIR filtered version of Algorithm 2 as IState-GPOMDP-IIR.

9.1.2 Convergence with IIR Trace Filters

The IState-GPOMDP convergence guarantees given by Theorems 4 and 5 in Section 5.2,

do not hold for IIR filters because the proofs use the Bellman equation to compute the

unknown reward vector r. In this new setting we replace Jβ with a filtered version of

the rewards Jf so the Bellman equation is no longer directly applicable. Fortunately,

we can show that the new zt+1 update still estimates an approximation of the gradient

that converges to ∇η as the filter impulse response approaches a step function. This

result can be used as an alternative proof of Theorem 5:

lim
β→1

π(∇P)Jβ = ∇η,

because setting β = 1 defines a first order IIR filter with a unit step function response.

Without loss of generality the new proofs assume an FIR filter with a possibly infinite

number of taps, which includes all possible IIR filters.1

Theorem 7. Define the filtered reward as

Jf (φ, θ, i, g) := Eφ,θ

|b|−1∑

n=0

bnr(in, gn)|i0 = i, g0 = g

 ,

where the expectation is over all world/I-state trajectories. Let ∆T :=
[
∆φ

T ,∆
θ
T

]
be

1IIR filters allow a compact representation and implementation of FIR filters with infinitely many
taps, but do not enlarge the space of possible filters. Hence, without loss of generalisation, we restrict
the proof to FIR filters.

120 Variance Reduction

☞ ☞☞ ☞☞ ☞
✌ ✌✌ ✌✌ ✌

✍ ✍✍ ✍✍ ✍
✎ ✎✎ ✎✎ ✎

✏ ✏✏ ✏✏ ✏
✑ ✑✑ ✑✑ ✑r=10

r=11

r=12

p

p

p

0

1−p

1−p

1−p

Figure 9.2: The completely unobservable MDP used to test IIR trace filtering in Tests I and

II. Test I sets p = 0.0; Test II sets p = 0.5 so that rewards may occur an arbitrarily long time

after the action at state 0. The optimal policy follows the green (thick) transitions.

the estimate produced by IState-GPOMDP-IIR after T iterations. Then under Assump-

tions 1–4 defined in Section 3.2, limT→∞ ∆T = π′(∇P)Jf with probability 1.

This is proved in Appendix A.4.2. The next theorem establishes that if |b| → ∞ and

bn = 1 ∀n = 0, 1, . . . ,∞ — an infinite step response filter — then the approximation

π′(∇P)Jf is in fact ∇η.

Theorem 8. For P parameterised by FSC parameters φ and policy parameters θ, then

if bn = 1 ∀n = 0, . . . , |b| − 1, then

lim
|b|→∞

π′(∇P)Jf = ∇η.

This theorem is proved in Appendix A.4.1. The condition that bn = 1 is not

necessary to compute the correct gradient direction. It is sufficient that bn = κ ∀n, in

which case the gradient is scaled by κ.

9.1.3 Preliminary Experiments

We contrived 4 simple POMDPs as test cases:

I. the POMDP described by Figure 9.2 with p = 0;

II. the POMDP described by Figure 9.2 with p = 0.5;

III. the POMDP described by Figure 9.3 when completely observable;

IV. the POMDP described by Figure 9.3 when only the tree depth is observable.

§9.1 Eligibility Trace Filtering 121

✒✓✒
✒✓✒
✔✓✔
✔✓✔ ✕✓✕

✕✓✕
✖✓✖
✖✓✖ ✗✓✗✗✓✗

✗✓✗
✘✓✘✘✓✘
✘✓✘ ✙✓✙✙✓✙

✙✓✙
✚✓✚✚✓✚
✚✓✚ ✛✓✛✛✓✛

✛✓✛
✜✓✜✜✓✜
✜✓✜ ✢✓✢✢✓✢

✢✓✢
✣✓✣✣✓✣
✣✓✣ ✤✓✤

✤✓✤
✥✓✥
✥✓✥ ✦✓✦

✦✓✦
✧✓✧
✧✓✧

★✓★
★✓★
✩✓✩
✩✓✩✪✓✪

✪✓✪
✫✓✫
✫✓✫✬✓✬✬✓✬

✬✓✬
✭✓✭✭✓✭
✭✓✭✮✓✮✮✓✮

✮✓✮
✯✓✯✯✓✯
✯✓✯

✰✓✰✓✰
✰✓✰✓✰
✱✓✱
✱✓✱✲✓✲✲✓✲

✲✓✲
✳✓✳✳✓✳
✳✓✳

✴✓✴✓✴✓✴✴✓✴✓✴✓✴✴✓✴✓✴✓✴
✵✓✵✓✵✓✵✵✓✵✓✵✓✵✵✓✵✓✵✓✵

✶✓✶
✶✓✶
✷✓✷
✷✓✷✸✓✸✓✸

✸✓✸✓✸
✹✓✹✓✹
✹✓✹✓✹ ✺✓✺✓✺

✺✓✺✓✺
✻✓✻✓✻
✻✓✻✓✻✼✓✼

✼✓✼
✽✓✽
✽✓✽

u1

u2

u3

r from u1

r from u3

r from u2

Figure 9.3: The MDP/POMDP used for Tests III and IV. Rewards are issued with a delay

of 1 step, in which time a reward can be received for an earlier action. In Test III all states are

completely observable, in Test IV, only the depth down the tree is observed. The two nodes

that enter the root of the tree are assigned the same depth as the bottom of the tree. Green

(light) nodes indicate a reward of 1 and red (dark) nodes indicate a -1 reward.

Tests I and II are examples in which IState-GPOMDP performs poorly but trace

filtering performs well. They are based on the completely unobservable MDP shown

in Figure 9.2, for which the optimal policy is to follow the lower path. There are 3

actions, all of which only have an effect in state 0, deterministically selecting one of

the 3 transitions out of state 0. This POMDP is harder than it looks. Unless β > 0.97,

the reward discounted back to the action at state 0 appears higher for the upper two

paths than for the lower optimal path. Thus for β ≤ 0.97, the gradient will point away

from the optimal policy.

Tests III and IV are described by Figure 9.3. The agent must fall down the correct

branch of the tree to maximise its reward. The reward is always delayed by 1 step, that

is, when the agent makes a decision leaving the top node, level 0, it gets the relevant

reward when it reaches level 2. The reward is positive for moving left and negative for

right. The test is interesting because it means rewards overlap; the reward received

immediately after executing an action is actually due to the previous action.

9.1.3.1 Experimental Protocol

We applied IState-GPOMDP, with lines 7 and 8 of Algorithm 2 replaced by Equa-

tion (9.1), to all tests. The gradient estimation time used for each test is shown in

Table 9.1.

The bias optimal filter for Test I, where p = 0 in Figure 9.2, has a finite response

with impulses corresponding to the three possible reward delays τ = 2, 5 and 8. This

122 Variance Reduction

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

O
ut

pu
t

Figure 9.4: The optimal FIR filter for Test I, with parameters a = [1], b = [0, 0, 1, 0, 0, 1, 0, 0, 1].

filter is shown in Figure 9.4.

We applied two filters to Test II. The first is an FIR filter that assumes that rewards

must be received between 2–12 steps after the relevant action. It makes no other

assumption so all impulses between τ = 2 and τ = 12 have equal value, defining a

rectangular filter shown in Figure 9.5. A good filter for Test II, where p = 0.5, should

have an infinite response since rewards can be received an arbitrarily long time into

the future. We tested an IIR filter with impulses at the same places as Figure 9.4,

but the impulses were allowed to decay exponentially by setting the a1 weight to -0.75.

This filter is shown in Figure 9.6. It might be suspected that we should decay the

impulses by a factor of p, however we found empirically that this produced a bias and

variance worse than the FIR filter. Intuition, and our early experience, indicates that

it is important to over-estimate credit assignment if bias needs to be minimised.

The optimal filter for both Tests III and IV is simply a = [1] and b = [0, 1], a single

impulse at τ = 1. This takes account of the fact that all rewards are delayed by 1 step.

Because our test POMPDs are small, we can compute true gradient by evaluating

Equation (4.6) directly. The true gradient was compared to 50 IState-GPOMDP-IIR

gradient estimates for each Test and filter. We also compare the estimates produced

by IState-GPOMDP with exponential discounting of β = 0.9 and β = 0.99.

9.1.3.2 Results

The bias and variance of the estimates are shown in Table 9.1. For Test I, β = 0.9

produced a gradient pointing in the wrong direction; β = 0.99 is in the correct direction

§9.1 Eligibility Trace Filtering 123

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ou
tp

ut

Figure 9.5: A good FIR filter for Test II, with parameters a = [1], b =

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

ou
tp

ut

Figure 9.6: A good IIR filter for Test II, with parameters a = [1,−0.75], b =

[0, 0, 1, 0, 0, 1, 0, 0, 1].

124 Variance Reduction

Table 9.1: Results of eligibility trace filtering experiments over 50 runs. There is a large drop

in bias and variance for most FIR and IIR runs.

Test I Test II Test III Test IV
T 106 106 1000 400

Trace type Bias Var. Bias Var. Bias Var. Bias Var.

β = 0.9 176◦ 12.3 176◦ 18.4 0.610◦ 0.560 1.11◦ 111
β = 0.99 14.7◦ 2090 14.7◦ 2140 1.15◦ 2.88 2.36◦ 655
FIR 0.107◦ 7.72 13.9◦ 10.71 0.0450◦ 0.278 0.394◦ 16.7
IIR 4.35◦ 59.5

but the high variance meant a total of around 1,000,000 estimation steps were required

to achieve convergence to the correct policy. The simple FIR filter required only around

10,000 estimation steps.

In Test II, the FIR filter only marginally improved the bias, however the variance

was greatly reduced. The IIR filter improved the bias further because it does not

arbitrarily cut off credit after 12 steps, but introducing an infinite response increased

the variance. This demonstrates that the bias/variance tradeoff in the choice of discount

factor is still evident when designing arbitrary filters. Theorem 8 tells us that one

unbiased filter for any POMDP is an infinite step response. A large class of POMDPs

have unbiased filters that are not infinite step responses. For example, the POMDP of

Test I and any POMDP that visits a recurrent state after at most T steps. Trivially,

a zero-variance filter for all POMDPs has a 0 impulse response. Thus, the design of

optimal filters requires fixing the maximum tolerable bias, or variance, before hand.

Alternatively, we could design suitable metrics that trade off the bias and variance in

a sensible way.

Tests III and IV also show an order of magnitude improvement in bias and variance.

We emphasise that this form of trace filtering can be applied to any RL algorithm

that uses an eligibility trace, such as TD(λ) or SARSA(λ). A drawback of arbitrary

filters is that the time taken to update the eligibility trace grows linearly with the

number of filter-coefficients. Better results may be achieved with more steps of a

simple high-variance filter than less steps of a complex low-variance filter. The speech

recognition experiments of Section 10.3.2 applies eligibility trace filters to a real-world

problem.

§9.2 GPOMDP-SARSA Hybrids 125

9.2 GPOMDP-SARSA Hybrids

Another variance reduction scheme we investigated is using value-function methods to

learn the policy parameters θ while using IState-GPOMDP to learn the FSC parameters

φ. Thus, we attempt to balance the convergence to a local maximum guarantees of

policy-gradient methods with the lower variance of value methods (see Section 2.5.8).

We achieve variance reduction in two ways: (1) there are fewer gradients to be

estimated because we only estimate the φ parameter gradients; (2) empirical evidence

suggests that value-methods, if they converge at all, often converge more quickly than

policy-gradient methods. This means less time will be wasted exploring irrelevant

regions of the state space, giving the gradient estimator a boost from the improved

sample relevance.

Our choice of SARSA(λ) for the value-method is based on empirical results that

suggest that SARSA can often cope well with partial observability [Loch and Singh,

1998]. The algorithm details and some favourable preliminary results can be found in

Appendix C.1. We will not discuss this approach further in the main thesis.

9.3 Importance Sampling for IState-GPOMDP

For some domains agents can be easily designed that perform much better than a purely

random agent. For example, it is reasonably easy to code a controller for a robot that

tells it that running into an obstacle is bad. A hand coded controller that does just

this, combined with Q-learning, is discussed by Mitchell and Thrun [1996]. The hand

designed agent is referred to as the teacher. The goal is to learn a better agent than the

teacher, but in much less time than starting with a random agent. One way to do this

is to initialise the learning agent with the teacher’s policy, but this may put the agent

in a local maximum. Also, it may not be easy to initialise an agent such as a multi-

layer neural network with the correct policy. Importance sampling (IS), introduced in

Section 2.7.1.1, provides a statistically well motivated mechanism for using a teacher

to guide the learning agent.

IS has been used in conjunction with Monte-Carlo techniques as a method of reduc-

ing variance [Glynn, 1996]. Section 2.7.1.1 describes how IS weights the importance of

each sample of an unknown distribution by the probability mass associated with the

known sampling distribution. In the policy-gradient arena, hard-wired controllers have

been used to implement the teacher policy µ̃(u|h, y) to help Williams’ REINFORCE

to estimate gradients with a minimum number of world interactions [Meuleau et al.,

2000]. The teacher µ̃(u|h, y) serves as the known distribution which is used to generate

actions, and the policy µ(u|θ, h, y) is considered the unknown distribution. IS can also

126 Variance Reduction

be used to implement off-policy methods (see Section 2.4) because IS lets us adjust

the gradient contribution of each step µ(u|θ, h, y) to account for the fact that a policy

other than µ(u|θ, h, y) is generating the actions [Peshkin and Shelton, 2002].

IS is a candidate method for reducing the variance of most of the algorithms de-

veloped in this thesis. The rest of this section shows that the implementation of IS is

non-trivial for our algorithms, explaining why we have not implemented it for any of

our experiments.

Consider adding IS to memory-less IState-GPOMDP. Assume we can construct the

teacher’s policy µ̃(u|y) before training begins. Then the following theorem holds con-

cerning the gradient estimate with respect to the policy parameters θ.

Theorem 9. Let µ̃(u|y) be the probability of the teacher selecting action u ∈ U after

observing y ∈ Y. Let π̃ be the unique stationary distribution of the underlying MDP

under the teacher. The distribution π̃ may or may not depend on θ, but the stationary

distribution under the agent, π, always depends on θ. Under the usual assumptions for

IState-GPOMDP, and the assumption that |∇µ(u|θ,y)|
µ̃(u|y) and π(i|θ)

π̃(i) exist and are bounded

∀θ, y, u, i, we have with probability 1

π′(∇P)Jβ = lim
T→∞

1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ̃(ut|yt)

π(it|θ)

π̃(it)

T∑

s=t+1

βs−t−1rs. (9.2)

This equation, derived in Appendix A.5, cannot be implemented directly due to

the dependence on the unknown ratio π(i|θ)/π̃(i). Although π̃ is not shown to be a

function of θ, it may depend indirectly on the parameters. For example, we can make

µ̃(u|θ, y) a mix of a teacher policy followed with probability ǫ, and µ(u|θ, h, y) followed

with probability 1− ǫ.

The analysis above applies equally to IState-GPOMDP and Exp-GPOMDP. The

problem arises due to the infinite-horizon setting. However, the theorem does not

completely preclude the possibility of using IS with IState-GPOMDP. Further work will

investigate eliminating the unknown ratio through Monte-Carlo methods, similar to

the way the stationary distribution in π ′∇PJβ is eliminated while deriving the IState-

GPOMDP algorithm (as shown in Appendix A.2.2).

9.4 Fixed Random Number Generators

Section 2.7.1.3 introduced the idea of using fixed random number generators during

simulation to reduce the variance of Monte-Carlo value estimates. The trajectory of a

POMDP simulated on a computer is a deterministic function of the current policy and

the computer’s random number generator. Using a fixed sequence of random numbers

§9.4 Fixed Random Number Generators 127

guarantees the same policy will always generate the same estimate of η, even when the

world-state transitions q(j|i, u), and observations ν(y|i), are not deterministic. Suppose

we have two policies, µa and µb, with long-term average rewards ηa and ηb. We estimate

both average rewards with the same random number sequence. If ηa > ηb the difference

must be due to the difference between policies µa and µb. The difference cannot be

due to policy µa experiencing a “lucky” trajectory through the POMDP.

9.4.1 Application to Policy-Gradient Methods

Comparing policy values using m sample trajectories, generated with m sequences

of random numbers, is the basis of the PEGASUS algorithm [Ng and Jordan, 2000].

For infinite-horizon scenarios we use one long sequence of random numbers instead

of m short sequences. Applying this trick to policy-gradient algorithms ensures that

differences in the gradient estimates are due to the differences between policies. This

is helpful when comparing gradient estimates during the line search phase of gradient

ascent. The line search detailed in Appendix B.1 computes the sign of the dot product

between the search direction and a local gradient estimate at a point along the search

direction. If the sign is negative it means the local gradient and the search direction

disagree on which direction is uphill by more than 90◦. By fixing the random number

generator we ensure that the sign of the dot product changes because of changes to the

policy, and not because of the particular trajectory that was followed.

The practical implication is a reduction in the number of simulation steps needed

to achieve consistent gradient estimates. Without a fixed random number generator

we must keep simulating long enough to wash out the effect of following a particular

trajectory. Unfortunately, consistent gradient estimates do not imply correct gradient

estimates. Gradient estimates based on the same random sequence, but too short an

estimation time, will be mutually consistent but may be more than 90◦ from the true

gradient.2

9.4.2 Caveat: Over-Fitting

Although using fixed random number sequences is an effective method for reducing

the variance of simulated Monte-Carlo methods, we discovered that this method can

introduce spurious local maxima for both policy-gradient and value-function methods.

The effect is a form of over-fitting. Because the agent is trained on a finite sequence

2A trick for determining appropriate estimation times is to deliberately use different random number
sequences to generate gradient estimates under the same policy. If the sign of the dot product between
these estimates is negative, then the estimates differ by more than 90◦ and the estimation time must
be increased. Estimation times were chosen this way for our experiments when we describe the chosen
T as the smallest consistent gradient estimate time.

128 Variance Reduction

of random numbers, it can learn to take advantage of the particular random sequence

being used, rather than the true distribution of POMDP state trajectories.

When the true gradient is weaker than the effects of the fixed random sequences

the estimated gradient can lead the agent into one of these spurious maxima. Consider

the Heaven/Hell scenario of Section 8.2. If we use a fixed random sequence that results

in the agent being placed in heaven-left world 51 times, and the heaven-right world 49

times, then the agent can learn to achieve a small but consistently positive reward by

always moving left at the intersection. This effect was observed in practice and the

result can be seen in Table 8.2. Even the dense FSC results for IState-GPOMDP are

consistently positive (though very small). The agents learnt a policy that always moves

left or right depending on the initial seeding of the random number generator.

Appendix C.2 discusses this phenomenon in greater detail, providing a simple ex-

ample with experimental results. To avoid the problem, both in value-based approaches

and policy-gradient approaches, we can increase the number of random numbers used

or periodically re-generate random sequences. The latter option is equivalent to peri-

odically changing the seed of the random number generator.

9.5 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I If we have prior knowledge about temporal credit assignment we can encode

this in an IIR filter to reduce the bias and variance of gradient estimates.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II Low-variance value based methods such as SARSA can be used to learn

θ, while policy-gradient methods like IState-GPOMDP learn φ. The use of

SARSA to learn θ has a variance and bias reducing effect on IState-GPOMDP.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III The PEGASUS trick of using fixed random sequences is useful for policy-

gradient methods but can cause over-fitting, resulting in sub-optimal agents.

Future Work

It would be useful to design optimal IIR filters given a description of the delay

between actions and rewards. To do this we need metrics that trade off bias and

variance, or we can minimise the variance subject to the constraint that the bias must

be below some threshold.

While the experiments for GPOMDP-SARSA in Appendix C.1 are promising, we

have not yet demonstrated that the algorithm can lead to reduction in the number

§9.5 Summary 129

of world-interactions needed. Because GPOMDP and SARSA use independent Monte-

Carlo samples it may require more total samples than plain IState-GPOMDP, which

uses the same sample to learn φ and θ simultaneously.

Applying importance sampling to infinite-horizon POMDPs is also a fascinating

avenue for future research.

130 Variance Reduction

Chapter 10

Policy-Gradient Methods for

Speech Processing

For every complex problem there is a solution which

is simple, neat and wrong.

—Henry L. Mencken

In this chapter we apply some of the algorithms and methods from previous chap-

ters, gradually working up to a difficult real world problem: large vocabulary continu-

ous speech recognition (LVCSR). We start by demonstrating that signal classification

can be cast as a POMDP and that policy-gradient trained agents have classification

accuracy comparable to those of an hidden Markov model (HMM). We then show that

policy-gradient methods can be applied to real speech problems, solving a simple spo-

ken digit classification and segmentation task. We end by training a phoneme level

LVCSR system, showing that POMDP agent training can achieve better results than

training the same agent to maximise likelihoods.

Although treating signal classification in the POMDP framework will be shown

to have some benefits, we do not claim that the POMDP model will outperform the

current state-of-the-art in speech recognition. Instead, we wish apply POMDPs to a

real world problem, in the process investigating a novel and interesting approach to

speech processing.

Throughout this chapter a basic understanding of speech technology is helpful but

a full review is out of the scope of the thesis body. An introduction to HMMs, the

Baum-Welch training procedure, and Viterbi decoding is contained in Appendix D.

A literature survey of advanced connectionist and discriminative speech processing

methods, relevant to this Chapter, is contained in Appendix E.

10.1 Classifying Non-Stationary Signals with POMDPs

The actions chosen by the agent need not affect the environment directly. Alternatively,

we can view the action chosen at each time step as being a label, or classification, of

the observations being produced by the environment. For example, the signal may

132 Policy-Gradient Methods for Speech Processing

come from a radio telescope. At each time step the observation is a representation of

the signal at that instant. The action is a decision about whether an alien intelligence

sent the signal. Internal state is required to remember enough about the signal history

to make a good decision.

A key advantage of reinforcement learning compared to other sequential data algo-

rithms, such as HMMs or recurrent neural networks (RNNs), is that we can define an

arbitrary reward signal to be maximised. This allows us to maximise the most relevant

reward function, instead of being limited to maximising likelihoods or minimising the

mean square error. For our example above, we could train the system with a mix of

signals from the Earth and empty space, rewarding the controller when it makes the

right classification. This goal function is intuitively correct since it aims to maximise

our definition of performance directly. Alternatively, if we used maximum likelihood

training of HMMs, one problem that could occur is that a single spurious low proba-

bility signal could introduce errors for a long period of time, sometimes described as

a “weak link” in the Markov chain. Directly maximising the quantity we care about

may avoid such problems by generalising better to low probability events, or ignoring

events that are irrelevant to overall performance.

By treating signal processing as a POMDP we enter a planning domain rather

than a static pattern recognition domain. The planning domain allows the agent to

make decisions about what information to remember, and what information to ignore;

possibly asking for more information if necessary. This ability is useful in the speech

domain where there is a wealth of features. Some features, such as visual cues, are

asynchronous and spread across different time scales.

Before focusing on comparing HMM and POMDP signal classification, we dis-

cuss another method which can discriminate non-stationary, variable length signals.

Jaakkola and Haussler [1998] use a kernel function derived from generative methods

to perform classification. Generative models such as logistic regression and HMMs can

be used to construct the kernel. The kernel is then used to build a classifier using

support vector machines or other kernel-based methods. The kernel function computes

the inner product of the gradients of probabilities from the generative model. For

example, in the first step a signal is processed by an HMM and the gradient of the

signal probability given the HMM parameters is computed. The kernel function then

generates a distance between two signals by computing the inner product of the gra-

dients invoked by the different signals. The method is similar to IState-GPOMDP only

in that both methods seek a discriminative method for signal classification. However,

Jaakkola and Hausler’s method relies on estimating the likelihood of a signal using pre-

viously estimated generative models. Our approach attempts to bypass the estimation

of probabilities and does not generate distances between one signal and another.

§10.2 Classifying HMM Generated Signals 133

Since HMMs are the popular choice for speech processing, the rest of this section

compares IState-GPOMDP to HMM training. To begin with, HMM methods train

individual HMMs only on the subset of the data that they model. On the other hand,

IState-GPOMDP is inherently discriminatory: the agent is forced to choose the best

classification based on the differences between the signal types rather than its ability

to model each signal type independently.1 For example, a simple speech recognition

system might train an HMM with 3 to 5 states for each phoneme in the language. This

implies, at least for initial training, that the training data is labelled and split into a

collection of instances of each phoneme. Each HMM is trained only on the collection

of instances for the phoneme it models. During classification the HMM that has the

highest likelihood is used to identify the best phoneme match. Empirically, this has

been observed to lead to high misclassification rates between similar phonemes since

the classifier does not take into account the relative differences between phonemes [Lee

et al., 1995]. IState-GPOMDP trains a single agent on all the data, so classification can

be performed by concentrating on the distinguishing features of the phonemes.

Also unlike HMM training, IState-GPOMDP does not immediately assume that lo-

cal sections of speech (corresponding to a single HMM state) are stationary, so we

could automatically learn to cope with effects such as the co-articulation of phonemes

in speech [Lee, 1989]. HMMs also assume that the amount of time spent in each state

follows an exponentially decaying distribution [Rabiner, 1989]; IState-GPOMDP trained

models can potentially model different speech durations by altering the I-state tran-

sition distributions according to the current observation. Finally, IState-GPOMDP is

used to train a single agent using the entire data set, reducing the problems encountered

when training models with only the small volume of data relevant to each model.

Our initial experiments use simple HMMs to generate signals, which we then at-

tempt to classify using an IState-GPOMDP trained agent. Subsequent experiments

extend this to a simple binary speech classification problem followed by the LVCSR

experiments.

10.2 Classifying HMM Generated Signals

Since HMMs can model non-stationary signals we use them to generate data with

which to train and test FSC signal classification. The accuracy of HMM methods for

classifying the same test data gives us a baseline with which to compare FSC agents

to HMM classification.

1Discriminative training is sometimes used for state-of-the-art HMMs, described in Appendix E.
More generally, a large body of literature is devoted to modifications of HMMs which attempt to
overcome the limitations described in this Chapter. For example, the problems HMMs have modelling
fine-scale co-articulation of phonemes has been investigated by Deng [1998].

134 Policy-Gradient Methods for Speech Processing

Assume an environment that implements HMMs M = {1, . . . , |M|}. Each HMM

m ∈M is defined by a state transition matrix and discrete emission distribution matrix,

though we do not refer to these explicitly in this section. We generate a sequence of

symbols yt from model m and after a random period switch to another model m′. We

want the agent to emit actions ut = m for observations yt from m, and then switch to

ut = m′ for observations yt from m′.

10.2.1 Agent Parameterisation

Our classification agents are based on the same kind of FSCs and policies trained

for the experiments of Chapter 8. We now describe how ω(h|φ, g, y) and µ(u|θ, h, y)

are parameterised for the remainder of the experiments in this section. We tried two

parameterisations of ω(h|φ, g, y), and one for µ(u|θ, h, y).

10.2.1.1 Policy Parameterisation

We make µ(u|θ, h, y) a deterministic function of the current I-state so that the I-states

are evenly split into |M| groups, with each group assigned to always emit labels for

one of the possible models

u∗(h, |M|) = h mod |M|,

µ(u|θ, h, y) = χu(u∗). (10.1)

The main reason for this choice is that we had not properly analysed the zero-gradient

regions discussed in Chapter 7 prior to running these experiments, so performance

was poor when we also tried to learn a parameterised µ(u|θ, h, y). As illustrated

by Figure 7.2, stronger gradients are generated by starting with a fully connected

ω(h|φ, g, y) and deterministic µ(u|θ, h, y), than starting with a sparse FSC and stochas-

tic µ(u|θ, h, y). For this reason we expect faster convergence using Equation (10.1) than

using the sparse FSCs applied in the experiments of Chapter 8. The drawback is that

the final performance of the classification agent may be poorer than could be achieved

by learning µ(u|θ, h, y). One reason for this is that we have assumed that the model

labels should be uniformly associated with I-states. If it turns out that one particular

model is harder to estimate than others, then perhaps more of the I-states should be

associated with that model.

10.2.1.2 FSC Parameterisation

The lookup table parameterisation of Section 3.4.1 requires |G|2|Y| parameters to rep-

resent ω(h|φ, g, y). If we wish to use many I-states or n-dimension real inputs yt ∈ Rn,

§10.2 Classifying HMM Generated Signals 135

the lookup table falls prey to the curse of dimensionality. For real-world problems we

need to use function approximators such as ANNs. We experiment with both lookup ta-

bles and ANNs in the experiments of this section. Following this section we use ANNs

exclusively because we will be working with real-valued, multi-dimensional acoustic

feature vectors.

For the ANN experiments we use the neural network described in Section 3.4.2

and shown in Figure 3.1. The I-state gt becomes an input feature by augmenting

the network inputs used to encode the observation with |G| extra input nodes using

1-in-n encoding. At each step, input gt is 1 and the remainder are 0. Assuming nh

hidden units, this model requires nh(|Y|+ 2|G|) parameters and needs no modification

to accept real–valued observations. Section 3.4.2 describes how gradients of ω(h|φ, g, y)

are computed.

All the ANN experiments reported in this chapter use a fast matrix-matrix multiply,

developed for this task, which uses the 4-way parallelism of the Intel Pentium III and

more recent CPUs. Fast ANN training is discussed in Chapter 11.

10.2.2 Classifying Pre-Segmented Signals

Four simple tests were hand-crafted to investigate FSC agent classification of signals

produced by |M| different HMMs. The aim was to determine if FSC classification can

be competitive with HMM based methods.

For these tests we assume that segments of observations yt, emitted by the source

HMMs, are of known length and generated by a single model. The agent receives

a reward of 1 for issuing the correct label and -1 for an incorrect label. Thus, the

long-term average reward η is a measure of how many labels are correct on average.

The FSC agents classify segments (as opposed to observations) by choosing the

model corresponding to the most often emitted label ut, as chosen using Equation (10.1),

over the duration of the segment. If the correct action is chosen on average, the deci-

sion will be correct. The FSC classification agent is depicted in Figure 10.1. We apply

HMM training methods for comparison. They perform classification by choosing the

model with the highest likelihood of matching the segment of observations yt.

Each test discriminates between 2 or 3 models, each with 2 symbols and 2 states.

This may seem easy, however, Tests I–III are all sets of source HMMs with exactly

the same stationary distribution of symbols. Only by learning the temporal or non-

stationary characteristics can a classifier discriminate between signals produced by

these HMMs. Figure 10.2 shows the HMMs used for generating sequences for Test I.

They are identical except one model prefers to stay in the same state, and the other

prefers to alternate states. The difficulty of the task is illustrated by Figure 10.3, a

136 Policy-Gradient Methods for Speech Processing

0

2

1

3

FSC

Source HMMs

Segment boundary

most
likely
model

101001011111000111100110
yt

Buckets emptied at time t

t

ut

t

Figure 10.1: An illustration of the FSC agent that discriminates between sequences generated

by the blue and red HMMs. If the FSC is in state 0 or 2, the emitted action indicates the

blue HMM generated the signal, otherwise it indicates the red HMM generated the signal. The

blue and red buckets count the number of actions labelling each source. At time t, the end of

the segment, the fullest bucket indicates the final classification of the source HMM. Then the

source HMM is re-chosen and the buckets emptied. If the segment length is not known the

bucket mechanism cannot be used.

graphical version of the 2 signals generated by the models of Test II. The details of the

HMMs used in each case can be found in Appendix F.1.

The test cases respectively represent:

I. the ability to discriminate between two simple signals with the same stationary

distribution;

II. a harder version of test I;

III. the ability to discriminate between 3 models (see Appendix F.1 for the models);

IV. the ability to discriminate between signals with different stationary distributions.

Such signals can be classified by counting the occurrence of each symbol.

10.2.2.1 Experimental Protocol

We trained 4 classifiers on each test case and compared them to the classification

performance of the source HMMs. The 4 classifiers are:

§10.2 Classifying HMM Generated Signals 137

Left Right

Left Right

Pr("0")=1
Pr("1")=0

Pr("0")=1
Pr("1")=0 Pr("1")=1

Pr("0")=0

Pr("1")=1
Pr("0")=0

0.9
0.1

0.9

0.1

A

B

0.9 0.9
0.1

0.1

Figure 10.2: HMMs used to generate sequences for Test I and to generate baseline classifica-

tion results. Test II is the same except that emission probabilities become 0.9 and 0.1 instead

of 1.0 and 0.0 respectively.

10 20 30 40 50 60 70 80

Figure 10.3: Sequences generated by the models for Test II. Which is which? The upper line

is model A and the lower is B

• An IState-GPOMDP trained agent using a lookup table for ω(h|φ, g, y), and the

deterministic policy µ(u|h) described in Section 10.2.1.1. Classification is per-

formed by feeding in a segment of known length and counting the number of

instances of each label emitted as an action. The most frequent label identifies

the source HMM.

• An IState-GPOMDP trained agent using a single layer (linear) ANN for ω(h|φ, g, y)

as described in Section 10.2.1.2, and deterministic µ(u|h). Classification is again

performed by counting the labels output over the duration of a segment.

• A discrete IOHMM trained using Algorithm 9 (Appendix D.2). In this case the

observations yt drive the transitions, and the IOHMM emissions are model la-

bels. Classification is performed by computing the forward probability (D.9)

of the IOHMM model when the IOHMM emission sequence is a continuous

stream of the hypothesised label. For example, suppose the input sequence was

{yt} = {0, 0, 1, 1}, and we must classify it as being generated by model A or B

138 Policy-Gradient Methods for Speech Processing

from Figure 10.2. We compute the forward probability of the IOHMM with the

hypothesised emission sequence {A, A, A, A} and {B, B, B, B}, picking the

result with the highest likelihood as the best classification. We would expect

that the example sequence was probably generated by model A.

• Classical HMMs trained by the Baum-Welch procedure (see Appendix D.1.1).

An HMM is trained for each source model. The HMMs are trained so that they

emit the observation sequence {y0, . . . , yt} generated by the associated source

model. There is no driving sequence in this case. Classification is performed

by computing the forward probability (D.1) and the Viterbi probability (D.8)

for each model and picking the model with the highest likelihood. The forward

probability gives the true likelihood of the model given the segment. Since the

Viterbi probability is an approximation to the forward probability, we expect

the Viterbi results to be slightly worse than the forward probability results. We

would have to use the Viterbi probability for cases in which one long signal from

multiple models needs to be split into segments that belong to each model.

The IState-GPOMDP trained classifiers were trained with |G| = 2, 4 . . . , 24 I-states.

Table 10.1 shows how many I-states gave the best performance for each test. In the

cases of the lookup table and the ANN, the parameters φ were initialised randomly

in the range [−0.5, 0.5]. The IOHMM transition matrices were initialised to uniform

distributions. The emission distribution matrix elements were initialised randomly

between [−0.1, 0.1], then 0.5 was added to all elements before each row was normalised.

This has the effect of producing distributions that are slightly perturbed from uniform,

as suggested by Rabiner [1989]. The HMM experiments were performed with UMDHMM

v1.02 [Lee, 2000]. It is not clear how UMDHMM initialises the HMM parameters.

The discount factor was set to β = 0.9, reflecting the fact that the reward should

only be influenced by relatively recent I-state transitions, and the quadratic penalty

was set to ℘ = 0.001. Recall from Section 4.5.1 that the quadratic penalty for all

experiments was set so that the maximum parameter weight does not surpass 0.5 until

the penalty is reduced for the first time. Trial and error led us to select a gradient

estimation time of T = 5×106 steps for the IState-GPOMDP trained agents, and a line

search gradient estimation time of 1.25 × 106 steps.

Training data was generated by running each model in M for 100,000 steps, using

UMDHMM, and recording the observations {y0, . . . , y99,999}. For IState-GPOMDP, seg-

ments of random length, between 20–200 observations, were sampled from the data for

a randomly selected model. These segment length bounds were selected to reflect the

typical number of acoustic vectors per phoneme that are available for speech applica-

tions. Once IState-GPOMDP consumes all the observations in a segment a new segment

§10.2 Classifying HMM Generated Signals 139

is sampled, providing an infinite stream of segments, fitting into the infinite-horizon

POMDP setting.

Training data for estimating new HMMs was the raw 100,000 step observation

sequences. HMM models were trained only on the data generated for that model, that

is, training was not discriminative.

IState-GPOMDP training completes in about 1 hour using a single 550 MHz Pentium

III CPU. HMM training took approximately 3 minutes per model.

Test data was produced by generating 1000 sequences of length 20–200 for each

model. Thus, for Tests I, II, and IV, there were 2000 segments to be classified, and

Test III had 3000 segments. In the POMDP agent case, segments were presented one

at a time, resetting the I-state to a random value before each classification run.

Classification using the source HMM models and the forward probability produces

the optimum maximum likelihood (ML) classifier because the true models are being

used to evaluate the probability of generating the segment. Since we use a uniform

prior on the models, the likelihoods give us a scaled version of the maximum posterior

probability that the model fits the data. The trained HMMs indicate the level of

performance we should expect without knowledge of the source HMMs. The lower

accuracy of the trained HMMs compared to the source HMMs illustrates the effect of

training with limited data.

10.2.2.2 Results

Table 10.1 shows the percentage of misclassified segments for each test and classifier

architecture. The “|G|” column shows how many I-states were used to achieve the

result in the “Error” column. The “For” columns are the results generated using the

forward probability calculation and the “Vit” columns are the results generated using

the Viterbi approximation to the forward probability.

As expected, the source “ML HMM”s gave the best results in all tests. In gen-

eral though, we see that IState-GPOMDP was competitive with results generated using

trained HMMs and Viterbi decoding, which is a fair comparison since the agents emit

a string of signal classifications just as the Viterbi procedure does. Also as expected,

the lookup table parameterisation of ω(h|φ, g, y) produced better results than the ap-

proximate ANN parameterisation.

Analysis of the results for Tests I & II show that IState-GPOMDP learnt the |G| = 4

I-state policy graph illustrated in Figure 10.4. If the I-state is 1 or 3 at time t, then a

label corresponding to model A is emitted, otherwise the label for model B is emitted.

The graph represents the policy: “if we see the same observation twice in a row, emit

A, otherwise emit B.”

140 Policy-Gradient Methods for Speech Processing

Table 10.1: Percentage of HMM segments misclassified for each test. “Lookup table” and

“ANN” are the agents trained with IState-GPOMDP. The “ML HMM” column gives the results

of using the source HMMs to classify segments. The “HMM train” column gives the results of

training |M| HMMs on limited data.

Test
lookup table ANN IOHMM ML HMM HMM train
Error |G| Error |G| Error |G| For. Vit. For. Vit.

I 0.0 4 0.0 4 0.0 4 0.0 0.0 0.0 0.0
II 5.5 4 8.9 4 4.3 4 0.9 2.8 4.6 4.8
III 0.1 12 1.5 10 5.1 12 0.0 0.0 0.0 1.0
IV 0.4 12 3.0 12 10.6 12 0.1 0.1 0.3 0.4

1 2

3 4

0

0

1

0 1

1

1

Model A Model B

0

Figure 10.4: The policy graph for Tests I & II learnt using IState-GPOMDP. The left I-

states emit label A and the right I-states emit label B. I-state transitions are labelled with the

observations that cause those transitions.

This policy graph demonstrates that the agent has learnt a discriminative classifier

that did not maximise likelihoods as an HMM would. No matter what the previous

statistical evidence is, the last two observations dictate which label will be emitted,

which maximises the correctness of the average label decision. The fact that the agent

learnt a deterministic FSC tells us that it generated a different function than an HMM

would. An HMM with deterministic transitions and emissions cannot generate stochas-

tic signals such as our source signals. As soon as a deterministic HMM encounters an

unexpected symbol, the model probability drops to 0.

§10.2 Classifying HMM Generated Signals 141

10.2.3 Classifying Unsegmented Signals

In this case segments of an unknown number of observations yt are generated by dif-

ferent models. The task is to detect the boundary at which the observation source

switches from one model to another. When this occurs the average action should

switch to the correct label. A local average of the labels can be computed by filtering

the label sequence with a rectangular window. The rectangular filter decision function

is

mt = arg max
u

t+ w
2∑

s=t−w
2

µ(u|hs), (10.2)

where w is the window length and tunes the sensitivity of the classification to changes

in model. The more frequently the model changes, the lower w should be. Because

the filter looks w/2 steps into the future, the final decision for each step is delayed by

w/2 steps. Triangular and other windows that weight the current label more heavily

may seem more desirable, however, since our goal function is to maximise the average

correctness of the label, and not just the current label, a window that weights all local

decisions equally best fits our goal function.

Alternatively, we could learn µ(u|θ, h, y) and use it as the likelihood of a label given

the current I-state. The Viterbi algorithm, described in Appendix D.1.2, can then be

applied to choose the most likely sequence of actions (hence labels). Applied in this

way, the classification procedure closely resembles ANN/HMM hybrids such as those

described by Bourlard and Morgan [1998] and Bengio et al. [1992], however the training

method is very different. We will explore this idea further for the LVCSR experiments

in Section 10.3.

Our first experiment demonstrating the use of a rectangular window to compute

segment boundaries was in the same style as the previous set of experiments, using

hand-crafted HMMs to generate signals to be identified. This experiment and its

discussion are deferred to Appendix F.2.

To demonstrate that the system works on real speech signals, the next experiment

trained an agent to discriminate between the spoken digits “1” and “6.” Segmentation

of the speech signal was performed using the simple local averaging scheme described

above.

10.2.3.1 Experimental Protocol

We used 394 training digits from 111 male speakers in the Texas Instruments Digits

database [Leonard and Doddington, 1982]. Another 50 digits were reserved for testing.

Exactly half the digits were “1” and half were “6.” Silence was stripped from the start

and end of each digit before concatenating them together into a continuous stream of

142 Policy-Gradient Methods for Speech Processing

digits in random order. The observations yt were acoustic feature vectors calculated

every 10 ms over a 25 ms Hamming window, providing a total of 40,212 training frames

(402 seconds of speech). The extracted features are typical of those used for continuous

density HMMs [Paul, 1990]: 12 mel-cepstral parameters with a pre-emphasis factor of

0.97, plus log energy. The cepstral features were shifted to have zero-mean. The delta2

and double-delta values of these 13 features are computed and added to the acoustic

vector for a total observation dimension of 39. Features were computed off-line using

the HTK V3.0 toolkit [Woodland, 2001].

The inputs were normalised to between [−1, 1] for presentation to the ANN. There

were 16 I-states and 10 hidden nodes squashed with the tanh function. Using trial

and error we set the estimation time to T = 107, the line search estimation time to

2.5× 106, β = 0.9 and ℘ = 0.04.

10.2.3.2 Results

Training took 1 hour on the “Bunyip” Beowulf cluster using 64 Pentium III 550 MHz

CPUs. Figure 10.5 shows how the resulting agent classified and segmented a small

portion of the test data. The per time step labels were correct 89% of the time.

We smoothed the per frame classifications using the rectangular window described by

Equation (10.2) with a window width of w = 20. This window length corresponds to 0.2

seconds of speech. The smoothed decision closely followed the correct classification.

Declaring a change in digit when the smoothed decision crossed 0 on the digit axis

correctly identified all the changes in the digit being spoken.

When the same digit was presented consecutively, thresholding the smoothed de-

cision did not indicate the presence of multiple digits. The result was an inability to

differentiate between the same digit being spoken once or multiple times. To rectify

this, future work could train the agent to emit an additional digit boundary label.

Because we used a deterministic µ(u|h), we know that the agent learnt to classify

signals by using the FSC. Figure 10.5 shows that very few 10 ms frames are misclassified,

and most of the misclassified frames occur at the start of each new digit. From this it

seems likely that the agent learnt that the next label is most likely to be the same as

the last label, showing that it might have learnt to internally smooth its decision.

Instead of pursuing these experiments by implementing a full spoken digit recog-

niser, we jumped to the large vocabulary continuous speech recognition experiments

that are the subject of the next section.

2Delta values take the difference between cepstral parameters over consecutive frames. Double-delta
parameters take the difference of the differences over consecutive frames.

§10.3 Phoneme level LVCSR 143

-1

-0.5

0

0.5

1

0 500 1000 1500 2000

di
gi

t

Time

true
label

segmentation

Figure 10.5: Classification of the digits “1” (1.0 on the plot) and “6” (-1.0). Although the

smoothed decision closely follows the true classification, the system is not able to indicate when

the same digit is spoken twice in a row, since adjacent digits do not force the classification to

change.

10.3 Phoneme level LVCSR

In this ambitious experiment we attempt to train a low level phoneme classification

system using policy-gradient methods. The heart of the system uses a specialised

version of Exp-GPOMDP. Eligibility trace filtering is applied to reduce the variance of

the gradient estimates. The resulting ANN/HMM hybrid is essentially the same as

the architecture created by Bourlard et al. [1995], and expanded upon by Bourlard

and Morgan [1998]. The relationship between this architecture and other connectionist

speech technology is described in Appendix E.5.1. The novel aspect of our work is how

we train the ANN/HMM hybrid.

Figure 10.6 describes the overall structure of an LVCSR speech recognition system.

We construct all parts up to the output of a phoneme sequence, optimising the ANN

and Viterbi components. We devote some time to describe the overall training pro-

cedure, along the way describing the operation of the ANN/HMM hybrid. Then in

Section 10.3.2 we describe our experiments.

10.3.1 Training Procedure

The basic idea of the hybrid is to train the system in two phases: (1) a single large

ANN is trained to estimate the emission probabilities of the HMM states; (2) these

144 Policy-Gradient Methods for Speech Processing

Word sequence Language model

Pre−processing

States/
Phones

ANN

Viterbi

10 ms
frames

probabilities

sequence
words

Phase 1

Phase 2

emission

phoneme

wave

Figure 10.6: Block diagram of a complete speech recognition system. This section deals with

the system up to the output of the phoneme sequence. The ANN and the Viterbi decoder are

the subjects of Phase 1 and Phase 2 training respectively.

emission probabilities are used while estimating the HMM transition probabilities.

Policy-gradient methods are used to perform both phases.

10.3.1.1 Learning Emission Likelihoods

Emission distributions measure the likelihood of acoustic vectors given that the HMM is

in a particular state. Emission distribution estimation is normally done in parallel with

training the HMM state transition probabilities, using an EM like procedure such as

the Baum-Welch algorithm outlined in Section D.1.1. Modern systems model emission

probabilities using a mixture of Gaussians for each HMM state [Paul, 1990].

Instead, we train an ANN to produce posterior estimates of HMM state probabil-

ities, that is, Ξ(m|yt) where m is the acoustic unit and yt is the acoustic observation

vector from a frame of speech. We assume our acoustic units are phonemes. Thus,

Ξ(m|yt) is the probability of phoneme m given the acoustic vector yt. This probability

does not take into account any previous acoustic vectors. It is easy to convert from a

posteriori to a scaled likelihood by assuming Ξ(yt) is constant and using Bayes’ rule

ξ(yt|m) ∝
Ξ(m|yt)

Pr(m)
.

This simply amounts to dividing the network output probabilities by the phoneme

priors Pr(m). The priors can be estimated from the training data. For the remainder

of this chapter a phonemem and an HMM state are considered synonymous because the

HMM will consist of one phoneme per state. It is more common to model a phoneme

using several HMM states, however our approach simplifies the task and follows the

architecture constructed by Bourlard and Morgan [1994].

§10.3 Phoneme level LVCSR 145

HMM

ANN

soft−max

21 3

yt

o2 o3o1

Pr(m = 1)

Ξ(m = 2|yt) Ξ(m = 3|yt)

ξ(yt|m = 1) ξ(yt|m = 2) ξ(yt|m = 3)

Pr(m = 2) Pr(m = 3)

Ξ(m = 1|yt)

Figure 10.7: The ANN/HMM Hybrid model: using an ANN to generate HMM observation

likelihoods.

The quantity ξ(yt|m) represents the emission likelihood of acoustic vector yt as-

suming the current phoneme is m. Such likelihoods are used to model observation

generation in HMM states. Figure 10.7 illustrates the hybrid process. The ANN pro-

vides the observation likelihoods that are needed to evaluate the likelihood of paths

through the HMM states. We will briefly experiment with using multiple HMM states

per phoneme, but we will assume that all HMM states for phoneme m have the same

emission distributions, known as tied distributions [Lee, 1989].

The first stage of training uses memory-less IState-GPOMDP to train a large ANN

to recognise phonemes based on frames of mel-cepstral acoustic vectors. The m’th

network output filtered through the soft-max function estimates Ξ(m|yt), which is the

posterior probability that the ANN input yt is generated by phoneme m. In this case

there is no internal state and the mel-cepstral features are treated as the POMDP

observations yt.

Let the correct label for frame t be denoted m∗
t . we now show that memory-less

IState-GPOMDP with β = 0 and rt+1 = χut(m
∗
t), estimates µ(ut|θ, yt) = Ξ(m =

ut|θ, yt). This choice of reward function issues a reward of 1 when the action emits

the correct phoneme label and 0 otherwise. From our proof in Appendix A.2.2 that

IState-GPOMDP converges to an approximation of ∇η (see Equation (A.12)), or by

146 Policy-Gradient Methods for Speech Processing

unrolling the inner loop of Algorithm 2, we have with probability one as T →∞

π′(∇P)Jβ =
1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ(ut|θ, yt)

T∑

s=t+1

βs−t−1rs.

Defining 00 = 1 and substituting for β and rs obtains

π′(∇P)Jβ =
1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ(ut|θ, yt)

T∑

s=t+1

0s−t−1χus−1(m∗
s−1)

=
1

T

T−1∑

t=0

∇µ(ut|θ, yt)

µ(ut|θ, yt)
χut(m

∗
t)

=
1

T

T−1∑

t=0

∇ log µ(ut|θ, yt)χut(m
∗
t). (10.3)

The gradient contribution is 0 unless ut = m∗
t , so we can redefine the time index to n:

the steps for which IState-GPOMDP chooses the label ut correctly identifying m∗
t

π′(∇P)Jβ = lim
n→∞

1

T

N−1∑

n=0

∇ logµ(m∗
n|θ, yn),

which, apart from a scaling factor N/T , is a gradient estimator for batch training of

the function µ(ut|θ, yt) using a log-probability cost function. Richard and Lippmann

[1991] show that this cost function is sufficient to produce an ANN that estimates

the posterior probability Ξ(m|θ, yt). Armed with this gradient estimator we can apply

gradient ascent to train the ANN to model the posterior probabilities, which will later

be converted to scaled likelihoods for use by the HMM.

This analysis shows that instead of applying IState-GPOMDP by sampling labels

from µ(·|θ, yt), we can always choose the correct label µ(m∗
t |θ, yt) without further bias-

ing the gradient. This is accomplished in the step in which we change the time index

from t to n. Effectively, an oracle is used to chose actions, somewhat similar to the

way importance sampling can work (see Section 9.3). The analysis is also interesting

because specialising the IState-GPOMDP algorithm has yielded an established machine

learning method, demonstrating the generality of the POMDP model. Unfortunately,

this means that our training method has not yet achieved anything more than existing

approaches. The second phase of training makes use of POMDP framework features

such as delayed rewards, allowing potential improvements over existing speech training

methods.

§10.3 Phoneme level LVCSR 147

10.3.1.2 Learning Transition Probabilities

We consider HMM-states to be equivalent to I-states except that HMM-state transition

probabilities are not driven by observations. Thus, we use the notation ω(h|φ, g) to

refer to the probability of HMM-state transition g → h.

Previously studied options for learning the state transition probabilities ω(h|φ, g)

include the popular Baum-Welch Algorithm, using an ANN to model both transitions

and emissions (as in Appendix E.5.1.1), or estimating phoneme transitions directly from

the data.3 We introduce an alternative approach, using a variant of Exp-GPOMDP to

estimate the phoneme transition probabilities.

The Viterbi Algorithm

At this juncture it is worth reviewing the Viterbi algorithm which is more com-

pletely described in Section D.1.2. The aim of Viterbi decoding is to find the maximum

likelihood sequence of I-states. The algorithm can be visualised as finding the best path

through an I-state lattice, depicted for 3 I-states in Figure 10.8.

The Viterbi algorithm is useful because it identifies the most likely I-state for each

step given the I-state trajectory up to the current time. This equates to outputting a

stream of phonemes. By comparison, the full forward probability update tells us how

likely the states are assuming all trajectories through the I-state lattice are possible.

We use the Viterbi algorithm because a speaker describes only a single trajectory

through the I-state lattice. Put another way, the Viterbi algorithm specifies an I-state

for each step in time.

One step of the Viterbi algorithm iterates over all I-states. For each I-state h the

algorithm chooses the most likely I-state g that leads to I-state h. This is performed

by evaluating an approximate form of the forward probability update (D.1)

α̂t+1(h|φ, ȳt) = max
g

[α̂t(g|φ, ȳt−1)ω(h|φ, g)]ξ(yt|h). (10.4)

The approximation arises because of the use of the max function. We take the max-

imum because we want to identify the single most likely predecessor I-state. The

algorithm stores the predecessor g of every I-state h for the last l time steps, giving us

the ability to track the most likely sequence back from any I-state h for l steps.

To produce the optimal I-state sequence the lattice should extend back to the

beginning of the sequence, however, due to memory and time restrictions, it is typical

to assume that limiting the decoding to l steps introduces negligible errors [Proakis,

3This option is only possible when the data is labelled with all transitions. Most speech systems
use HMMs with multiple states per phoneme and data that is only labelled at the phoneme level (at
best), so they cannot use this simple option.

148 Policy-Gradient Methods for Speech Processing

Pr=0.1

Pr=0.2

Pr=0.7

Pr=0.6

Pr=0.3

Pr=0.1

t− 3 t− 2 t− 1t− 5 t− 4

Reward issued at time t

t

g h

Figure 10.8: For each I-state h, select the most likely predecessor I-state g based on the

probability of being in I-state g and the transition probability ω(h|φ, g). At time t − 1 we

see that the most likely last l I-states were {ht−4 = 1, ht−3 = 2, ht−2 = 3, ht−1 = 3} with

normalised likelihood 0.6, but at time t the Viterbi procedure makes a correction that makes

the last 4 most likely I-states {ht−3 = 3, ht−2 = 2, ht−1 = 1, ht = 2} with normalised likelihood

0.7.

1995, §8.2.2]. Thus, after l steps, the most likely I-state at the end of the lattice is

locked in as the I-state for time step t − l. For example, in Figure 10.8, l = 3. As we

update the lattice to incorporate the observation for step t, I-state 3 is locked in as the

correct I-state for t− 3 because it is at the end of the most likely sequence of I-states:

the sequence {ht−3 = 3, ht−2 = 2, ht−1 = 1, ht = 2} with a normalised likelihood of 0.7.

The following sections describe how Exp-GPOMDP is used to train the speech recog-

nition agent. We start by describing the job of the agent and what its parameters are.

Then we introduce the key modification to Exp-GPOMDP that allows it to fit naturally

into the context of the Viterbi algorithm for speech processing. Subsequent sections

delve into the details of estimating ∇η using the modified Exp-GPOMDP algorithm

and our chosen parameterisation. After a detailed discussion of the reward structure a

dot-point summary of the training process is given.

Exp-GPOMDP using Viterbi Probabilities

For the purposes of the speech recognition agent, each I-state in the Viterbi lattice

is defined to represent a single phoneme. Our speech agent is responsible for running

the Viterbi decoder that emits a phoneme classification for each frame of speech. If

the Viterbi lattice is length l then the agent emits the classification for frame t− l at

time t. As illustrated in Figure 10.8, this means the reward the agent receives at time

t is a result of the classification decision for frame t − l. The implications of this for

temporal credit assignment are discussed in Section 10.3.1.3. The agent parameters φ

represent the phoneme transition probabilities ω(h|φ, g). The agent is illustrated by

Figure 10.9.

The task of our modified Exp-GPOMDP algorithm is to estimate the gradient of ∇η

§10.3 Phoneme level LVCSR 149

? {1, 3, 3, 3}

ω(h|φ, ȳt)

tt− 1t− 2t− 3

ht

ut

µ̄(·|φ, ȳt)

α̂(1) = 0.1

α̂(2) = 0.7

α̂(3) = 0.2

h = 1

h = 2

h = 3

ξ(yt|h)

Figure 10.9: The LVCSR agent, showing the Viterbi lattice and the µ̄(·|φ, ȳt) distribution

from which an action is chosen. In this instance the action consists of the sequence of labels

leading back through the Viterbi lattice from ht = 3, that is, ut = {ht−3 = 1, ht−2 = 3, ht−1 =

3, ht = 3}.

with respect to the φ parameters. In other words, Exp-GPOMDP adjusts the Viterbi

lattice transition probabilities to maximise the long-term average reward. The key

modification to Exp-GPOMDP is a natural consequence of using a Viterbi decoder to

classify speech frames: Exp-GPOMDP uses the Viterbi approximation (10.4) of the I-

state belief instead of computing the full forward belief (given by Equation (6.2)). Just

like the forward belief, the Viterbi approximation α̂t depends on φ, and on all past

acoustic feature vectors yt, so we write the Viterbi I-state belief for I-state (phoneme)

h as α̂t(h|φ, ȳt−1).

Recall from Section 6.2 that Exp-GPOMDP does not sample I-state transitions, but

it does sample actions. However, the Viterbi algorithm normally operates completely

deterministically, choosing the most likely current I-state

ht = arg max
h

α̂t(h|φ, ȳt−1),

and tracking back l steps through the Viterbi lattice to find the best phoneme to emit as

a classification action. To make our speech processing agent fit into the Exp-GPOMDP

framework we must allow it to emit stochastic classification actions for frame t. This

allows the agent to occasionally try an apparently sub-optimal classification that, if

it results in a positive reward, will result in parameter adjustments that make the

classification more likely.

Stochasticity is introduced by making the agent sample an I-state ht from the

150 Policy-Gradient Methods for Speech Processing

Viterbi phoneme probability distribution α̂t+1(·|φ, ȳt). The action conceptually consists

of the entire l step sequence back through the Viterbi lattice to the optimum phoneme

for frame t − l given the stochastic choice of ht. The reason for emitting the entire

sequence instead of just the phoneme for frame t − l is to ensure that all possible

choices of ht emit a unique action. The stochastic choice of ht is forgotten during the

next step and has no impact on the Viterbi probability.

Now we describe more precisely how this scheme fits into the Exp-GPOMDP algo-

rithm. Recall from Equation (6.3) that Exp-GPOMDP evaluates the action distribution

µ(u|θ, h, y) for each I-state h, and then samples action ut from the weighted sum of

these distributions with probability µ̄(ut|φ, θ, ȳt). For our speech agent the action dis-

tribution for each I-state h is

µ(u|h) := χu(h),

which is a deterministic mapping from I-states to actions. This definition reflects the

operation of choosing an I-state h, and from this choice, deterministically tracking back

through the Viterbi lattice to find the best sequence of phonemes to emit as u.

Our choice of deterministic µ(·|h) may seem strange after just stating that actions

have to be chosen stochastically, however recall that Exp-GPOMDP samples the sum

of weighted distributions µ̄(·|φ, θ, ȳt), which is stochastic, even though µ(·|h) is not

µ̄(u|φ, ȳt) =
∑

h∈G

α̂t+1(h|φ, ȳt)µ(u|h)

=
∑

h∈G

α̂t+1(h|φ, ȳt)χu(h).

Thus, the probability of action u, consisting of a classification for the stochastically

chosen current frame ht plus the last l frames, is equal to the probability of frame t

being classified as ht, and is given by α̂t+1(ht|φ, ȳt). Thus, sampling an action from

µ̄(·|φ, θ, ȳt) is equivalent to sampling an I-state ht from the same distribution.

There are |G|l total possible actions that the system can emit, but at any one time

step at most |G| actions have non-zero probabilities because the choice of the I-state

ht ∈ G completely determines the rest of the action.

After an action has been emitted the gradient of the action is computed and used to

update the Exp-GPOMDP eligibility trace z. A reward is received from the environment

and it is used along with z to update the gradient estimate.

Computing the Gradient

To this point we have given a general overview of how the Exp-GPOMDP algorithm

can be applied to speech. What has been left unspecified is exactly how ω(h|φ, g) is

§10.3 Phoneme level LVCSR 151

parameterised and how to compute the gradient accordingly. There are several sensible

ways of doing this. The next paragraphs outline the method used in our experiments.

We have already described the deterministic µ(u|h) function, which simplifies the

problem of choosing an action ut from µ̄(·|φ, ȳt) to one of choosing an I-state, from the

distribution α̂t+1(·|φ, ȳt).

What remains to describe is how to parameterise the update of α̂. In Section 6.2

we did this using Equation (6.2), which for each I-state g evaluates the probability of

making a transition from I-state g to I-state h using ω(h|φ, g), then multiplies by the

current forward probability αt(g|φ, ȳt−1). In this section we take a different approach by

including the current forward probabilities in the evaluation of the soft-max function.

Assuming that the step t phoneme is labelled g, and the step t+ 1 phoneme is labelled

h, the likelihood of phoneme h using the Viterbi criterion is

α̂t+1(h|φ, ȳt) := ξ(yt|h)
maxg exp(φgh)α̂(g|φ, ȳt−1)∑

g′∈G exp(φg′h)α̂(g′|φ, ȳt−1)
. (10.5)

For every transition from phoneme g to phoneme h there is one parameter φgh ∈ R.

The scaled likelihoods ξ(yt|h) are provided by the ANN, trained during Phase 1. In

previous experiments we used the soft-max function to evaluate the probability of

making a transition from a given I-state g to some I-state h, thus we normalised the

distribution by summing over potential next I-states h′ (see Section 3.4.1). When

implementing the Viterbi algorithm we are given the next I-state h, so we normalise

over potential previous I-states g′. The Viterbi algorithm dictates that the previous

I-state we choose, denoted g̃, must be the one that maximises α̂t+1(h|φ, ȳt).

Before deriving the gradient we introduce an approximation that greatly reduces the

amount of computation needed per step of the algorithm. We make the assumption that

α̂t(g) does not depend on φ. This reduces the complexity of the gradient calculation

from being square in |G| to linear in |G|. The computation of α̂t+1(h|φ, ȳt) for all h

is still square in |G|. The approximation also allows normalisation of α̂t(g), which

would otherwise vanish over time, without needing to further complicate the gradient

computation. For comparison, we implemented the exact calculation of ∇µ̄
µ̄

and found

that with 48 phonemes/I-states, each step was about 100 times slower than using the

approximation described below, with no strong evidence that it produced better results.

As discussed earlier in this section, the choice of ut from µ̄(·|φ, ȳt), is equivalent the

choice of a phoneme ht from α̂t+1(·|φ, ȳt). Thus ∇µ̄
µ̄

, required by Exp-GPOMDP, is the

same as ∇α̂t+1

α̂t+1
and follows the form of the soft-max derivative given by Equation (3.9).

Let Pr(g|φ, ȳt, h) be the probability of transition g → h given h and the current value

152 Policy-Gradient Methods for Speech Processing

of α̂(g|φ, ȳ) (which is assumed to equal α̂(g))

Pr(g|φ, ȳt, h) =
exp(φgh)α̂(g)∑

g′∈G exp(φg′h)α̂(g′)
,

so that g̃ = arg maxg Pr(g|φ, ȳt, h). Then

∂µ̄(ut=h|φ,ȳt)
∂φgh

µ̄(ut = h|φ, ȳt)
=

∂α̂(h|φ,ȳt)
∂φgh

α̂(h|φ, ȳt)
= χg̃(g) − Pr(g|φ, ȳt, h). (10.6)

There is no dependency on the emission probabilities ξ(yt|h) in Equation (10.6)

because it vanishes when we compute the ratio ∇µ̄
µ̄

. This would not be the case if we

implemented global training of the emission probabilities and transition probabilities.

Then ξ(yt|h) would depend explicitly on a subset of the parameters φ representing the

weights of the ANN that estimates ξ(yt|h). We would need to compute ∇φξ(yt|φ, h)

by back propagating the gradient through the layers of the ANN. This idea is similar

to the global ANN/HMM training scheme implemented by Bengio et al. [1992].

Reward Schedule

At each time step an action ut is chosen from µ̄(·|φ, ȳt), which according to our

definition of µ̄ is equivalent to choosing a phoneme ht from α̂(·|φ, ȳt). Actions are

generated by following the path back through the Viterbi lattice defined by the choice

of ht. If the Viterbi lattice is length l, then the path back gives us the previous l most

likely phonemes given our choice of current phoneme ht. The final decision for the

classification of speech frame t− l is the phoneme at the end of the path traced back

from ht. Because the Viterbi procedure corrects errors made at time t, we expect that

there is a high probability that the correct classification is made for frame t− l, even

when Exp-GPOMDP chooses a low probability phoneme ht.

A reward of 1 is received for correctly identifying a change in phoneme at time t.

A reward of -1 is received for incorrectly identifying a change in phoneme. Because the

Viterbi filter delays the final classification of frames until Exp-GPOMDP has processed

another l frames, the reward is delayed by l steps.

If the phoneme classification for frame t is the same as the previous phoneme clas-

sification, then no reward is issued. We only reward changes in phoneme classification

because the phoneme sequence is what we really care about. Rewarding the accuracy

of every frame would cause the system to try and accurately match the length of each

phoneme as well as the sequence of phonemes, hence wasting training effort. For ex-

ample, suppose the true frame-by-frame labels are {b, b, eh, eh, eh, d, d} and

our Exp-GPOMDP trained classifier emits {b, eh, eh, eh, d, d, d}; then both se-

§10.3 Phoneme level LVCSR 153

quences are interpreted as the sequence of phonemes b-eh-d, and our classifier should

be given the maximum reward. However, if we were to base rewards on the frame-by-

frame labels then Exp-GPOMDP would receive penalties for the apparent mistakes at

the 2nd and 5th frames. The focusing of training effort to maximise an arbitrary high-

level criteria is one of the key benefits of the POMDP model. HMM training would

penalise the 2nd and 5th frames by interpreting the emission of those phonemes as

zero probability events.4 Off-by-one frame errors such as we have described are fairly

common because the hand labelling of the data set is only accurate to a few ms.

Furthermore, penalties are received only for errors not corrected by Viterbi decod-

ing. The system is free to artificially raise or lower transition probabilities from their

maximum likelihood values, provided doing so decreases errors after Viterbi decoding.

Training automatically adjusts for the ability of the Viterbi decoder to correct errors.

We do not rely on Viterbi decoding as a post-training method for reducing errors.

The final operation of the system is the same as an ANN/HMM hybrid. The

training procedure is not the same because we avoid using the maximum likelihood

criterion.

4This assumes that the HMM has been constrained to exactly match the hand-labelled data.

154 Policy-Gradient Methods for Speech Processing

Summary of Transition Probability Training

Combining all the elements of this section we end up with the following training

procedure for each frame of input speech:

1. A frame of the speech waveform is pre-processed to form a vector of features such

as power and mel-cepstral values. These features form the observation vector yt

for the t’th frame of speech.

2. We feed yt forward through the ANN, trained during Phase 1, which outputs an

estimate of Ξ(m|yt) for each phoneme m.

3. Ξ(m|yt) is converted into a scaled likelihood ξ(yt|m) by dividing the posterior

probabilities by the phoneme probabilities, which are estimated from the training

set.

4. For each phoneme, represented by an I-state h in the Viterbi lattice, we evaluate

α̂t+1(h|φ, ȳt) using Equation (10.5).

5. A path back through the Viterbi lattice is chosen by sampling a phoneme ht from

α̂t+1(·|φ, ȳt).

6. We compute ∇φµ̄
µ̄

for the chosen path by evaluating Equation (10.6). This log

gradient vector is added to the Exp-GPOMDP trace zt.

7. Follow the path back through the Viterbi lattice from phoneme ht to construct

the action ut. Emit the phoneme at the end of the Viterbi lattice as the correct

phoneme for frame t− l.

8. Issue rt+1 = 1 if the phoneme for t− l correctly identifies a change in phoneme,

rt+1 = 0 for no change, and rt+1 = −1 for an incorrect (or missing) change in

phoneme. Increment t, goto step 1.

10.3.1.3 Eligibility Trace Filtering for LVCSR

This section describes the design of eligibility trace filters, as described in Section 9.1,

used to improve the performance of the LVCSR experiments. We present 5 heuristic

filters for temporal credit assignment in the LVCSR domain. Section 10.3.2.3 is an

experimental comparison of the filters, resulting in the selection of a filter for the

larger experiments.

Rewards are a function of the I-state transitions that were followed an indefinite

number of steps into the past. This dependency arises through the dependence of the

reward on the Viterbi probabilities. The more peaked the Viterbi probabilities are

§10.3 Phoneme level LVCSR 155

around the correct phoneme, the more likely the agent is to receive a positive reward.

The effect of past transitions on the current Viterbi probabilities become progressively

smaller as time goes on, possibly at an exponential rate. For example, humans need

to recall a couple of words of context to achieve good recognition, but we rarely need

to remember what was said a minute ago just to make out the words currently being

spoken. Thus, credit may need to be assigned to I-state transitions followed indefinitely

far into the past, but less credit should be assigned to old transitions. The standard

exponential discounting can model this situation efficiently. We experiment with four

versions of this filter corresponding to β = 0.3, 0.6, 0.9, and 0.99. The exponentially

discounted case is the first filter shown in Figure 10.10, aligned with a Viterbi lattice

of length l = 3. We also experiment with a linear decaying filter that assumes that the

effect of transitions is negligible after 2l steps.

We should be able to do better by taking into account the length of the Viterbi

lattice. The length of the Viterbi lattice does not affect the Viterbi probabilities, but it

does affect the rewards because the reward is based on phoneme transitions chosen by

Viterbi decoding. If the Viterbi lattice has length l, then rt is based on the classification

of the frame for time t− l, which depends on one of the transitions followed from step

t− l − 1 to t− l. High credit for rt should be given to gradient component computed

at time t − l, that is, the gradient component with a delay of τ = l. However, the

transitions between t− l to t, and the decision about which lattice path to emit at time

t, also affect the reward, so these transitions cannot be ignored in the credit assignment.

This reasoning motivates the next two filters shown in Figure 10.10. The first is a

triangular filter, assigning maximum credit to the transition between t− l−1 and t− l;

the next looks like a ramp, making no assumptions about how to assign credit between

time t and t− l. Both have a linear decay in credit assignment after t− l, reflecting the

decaying impact of transitions on α̂(·|φ, ȳ) as they become older. The more coefficients

the filter has, the slower it is to compute, thus we decay the impulse response quickly,

using a maximum of 9 filter taps. This also limits the length of the Viterbi lattice since

we must model its effects with a limited number of filter co-efficients. We experimented

with up to 9 coefficients and a Viterbi lattice of up to 4 steps.5

The final filter we define makes no assumptions about the credit assignment except

that no assignment should take place for delays greater than τ = 2l, which implies

a rectangular filter. The results of applying each of these filters are shown in Sec-

tion 10.3.2.3. The ramp filter performed best and was used for the main transition

training experiment outlined in Section 10.3.2.5.

5We have avoided IIR filters (except for the exponentially discounted filters) because they generally
seem to increase the variance of estimates.

156 Policy-Gradient Methods for Speech Processing

b

0.5

Exponential

Linear

Triangular

Ramp

Rectangular

0.5

1 02346 5

0.5

1.0

1.0

1.0

1.0

1.0

0.5

0.5

τ

µ(1) = 0.3

µ(2) = 0.1

µ(3) = 0.6

τ = 0τ = 1τ = 2τ = 3τ = 4τ = 5τ = 6

Reward issued at τ = 0

Figure 10.10: The trace filters applied to the LVCSR scenario. All the filters are shown

aligned with the Viterbi lattice of length l = 3. To achieve alignment we reversed the time axis

of the impulse responses so that τ increases to the left. The b axis of the filters gives the value

of the b filter parameter for each τ . For all filters a = [1].

§10.3 Phoneme level LVCSR 157

10.3.2 LVCSR Experiments

This section describes experiments that implement the methods described in the pre-

vious sections.

10.3.2.1 Emission Training Protocol

This section describes the settings used in the first phase of training, described in

Section 10.3.1.1. The training set was the male portion of the TIMIT continuous

speech corpus [Garofolo et al., 1993]. We used all the SI and SX sentences for the 326

male speakers in the recommended training set. This gives a total of 2608 sentences.

The test set contains another 112 speakers for a total of 896 sentences.

The TIMIT continuous speech database is labelled with 63 different phonemes.

Some of these phonemes are allophones, or groups of phonemes that sound the same

and rely on context to distinguish them. For low level phoneme classifiers it is usual to

combine groups of allophones into one phoneme, eliminating the ambiguity that they

represent. The distinction can be re-introduced by higher level language modelling.

We mapped the 63 TIMIT phonemes to 48 phonemes using the mapping given in Lee

[1989] and reproduced in Appendix F.3.

Acoustic vectors were calculated every 10 ms using a 25 ms Hamming window,

providing a total of 786,822 training frames (7868 s of speech) and 269,332 test frames

(2693 s). We used the same features as the digit discrimination experiment of Sec-

tion 10.2.3.1: 12 mel-cepstral parameters with a pre-emphasis factor of 0.97, plus log

energy, delta and double-delta features, for a total observation dimension of 39. The

cepstral features were shifted to have zero-mean. Again, features were computed off-line

using the HTK V3.0 toolkit [Woodland, 2001]. We made no attempt to optimise them

for our setting. All features were normalised to lie between [−1, 1] for presentation to

the ANN.

At each time step the observation yt was 9 pre-processed speech frames, the current

frame plus the four past frames and four future frames, spanning 90 ms of speech. The

past and future context provides the ANN with a small window of history to help

the classification, similar to methods such as Window-Q (see Section 2.6.2.2), but with

access to 4 future acoustic vectors as well as 4 past vectors.

The network had 352 inputs, 1000 hidden nodes and 48 outputs. The hidden layer

was squashed using the tanh function. This architecture was chosen because it was

used by Bourlard and Morgan [1994]. Training was greatly speeded up by using the

4-way parallelism provided by the single-instruction multiple-data instruction set of

the Pentium III processor (see Chapter 11).

The memory-less IState-GPOMDP parameters were chosen to replicate the training

158 Policy-Gradient Methods for Speech Processing

of an ANN that maximises the log-likelihood of correct model, as described in Sec-

tion 10.3.1.1. We used discount factor β = 0, gradient estimation time T = 786, 822

(the number of training frames), and quadratic penalty ℘ = 0.05. Recall from Equa-

tion (10.3) that we can allow the agent to always choose the correct action ut = m∗
t .

Thus, the estimation time of T = 786, 822 is simply one pass through the training

data, as if we were batch training an ANN. The weights were initialised to values be-

tween [−0.01, 0.01]. We used cross-validation on the test set, but even with 401,000

parameters we did not observe any over-fitting.

10.3.2.2 Emission Training Results

We performed one long training run that took approximately 48 hours and 240 gradient

ascent iterations using 96 Pentium-III 550 MHz CPUs from our “Bunyip” Beowulf

cluster.

Recall that the ANN estimates the posterior probability Ξ(m|yt) for each phoneme

m. The maximum posterior criterion, which chooses

mt = arg max
m

Ξ(m|yt),

resulted in 62.1% of 269,332 frames being correctly classified.

Further testing used a Viterbi decoding procedure with l = 3 and a single I-state

in the Viterbi lattice per phoneme. The likelihood of an observation given a phoneme,

as used by the Viterbi algorithm, was

ξ(yt|m) =
Ξ(m|yt)

Pr(m)
,

where Pr(m) is the prior probability of phoneme m, estimated by counting the num-

ber of 10 ms frames labelled with each phoneme. Then we estimated the transition

probabilities by counting phoneme transitions in the training data. Applying Viterbi

decoding using the estimated transition probabilities improved the results to 68.6%.

When the data is fully labelled with phonemes, and we use 1 I-state per phoneme,

counting the transitions gives the same I-state transition probabilities that the Baum-

Welch algorithm would estimate. Thus, 68.6% is a baseline result showing what could

be achieved using maximum likelihood training.

10.3.2.3 Trace Filtering Protocol

The aim of this experiment was to compare the eligibility trace filters described in

Section 10.3.1.3. This allowed us to select the filter with the best average performance

for performing the main transition probability training experiment. We applied the

§10.3 Phoneme level LVCSR 159

Table 10.2: The long-term reward η achieved by each of the 8 trace filters described in

Section 10.3.1.3. Results are averaged over 30 runs. Values for η are multiplied by 102. The

variance is scaled to match.

Filter mean η max. η min. η var.

β = 0.3 7.00 7.09 6.99 5.18 × 10−4

β = 0.6 8.22 10.2 6.95 1.15
β = 0.9 7.77 8.16 7.23 0.597
β = 0.99 8.00 8.09 7.80 0.0601
Linear 8.773 10.1 6.81 0.695
Triangular 7.61 9.01 6.70 0.699
Ramp 8.85 10.0 6.95 0.440
Rectangular 7.04 9.43 6.70 0.542

transition training procedure (see Section 10.3.1.2) using each of the filter candidates

shown in Figure 10.10.

We used a vastly reduced training set of 705 speech frames over 2 sentences.6 This

speeded up training, allowing a reasonable number of trials to be conducted. The test

data set was the same as the training set.

Using trial and error we chose a gradient estimation time of T = 4× 705, being the

smallest multiple of the number of frames for which the gradient estimates were consis-

tent. No quadratic penalty was applied. Transition parameters were initialised to [0].

Recall that the transition parameters are real values that are converted into probabil-

ities through the soft-max function, so initialising parameters to [0] assumes uniform

transition probabilities. This does not create the zero-gradient problems described in

Chapter 7 because the transitions are also driven by the ANN emission probabilities.

The emission probabilities were provided by the ANN trained on the entire training

set.

10.3.2.4 Trace Filtering Results

The best results were obtained with a Viterbi filter of length l = 3 and a maximum of

7 filter co-efficients. The long-term average rewards obtained using these parameters

are shown in Table 10.2. The results are averaged over 30 runs.

The best run, scoring η = 0.102, using β = 0.6, achieved a frame-by-frame ac-

curacy of 94.6%. In contrast, the result from the maximum likelihood estimation of

the transition probabilities, determined by counting the transitions in the 705 frame

training set, was 93.2%. The 20% relative error reduction achieved by the POMDP

6Specifically, we used the TIMIT training sentences si1616 and sx401 from the first male speaker.

160 Policy-Gradient Methods for Speech Processing

approach is an interesting result. It indicates that the use of a reward function that

maximises what we care about: the average accuracy at the frame level, can result in

better performance than the maximum likelihood training criterion.

Because this result is based on the maximum long-term average η, we cannot claim

that the result is significantly better than ML in a statistical sense. However, because

the maximum likelihood procedure for choosing weights has 0 variance, any η above

the ML result must be due to the potential benefits of POMDP training methods over

ML training methods.

The Viterbi filter length of l = 3 is very short, providing error correction only up

to the t− 3’th frame. We changed the filter length to l = 20 for testing purposes, still

using the transition parameters trained with l = 3. The frame accuracy increased to

94.9%, a 0.3% improvement over l = 3. Given that the accuracy with no Viterbi filter

(l = 0) was 91.2%, we see that the majority of errors were corrected with a filter of

length l = 3. Training with l = 20 might improve results further, although temporal

credit assignment becomes harder as l increases. The rest of the results in this chapter

assume l = 3.

We selected the ramp filter for the full training set experiment because it has the

best mean result. It is worth mentioning that a single sided t-test reveals that the

ramp filter is not statistically better than the linear filter for only 30 trials.

The accuracy of the sequence of phonemes is more important than the frame-by-

frame accuracy. This is reflected by our choice of reward function that only rewards

and penalises changes in phoneme classification. The phoneme accuracy usually ap-

pears poorer than the frame-by-frame accuracy because the majority of phonemes are

accurately classified, and phonemes last for many frames. Over the 705 frames of our

training set there are 83 phonemes. The Exp-GPOMDP trained Viterbi transitions re-

sulted in a phoneme classification accuracy of 90.36%.7 Viterbi transitions estimated

using counting resulted in an accuracy of 89.1%.

10.3.2.5 Transition Probability Training Protocol

The training procedure is described in Section 10.3.1.2. We tried both 1 and 2 I-states

per phoneme, for a total of |G| = 48 and |G| = 96 respectively. Tied observation

distributions were used in the latter case so that both I-states for a particular phoneme

used the same ANN trained value for ξ(yt|m).

We used the full data set and training set as described for the emission training

experiment of Section 10.3.2.1. The gradient estimation time was T = 37, 767, 456,

7Phoneme accuracy is measured using phonemes−(insertions+additions+substitutions)
phonemes

, which is a standard
measure used by Lee [1989] and Bengio et al. [1992]. The number of insertions, additions and substi-
tutions was measured using GNU diff v2.7.2.

§10.3 Phoneme level LVCSR 161

being the number of phonemes multiplied by the number of training samples. This

was chosen on the heuristic basis that it allowed the system to see the data set at least

as many times as there are phonemes, allowing Exp-GPOMDP a reasonable chance to

explore many different choices of ut for each observation.

To reduce training time the quadratic penalty was not used. Further speed-up was

achieved by using a traditional line search during gradient ascent, searching for peaks

in the values as the step size was increased. This is in contrast to the majority of the

experiments in thesis which used the GSEARCH algorithm (described in Appendix B.1).

A further reason to prefer the use of the value line search is that the GSEARCH algo-

rithm appeared to often over-step the true maximum η along the search direction. This

may be a consequence of the approximation discussed in the “Computing the Gradi-

ent” section. The transition weight parameters φ were initialised to values between

[−0.05, 0.05].

10.3.2.6 Transition Probability Training Results

Training with 1 I-state per phoneme resulted in only a fractional accuracy increase

compared to the optimum maximum likelihood weights. On the test set of 269,332

frames, 8 previously incorrectly classified frames became correctly recognised. However,

the fact that there was any improvement is significant.

Our best run used 2 I-states per phoneme. It took approximately 2 days using 96

Pentium III 550 MHz CPUs from our “Bunyip” Beowulf cluster. The final frame-by-

frame accuracy is 69.4%. This is a 7.3% improvement from the 62.1% result, which

is the accuracy based on the output Ξ(m|yt) of the phase 1 ANN. Exp-GPOMDP ad-

justed the I-state transitions to reinforce likely phoneme sequences. It is not producing

classifications based only on the most likely instantaneous phoneme probabilities from

the ANN.

Overall, this is a 0.8% improvement over the optimum ML solution which counted

transitions in the data. Although a small increase, the result shows Exp-GPOMDPs

ability to estimate gradients for a complex function, incorporating internal state to

perform a difficult task in a POMDP framework. It also demonstrates potential benefits

over ML training.

In terms of phoneme sequence accuracy, the trained system achieved 61.1% on the

test data of 33,097 phoneme transitions. The breakdown of errors is 2174 deletions,

6524 additions, and 6150 substitutions. The optimum ML decoder achieved an accuracy

of 59.2% with a similar breakdown of errors.

The accuracies quoted for this experiment are much lower than the accuracies

quoted for the trace filter experiment. There are two reasons for this: (1) the much

162 Policy-Gradient Methods for Speech Processing

smaller training set used for the filter experiments did not contain examples of all the

phonemes, greatly simplifying the problem by allowing the agent to turn off transi-

tions to those phonemes; (2) the filter experiment used the same data for training and

testing, so over-fitting occurred due to the small number of samples.

Our architecture is based on that designed by Bourlard and Morgan [1994]. They

achieved a frame-by-frame accuracy of 54.8% on an 152 speaker subset of the TIMIT

database with 64 phonemes. Since we used almost identical acoustic features and

ANN, our better results (69.4%) are probably attributable to our larger training set and

smaller set of phonemes. The highest accuracy we are aware of for the TIMIT database

is 86% phoneme classification by Bengio et al. [1992]. This system used sophisticated

tri-phone HMM models and an ANN to incorporate hand designed features for hard

to classify phonemes.

10.3.3 Discussion

It is worth emphasising that this chapter is a demonstration application of policy-

gradient methods to a difficult real-world problem. We do not claim that our proce-

dures are the best way to process speech. There are several clear deficiencies with the

approach we have outlined.

• Ideally, we would run both training phases simultaneously, globally optimising the

performance and taking full advantage of the generality of the POMDP model.

However, the system would be considerably more complex and hence slower to

train.

• Enforcing tied distributions for all I-states that represent phoneme m is a poor

assumption that could be rectified by global training.

• We need to better investigate the consequences of the gradient approximation

that assumes the current Viterbi I-state belief is independent of the parameters

φ. Unfortunately, it is very time consuming to do such comparisons for reasonable

estimation lengths.

• By using an existing speech classifier architecture we adopt the deficiencies of

that model.

• Using Monte-Carlo POMDP methods for speech has the disadvantage of being

slow compared to HMM algorithms.

• This work studied frame-by-frame and phoneme classification only. Language

modelling is a significant (and complex) aspect of real speech processing systems

that would improve our low-level results.

§10.4 Summary 163

10.4 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I Signal classification can be cast as a POMDP.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II A variant of Exp-GPOMDP that uses the Viterbi algorithm to track I-state

beliefs can be used to perform phoneme level LVCSR.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III The IIR trace filtering method of Section 9.1 can be applied to real world

problems, resulting in improved average rewards and robustness through

lower variance.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ IV The generality of the POMDP framework offers advantages over existing

speech training methods. One example is the use of delayed rewards to avoid

penalising classifier errors that do not impact on the high-level performance.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ V We have demonstrated the use of policy-gradient methods on an large-scale

real-world application.

Further Work

Speech processing is such a large and complex field that is difficult to do anything

but scratch the surface in one chapter of a thesis. There is need for more basic research

to establish if using POMDP methods can compete with state-of-the-art speech tools.

It is difficult to accurately compare results with other speech systems due to differences

between data sets, the pre-processing of the speech wave-forms, and the accuracy met-

rics. The best way to ensure fair comparisons will be to build a pure HMM based

system in parallel, using the same data set, phoneme set, and acoustic features.

In the LVCSR experiments we constrained ourselves to using an architecture for

ω(h|φ, g, y) and µ(u|θ, h, y) that is equivalent to an existing model of speech. Other

architectures should be investigated with the aim of avoiding the known flaws of existing

speech models. For example, we have already experimented with training a separate

neural network for each I-state. The idea is that I-state transitions represent long-

term dependencies in the speech signal and the network for each I-state provides the

appropriate local frame classification given the long-term state. This model is much

more general that the one we finally used, but required hundreds of thousands of

parameters to be estimated, causing long training times and poor performance.

In this chapter we assumed an intermediate level reward scheme that works at

the phoneme level. We need to explore the effects of using higher level rewards, for

example, the sentence level. As the reward becomes more sparse and abstract, the

temporal credit assignment problem becomes harder.

164 Policy-Gradient Methods for Speech Processing

Chapter 11

Large, Cheap Clusters: The 2001

Gordon-Bell Prize

A distributed system is one in which the failure of

a computer you didn’t even know existed can render

your own computer unusable.

—Leslie Lamport

The algorithms we have described can take up to 2 days to run for scenarios such as

Heaven/Hell and LVCSR. They would have taken longer but for work spent designing

the “Bunyip” Linux cluster and the implementation of efficient and distributed artificial

neural network training software.

Some of the methods we developed carry over into other fields. For example, fast

matrix-matrix multiplication and fast cluster communication methods. We place sig-

nificant emphasis on the cost-effectiveness of our solution. In particular we achieved a

sub USD $1 per MFlop per second price/performance ratio that was recognised with

an international Gordon Bell award in November 2000.

The work of this Chapter was a team effort. In particular, the authors of the original

paper [Aberdeen et al., 2000] were myself, Jonathan Baxter, and Robert Edwards.1

Jonathan Baxter and Robert Edwards designed and installed the hardware. Jonathan

Baxter also wrote the early version of the Japanese OCR code. I wrote the optimised

code including the fast matrix-matrix multiplication, fast reduce, and fine tuning of

the neural network communication code.

11.1 Ultra Large Scale Neural Networks

ANNs have found wide-spread use in many domains, some we have seen already, oth-

ers include: character recognition, signal processing, medical diagnosis, language mod-

elling, information retrieval, and finance prediction. A typical network in such an

1Jonathan Baxter was my advisor at the Research School of Information Science and Engineering at
the Australian National University. Robert Edwards worked at the Department of Computer Science.
The project was supported by the Australian Research Council, an Australian National University
major equipment grant, and LinuxCare Australia. Thanks also to the people who made valuable
contributions to the establishment and installation of Bunyip: Peter Christen, Chris Johnson, John
Lloyd, Paul McKerras, Peter Strazdins and Andrew Tridgell.

166 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

application has 100–100,000 adjustable parameters and requires a similar number of

training patterns in order to generalise well to unseen test data. Provided sufficient

training data is available, the accuracy of the network is limited only by its represen-

tational power, which in turn is essentially proportional to the number of adjustable

parameters [Anthony and Bartlett, 1999, Thm. 8.9]. Thus, in domains where large

volumes of data can be collected — such as speech, face and character recognition, and

web page classification — improved accuracy can often be obtained by training net-

works with greater than 100,000 parameters. For example, Section 10.3.2.1 described

how we trained a large ANN with 401,000 parameters and 786,822 training vectors

without observing over-fitting.

This chapter describes a distributed method for training ultra large scale neural

networks (ULSNNs), or networks with more than one million adjustable parameters

and a similar number of training examples. At its core, the algorithm uses Emmerald:

a single-precision (32 bit) general matrix-matrix multiply (SGEMM) based on the

Pentium III SIMD Streaming Extensions (SSE). Emmerald has a peak performance in

excess of 1090 MFlops/s on a single 550 MHz Pentium III. Empirically we found single

precision sufficient for gradient-based training of ULSNN’s. For medium to large scale

ANNs as few as 16 bits precision is sufficient [Asanović and Morgan, 1991].

To illustrate the use of large and cheap clusters for ULSNN training we focus

on an experiment in which a neural network with 1.73 million adjustable parameters

is trained to recognise machine-printed Japanese characters. The data set contains 9

million training patterns. Previous chapters have briefly described the “Bunyip” cluster

on which the large experiments in this thesis were run. The following section describes

it in detail. Section 11.3 describes the fast low-level matrix-matrix multiplication.

Section 11.4 describes the distributed ULSNN training procedure. Finally, Section 11.6

describes the results for the Japanese OCR problem.

11.2 “Bunyip”

Bunyip is a 98-node, dual Pentium III Beowulf-class system running (upon inception)

Linux kernel 2.2.14. The main design goals for this machine were to maximise CPU

and network performance for the given budget of AUD $250,000 (USD $149,125 at the

time of purchase). Design decisions and construction were carried out by Jonathan

Baxter and Robert Edwards. Figures are quoted in US dollars for the remainder of

this chapter.

§11.2 “Bunyip” 167

11.2.1 Hardware Details

The Intel Pentium III processors were chosen over Alpha or SPARC processors for

price/performance reasons. Dual-CPU systems were preferable as overall cost and size

per CPU is lower than single-CPU or quad-CPU systems. Intel PIII, 550 MHz CPUs

were eventually selected as having the best price/performance available at that time,

taking into consideration our desire to use the floating-point single instruction, multiple

data facilities of the PIII chips. AMD Athlon and Motorola/IBM G4 systems also have

these facilities but were not available in dual-CPU configurations.

Off-the-shelf components were used for the networking. Gigabit ethernet was con-

sidered, but deemed too expensive at around $300 per node for the network interface

card (NIC) and around $1800 per node for the switch. Instead, a novel arrangement

of multiple 100 Mb/s NICs was selected with each node having three NICs that con-

tributed some $65 per node (plus switch costs listed below).

The configuration for each node is two Pentium III 550 MHz CPUs on an EPoX

KP6-BS motherboard with 384 MBytes RAM, 13 GByte UDMA66 (IDE) hard disk,

and three DEC Tulip compatible 100 Mb/s network interfaces, one of which has Wake-

On-LAN capability and provision for a boot ROM. The nodes have no removable media,

no video capability and no keyboards. Each node cost $1282.

With reference to figure 11.1, the 96 nodes are connected in four groups of 24 nodes

arranged as a tetrahedron with a group of nodes at each vertex. Each node in a vertex

has its three NICs assigned to one of the three edges emanating from the vertex. Each

pair of vertices is connected by a 48-port Hewlett-Packard Procurve 4000 switch (24

ports connecting each way). The switching capacity of the Procurve switches is 3.8

Gb/s. The bi-sectional bandwidth of this arrangement can be determined by looking

at the bandwidth between two groups of nodes and the other two groups through 4

switches, giving a total of 15.2 Gb/s. The 48-port switches cost $2386 each.

Two server machines, identical to the nodes with the addition of CD-ROM drives,

video cards, and keyboards, are each connected to a Netgear 4-port Gigabit switch that

is in turn connected to two of the HP Procurve switches using gigabit links. The two

server machines also act as connections to the external network. Two hot-spare nodes

were also purchased and used for development and diagnostic work when not required

as replacements for broken nodes.

11.2.2 Total Cost

All up we spent 98 × $1282 ($125,636) on the computational nodes (including the two

hot-spares), $17,594 on the six 48-port and the 4-port gigabit switches (6 × $2386, 2 ×

$894 (gigabit interfaces) and $1490 for the gigabit switch), $3870 on servers (including

168 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

Server 1 Server 2

Giga−Bit switch

3

D

B C

A

1

0 2

4

5

24 x 100Mb/s links

48−Port switches

24 Dual PIII, 550 MHz nodes

Figure 11.1: Bunyip architecture

gigabit NICs, monitors etc.), $944 for network cables, $179 on electrical work, $238 on

power cables and power boards, and $298 on boot EPROMs. The ex-library shelving

was loaned to us, but would have cost $354 from a local second-hand furniture shop.

Although no component was explicitly budgeted for staff time, this amounted to about

3 weeks to assemble and configure the machine which adds approximately $1800 to the

overall cost of the machine. All up, the total cost was USD $150,913.

11.3 Emmerald: An SGEMM for Pentium III Processors

This section introduces Emmerald, the highly optimised software kernel of our UL-

SNN training system. It provides a single-precision, dense, matrix-matrix multipli-

cation (SGEMM) routine that uses the single instruction, multiple data (SIMD) fea-

tures of Intel PIII chips SIMD Streaming Extensions (SSE). The SSE provide a set of

new floating-point assembler instructions that operate simultaneously on four single-

precision floating-point numbers.2 Emmerald outperforms a naive (3-loop) matrix-

matrix multiply by 8 times for square matrices of size 64, and a peak of 29 times for

matrices of size 672. Emmerald can be downloaded from http://csl.anu.edu.au/

~daa/research.html.

2Since the original work in 1999 the Pentium IV and other recent CPUs have introduced double-
precision SIMD instructions, which will not be considered.

§11.3 Emmerald: An SGEMM for Pentium III Processors 169

for (x = 0; x < m; x++) { /* outer loop */

for (y = 0; y < n; y++) {

for (z = 0; z < k; z++) { /* inner loop */

c[x*n + y] += a[x*k + z]*b[z*n + y];

}

}

}

Figure 11.2: Naive matrix multiply code showing the outer loop and the inner loop.

11.3.1 Single Precision General Matrix-Matrix Multiply (SGEMM)

Within our knowledge, the matrix-matrix multiplication algorithm with the least com-

putational complexity is Strassen’s algorithm [Strassen, 1969], requiring approximately

O(n2.81) floating-point operations to multiply 2 square matrices each with n × n ele-

ments. The naive 3-loop algorithm shown in Figure 11.2 requires O(n3) operations.

Unfortunately, Strassen’s Algorithm is difficult to implement efficiently because the

memory access patterns of Strassen’s algorithm tend to prevent the efficient use of

processor caches [Thottethodi et al., 1998].

Our approach has the same computational complexity as the naive algorithm. Al-

though this complexity is fixed, skillful use of the memory hierarchy dramatically re-

duces overheads not directly associated with floating-point operations. Memory hi-

erarchy optimisation combined with the use of SIMD instructions give Emmerald its

performance advantage.

Emmerald implements the sgemm interface of Level-3 BLAS, and so may be used to

improve the performance of single-precision libraries based on BLAS (such as LAPACK

[Dongarra et al., 1990]). The BLAS GEMM computes

C ← αop(A)op(B) + βC,

where op(A) optionally transposes A and α, β ∈ R are arbitrary scalars. Multiplication

of AB requires 2mnk floating-point operations where A is an m× k matrix and B is a

k × n matrix.

There have been several attempts at automatic optimisation of GEMM for deep-

memory hierarchy machines, most notable are PHiPAC [Bilmes et al., 1996] and ATLAS

[Whaley and Dongarra, 1997]. ATLAS in particular achieves performance close to com-

mercial vendor optimised GEMMs. At the time of this research neither ATLAS nor

PhiPAC made use of the SIMD instructions on the PIII for their implementations of

sgemm. ATLAS has since incorporated SIMD instructions, partly based on Emmerald

and then further optimised and extended to double precision.

170 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

Registers

L2 cache

off−chip

on−chip

L1 cache

data code

900 million floats/s

200 million floats/s

512 kB

16 kB

Main memory

Figure 11.3: The deep memory hierarchy of the Intel PIII chip. Most current desktops vary

only in the number of registers and the cache sizes.

11.3.2 SIMD Parallelisation

Modern computers have 4 levels of memory, shown in Figure 11.3. Registers are fast

but small and main memory is slow but large. Caches sit between the two, becoming

successively slower and larger.

A SIMD GEMM must aim to minimise the ratio of memory accesses to floating-

point operations. We employed two core strategies to achieve this:

• accumulate results in registers for as long as possible to reduce write backs to

cache;

• re-use values in registers as much as possible.

There are 8 SIMD (128 bit) registers available, each holding 4 single precision (32

bit) floating-point numbers. Greer and Henry [1997] computed several dot-products in

parallel inside the innermost loop of the GEMM. Taking the same approach we found

experimentally that 5 dot-products in the inner loop gave the best performance. Figure

11.4 shows how these 5 dot products use SIMD parallelism.

§11.3 Emmerald: An SGEMM for Pentium III Processors 171

Iteration 2

Iteration 1

4 5 6 7 1 2 1

1 2 14 5 6 7

xm
m

0xmm3

xm
m

0xmm3 xmm1 2

xmm1 2
BC A

BAC

Figure 11.4: Allocation of SSE registers (labelled as xmm[0-7]), showing the progression of

the dot products that form the innermost loop of the algorithm. Each black circle represents an

element in the matrix. Each dashed square represents one floating-point value in an SSE regis-

ter. Thus four dotted squares together form one 128-bit SSE register. Results are accumulated

into the first 5 elements of the C matrix.

✾✝✾✝✾✝✾

✿✝✿✝✿✝✿
❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀✝❀❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁✝❁

❂✝❂✝❂❂✝❂✝❂❂✝❂✝❂❃✝❃❃✝❃❃✝❃❄✝❄❄✝❄❄✝❄
❄✝❄
❅✝❅❅✝❅❅✝❅
❅✝❅

buffered
A’ B’

BAC

A’ B’ C’

 k’

 n’=5

 m’=1

m

n

 k’=336

Figure 11.5: L1 blocking for Emmerald: C ′ ← A′B′ where A′ and B′ are in L1 and C ′ is

accumulated in registers.

172 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

11.3.3 Optimisations

A number of other standard methods are used in Emmerald to improve performance.

The details can be found in Aberdeen and Baxter [2001]. Briefly, they include:

• L1 blocking : Emmerald uses matrix blocking [Greer and Henry, 1997, Bilmes et al.,

1996, Whaley and Dongarra, 1997] to ensure the inner loop is operating on data

in L1 cache. Figure 11.5 shows the L1 blocking scheme. The block dimensions

m′ and n′ are determined by the configuration of dot-products in the inner loop

(see Section 11.3.2) and k′ was chosen so that the B ′ block just fits in L1 cache.

• Unrolling : The innermost loop is completely unrolled for all possible lengths of

k′ in L1 cache blocks, taking care to avoid overflowing the L1 instruction cache.

• Re-buffering : Since B ′ (Figure 11.5) is large (336×5) compared to A′ (1×336), we

deliberately buffer B ′ into L1 cache. While buffering B ′ we re-order its elements

to enforce optimal memory access patterns. This has the additional benefit of

minimising translation look-aside buffer (TLB) misses [Whaley et al., 2000]. The

TLB is a cache of recently accessed virtual memory addresses.

• Pre-fetching : Values from A′ are not deliberately pre-buffered into L1 cache. We

make use of SSE pre-fetch assembler instructions to ensure A′ values will be in

L1 cache when needed.

• Instruction re-ordering : Despite the ability of modern CPUs to automatically

re-order instructions, we found performance improved if care was taken to order

assembler instructions so that processor stalls were minimised.

• L2 Blocking : Efficient L2 cache blocking ensures that peak rates can be main-

tained as long as A, B and C fit into main memory.

11.3.4 Emmerald Experimental Protocol

The performance of Emmerald was measured by timing matrix multiply calls with

size m = n = k up to 700. The following steps were taken to ensure a conservative

performance estimate:

• wall clock time on an unloaded machine was used rather than CPU time;

• the stride of the matrices — the separation in memory between each row of matrix

data — was fixed to 700 rather than the optimal value (the length of the row);

• caches were flushed between calls to sgemm().

§11.4 Training Neural Networks using SGEMM 173

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

M
flo

ps
 @

 4
50

M
H

z

Dimension

Emmerald
ATLAS

naive

Figure 11.6: Performance of Emmerald on a PIII running at 450 MHz compared to ATLAS

sgemm and a naive 3-loop matrix multiply. The version of ATLAS used in this figure did not

make use of SIMD instructions.

11.3.5 Results

Timings were performed on a Pentium III @ 450 MHz running Linux (kernel 2.2.14).

Figure 11.6 shows Emmerald’s performance compared to ATLAS and a naive three-loop

matrix multiply. The average MFlops/s rate of Emmerald after size 100 was 1.69 times

the clock rate of the processor and 2.09 times faster than ATLAS. A peak rate of 890

MFlops/s was achieved when m = n = k = stride = 320. This represents 1.98 times

the clock rate. On a PIII @ 550 MHz (the processors in Bunyip) we achieved a peak

of 1090 MFlops/s. The largest tested size was m = n = k = stride = 3696 which ran

at 940 MFlops/s @ 550 MHz. See the Emmerald papers Aberdeen and Baxter [2001],

and Aberdeen and Baxter [2000], for more details.

11.4 Training Neural Networks using SGEMM

In this section we describe how to implement the error back propagation training algo-

rithm efficiently using Emmerald. We assume a basic familiarity with the concepts of

artificial neural network error back propagation. Detailed derivations of the procedure

174 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

for single training vectors can be found in texts such as Haykin [1999]. This section

simply extends those equations to multiple training vectors for one feed-forward and

feed-back pass.

11.4.1 Matrix-Matrix Feed Forward

We assume a single hidden layer ANN mapping input vectors yt ∈ Rny to output vectors

ot ∈ Rno. Element i of the t’th input vector yt is denoted yti. Similarly, element k of

the t’th output ot is labelled otk. The inputs are patterns or features for classification.

In the POMDP setting they are observation vectors. The elements wij of the ny × nh

matrix W is the weight from input feature yti to hidden unit j. Similarly, element vjk

of the nh × no matrix V is the weight from unit j to output otk. The hidden layer is

squashed by σ : R → R (we use tanh) which we define as an element-wise operator

when applied to matrices.

Suppose we have np training patterns. The memory hierarchy optimisations de-

scribed in the previous section mean it is more efficient to feed forward all training

patterns simultaneously, doing 2 matrix-matrix multiplications, than to feed forward

one training pattern at a time, doing 2np vector-matrix multiplications. So we define

an np × ny input matrix Y as having a row for each pattern

Y =

y11 . . . y1ny

...
. . .

...

xnp1 . . . xnpny

 .

Similarly, for the output matrix we have

O =

o11 . . . o1no

...
. . .

...

onp1 . . . onpno

 .

With these definitions the matrix-matrix form of the feed forward computation is

O = σ(Y W)V. (11.1)

11.4.2 Error Back Propagation

For pattern classification we are given a target label for each training input yt ∈

{y1, . . . , ynp} of the form lt ∈ [−1, 1]no . For regression applications the target vector is

§11.4 Training Neural Networks using SGEMM 175

lt ∈ Rno. In matrix form

L =

l11 . . . l1no

...
. . .

...

lnp1 . . . lnpno

 .

The goal is to find sets of parameters W and V minimising a cost function. Recall

that we trained the LVCSR phoneme probability estimator by maximising the log

probability (see Section 10.3.1.1). For the Japanese OCR problem we use the classical

mean squared error:

e(W,V, Y, L) =
1

2

np∑

t=1

no∑

c=1

(otc − ltc)
2

=
1

2

np∑

t=1

(‖ot − lt‖
2
2)

Let be H := σ(Y W) be the matrix of hidden layer activations with elements htj .

We also define the error at the output as the np × no matrix ∆O, and the so-called

back-propagated error at the hidden layer as the np × nh matrix ∆H

∆O = O − L, (11.2)

∆H = (Y −H ∗H) ∗ (∆OV) ,

where “∗” denotes element-wise matrix multiplication. Following these conventions,

the standard formulae for the gradients in matrix form are

∇W e(W,V, Y, L) = Y ′∆H (11.3)

=

∂e
∂w11

· · · ∂e
∂w1nh

...
. . .

...
∂e

∂wny1
· · · ∂e

∂wnynh

∇V e(W,V, Y, L) = H ′∆O

=

∂e
∂v11

· · · ∂e
∂v1no

...
. . .

...
∂e

∂vnh1
· · · ∂e

∂vnhno

 .

An equivalent form of matrix-matrix error back propagation was derived by Bilmes

et al. [1997].

Thus, computing the gradient of the error for an ANN can be reduced to a series

of ordinary matrix multiplications and element-wise matrix operations. For large net-

176 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

works and large numbers of training patterns, the bottleneck is the ordinary matrix

multiplications. We implement these using Emmerald, dramatically speeding up the

feed-forward and feed-backward stages. In all our experiments we found 32 bits of

floating-point precision were enough for training. For neural networks with ≈ 10,000

parameters, as few as 16 bits are sufficient [Asanović and Morgan, 1991].

Armed with the gradient ∇e, the same parameter optimisation procedure used

throughout this thesis is performed: a combination of the Polak-Ribiére conjugate-

gradient method with the GSEARCH line search to optimise the weights, described in

detail in Appendix B.1. We also found that quadratic penalties were important when

training ULSNNs since the parameterisation is extremely rich and the potential for

stopping in a poor local maximum is large.

11.4.3 Training Set Parallelism

Since the error e and gradient ∇e are additive over the training examples, the simplest

way to parallelise the training of a neural network is to partition the training data into

disjoint subsets and have each processor compute the error and gradient for its subset.

This works particularly well if there are a large number of training patterns so that

each processor can work with near-optimal matrix sizes.

The communication required is the transmission of the neural network parameters

to each slave processor, the transmission of the error and gradient information back

from each slave to a master node, and the broadcast of the next search direction θ∗

back to the slaves so they have a consistent notion of the search direction.

For small ANNs with 100’s to 10,000’s of parameters the communication costs are

negligible. However, with millions of parameters optimisation of communication can

result in significant speed-ups. The most expensive communication step is aggregating

the gradient vectors from each slave to the master. This is known as a reduce operation

and involves 194 CPUs each sending 6.6 Mbytes of data to the master process. We spent

some time coding an optimised reduce operation for the Bunyip cluster. The ideas can

be translated to other clusters that use a flat network topology [Hauser et al., 2000],

where all nodes are connected to all others through at most one switch. The details of

the communication costs and our optimised reduce operation are in Appendix G.

If we are training a POMDP agent then training patterns are generated by simu-

lating the environment. In this case each processor runs its own simulation for a fixed

amount of time before sending back its gradient estimate to the server. Unfortunately,

the feed-forward operation cannot be blocked into multiple patterns because the output

of the network is needed to generate the next input.

§11.5 Using Bunyip to Train ULSNNs 177

Nodes

Nodes Nodes

Nodes Nodes Nodes

Nodes Nodes

Server Server Server Server Server

Nodes

1

training
chunks chunks

training

subset of
data in node

RAM

subset of
data in node

RAM

2 3 4 5

start
stop

best

sign

Compute Reduce Broadcast
directiongradient gradient

Compute
step size

Broadcast
optimal step

1

feed−back

SHM

Reduce
Feed−forward &

flops

θ∗
γγ

∇e

Figure 11.7: Steps followed for each epoch of ULSNN training. Arrows represent communi-

cation directions, which are labelled with the messages being communicated.

11.5 Using Bunyip to Train ULSNNs

With reference to Figure 11.7, distributed training of ULSNNs on Bunyip progresses

over 5 stages per epoch.

1. Section 11.4 describes stage 1, with each process computing the gradient induced

by a subset of the training data.

2. Appendix G.2 describes how the gradient is reduced from each slave process to

the master process.

3. This stage is the relatively cheap broadcast of the search direction to each process.

4. During this stage we broadcast scalar trial steps sizes to the slaves, and reduce the

scalar results back to the master. This stage implements the GSEARCH algorithm

described in Appendix B.1.

5. The final step before repeating the process is the broadcast of the final step size,

γ, determined by GSEARCH. Each processor then updates its parameters γ.

178 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

Figure 11.8: Example Japanese characters used to train the ULSNN. The characters in each

row are different but look similar, illustrating the difficulty of Japanese OCR.

When calculating the price/performance ratio we only count the flops performed

during feed-forward and feed-back computations, during phases 2 and 4. We do not

count the flops performed during the reduce or any other phases.

11.6 Japanese Optical Character Recognition

This section describes an application of our SIMD-optimised distributed ANN training.

We train an ULSNN as a classifier for machine-printed Japanese characters.

Japanese optical character recognition (Japanese OCR) is the process of automat-

ically recognizing machine-printed Japanese documents. The most difficult aspect of

Japanese OCR is correctly classifying individual characters, since there are approxi-

mately 4000 characters in common usage.

11.6.1 Experimental Protocol

The base training data for our neural network consisted of 168,000 scanned, segmented,

hand-truthed images of Japanese characters purchased from the CEDAR group at the

University of Buffalo [Srihari et al., 1996]. The characters were scanned from a variety

of sources, including books, faxes, newspapers and magazines. Figure 11.8 gives an

idea of the varying quality of the character images.

Each character in the CEDAR database is represented as a binary image of varying

resolution. We down-sampled all the images to a 20×20 grey-scale format. The neural

network had 400 input nodes, one for each pixel. The database contained examples of

3203 distinct characters, hence the neural-network had 3203 output nodes. The hidden

layer was chosen to have 480 nodes. In total, the network had 1.73 million parameters.

§11.6 Japanese Optical Character Recognition 179

Using 168,000 training examples is not sufficient to avoid over-fitting in a network

containing 1.73 million adjustable parameters. We generated synthetic data from the

original characters by applying random transformations including line thickening and

thinning, shifting, blurring, and noise addition. The total number of training examples

including the artificial ones was 9,264,000, approximately 5.4 per adjustable parameter.

These were distributed uniformly to the processors in Bunyip. A further 6,320 examples

of the CEDAR data set were used for testing purposes.

The weights were initialised randomly between [-0.1, 0.1]. The quadratic penalty

was set to ℘ = 0.1.

With reference to equations (11.1) – (11.3), the total number of floating point

operations required to compute the error e in a neural network is 2np(ny +no)nh, which

equals 32 Tera floating-point operations (TFlops) for the Japanese OCR experiment.

A gradient calculation uses np(4nynh + 6nhno) flops, or 92 TFlops for the Japanese

OCR experiment.

To assist with load balancing, each slave processor stepped through its training

patterns 320 at a time. Between each step the master node was polled to determine

whether more steps were required. Once 80% of the total training data had been

consumed, the master instructed all slaves to halt computation and return their results

(either the error or the gradient). In this way the idle time spent waiting for other

slaves to finish was reduced to at most the length of time needed by a single processor

to process 320 patterns. Accounting for the fact that only 80% of the data is processed,

an error calculation required 26 TFlops and a gradient calculation requires 74 TFlops,

or 135 GFlops and 383 GFlops per processor respectively.

11.6.2 Results

This section describes the classification accuracy achieved, then concentrates on the

performance scalability over processors, before finishing with the peak performance

results that justify our claim of a price/performance ratio of 92.4 per MFlop/s.

11.6.2.1 Classification Accuracy

The network’s best classification error on the held-out 6,320 examples was 33%, indi-

cating substantial progress on a difficult problem (an untrained classifier has an error

of 1− 1/3200 = 99.97%). We observed an error rate of 5% on the 40% of the data that

contained the most common characters.

A very large amount of data was required to avoid over-fitting. Table 11.1 com-

pares the generalisation accuracy against the total number of training examples used

(including transformations of the original 168,000 patterns).

180 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

Table 11.1: Generalisation error for Japanese OCR decreases as the total number of patterns

increases.

Patterns % error

343800 51
611200 46

1833600 33

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

G
F

lo
ps

/s

Processors

Large problems
Small problems

Maximal patterns

Figure 11.9: Performance scaling with the number of processors. The 3 curves represent

a small network, our large Japanese OCR network with a fixed number of patterns, and the

Japanese OCR network when np scales with the number of processors.

11.6.2.2 Communication Performance

The primary motivation for large training sets is to improve generalisation performance.

In Appendix G.1 we demonstrate that communication overhead increases as the number

of patterns decreases, so the second motivation for large training sets is to reduce such

overhead. Figure 11.9 demonstrates how the performance scales with the number of

processors used. The bottom curve is the performance versus processors curve for a

small network of 400 input nodes, 80 hidden layer nodes, 200 output nodes and a total of

40,960 training patterns. The middle curve is our Japanese OCR ULSNN with 163,480

patterns in total. The top curve is the Japanese OCR network again, however, this

test used 32,000 patterns per processor, minimising the frequency of reduce operations.

All 3 curves exhibit linear performance scaling for small numbers of processors, but

§11.7 Summary 181

for many processors the larger problem scales better despite the increased number of

network parameters. This is due to the communication overhead in the small network

increasing dramatically as each processor has less data to process before needing to

initiate a reduce. The effect would be clearer for a large network (causing long gradient

vectors to be reduced) with few training patterns, however this scenario is not usually

encountered due to over-fitting. Finally, we observe that with a large enough data set

to fill the memory of every node, we achieve near linear scaling.

11.6.2.3 Price/Performance Ratio

All performance values quoted in this section represent the total flops that contribute to

feed forward and gradient calculations, divided by the wall clock time. Implementation

specific flops, such as the reduce operations, were not included.

Bunyip was dedicated to running the Japanese OCR problem for 4 hours with

9,360,000 patterns distributed across 196 processors. Bunyip actually consists of 194

processors, however, we co-opted one of the hot-spare nodes (included in the quoted

price) to make up the other two processors.

Over this 4 hour period a total of 2.35 PFlops were performed with an average

performance of 163.3 GFlops/s. This performance is sustainable indefinitely provided

no other processes use the machine. To calculate the price/performance ratio we used

the total cost derived in Section 11.2.2 of USD $150,913, yielding a ratio of 92.4 per

MFlop/s.3

For comparison purposes, training using double precision and the ATLAS DGEMM

[Whaley and Dongarra, 1997] produced a sustained performance of 70 MFlops/s or

$2.16 per MFlops/s (double precision).

11.7 Summary

Key Points

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I We have shown how an off-the-shelf Linux Pentium III cluster can efficiently

train ultra large scale neural networks. This is a particularly cost-effective

solution with a price/performance ratio of 92.4 per MFlop/s.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II Such clusters are a good choice for Monte-Carlo POMDP methods since each

processor can run an independent simulation. Communication is only needed

to occasionally reduce gradient estimates and update parameters.

3Based on the exchange rate of AUD $1 = USD .5965 on the day of the final and largest payment.

182 Large, Cheap Clusters: The 2001 Gordon-Bell Prize

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III Fast matrix-matrix multiplication significantly speeds up training of large

neural networks such as those used in our LVCSR experiment.

Subsequent Work

When Emmerald was written it was, within our knowledge, the fastest SGEMM for

the Pentium III processor. Some of the ideas from Emmerald were incorporated into

earlier versions of the self-optimising ATLAS BLAS library [Whaley et al., 2000]. ATLAS

has now surpassed the performance of Emmerald, also incorporating double-precision

GEMM.

The Gordon Bell prize for price/performance ratio has followed a trend of almost

quartering the cost per MFlop/s each year. The 2001 award was won by Kim et al.

[2001], with a cluster that achieved 24.6 per MFlops/s.

Chapter 12

Conclusion

When we write programs that “learn,” it turns out

that we do and they don’t.

—Alan Perlis

We have demonstrated that policy-gradient methods can be used to train memory-

enabled agents so that they perform well in complex domains. We investigated domains

such as simulated robot navigation and speech recognition.

12.1 Key Contributions

The key contributions of this thesis are:

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ I The GAMP, IState-GPOMDP, IOHMM-GPOMDP, and Exp-GPOMDP, policy-

gradient algorithms for estimating long-term average reward gradients. They

allow agents with FSC memory to be trained in infinite-horizon settings.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ II Higher-order eligibility trace filters and other methods for reducing the vari-

ance of gradient estimates.

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁ III The application of POMDP methods to the complex real-world domain of

speech recognition.

The use of approximations such as local optimisation, finite memory, and iterative

approximations, allowed us to train agents for difficult scenarios that could not be

solved with exact methods. Previous FSC policy-gradient algorithms also failed to

scale to non-trivial scenarios.

12.2 Long-Term Future Research

Each chapter has mentioned specific future research projects. To end, we present a

vision of how POMDP agents might be trained for real applications.

For most purposes real-world problems have infinite-state spaces, and often infinite-

observation spaces, making methods that track exact belief states impossible. Factoring

state into state-variables is an active and interesting area of research [Poupart and

184 Conclusion

Boutilier, 2001]. How to perform such factorisation without a model or for infinite

spaces is not clear.

Methods that estimate values of belief states are difficult to scale to real scenarios

for two reasons: (1) the complexity of belief-state tracking when the state space is

infinite, (2) the extra effort needed to estimate values compared to learning the policy

directly. On the other hand, policy-gradient methods suffer from slow convergence

and convergence to only a local maximum. However, the PSPACE-hard complexity of

finding the globally optimal policy is the best argument for the use of local optimisation

approaches, and current and future research is improving the convergence rates for

policy-gradient methods.

Assuming policy-gradient methods are the best approach for large problems, how

should we implement memory? This thesis has advocated finite state controllers be-

cause of their ability to recall events indefinitely far into the past. However, learning

FSCs becomes more difficult as we increase the number of I-states. The best approach

may be to combine FSC methods with finite history methods, which is easily accom-

plished using policy-gradient algorithms. This is intuitively appealing since humans

make the distinction between detailed short-term memory, and long-term memory,

which only stores important information.

The biggest problem with policy-gradient approaches is the amount of experience

and time needed to converge to a good policy. Also, it is often impractical to allow

an agent to execute a random policy, as they must without any prior knowledge of the

domain. For example, consider learning to drive a car. We will not allow an agent to

control a real car until we are confident it can already drive without crashing. One

solution is to simulate the world on a computer for early training. This allows the use

of variance reduction methods such as fixed random sequences.

If we can construct a simulator, even an approximate one, we can construct a

factored-state model of the POMDP. Research on the impact of approximating MDPs

and POMDPs suggests that reasonable real-world behaviour is assured if the approx-

imation is done appropriately [Poupart and Boutilier, 2001, Guestrin et al., 2001b].

If algorithms such as GAMP can be extended to work with factored POMDP mod-

els then we will have a powerful tool for generating complex-domain agents quickly.

Once GAMP has been used to train an agent capable of driving reasonably well, the

agent can be fine-tuned using real-world experience. During the latter phase we still

wish to minimise the amount of experience needed. Thus, we implement methods such

as importance-sampling for off-policy training [Shelton, 2001b] and additive control

variates [Greensmith et al., 2002].

In summary , training for complex-domains should:

1. construct an agent with parameterised stochastic policy, parameterised stochastic

§12.2 Long-Term Future Research 185

FSC, and a finite history window;

2. add domain knowledge to the agent by coding rules that shape the output dis-

tributions of I-state transitions and actions;

3. construct an approximate factored-state model of the scenario;

4. use factored-state GAMP to generate gradients for training the agent to act in

the simulated domain;

5. use IState-GPOMDP or Exp-GPOMDP, along with variance reduction methods,

to fine tune the agent by interacting with the real world.

The world is a POMDP. By studying methods in the POMDP framework we gain

confidence in our ability to train machines to perform in any domain.

186 Conclusion

Glossary of Symbols

These are the symbols used consistently through the thesis. Some symbols may some-

times be subscripted with t, denoting the value of the symbol at time t.

S World state space of finite size |S| . 11

U Action space of finite size |U| . 11

Y Observation space of finite size |Y| . 11

i Current world state in S . 11

r(i) Reward for being in state i . 11

rt Scalar reward at time t . 11

ν(y|i) Probability of observation y given state i . 12

q(j|i, u) Probability of transition i→ j under action u 12

j Next world state . 12

u Action in U . 12

y Observation in Y . 12

µ(u|θ, h, y) Policy: conditional probability of action u ∈ U 14

nφ Number of parameters controlling internal state 14

nθ The number of policy parameters . 14

ω(h|φ, g, y) Finite state controller: conditional probability of I-state h ∈ G . 14

G Set of internal states of size |G| . 14

φ Internal state parameters in Rnφ . 14

θ Policy parameters in Rnθ . 14

g Current internal state in G . 14

h Next internal state in G . 14

Jβ(φ, θ, i, g) Discounted sum of rewards . 15

β Discount factor in [0, 1). 15

η(φ, θ, i, g) Long-term average reward . 15

χm(k) Indicator function . 17

ǫ A small value used as a convergence threshold 17

188 Glossary of Symbols

Q(i, u) discounted value of action u ∈ U in state i ∈ S 18

γ Step size for parameter updates . 18

b(i|ȳt) Belief state: conditional probability of world state i ∈ S 19

B Set of reachable belief states . 19

ȳ Vector of all past observations up to the current time 19

J̄β(b) Discounted value of belief state b ∈ B . 20

L Set of |S| dimensional hyperplanes. 20

v Number of state variables . 22

u∗(i) Action chosen deterministically for state i ∈ S or b ∈ B 23

P (φ, θ) Global-state Markov chain stochastic matrix 47

p(j, h|φ, θ, i, g) Entries of P . 47

c Index into the θ parameters c ∈ {1, . . . , nθ} . 48

l Index into the φ parameters l ∈ {1, . . . , nφ} . 48

R Maximum absolute reward . 49

π(φ, θ) Stationary distribution vector with |S| × |G| elements 49

π(i, g|φ, θ) Stationary distribution vector elements . 49

o Artificial neural network output vector . 52

e Column vector of |S| × |G| ones. 56

xN Order N Richardson approximation to [I − P + eπ ′]−1 r 59

τ Mixing time of the POMDP . 60

∆T Gradient estimate after T steps of a Monte-Carlo algorithm. . . . 71

z Eligibility trace vector of length nφ + nθ . 72

ξ(m|φξ, g) Emission probability of symbol m given I-state g ∈ G 79

αt(g|φ, ȳt−1) Conditional probability of I-state g ∈ G for Exp-GPOMDP 86

k Number of transitions out of any I-state g ∈ G for given y ∈ Y . 95

τ Delay between actions and rewards for IIR trace filter 117

an, bn IIR eligibility-trace filter co-efficients . 119

M Set of models (HMMs or phonemes) of size |M| models. 134

m A HMM or phoneme from M . 134

α̂t(h|φ, ȳt−1) Conditional probability of I-state h using Viterbi procedure. . . 147

θ∗ Gradient ascent search direction . 211

℘ Scalar quadratic penalty value. 215

Appendix A

Proofs

A.1 GAMP Proofs

This section contains the proofs for the Theorems stated in Chapter 4.

A.1.1 Proof of Theorem 2

For brevity, the following proof is for the θ derivatives in the case of a memory-less

agent — the FSC memory case is similar.

Proof. From (4.8) we see that

‖∇̂Nη −∇η‖∞ = max
θc

∣∣∣∣∣π
′ ∂P

∂θc

∞∑

n=N

Pnr

∣∣∣∣∣

≤ max
θc

∥∥π′
∥∥

1

∥∥∥∥∥
∞∑

n=N

∂P

∂θc
Pnr

∥∥∥∥∥
∞

, Hölder’s inequality

≤ max
θc

‖π′‖1

∞∑

n=N

∥∥∥∥
∂P

∂θc
Pnr

∥∥∥∥
∞

, Triangle inequality,

= max
θc

∞∑

n=N

∥∥∥∥
∂P

∂θc
Pnr

∥∥∥∥
∞

, ‖π′‖1 = 1. (A.1)

Now we concentrate on the n’th term of the summation. In the following expression

the vector ξn takes the place of P nr and ξnj is the j’th element of ξn. We now assume

all norms are L∞.

∥∥∥∥
∂P

∂θc
Pnr

∥∥∥∥ =

∥∥∥∥
∂P

∂θc
ξn

∥∥∥∥

=

∥∥∥∥∥∥
∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)ξnj

∥∥∥∥∥∥
. (A.2)

Now we show the computation for each element of ξn, defining it in terms of η and

the variation of ξn away from η. Let p
(n)
ij be the row i column j element from P n.

190 Proofs

Furthermore, let ∆n(i, j) := p
(n)
ij − πj, so that

ξni =
∑

j

p
(n)
ij rj

=
∑

j

(πj + (p
(n)
ij − πj))rj

=
∑

j

(πj + ∆n(i, j))rj

= η +
∑

j

∆n(i, j)rj .

Substituting back into Equation (A.2) we obtain

∥∥∥∥∥∥
∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

θc
q(j|i, u)ξnj

∥∥∥∥∥∥

=

∥∥∥∥∥∥
∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)

(
η +

∑

m

∆n(j,m)rm

)∥∥∥∥∥∥

=

∥∥∥∥∥∥
∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)η+

∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)

∑

m

∆n(j,m)rm

∥∥∥∥∥∥
.

The first term in the last line represents the gradient contribution assuming P n has

converged to π, which we now show is zero. The second term represents the error due

to the fact that P n is not exactly π

=

∥∥∥∥∥∥∥∥∥∥

η
∑

y

ν(y|i)
∑

u

∂µ(u|θ, y)

∂θc
µ(u|θ, y)

∑

j

q(j|i, u)

︸ ︷︷ ︸
=1

+

∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)

∑

m

∆n(j,m)rm

∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥
η
∑

y

ν(y|i)
∂

∂θc

∑

u

µ(u|θ, y)

︸ ︷︷ ︸
=0

+

∑

j,y,u

ν(y|i)
∂µ(u|θ, y)

∂θc
q(j|i, u)

∑

m

∆n(j,m)rm

∥∥∥∥∥∥
,

§A.1 GAMP Proofs 191

so we are left with only the second term in the norm. We compute the norm by taking

the maximum over i and taking the absolute values of ∂µ(u|θ,y)
∂θc

and
∑

m ∆n(j,m), which

are the only possibly negative quantities

≤ max
i

∑

y,u

ν(y|i)

∣∣∣∣
∂µ(u|θ, y)

∂θc

∣∣∣∣
∑

j

q(j|i, u)

∣∣∣∣∣
∑

m

∆n(j,m)rm

∣∣∣∣∣ .

Recall from Equation (A.1) that we need to take the maximum over all parameters θc.

We now perform this step by recalling that the maximum derivative with respect to

any parameter is bounded by U (see Assumption 3, Section 3.2)

max
θc

∞∑

n=N

max
i

∑

y,u

ν(y|i)

∣∣∣∣
∂µ(u|θ, y)

∂θc

∣∣∣∣
∑

j

q(j|i, u)

∣∣∣∣∣
∑

m

∆n(j,m)rm

∣∣∣∣∣

≤ U
∞∑

n=N

max
i

∑

y,u

ν(y|i)
∑

j

q(j|i, u)

∣∣∣∣∣
∑

m

∆n(j,m)rm

∣∣∣∣∣ .

Furthermore, the reward is bounded by R (see Assumption 2, Section 3)

≤ UR
∞∑

n=N

max
i

∑

y,u

ν(y|i)
∑

j

q(j|i, u)

∣∣∣∣∣
∑

m

∆n(j,m)

∣∣∣∣∣ . (A.3)

Now observe that

∣∣∣∣∣
∑

m

∆n(j,m)

∣∣∣∣∣ ≤
∑

m

|∆n(j,m)| , Triangle inequality

=
∑

m

|p
(n)
jm − πm|

= d(P n
j , π),

that is, the total variation distance from Definition 3. Returning to Equation (A.3)

and substituting the inequality above we obtain

≤ UR
∞∑

n=N

max
i

∑

y,u

ν(y|i)
∑

j

q(j|i, u)d(P n
j , π),

192 Proofs

which is further simplified by letting d̄(n) = maxj d(Pn
j , π), giving

≤ UR
∞∑

n=N

max
i

∑

y,u

ν(y|i)
∑

j

q(j|i, u)d̄(n)

= UR

∞∑

n=N

max
i
d̄(n)

∑

y,u

ν(y|i)
∑

j

q(j|i, u)

︸ ︷︷ ︸
=1

.

Next we eliminate all references to the state i, making the maxi operator redundant

= UR

∞∑

n=N

max
i
d̄(n)

∑

y,u

ν(y|i)

︸ ︷︷ ︸
=|U|

= UR|U|
∞∑

n=N

d̄(n).

We have shown that the resultant vector indexed by i is uniform and the norm is ob-

tained by taking any element i ∈ S. Now we make use of Definition 4 (see Section 4.3),

bounding d̄(n) in terms of the mixing time τ of the stochastic matrix P

≤ UR|U|
∞∑

n=N

exp(−
⌊n
τ

⌋
)

= UR|U|

∞∑

l=⌊N
τ ⌋+1

τ−1∑

k=0

exp(−l)

+

τ−1∑

k=N mod τ

exp(−

⌊
N

τ

⌋
)

 (A.4)

≤ UR|U|
∞∑

l=⌊N
τ ⌋

τ−1∑

k=0

exp(−l).

(A.5)

The last two lines re-write the bound so that the floor operator does not appear in the

summation. We arrive at Equation (A.4) by re-writing the first line as a sum of sums

where all terms in the second summation have constant l = ⌊n/τ⌋. The second term

of Equation (A.4) is the last part of the summation for which there are not exactly τ

terms. It is eliminated by noting that k = N mod τ ≤ τ and combining it with the

first sum by subtracting one from the initial summation index l. We now observe that

§A.1 GAMP Proofs 193

we are performing the first sum τ times, and apply a standard series convergence result

= UR|U|τ
∞∑

l=⌊N
τ
⌋

exp(−l)

= UR|U|τ
∞∑

l=⌊N
τ
⌋

(
1

exp(1)

)l

= UR|U|τ
exp(−⌊N

τ
⌋)

1− exp(−1)
.

A.1.2 Proof of Theorem 3

We begin with the following basic lemma.

Lemma 1. Let P be a stochastic matrix and r a column vector.

‖PN+1r‖∞ ≤ ‖P
Nr‖∞.

Proof. Let p
(N)
ij be the row i, column j entry of PN .

‖PN+1r‖∞ = ‖PPNr‖∞

= max
i

∣∣∣∣∣∣
∑

c

∑

j

picp
(N)
cj rj

∣∣∣∣∣∣

= max
i

∑

c

pic

∣∣∣∣∣∣
∑

j

p
(N)
cj rj

∣∣∣∣∣∣

≤ max
i

∑

c

pic‖P
Nr‖∞

= ‖PNr‖∞ max
i

∑

c

pic

︸ ︷︷ ︸
=1

= ‖PNr‖∞.

Proof of Theorem 3. This follows immediately from Lemma 1 and the observation that

194 Proofs

successive evaluations of Equation (4.11) give us for all N

‖xN+1 − xN‖∞ = ‖PN+1r‖

‖xN − xN−1‖∞ = ‖PNr‖.

A.2 IState-GPOMDP Proofs

This section contains proofs of the theorems presented in Chapter 5.

A.2.1 Proof of Theorem 5

The following proof is copied from the original GPOMDP paper [Baxter and Bartlett,

2001]. The proof follows through unchanged for the FSC version because we consider

P to the global-state matrix that combines the I-states and world-states into one MDP.

The first part of the proof has already been established in Section 4.1 so we review it

quickly.

Proof. Recall from Equation (4.6) that

∇η = π′(∇P)
[
I − (P − eπ′

)
]−1r.

A quick induction argument given by (4.5) shows that [P − eπ ′]n = Pn − eπ′ which,

given the assumptions of Section 3.2, converges to 0 as n → ∞. So by a classical

matrix theorem, [I − (P − eπ′)]−1 exists and is equal to
∑∞

n=0 [Pn − eπ′]. Observe

that (∇P)eπ′ = 0 so Equation (4.6) can be rewritten as

∇η = π′

[
∞∑

n=0

(∇P)P n

]
r. (A.6)

Now let β ∈ [0, 1) be a discount factor and consider the following modification to

Equation (A.6)

∇̂βη := π′

[
∞∑

n=0

(∇P)(βP)n

]
r. (A.7)

Since limβ→1∇βη = ∇η, and since (βP)n = βnPn → βneπ′ → 0, we can take ∇P back

§A.2 IState-GPOMDP Proofs 195

out of the sum and write

∇̂βη = π′(∇P)

[
∞∑

n=0

βnPn

]
r. (A.8)

But [
∑∞

n=0 β
nPn] r = Jβ , where Jβ = [Jβ(1, 1), . . . , Jβ(|S|, |G|)] is the vector of ex-

pected discounted rewards from each world/I-state pair, as defined by Equation (2.2).

This gives us the required expression

∇η = lim
β→1

π′(∇P)Jβ .

A.2.2 Proof of Theorem 4

This proof is an easy generalisation of Baxter and Bartlett [2001, Thm. 4].

Proof. Let {St} denote the random process corresponding to the world-state Markov

chain generated by P (φ, θ). Also, let {Gt} denote the random process corresponding to

the I-state Markov chain generated by P (φ, θ) (see Equation (3.1)). By Assumption 1

(see Section 3.2), {St, Gt} is asymptotically stationary, and we can write

π′(∇P)Jβ =
∑

i,j,g,h

π(i, g)∇p(j, h|φ, θ, i, g)Jβ (j, h), now apply (3.1)

=
∑

i,j,y,u,g,h

π(i, g)q(j|i, u)ν(y|i)

[
ω(h|φ, g, y)∇θµ(u|θ, h, y),∇φω(h|φ, g, y)µ(u|θ, h, y)

]
Jβ(j, h)

=
∑

i,j,y,u,g,h

π(i, g)q(j|i, u)ν(y|i)

[
ω(h|φ, g, y)

∇θµ(u|θ, h, y)

µ(u|θ, h, y)
µ(u|θ, h, y)Jβ(j, h),

∇φω(h|φ, g, y)

ω(h|φ, g, y)
ω(h|φ, g, y)µ(u|θ, h, y)Jβ (j, h)

]
.

There are two independent sets of gradient values for the φ and θ parameters. The

remainder of the proof follows the gradient w.r.t. φ, however, the proof w.r.t. θ follows

the same process. Dropping the ∇θ components, we can rewrite the last expression as

∑

i,j,y,u,g,h

Eφ,θχi(St)χj(St+1)χg(Gt)χh(Gt+1)χu(Ut)χy(Yt)
∇ω(h|φ, g, y)

ω(h|φ, g, y)
J(t+ 1), (A.9)

196 Proofs

where χi(X) denotes the indicator function (2.6), and the expectation is with respect to

the joint distribution of {St, St+1, Yt, Gt, Gt+1, Ut} when St is stationary and parame-

terised by φ, and θ. Here J(t+1) is the process governing the discounted infinite-horizon

reward for a single sample trajectory

J(t+ 1) =

∞∑

s=t+1

βs−t−1r(Ss), (A.10)

such that

Jβ(φ, θ, j, h) = Eφ,θ[J(t+ 1)|St+1 = j,Gt+1 = h]

follows from the boundedness of the rewards and Lebesgue’s dominated convergence

theorem. This matches our definition of Jβ from Equation (2.2).

We have assumed {St, Gt} is stationary and ergodic, thus the joint process Zt =

{St, St+1, Yt, Gt, Gt+1, Ut} is stationary and ergodic (because Yt is i.i.d. given St, Gt+1

is i.i.d. given Gt and Yt, Ut is i.i.d. given Gt+1 and Yt, and St+1 is i.i.d. given St and

Ut). Since Zt is obtained by taking a fixed function of {St, St+1, Yt, Gt, Gt+1, Ut}, it is

also stationary and ergodic (see [Breiman, 1966, Proposition 6.31]). As
∥∥∥∇ω(h|φ,g,y)

ω(h|φ,g,y)

∥∥∥ is

bounded by Assumption 4, from the Ergodic Theorem we obtain with probability 1

π′(∇φP)Jβ =

∑

i,j,y,u,g,h

lim
T→∞

1

T

T−1∑

t=0

χijuygh(St, St+1, Ut, Yt, Gt, Gt+1)
∇ω(h|φ, g, y)

ω(h|φ, g, y)
J(t+ 1)

= lim
T→∞

1

T

T−1∑

t=0

∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)
J(t+ 1)

= lim
T→∞

1

T

T−1∑

t=0

∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)

[
T∑

s=t+1

βs−t−1r(Ss, Gs) +

∞∑

s=T+1

βs−t−1r(Ss, Gs)

]
.

(A.11)

Concentrating on the second term in the right-hand-side of (A.11) we observe that

∥∥∥∥∥
1

T

T−1∑

t=0

∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)

∞∑

s=T+1

βs−t−1r(Ss, Gs)

∥∥∥∥∥

≤
1

T

T−1∑

t=0

∥∥∥∥
∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)

∥∥∥∥
∞∑

s=T+1

βs−t−1 |r(Ss, Gs)|

§A.3 Zero-Gradient Regions of FSC Agents 197

≤
BR

T

T−1∑

t=0

∞∑

s=T+1

βs−t−1

=
BR

T

T−1∑

t=0

βT−t

1− β

=
BRβ

(
1− βT

)

T (1− β)2

→ 0 as T →∞,

where R and B are the bounds on the magnitudes of the rewards and ‖∇ω/ω‖ from

Assumptions 2 and 4 (see Section 3.2). Hence,

π′(∇φP)Jβ = lim
T→∞

1

T

T−1∑

t=0

∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)

T∑

s=t+1

βs−t−1r(Ss, Gs), (A.12)

with probability 1. Unrolling the equation for ∆φ
T in the IState-GPOMDP algorithm

shows it is equal to

1

T

T−1∑

t=0

∇ω(gt+1|φ, gt, yt)

ω(gt+1|φ, gt, yt)

T∑

s=t+1

βs−t−1rs,

hence ∆φ
T → π′∇φPJβ w.p.1 as required. The same procedure is followed to show that

this is also true with respect to the parameters θ.

A.3 Zero-Gradient Regions of FSC Agents

To increase η by making use of an FSC, we require ‖∇φη‖ > 0. From Equation (4.8)

we have

∇η = π′

[
∞∑

n=0

(∇P)P n

]
r. (A.13)

We must select (φ, θ) to provide an initial FSC and policy prior to training. A sensible

choice for the FSC is one that makes the least assumptions about the task: a uniform

FSC where any observation y is equally likely to lead to any next I-state h, from any

current I-state g. Here we shall prove that this, and similarly sensible choices of initial

FSC, result in ‖∇φη‖ = 0.

198 Proofs

A.3.1 Conditions for Zero Gradients

Recall from Equation (3.1) that the transition probability matrix P (φ, θ) has dimension

|S||G| × |S||G| and the entries p(j, h|φ, θ, i, g)|i,j=1...|S|;g,h=1...|G| are given by

p(j, h|φ, θ, i, g) =
∑

y∈Y

∑

u∈U

ν(y|i)ω(h|φ, g, y)µ(u|θ, h, y)q(j|i, u). (A.14)

Also, r = [r(1, 1), r(1, 2), . . . , r(|S|, |G|)]′ is a column vector of the rewards received for

being in state (i, g). For FSCs r(i, g) := r(i).

For the remainder of this section we will abuse notation to allow ω(h|φ, g, y) =

ω(h|φ, y) to mean ω(h|φ, g, y) = ω(h|φ, g′, y) ∀g, g′, y, h for the specified choice of φ

and θ. In words, for these choices of φ and θ, ω(h|φ, y) is independent of the choice of

I-state g. When taking the gradient of these functions we will reintroduce the I-state

dependence since the gradient may vary with the I-state even when the value does not.

Lemma 2. If φ and θ are chosen such that ω(h|φ, g, y) = ω(h|φ, y) ∀g, h, y and

µ(u|θ, h, y) = µ(u|θ, y) ∀h, u, y, then (∇φP)P = [0].

Proof. We start by re-writing Equation (3.1), taking into account the simplified distri-

butions

p(j, h|φ, θ, i, g) =
∑

y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|i, u). (A.15)

Similarly we can write down the simplified gradient of the l’th parameter of φ, denoted

φl

∂p(j, h|φ, θ, i, g)

∂φl
=

∂

∂φl

[∑

y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|i, u)

]

=
∑

y,u

ν(y|i)
∂ω(h|φ, g, y)

∂φl
µ(u|θ, y)q(j|i, u).

Now, the (i, g)(j, h)’th element of (∂P
∂φl

)P is the dot product of row (i, g) of ∂P
∂φl

with

§A.3 Zero-Gradient Regions of FSC Agents 199

column (j, h) of P . Here (k, c̄) defines which dot product element we are computing

(
∂P

∂φl

P

)

(i,g)(j,h)

=
∑

k∈S

∑

c̄∈G

∂p(i, g|θ, φ, k, c̄)

∂φl

p(j, h|φ, θ, k, c̄)

=
∑

k∈S

∑

c̄∈G

(∑

y,u

ν(y|i)
∂ω(c̄|φ, g, y)

∂φl
µ(u|θ, y)q(k|i, u)

)

(∑

y,u

ν(y|i)ω(h|φ, y)µ(u|θ, y)q(j|k, u)

)
.

From Equation (A.15) we see that p(j, h|φ, θ, k, c̄) does not depend on c̄, so we de-

fine p(j, h|φ, θ, k, c̄) := p(j, h|θ, φ, k) and continue by moving the sum over c̄ inside
∂p(i,g|θ,φ,k,c̄)

∂φl

=
∑

k∈S

(∑

y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∑

c∈G

∂ω(c̄|φ, g, y)

∂φl

)
p(j, h|θ, φ, k)

=
∑

k∈S

(∑

y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∂

∂φl

∑

c∈G

ω(c̄|φ, g, y)

)
p(j, h|θ, φ, k)

=
∑

k∈S

(∑

y,u

ν(y|i)µ(u|θ, y)q(k|i, u)
∂

∂φl
1

)
p(j, h|θ, φ, k)

=
∑

k∈S

(∑

y,u

ν(y|i)µ(u|θ, y)q(k|i, u)0

)
p(j, h|θ, φ, k)

= [0].

Lemma 3. Under the same conditions as Lemma 2, (∇φP)r = 0.

Proof. The (i, g)’th element of (∂P
∂φl

)r is the dot product of row (i, g) of ∂P
∂φl

with r. By

definition r(l, c̄) = r(l) is independent of c̄, giving us

(
∂P

∂φl
r

)

(i,g)

=
∑

k∈S

∑

c̄∈G

(∑

y,u

ν(y|i)
∂ω(c̄|φ, g, y)

∂φl
µ(u|θ, y)q(k|i, u)

)
r(l).

Now we move the sum over c̄ inside ∂p(i,g|θ,φ,k,c̄)
∂φl

. The rest of the proof is the same as

Lemma 2.

Theorem 10. If we choose θ and φ such that ω(h|φ, g, y) = ω(h|φ, g ′, y) ∀h, g, g′, y

and µ(u|θ, h, y) = µ(u|θ, h′, y) ∀u, h, h′, y then ∇φη = [0].

200 Proofs

Proof. We expand Equation (A.13) for gradient element φl by taking out the first term

of the summation, and applying Lemmas 2 and 3

∂η

∂φl

= π′

[
∂P

∂φl

+
∞∑

n=1

∂P

∂φl

Pn

]
r

= π′
∂P

∂φl
r + π′

[
∞∑

n=1

∂P

∂φl
Pn

]
r

= π′[0] + π′

[
∞∑

n=1

∂P

∂φl
PPn−1

]
r

= π′

[
∞∑

n=1

[0]P n−1

]
r

= π′[0]r

= 0.

A.3.2 Conditions for Perpetual Zero Gradient

So far we have not shown any results concerning ∇θη. It is possible that ‖∇θη‖ > 0

even under conditions for Theorem 10. There are at least three situations in which this

can happen:

1. In some POMDPs it is possible to increase η by changing the stationary dis-

tribution of actions, that is, emitting some actions more frequently than others

regardless of the observation. If this is possible then ‖∇θη‖ > 0 is possible.

2. If the µ process is a function of y, then µ(u|θ, h, y) can represent the optimal

reactive policy, ignoring the I-state h.

3. If we choose φ such that ω(h|φ, g, y) = ω(h|φ, y) 6= 1/|G|, then h tells us something

about y even though it tells us nothing about the previous I-state, g. In this case

ω(h|φ, y) is a partial observation hiding process in the same way that ν(y|i) is

a partial state hiding process. Because h is still a useful indicator of state, ∇θη

may have different values for parameters related to different I-states, indicating

that internal state can help to maximise η. A single iteration of gradient ascent

may therefore cause the condition µ(u|θ, h, y) = µ(u|θ, y) of Theorem 10 to be

violated, such that the next computation of the gradient results in ‖∇φη‖ > 0.

The last case is interesting because it allows us to initialise µ(u|θ, h, y) = µ(u|θ, y)

and ω(h|φ, g, y) = ω(h|φ, y) and possibly still learn to use I-states despite Theorem 10

§A.3 Zero-Gradient Regions of FSC Agents 201

telling us that these initialisations are sufficient for ‖∇φη‖ = 0. We have verified that

this can occur in practice for the Load/Unload scenario.

Whether it can happen depends on the choice of parameterisation for µ(u|θ, h, y).

We will now show that for µ(u|θ, h, y) parameterised by a real-valued table and a soft-

max output distribution (see Section 3.4.1), and under slightly tighter initialisation

conditions than Theorem 10, that it is not possible for these conditions to be violated.

Consequently, ‖∇φη‖ = 0 from one gradient ascent iteration to another, resulting in

perpetual failure to learn to use I-states.

Lemma 4. Set φ such that ω(h|φ, g, y) = 1/|G| and choose some µ(u|θ, h, y) = µ(u|θ, y)

∀h, g, y, u. Then ∇θη is independent of the I-state.

Proof. If we rewrite Equation (3.1) using the simplified definitions we find there is no

dependence on the I-state so we can define p(j, h|φ, θ, k, c̄) := p(j|φ, θ, k). The gradient

of Equation (3.1) w.r.t. the φ parameters is

∂p(j, h|φ, θ, i, g)

∂θc
=

∂

∂θc

[∑

y,u

ν(y|i)
1

|G|

∂µ(u|θ, h, y)

∂θc
q(j|i, u)

]

=
1

|G|

∑

y,u

ν(y|i)
∂µ(u|θ, h, y)

∂θc
q(j|i, u).

Now even if∇θµ(u|θ, h, y) is generally a function of h,∇θη is independent of h under the

conditions given. This is because the dependence of the gradient w.r.t. any parameter

θc on the I-state h is always marginalised out during the dot-product

(
∂P

∂θc
P

)

(i,g)(j,h)

=
∑

k∈S

∑

c̄∈G

(
1

|G|

∑

u,y

ν(y|i)q(k|i, u)
∂µ(u|θ, c̄, y)

∂θc

)
p(j|φ, θ, k)

=
∑

k∈S

(
1

|G|

∑

u,y

ν(y|i)q(k|i, u)
∑

c̄∈G

∂µ(u|θ, c̄, y)

∂θc

)
p(j|φ, θ, k)

At this point we observe that (∂P
∂θc

)P is completely independent of the internal state ∀c.

Because the rewards are independent of the internal state it follows that (∂P
∂θc

)r is also

independent of the internal state. Furthermore, if we can show that π is independent

of the internal state then it follows from Equation (A.13) that ∇θη is independent of

the internal state.

Since we have defined ω(h|φ, g, y) = 1/|G|, and with the further assumption that

the initial distribution on I-states is π(g) = 1/|G|, then the probability of being in

any I-state at any time is 1/|G|. This allows us to state π(i, g) = π(i)
|G| . Therefore, all

components of Equation (A.13) are independent of the current internal state and thus

∇θη is independent of the internal state.

202 Proofs

After estimating the gradient we make a step ∆θ := γ∇θη, where γ is a positive

step size. Whether or not the conditions of Lemma 4 lead to the perpetual 0 gradient

situation depends on whether µ(u|θ + ∆θ, h, y) alters the conditions for Lemma 4.

These conditions can be broken even when ∇θη is independent of the I-state in the

way Lemma 4 defines.

So we need to prove µ(u|θ + ∆θ, h, y) = µ(u|θ + ∆θ, y) for all h for the param-

eterisation of µ(u|θ, h, y) that we are interested in. We start by showing this is true

for a lookup table indexed by (g, y) and that provides an R|U| vector which is turned

into an action distribution using a soft-max function (3.8) (equivalently a Boltzmann

function with a temperature co-efficient of 1.0). Since the use of the soft-max distri-

bution is a common choice for translating real number vectors into distributions, the

following proof forms a basis for showing many common choices of µ(u|θ, h, y) can lead

to perpetual ‖∇φη = 0‖ situations.

Lemma 5. Let x, y ∈ R|U| and u ∈ U where U = {1, . . . , |U|}. Define d(u) : U 7→ R.

Assume
exp(xu)∑

u′∈U exp(xu′)
=

exp(yu)∑
u′∈U exp(yu′)

∀u, (A.16)

then
exp(xu + d(u))∑

u′∈U exp(xu′ + d(u′))
=

exp(yu + d(u))∑
u′∈U exp(yu′ + d(u′))

∀u. (A.17)

Proof. For (A.16) to be true, the xu’s and yu’s must differ by at most some constant

cu. This can be shown with a short proof by contradiction starting with xu = yu + cu

and assuming ∃cu′ 6= cu for which the equality holds. This fact and some algebra give

us the result

exp(xu + d(u))∑
u′ exp(x′u + d(u′))

=
exp(c) exp(xu + d(u))∑
u′ exp(c) exp(x′u + d(u′))

=
exp(xu + c+ d(u))∑
u′ exp(x′u + c+ d(u′))

=
exp(yu + d(u))∑
u′ exp(y′u + d(u′))

This lemma tells us that if we have two equal soft-max distributions generated by

the possibly different vectors x and y, then adding a quantity independent of x or y

(but possibly dependent on the element index) to both vectors results in distributions

§A.3 Zero-Gradient Regions of FSC Agents 203

that remain equal. This is useful because we wish to show that when we have two

vectors generated by different I-states, which result in the same output distribution,

then adding a quantity independent of the I-state does not change the equality of the

distributions. Also unchanged is the independence of the distributions with respect to

the I-state conditioning.

Lemma 6. For µ(u|θ, h, y) parameterised by a lookup-table with soft-max output dis-

tribution, and under the conditions of Lemma 4, then µ(u|θ+∆θ, h, y) = µ(u|θ+∆θ, y)

implies ‖∇φη‖ = 0 always.

Proof. Let xu = θuhy and yu = θuh̄y. If we set

d(u) = γ
∂η

∂θuhy
,

then the left hand side of (A.17) is equal to µ(u|θ + ∆θ, h, y). If we set

d(u) = γ
∂η

∂θuh̄y

,

then the right hand side gives us µ(u|θ + ∆θ, h̄, y). However, Lemma 5 requires d(u)

be the same on the left and right sides, which is precisely what Lemma 4 tells us is the

case, so

d(u) = γ
∂η

∂θuhy
= γ

∂η

∂θuh̄y

.

Lemma 5 can be applied for all choices of h and h̄, resulting in

µ(u|θ + ∆θ, h, y) = µ(u|θ + ∆θ, h̄, y) ∀h, h̄

= µ(u|θ + ∆θ, y).

In summary, Lemma 6 tells us that if we meet the necessary conditions for Lemma 4,

and we parameterise µ(u|θ, h, y) using a lookup-table and the soft-max function, then

‖∇φη‖ = 0 from one step of the IState-GPOMDP algorithm to another. Thus, by

induction, we have ‖∇φη‖ = 0 always.

Because we have based the proof on the value of the true gradient, the result holds

for any algorithm that estimates the gradient. This includes IState-GPOMDP and I-

state Williams’ REINFORCE [Peshkin et al., 1999].

The analysis above presents a method for avoiding 0 gradient regions of parameter

space. We simply select initial controllers that violate the conditions of Theorem 10.

By making the set of future states reachable from I-state g a subset of G, and by

204 Proofs

ensuring that the subset we can reach is different for all g and y, we neatly avoid

the problem. At the same time, using subsets increases computational efficiency by

introducing sparseness. This allows us to use large I-state spaces without slowing

down each step of the computation. However, large I-state spaces will require more

steps.

Lemma 4 assumes a lookup-table controller with a soft-max output distribution.

The following generalises the same argument to arbitrary policies with soft-max output

distributions.

Theorem 11. Let f(θ, h, y, u) : Rnθ × G × Y × U 7→ R. Then using a soft-max output

distribution we can write

µ(u|θ, h, y) =
exp(f(θ, h, y, u))∑

u′∈U exp(f(θ, h, y, u′))
.

If µ(u|θ, h, y) fulfills the conditions of Lemma 4, and if we can write µ(u|θ, h, y) after

a step in the gradient direction as

µ(u|θ, h, y) =
exp(f(θ, h, y, u) + f(∆θ, y, u))∑

u′∈U exp(f(φ, h, y, u′) + f(∆θ, y, u′))
,

then ‖∇φη‖ = 0 always.

Proof. The theorem is a generalisation of Lemma 6. By allowing an arbitrary function

f(θ, h, y, u) in place of θuhy, and if a parameter step of ∆θ is separable so that

f(θ + ∆θ, h, y, u) = f(θ, h, y, u) + f(∆θ, y, u),

then the same argument as Lemma 6 holds. We require the second term to be inde-

pendent of h so that it takes the place of d(u) in Lemma 6.

Using Theorem 11 we can easily show that 0 gradient problems exist for linear

controllers

f(θ, h, y, u) =

nf∑

c=1

ψc(h, y)θcu.

that is, a controller with nf features {ψ1(h, y), . . . , ψnf
(h, y)} and parameters θcu where

c = 1, . . . , nf ;u = 1, . . . , |U|. Linear controllers are separable as required by the corol-

lary.

One simple choice of |Y|+ nf + 1 features we used in early experiments results is

f(θ, h, y, u) = θhu + θyu + θu,

§A.4 FIR Trace Filter Proofs 205

and the change in value to f(θ, h, y, u) after a step is

f(∆θ, h, y, u) = γ

(
∂η

θhu

+
∂η

θyu
+
∂η

θu

)
.

Lemma 4 tells us this is equal to f(∆θ, h′, y, u) for all h, h′ and appropriate choice of

initial θ. So all the conditions of Theorem 11 are satisfied with appropriate choices of

initial θ and φ, implying ‖∇φη‖ = 0 always.

We can also show a simple example that demonstrates that not all linear controllers

are subject to the 0 gradient regions of parameter space we have analysed.1 Let there

be only 1 feature ψ1(h, y) = h. If we set ω(h|φ, g, y) = 1/|G| and θ = 0 then all the

conditions of Theorem 10 are met. However, the change in f(θ, h, y, u) is

f(θ1u, h, y, u) = h
∂η

θ1u

which is not independent of h as required by Theorem 11.

As a final linear example, we retrieve Theorem 6 from Corollary 11 by defining

nf = |G||Y| input features:

ψh̄ȳ(h, y) = χh̄(h)χȳ(y),

which is simply a binary input for every possible combination of observation and in-

ternal state.

A.4 FIR Trace Filter Proofs

This section provides proofs of the theorems stated in Section 9.1.

A.4.1 Proof of Theorem 8

The following proof is brief at it is a slightly modified version of the proof of Theorem 5

in Appendix A.2.1.

Proof. The filtered reward is defined as

Jf (φ, θ, i, g) := Eφ,θ

|b|−1∑

n=0

bnr(in, gn)|i0 = i, g0 = g

 ,

1Avoiding the conditions of Theorem 10 does not mean we will avoid all 0 gradient regions. The
use of the soft-max function means the gradient approaches 0 in the limit as f(θ, h, y, u) → ∞. Other
0 gradient situations may exist and are a well known problem of gradient optimisation.

206 Proofs

where the expectation is over all world/I-state trajectories induced by the parameter

settings. The filter is defined by the vector of taps b, where the n′th tap is given by

bn−1, so that the first element of b is given index 0. The number of taps |b| is possibly

infinite so any FIR or IIR filter can be represented by Jf . We will now simplify the

notation by letting the state i index the global state, the cross product of the world

state and I-state. Having an explicit I-state and global state will not change the result.

We may then write

Jf (i) = b0r(i0) + b1
∑

i1∈S

P (i1|θ, φ, i0)r(i1)

+ b2
∑

i1

∑

i2

P (i1|θ, φ, i0)P (i2|φ, θ, i1)r(i2)

...

+ b|b|−1

∑

i1

· · ·
∑

i|b|−1

P (i1|φ, θ, i0) · · ·P (i|b|−1|φ, θ, i|b|−2)r(i|b|−1),

where P is defined by Equation (3.1). This can be neatly re-written in matrix form

where Jf is now a vector of length |S| representing the filtered reward starting from

each state i. As usual, we also make the dependencies on φ and θ implicit, obtaining

Jf =

|b|−1∑

n=0

bnP
n

 r. (A.18)

From the balance equations π′P = π′ we have

∇π′P = ∇π′

(∇π′)P + π′(∇P) = ∇π′

(∇π′)(I − P) = π′(∇P).

Recall from Section 4.1 and particularly Equation (4.3), that the matrix (I −P) is not

invertible, so we condition it using (I − P + eπ ′) where e is a column vector of 1’s of

length |S||G|. This gives

(∇π′) = π′(∇P)(I − P + eπ′)−1,

which we substitute into the gradient of the long-term average reward ∇η = (∇π ′)r to

§A.4 FIR Trace Filter Proofs 207

obtain

∇η = π′(∇P)(I − P + eπ)−1r

= π′(∇P)

∞∑

n=0

(P − eπ)nr

= π′(∇P)

∞∑

n=0

Pnr, from (4.8). (A.19)

Since we have assumed |b| → ∞ and bn = 1, ∀n = 0, . . . ,∞, we immediately observe

that (A.18) is the same as the summation in (A.19), giving us the desired result

(∇π′) = π′(∇P)Jf .

A.4.2 Proof of Theorem 7

The proof is essentially the same as the proof of Theorem 4, given in more detail in

Appendix A.2.2.

Proof. We replace Jβ with Jf and thus J(t + 1) is the process governing the filtered

reward

J(t+ 1) =

t+|b|∑

s=t+1

bs−t−1r(Ss, Gs),

such that

Jf (j, h) = E[J(t + 1)|St+1 = j,Gt+1 = h]

follows from the boundedness of the rewards and Lebesgue’s dominated convergence

theorem.

Because J(t + 1) is a finite sum we avoid having the further approximation intro-

duced by eliminating the second term in Equation (A.11). In place of (A.11) we have

for the gradient w.r.t. φ

π′(∇φP)Jf = lim
T→∞

1

T

T−1∑

t=0

∇ω(Gt+1|φ,Gt, Yt)

ω(Gt+1|φ,Gt, Yt)

t+|b|∑

s=t+1

bs−t−1r(Ss, Gs),

with probability one. Now replacing line 7 of Algorithm 2 with

zt+1 =

|b|−1∑

n=0

bn
∇ω(gt+1−n|φ, gt−n, yt−n)

ω(gt+1−n|φ, gt−n, yt−n)
,

208 Proofs

and unrolling the equation for ∆φ
T of the modified algorithm shows it is equal to

1

T

T−1∑

t=0

∇ω(gt+1|φ, gt, yt)

ω(gt+1|φ, gt, yt)

t+|b|∑

s=t+1

bs−t−1r(is, gs),

hence ∆φ
T → π′(∇φP)Jf w.p.1 as required. The same procedure is followed to show

that this is also true with respect to the parameters θ.

The IIR style filter given by the trace update of Equation (9.1) is an efficient

implementation of infinite versions of the FIR filters presented in this proof, allowing

a finite number of filter taps to produce infinite impulse responses. The IIR update

does not expand the space of filters covered by this proof.

A.5 Proof of Theorem 9

The following proof of Theorem 9 demonstrates that importance sampling cannot be

immediately applied to IState-GPOMDP in the style used by Meuleau et al. [2000].

Proof. We begin by summarising the first part of the proof of Theorem 4 (see Ap-

pendix A.2.2). To make the proof clearer we do not include the FSC ω(h|φ, g, y), that

is, we assume memory-less IState-GPOMDP. Thus, the proof starts in the same way as

the original proof of the GPOMDP algorithm [Baxter and Bartlett, 2001]

π′(∇P)Jβ =
∑

i,j

Jβ(j)π(i|θ)∇p(j|θ, i)

=
∑

i,j

Jβ(j)π(i|θ)∇
∑

y,u

ν(y|i)µ(u|θ, y)q(j|i, u) , from (3.1)

=
∑

i,j,y,u

Jβ(j)π(i|θ)ν(y|i)∇µ(u|θ, y)q(j|i, u)

=
∑

i,j,y,u

Jβ(j)
∇µ(u|θ, y)

µ(u|θ, y)
µ(u|θ, y)π(i|θ)ν(y|i)q(j|i, u)

= ESt,Yt,Ut,St+1 [Jβ(St+1)∇ lnµ(Ut|θ, Yt)] (A.20)

So far nothing has changed from the IState-GPOMDP proof (except for the absence

of the memory represented by ω(h|φ, g, y)). Now we introduce importance sampling.

Suppose w(X) is the p.d.f. for the discrete distribution of the random variable X

and s(X ′) is the known p.d.f. for the discrete distribution of the random variable X ′.

Importance sampling tells us [Glynn, 1996] that we can compute the expectation of

§A.5 Proof of Theorem 9 209

f(X)∇ lnw(X) by sampling X ′

EX [f(x)∇ lnw(x)] =
∑

x∈X

f(x)(∇ lnw(x))w(x) (A.21)

=
∑

x∈X

f(x)(∇ lnw(x))
w(x)

s(x)
s(x)

= EX′

[
f(x)(∇ lnw(x))

w(x)

s(x)

]
.

The result is that we can estimate the expectation according to the distribution X by

sampling from the distribution X ′. Now we apply this principle to Equation (A.20) us-

ing w(i, y, u, j) = π(i|θ)ν(y|i)µ(u|θ, y)q(j|i, u), the probability of moving from state i to

j after observation y and choosing action u, and s(i, y, u, j) = π̃(i)ν(y|i)µ̃(u|y)q(j|i, u),

which is the probability under the distribution set up by the teacher. Starting with

Equation (A.20) and following exactly the same procedure as we did for Equation (A.21),

we obtain

π′(∇P)Jβ =
∑

i,y,u,j

Jβ(j)
∇µ(u|θ, y)

µ(u|θ, y)

π(i|θ)ν(y|i)µ(u|θ, y)q(j|i, u)

π̃(i)ν(y|i)µ̃(u|y)q(j|i, u)
π̃(i)ν(y|i)µ̃(u|y)q(j|i, u)

=
∑

i,y,u,j

Jβ(j)(∇µ(u|θ, y))
π(i|θ)

π̃(i)

1

µ̃(u|y)
π̃(i)ν(y|i)µ̃(u|y)q(j|i, u)

=
∑

i,y,u,j

Jβ(j)
∇µ(u|θ, y)

µ̃(u|y)

π(i|θ)

π̃(i)
π̃(i)ν(y|i)µ̃(u|y)q(j|i, u) (A.22)

=
∑

i,y,u,j

Eφ,θχi(S̃t)χy(Ỹt)χu(Ũt)χj(S̃t+1)J(t + 1)
∇µ(Ut|θ, Yt)

µ̃(Ut|Yt)

π(St|θ)

π̃(St)
(A.23)

The rest of the proof follows through as it does in Appendix A.2.2. The critical point

is that we failed to eliminate references to the stationary distribution as we did in the

IState-GPOMDP proof, necessitating some method for estimating the ratio π(i|θ)
π̃(i) . The

same situation holds true when memory is added in the form of an FSC, with the slight

complication that the stationary distribution must also be calculated over the I-states.

210 Proofs

Appendix B

Gradient Ascent Methods

This appendix provides details of the gradient ascent method we use to maximise the

goal function of all the gradient based algorithms in this thesis, including the conjugate-

gradient algorithm, the GSEARCH algorithm, and the use of quadratic penalties.

B.1 The GSEARCH Algorithm

Once a gradient estimate has been obtained the conjugate-gradient algorithm Conj-

Grad [Fine, 1999, §5.5.2] computes the search direction θ∗. For brevity, this Appendix

assumes that θ is the set of parameters for the entire system, that is, it encompasses

both the φ and θ parameters used throughout the thesis. The conjugate-gradient al-

gorithm (Algorithm 5) ensures that successive search directions are orthogonal. This

helps avoid problems such as successive parameter updates oscillating between opposite

walls of a ridge in η. It is preferable to move in an uphill direction along the ridge top.

The parameters are updated using θt+1 = θt + γθ∗ where γ is a positive step size.

A line search is often used to chose γ, trying a sequence of exponentially increasing

step sizes {γ1, γ2, . . . }, attempting to bracket the maximum value of η in the search

direction. After bracketing the maximum, quadratic interpolation is used to compute

a final value for γ. Unfortunately, our Monte-Carlo estimates of η for each γs are noisy.

This can result in the failure to detect the true maximum in the search direction.

A more robust line search procedure by Baxter et al. [2001a] is GSEARCH. This

procedure is given by Algorithm 6. Instead of estimating the value η at each γs, we

compute local gradient estimates ∇η(θt + θ∗γs). Let ǫ be the machine tolerance for 0.

While

sgn(∇η(θt + θ∗γs) · θ
∗) > ǫ,

we have not yet bracketed the maximum. This equation checks that the local gradient

and the search direction θ∗ are within 90◦ of each other, and hence point in roughly

the same direction. Once they are further than 90◦ apart, the sign of the dot product

212 Gradient Ascent Methods

Algorithm 5 ConjGrad

1: Given:

• ∇ : Rnφ+nθ → Rnφ+nθ : a (possibly noisy and biased) estimate of the gradient
of the objective function to be maximised.

• Starting parameters θ ∈ Rnφ+nθ (set to maximum on return).

• Initial step size γ0 > 0.

• Gradient resolution ǫ.

2: g = θ∗ = ∇(θ)
3: while ‖g‖2 ≥ ǫ do
4: θ ← GSEARCH(∇, θ, θ∗, γ0, ǫ)
5: ∆ = ∇(θ)
6: ψ = (∆− g) ·∆/‖g‖2

7: θ∗ = ∆ + ψθ∗

8: if θ∗ ·∆ < 0 then
9: θ∗ = ∆

10: end if
11: g = ∆
12: end while
13: return θ

changes, indicating that the local gradient estimate is pointing downhill (assuming the

noisy search direction pointed uphill). Thus, all we need to do is check for a flip in the

sign of the dot product which indicates that we have just stepped past a maximum.

To understand why GSEARCH is more robust than value bracketing, begin by pic-

turing a plot of noisy estimates of a quadratic region of η(θ) around the true maximum.

Also, picture a plot of noisy estimates of the linear gradient ∇η(θ). An error in value

bracketing could occur anywhere along the plot of the noisy value function, but errors

using the sign of the gradient can only occur where zero-crossings of the gradient plot

occur, which are only near the true maximum. GSEARCH can also be understood by

noting that if the gradient magnitude is stronger than the noise, the noise has little

effect; but noise in the value function is bad regardless of the value magnitude. It is

possible to break such arguments, for instance, ∇η(θ) estimates could be noisier than

η(θ) estimates. However, in practice GSEARCH usually performs better than using

value bracketing. A more detailed justification, including the plots we mentioned, is

given by Baxter et al. [2001a].

After finding two points γs and γs+1 that bracket a maximum, we perform quadratic

interpolation between the two points to try and find the optimal step size γ. The

quadratic interpolation is given by lines 28–31 of Algorithm 6, which appears linear

§B.2 Quadratic Penalties 213

because p− and p+ are dot products of the search direction θ∗ with the local gradient

∇(θ). This interpolation scheme assumes that at the local level we are solving a

quadratic optimisation problem, similar to applying a step of Newton’s method.

Because GSEARCH is reasonably robust, we can tolerate a poor local gradient esti-

mate of ∇η(θt + θ∗γs). This allows the search to be performed with fewer simulation

steps than a value based search. Empirically we found that the sign calculation is

reliable using as few as a tenth of the number of steps used to estimate ∇η(θt).

A useful check at the start of each line search is to ensure

sgn(∇η(θt) · θ
∗) > ǫ,

otherwise the search direction is pointing downhill compared to the local gradient

estimate. If this check fails after one or more iterations of the line search it means

that θ∗ may need to be reset to last full estimate of ∇η. If the check fails on the first

iteration, or after setting θ∗ = ∇η, it indicates that the gradient estimates have high

variance. If this occurs the discount factor β and the estimation time T need to be

re-tuned.

When the estimated gradients drop below a threshold ǫ, or the line search fails

twice in a row, we declare an end to training.

B.2 Quadratic Penalties

Gradient estimates early in learning often point to a poor local maximum. Because the

line search attempts to maximise η(θt+γθ
∗) in one iteration, it is easy to end up caught

in such a local maximum. Furthermore, for output distribution functions such as the

soft-max function (3.8) the gradient tends to zero as the magnitude of the parameters

tends to infinity, so if the line search steps too far in any direction, we will saturate

the soft-max function and gradient ascent will terminate with a small gradient. We

can avoid these local maxima by adding a constraint term to the search direction that

penalises large parameter values. The constraint keeps decision boundaries close to

the origin in parameter space. Intuitively, the penalty slows down the gradient ascent,

giving it a chance to recover from errors.

For example, in the multi-agent problem of Section 4.5 the initial gradient direction

tells the agents to move forward when the sensors fail. Without a penalty term the

line search pushes the parameters for this situation to values that result in near 0

gradients during subsequent ∇η estimations. The end result is that the agents never

learn the optimal behaviour, which is to wait when their sensors fail. However, if we

restrict the initial parameter growth, the agents have a chance to correct their policies.

214 Gradient Ascent Methods

Algorithm 6 GSEARCH

1: Given:

• ∇ : Rnφ+nθ → Rnφ+nθ : a (possibly noisy and biased) estimate of the gradient
of the objective function.

• Starting parameters θ0 ∈ Rnφ+nθ (set to maximum on return).

• Search direction θ∗ ∈ Rnφ+nθ with ∇(θ0) · ∇(θ∗) > 0.

• Initial step size γ0 > 0.

• Inner product resolution ǫ >= 0.

2: γ = γ0

3: θ = θ0 + γθ∗

4: ∆ = ∇(θ)
5: if ∆ · θ∗ < 0 then
6: Step back to bracket the maximum:
7: repeat
8: γ+ = γ
9: p+ = ∆ · θ∗

10: γ = γ/2
11: θ = θ0 + γθ∗

12: ∆ = ∇(θ)
13: until ∆ · θ∗ > −ǫ
14: γ− = γ
15: p− = ∆ · θ∗

16: else
17: Step forward to bracket the maximum:
18: repeat
19: γ− = γ
20: p− = ∆ · θ∗

21: γ = 2γ
22: θ = θ0 + γθ∗

23: ∆ = ∇(θ)
24: until ∆ · θ∗ < ǫ
25: γ+ = γ
26: p+ = ∆ · θ∗

27: end if
28: if p− > 0 and p+ < 0 then
29: γ = γ− − p−

γ+−γ−
p+−p−

30: else
31: γ = γ−+γ+

2
32: end if
33: return θ0 = θ0 + γθ∗

§B.2 Quadratic Penalties 215

An alternative intuition arises by observing that large parameter values result in near

deterministic policies, reducing exploration during simulation. If an agent does not

experience the preferred policy, it cannot learn it.

We use a quadratic penalty term. Using quadratic penalties to meet inequality

constraints during stochastic optimisation is covered in detail in Kushner and Clark

[1978, §5.2]. Let ~℘ ∈ [0,∞)nθ be a vector of penalties, with ℘c giving the penalty for

parameter θc. We define the penalised η as

η̄ : = η −

nθ∑

c=1

℘cθ
2
c

2

∂η̄

θc
=
∂η

θc
− ℘cθc.

In practice we use the same scalar penalty ℘ for all parameters, though in some situa-

tions, such as having independent sets of parameters θ and φ, non-uniform ~℘ could aid

convergence.

To eventually settle into a maximum we reduce the penalty over time. We halve the

penalty if η̄ fails to increase by more than 2% over 3 or more iterations of GSEARCH.

216 Gradient Ascent Methods

Appendix C

Variance Reduction Continued

This appendix contains details of the IGPOMDP-SARSA algorithm along with prelimi-

nary experiments. It also provides details of why using fixed random number sequences

can introduce over-fitting effects.

C.1 GPOMDP-SARSA Hybrid Details

In this section we briefly investigate using SARSA(λ) to learn the policy µ(u|θ, h, y)

and IState-GPOMDP to learn the FSC ω(h|φ, g, y). This idea is motivated by two

observations. Firstly, ω(h|φ, g, y) can be considered a small and fully observable MDP,

rendering it feasible to apply value based algorithms such as SARSA(λ) [Sutton and

Barto, 1998]. Secondly, if our value based approach learns a successful policy before

the FSC has converged, the improved actions will cause more relevant areas of the

world-state space to be explored, improving the FSC more rapidly than if a trajectory

based on actions generated by an inferior µ(u|θ, h, y) was used. Shorter, more relevant,

trajectories ease the difficulty of temporal credit assignment. The improved FSC then

helps the value-function method to improve its estimates for the value of each state of

the FSC, and so on.

The key idea behind both motivations is that value methods can sometimes learn

in fewer steps than policy-gradient methods due to their lower variance, as discussed

in Section 2.5.8. We chose to use SARSA(λ) because of its good empirical results on

partially observable domains [Loch and Singh, 1998]. If we restrict ourselves to lookup-

table representations for the value function, and λ = 0, SARSA(λ) will converge to a

globally optimal policy given a fixed FSC [Sutton, 1999].

C.1.1 The SARSA(λ) Algorithm

Algorithm 7 is SARSA(λ) as presented in Sutton and Barto [1998]. It is an on-policy

method for learning Q-functions using temporal differences. It is similar to the well

known TD(λ) algorithm.

218 Variance Reduction Continued

Algorithm 7 SARSA(λ).

1: Given:

• Fixed Policy µ(·|θ, i).

• Γ, λ ∈ [0, 1) (λ may be 1 for episodic tasks).

• Initial parameter values θ ∈ Rnθ .

• Differentiable Q-function class {Q(θ, ·, ·) : θ ∈ Rnθ}.

• Step sizes γt, t = 0, 1, . . . satisfying γt ≥ 0,
∑
γt =∞ and

∑
γ2

t <∞.

• Arbitrary starting state i0 and initial action u0 sampled from µ(·|θ, i0).

• z0 = ∇Q(θ, i0, u0).

2: for each transition it, ut → it+1, ut+1 generated according to the MDP and
µ(·|θ, it+1) do

3: Compute d(it, it+1) = r(it) + ΓQ(θt, it+1, ut+1)−Q(θt, it, ut)
4: Set θt+1 = θt + γtd(it, it+1)zt
5: Set zt+1 = Γλzt +∇Q(θt+1, it+1, ut+1)
6: end for

When following a fixed policy, SARSA(λ) is guaranteed to converge for lookup-table

and linear policy representations when λ = 0. If function approximation is introduced

then we are only guaranteed convergence to a bounded region [Gordon, 2001].

The experiments in this appendix parameterise Q(θt, it, ut) using the lookup table

scheme of Section 3.4.1. That section also defines how to compute ∇Q(θt, it, ut) for

our experiments. In our POMDP setting the state inputs it to SARSA are replaced

by virtual state inputs (gt+1, yt). This will typically invalidate the convergence guar-

antees until (gt+1, yt) is an unambiguous indicator of the state it. If G and Y are not

finite, function approximation may be used at the risk of convergence failure. Empir-

ical evidence [Loch and Singh, 1998] suggests that SARSA is fairly tolerant of partial

observability.

C.1.2 The IGPOMDP-SARSA Algorithm

The IGPOMDP-SARSA algorithm is similar to the IOHMM-GPOMDP algorithm be-

cause we interleave SARSA(λ) and IState-GPOMDP phases until the magnitude of the

estimated gradients drop below a threshold. An important difference is that IGPOMDP-

SARSA performs gradient ascent on the FSC ω(h|φ, g, y), whereas IOHMM-GPOMDP

performs gradient ascent on the policy µ(u|θ, α, y).

Recall from Section 2.4 that SARSA(λ) learns a Q-function Q(it, u), which is the

§C.1 GPOMDP-SARSA Hybrid Details 219

discounted value of choosing action u in world state it and then acting optimally. The

first phase executes one episode of SARSA(λ) where the world state it is replaced by

the virtual state, defined as the I-state/observation tuple (gt+1, yt), which we assume —

often incorrectly — is a sufficient indicator of world state to allow the optimal action to

be chosen. The virtual state combines the observation yt with the new I-state chosen

from ω(·|φ, gt, yt). SARSA episodes are limited to Tsarsa steps.

Because the Q-function replaces µ(u|θ, h, y), we denote the parameters of the Q-

function as θ and write the discounted value of action u as

Q(θ, gt+1, yt, u).

The best action is arg maxuQ(θ, gt+1, yt, u), which is followed with probability 1− ǫ. A

random action is taken with probability ǫ, a so called ǫ-greedy policy [Mitchell, 1997].

The second phase runs IState-GPOMDP (see Algorithm 2), now with the fixed policy

µ(u|θ, h, y) generated by SARSA. The gradients of the φ parameters are estimated for

Tgrad steps before terminating and performing the line search to find a good step size

as described in Appendix B. During the estimation the same ǫ-greedy policy used by

SARSA is used to choose actions, however ǫ should be reduced between episodes.

IGPOMDP-SARSA is summarised by Algorithm 8. Line 10 deserves further explana-

tion: SARSA is an acronym for State-Action-Reward-State-Action, which summarises

the quantities that SARSA uses to update its internal Q-function. The first state-action

pair refer to the previous state and action, and the second pair refer to the current

state and action. The reward is that received after performing the first action. Line

10 passes the virtual-state version of these quantities to Algorithm 7.

Even if the assumption that (gt+1, yt) is a reasonable indicator of state is false to

begin with, IState-GPOMDP learns an FSC that reveals relevant hidden state so that

the assumption should become more valid as learning progresses. At the beginning

the policy may perform no better than a random policy, but at the very least should

not prevent IState-GPOMDP from witnessing the full range of state trajectories. The

ǫ-greedy policy is important to both SARSA and helps IState-GPOMDPto experience

all possible I-state trajectories.

IGPOMDP-SARSA has two additional benefits apart from quickly learning relevant

policies: (1) the IState-GPOMDP phase has a reduced number of parameters to esti-

mate, requiring less statistical evidence to generate good gradients, creating a variance

reduction effect; (2) using SARSA(λ) to learn µ(u|θ, h, y) potentially moves the agent

out of the regions of zero gradient discussed in Chapter 7.

220 Variance Reduction Continued

Algorithm 8 IGPOMDP-SARSA

1: Given:

• Parameterised class of randomised FSCs {ω(h|φ, g, y) : φ ∈ Rnφ}.

• An instance of SARSA(λ) with |G||Y| virtual input states, satisfying the re-
quirements of Algorithm 7.

• Arbitrary initial world-state i0 and I-state g0.

• Observation sequence {y0, y1, . . . } generated by the POMDP, I-state sequence
{g0, g1, . . . } generated stochastically according to ω(·|φ, gt, yt), and action
sequence {u0, u1, . . . } generated randomly using an ǫ-greedy function of the
value maximising action.

• SARSA sample length Tsarsa; SARSA parameter λ; and discount Γ.

• IState-GPOMDP gradient estimation length Tgrad; discount β ∈ [0, 1); and
step size γ > 0.

2: while ‖∆Tgrad
‖ > ǫ do

3: t = 0
4: while t < Tsarsa do
5: Observe yt

6: Choose gt+1 from ω(·|φ, gt, yt)
7: ut = arg maxuQ(θ, gt+1, yt, u)
8: With probability ǫ override ut randomly
9: Execute one step of SARSA(λ) with input ((gt, yt−1), ut−1, rt, (gt+1, yt), ut)

10: Receive rt+1

11: t← t+ 1
12: end while
13: Set z0 = 0, and ∆0 = 0 (z0,∆0 ∈ Rnφ)
14: t = 0
15: while t < Tgrad do
16: Observe yt from the world
17: Choose gt+1 from ω(·|φ, gt, yt)
18: ut = arg maxuQ(θ, gt+1, yt, u)
19: With probability ǫ override ut randomly
20: zt+1 = βzt + ∇ω(gt+1|φ,gt,yt)

ω(gt+1|φ,gt,yt)

21: ∆t+1 = ∆t + 1
t+1 [r(it+1)zt+1 −∆t]

22: t← t+ 1
23: end while
24: φ← φ+ γ∆Tgrad

25: end while

§C.1 GPOMDP-SARSA Hybrid Details 221

C.1.3 Convergence of IGPOMDP-SARSA

IGPOMDP-SARSA should always converge to a local maximum of the average reward

if we meet the convergence requirements of SARSA(λ), which require that λ = 0 and

that we use a lookup-table parameterisation for the Q-function. It does not suffer

the problem exhibited by IOHMM-GPOMDP, where re-estimation of I-state model can

cause a drop in η, because the I-state re-estimation must maximise the reward rather

than its ability to just predict rewards. This guarantees that the next episode of

SARSA(0) will begin with η at least as high as the end of the previous episode. Since

lookup table SARSA(0) converges to the optimal policy, and IState-GPOMDP converges

to a local maximum of η, we obtain overall convergence to a local maximum of the

average reward. Convergence of lookup-table SARSA(λ) for λ > 0 is an open question

[Sutton, 1999].

C.1.4 Preliminary Experiments

In this section we verify empirically that using SARSA(λ) to learn µ(u|θ, h, y) simplifies

the task of estimating gradients with respect to φ, observed as a reduction in the bias

and variance of the estimates. An intuitive reason to expect better results is the

reduced number of parameter gradients that are being computed, requiring less data

to produce accurate estimates. The improved relevance of the sample trajectory due

to the non-random policy should also reduce the bias and variance. We demonstrate

this on our favourite toy scenario: Load/Unload (see Figure 2.2(a)).

C.1.4.1 Experimental Protocol

With |G| = 4, as in Section 8.1, we compared the bias and variance of estimates of ∇φη

when gradients were estimated using IGPOMDP-SARSA, IState-GPOMDP, and IState-

GPOMDP with a deterministic µ(u|θ, h, y) set before hand. The latter experiment

aims to verify that results are better when µ(u|θ, h, y) is learnt by SARSA(λ) and that

improved results are not merely due to fewer parameters being estimated.

As usual, ω(h|φ, g, y) was parameterised by a lookup table of real numbers. We used

exactly the same scheme, detailed in Section 3.4.1, to parameterise Q(θ, gt+1, yt, u).

This fitted naturally into the SARSA(λ) algorithm which requires ∇θQ(θ, gt+1, yt, u).

In the first experiment we varied the discount factor β, keeping the number of

gradient estimation steps fixed at Tgrad = 100, 000. In the second we increased the

number of gradient estimation steps with fixed β = 0.95. The parameters φ and θ were

initialised randomly to values in [−0.5, 0.5]. One episode of SARSA(λ) was completed

before estimating the gradient. One difficulty with IGPOMDP-SARSA is determining

222 Variance Reduction Continued

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200 220

bi
as

1/(1-beta)

GPOMDP/SARSA
GPOMDP/GPOMDP

GPOMDP/det

Figure C.1: Bias and variance of gradient estimates as β varies. The “GPOMDP/GPOMDP”

curve uses IState-GPOMDP to estimate gradients w.r.t. θ and φ, the “GPOMDP/det” curve fixes

θ and learns φ, the “GPOMDP/SARSA” curve uses SARSA(λ) to learn θ and IState-GPOMDP

to learn φ. Results are averaged over 500 runs, error bars show 1 standard deviation. A value

of 200 on the β
1−β

axis equates to β = 0.995.

sensible values for the SARSA(λ) parameters as well as the gradient estimation param-

eters. After some trial and error, we obtained the best results with Γ = 0.95, λ = 0.8

and ǫ = 0.2. SARSA(λ) episodes were Tsarsa = 100, 000 steps long.

C.1.4.2 Results

The results are shown in Figures C.1 and C.2. A significant reduction in both bias

and variance can be seen in both graphs when using SARSA(λ) to learn µ(u|θ, h, y). In

particular, we see that we obtained a gradient estimate with less than 10◦ bias after

only 500 steps when β = 0.95, but pure IState-GPOMDP had a bias of around 15◦ after

over 200,000 steps.

C.1.5 Discussion

Despite promising early results we do not know how the benefit of this method will

vary between different POMDPs. We expect it to be of greatest benefit at the start of

learning. Once a reasonable policy is learnt the bias and variance of IState-GPOMDP

§C.2 Over-Fitting on Fixed Random Sequences 223

0

10

20

30

40

50

60

70

80

90

1000 10000 100000

bi
as

estimation steps

GPOMDP/SARSA
GPOMDP/GPOMDP

GPOMDP/det

Figure C.2: Bias and variance of gradient estimates as the estimation time Tgrad increases.

Results are averaged over 500 runs.

tend to drop dramatically due the increased relevance of the sample trajectories. Much

more investigation is needed to determine how useful this method is generally. In

particular, because the SARSA and IState-GPOMDP phases gather independent sample

trajectories, it is not clear if the total number of sample steps will be reduced by using

IGPOMDP-SARSA.

IGPOMDP-SARSA is most likely to be useful for initialising µ(u|θ, h, y) in prepara-

tion for running pure IState-GPOMDP. Using value methods to initialise policies before

running policy-gradient algorithms was considered by Roy and Thrun [2001], although

not in the context of agents with memory.

We could also use SARSA(λ) to learn the FSC, resulting in a pure value-function

approach to learning FSC agents for solving POMDPs. This is similar to the approach

of Peshkin et al. [1999] where one instance of SARSA is used to learn policies which

can set external memory bits.

C.2 Over-Fitting on Fixed Random Sequences

We observed that policy-gradient methods using fixed random number generators can

introduce false local maxima. In this section we describe how local maxima are in-

224 Variance Reduction Continued

l r

rl

0

3 54

21

r=−1

r=−1

r=1

r=1

Figure C.3: A completely unobservable POMDP for which η = 0 for all policies. The actions

are U ={l, r}, representing moving left or moving right from state 1 and 4.

troduced and demonstrate the over-fitting effect empirically. Using fixed random se-

quences seems too useful a method to ignore but we should be aware of the pitfalls.

Our example for this section is a simple 6 state completely unobservable MDP,

shown in Figure C.3. In states 1 or 4 the agent controls which state it moves to,

though when moving left it does not know if it will transit to state 0 or 3, and when

moving right it does not if it will transit to state 2 or 5. All dashed transitions are

followed with probability 0.5 regardless of the action.

All policies have an expected η of 0, however, when training with a fixed sequence of

random numbers we observe that the algorithms in this thesis consistently converge to

a small positive reward. The reward obtained is higher for shorter gradient estimation

times. After entering states 0, 2, 3, or 5 there is always a random transition to state

1 or 4. If there are 100 estimation steps, then 50 random numbers are used to decide

if state 1 or 4 should be entered. Suppose 26 times the choice is to enter state 1, and

24 times the choice is to enter state 4. If the policy is to always choose the move

left action, then the agent will receive 26 rewards of +1 and 24 rewards of −1, so

η = (26− 24)/100 = 0.02. When the same sequence of random numbers is used for all

gradient estimates, the agent learns that the random sequence results in state 1 being

more likely to occur, and adjusts the policy toward always moving left. As soon as the

learnt policy is tested on different sequences it will not consistently achieve η > 0.

This an instance of over-fitting. The agent is learning to take advantage of noise in

the training sequences that does not reflect the true distribution of observation/action

histories. We trade off variance reduction for a new form of bias.

Alternatively, if a free sequence of random numbers is used — meaning the random

number generator is not reset between gradient estimates — then small biases in the

random numbers are cancelled out. For example, if the next sequence of 100 random

numbers results in 24 transitions to state 1 and 26 transitions to state 4, then the

§C.2 Over-Fitting on Fixed Random Sequences 225

effect of the previous bias will be undone. The following sections present experimental

evidence of the effect.

C.2.1 Experimental Protocol

We used memory-less IState-GPOMDP to learn a lookup table µ(u|θ, y) with 2 parame-

ters representing the probability of choosing to move left or right. No form of memory

would allow a consistent positive reward to be achieved for truly uniform transitions

to states 1 and 4. We performed 1000 independent runs, each with a different sequence

of random numbers which is re-used for every gradient estimate during that run. The

runs used an estimation time of T = 100. The results were not sensitive to β except

for values close to 1; we used β = 0.9. No quadratic penalty was used.

C.2.2 Results

The results are summarised by the “Fixed RNG” curve in Figure C.4. It shows how η is

a function of the amount of deviation from uniform exhibited by the random sequences.

For example, the x-axis point 100|π1 − π4| = 10 shows that η ≈ 0.05 when averaged

over all runs for which state 1 was entered 10 instances more or less than state 4. The

number of runs falling into each point on the x-axis is not uniform. We have plotted

the count of runs against 100|π1 − π4|, shown by the “Samples” curve.

For comparison we performed 1000 independent runs using different random se-

quences for every gradient estimate during a run. The results are shown by the “Free

RNG” curve. In this case the deviation from uniform exhibited by the random se-

quences changes during the run. Hence, the data point generated by each run is just

the last estimate of η and whatever value of 100|π1−π4| the random sequence for that

estimate satisfied. It shows that the average η for all 1000 runs is approximately 0, a

true indication of the agents’ performance.

We repeated the experiment for an estimation time of T = 1000 steps. The results

are shown in Figure C.5. It shows similar results except that η = 0.021 averaged across

all 1000 runs, compared to η = 0.063 for T = 100, satisfying the expectation that

longer sequences reduce over-fitting.

C.2.3 Discussion

It might be expected that all runs using a fixed random sequence should converge to

the deterministic policy which chooses the action that gets the positive reward from the

dominant state. If this were the case the “Fixed RNG” results in Figures C.4 and C.5

would be a straight line along η = |π1 − π4|/T . Some data points almost satisfy this

constraint, for example, points in Figure C.5 for which 1000|π1 − π4| < 10, and the

226 Variance Reduction Continued

0 2 4 6 8 10 12 14 16 18 20 22
−5

0

5

10

15

20

25

100*|π
1
 − π

4
|

10
0*

η

Fixed RNG

Free RNG

Samples*0.1

Figure C.4: The effect of using a fixed sequence of 100 random numbers on the POMDP in

Figure C.3. The x axis measures the difference between the number of times states 1 and 4

were entered. The y axis is equivalent to the number of +1 rewards minus the number of −1

rewards. Results are based on 1000 runs of IState-GPOMDP. Error bars represent the standard

error. The −· curve multiplied by 10 shows how many of the 1000 runs fell into each data

point, that is, how may of the 1000 random sequences satisfied x = 100|π1 − π4|.

last point 1000|π1 − π4| = 78. There are two reasons why other points do not follow

this line. The first is simply the normal bias and noise in the gradient estimates. The

second is a competing over-fitting effect. Suppose π1 > π4, then the policy should

converge to “always move left.” However, it may be that transitions into state π4 are

more often than not followed by large random numbers that promote generation of

action r, providing a reward which promotes the policy “always move right.”

The example, while easy to understand, has not demonstrated that over-fitting can

cause poor agents to be learnt instead of optimal ones. However, we have already

seen an instance of this: the Heaven/Hell experiments of Section 8.2. In this scenario

the agent that fails to learn to visit the signpost cannot achieve an average reward

of η > 0. Surprisingly, Table 8.2 shows that IState-GPOMDP obtains a mean η of

0.000178. Moreover, all IState-GPOMDP runs that failed to learn to visit the signpost

learnt near deterministic policies that always move left, or always move right, at the

§C.2 Over-Fitting on Fixed Random Sequences 227

0 10 20 30 40 50 60 70 80
−40

−20

0

20

40

60

80

100

1000*|π
1
 − π

4
|

10
00

*η
Fixed RNG

Free RNG

Figure C.5: The effect of using a fixed sequence of 1000 random numbers on the POMDP in

Figure C.3. The −· curve shows how many of the 1000 runs fell into each data point, that is,

how may of the 1000 random sequences satisfied x = 1000|π1 − π4|.

intersection. During early training the gradient prompting the agent to the correct

policy can be dominated by the gradient pointing to the false local maximum. This

occurred even for massive estimation times of T = 107. Without using fixed random

sequences successive gradient estimates were sometimes more than 90◦ apart during

early training, even for T = 107.

It was this quirk of the Heaven/Hell training that led to the investigation of the over-

fitting phenomenon. Another problem from the literature which occasionally falls into

this trap is the Tiger scenario [Cassandra, 1998], though only for very short estimation

times of around T = 100.

We emphasise that it is the relative size of the true gradient to the effects of the

finite sample size that dictates if over-fitting on the samples is likely to occur. This

means that the over-fitting phenomenom is primarily due to small gradients which

are problematic for all gradient-based optimisation algorithms. However, using fixed

random number sequences can exacerbate the problem.

The discussion of this section applies equally to finite-horizon scenarios simulated

using m sequences of fixed random numbers. It also applies to all Monte-Carlo methods

228 Variance Reduction Continued

for which the true state is not known. Even if the agent knows the belief state, two

important states can be aliased while a fixed random sequence makes one slightly more

likely to occur during simulation. One measure to prevent over-fitting is to periodically

change the random number sequence used, for example, at the end of each line search

phase of gradient ascent.

Appendix D

Hidden Markov Models

Hidden Markov models (HMMs) are a favoured model for time varying signals, notably

speech. They are one solution to the problem of time-dependence in speech, which

although theoretically flawed [Bourlard and Morgan, 1994], has proven empirically

successful.

The notation for this appendix, in the context of the rest of the thesis, assumes

that the HMM is modelling the unobservable world-state process. The HMM generates

symbols that model the observation process. This is basically the approach of Chrisman

[1992]. The HMM-states are labelled with i ∈ S and j ∈ S and the HMM outputs are

labelled with y ∈ Y. We retain the classical description of HMMs in terms of a state

transition matrix A and a symbol emission matrix B. All symbols will be redefined so

this appendix can be read independently of the rest of the thesis.

The following section defines Hidden Markov Models, followed by a basic description

the Baum-Welch training procedure. Section D.1.2 describes how to segment a signal

using trained HMMs and the Viterbi algorithm. We finish with a description of an

HMM extension, called Input/Ouput HMMs, which can be driven by an input sequence.

Most of the information and notation for this section comes from Rabiner and Juang

[1986]. Other good references are Paul [1990] and Poritz [1988]. Appendix E can

be viewed as a speech processing extension to this appendix. It discusses some more

advanced HMM training methods and the drawbacks of using HMMs for speech. It

also describes the close link between many ANN algorithms and HMM algorithms.

D.1 Standard Hidden Markov Models

A Markov model with |S| states S = {1, . . . , |S|} is defined by (A,π0), where A is the

stochastic transition matrix

A =

a11 · · · a1|S|
...

. . .
...

a|S|1 · · · a|S||S|

 ,

230 Hidden Markov Models

and the elements aij describe the probability of transition i → j. The column vector

π0 = [π(1), . . . , π(|S|)]′ is the distribution of HMM-state occupation at t = 0. Ideally,

this would be initialised to the initial belief state vector b0. At each time step we make

a transition from the current state i to the next state j, according to the probability

distribution selected from row i of A.

A Hidden Markov Model has the same underlying structure as a Markov Model,

except we cannot observe the state directly. There is a second stochastic process that

emits a symbol every time we arrive in a state j.1 We can observe the symbols yt but

not the true state it of the underlying Markov model.

Definition 5. A discrete symbol HMM contains

1. |S| states S = {1, . . . , |S|};

2. |Y| symbols Y = {1, . . . , |Y|} that can be emitted;

3. an |S| × |S| stochastic transition matrix A;

4. an |S| × |Y| stochastic emission matrix B;

5. initial state distribution π0.

An HMM is described by m = (A,B, π).

The new B parameter is the matrix that describes the probability of emitting

symbol y ∈ Y when in state j ∈ S

B =

b11 · · · b1|Y|
...

. . .
...

b|S|1 · · · b|S||Y|

 .

HMMs are similar to POMDPs except that the HMM model is generative, that is,

it is not driven by an input sequence such as the actions chosen by an agent. Figure

D.1 shows a 3 state HMM with aij values labelled on the state transition arcs. The bjy

symbol distribution values are listed for each state and each of the 3 symbols. HMMs

may also use continuous valued emissions, in which case B describes a continuous

distribution for each state, usually in the form of means, variances and mixture weights

for a mixture of Gaussians. As the model steps from state to state it emits a stream

of symbols ȳ = {y1, y2, · · · }. Practical symbol sequences for training are finite, ending

at some fixed time limit, or when the model reaches some terminating state. Infinite

horizon POMDPs are approximated by truncating the sequence after T steps.

1Conventions other than symbol emission upon entering a state are common.

§D.1 Standard Hidden Markov Models 231

y(1) : 0.5
y(2) : 0.3
y(3) : 0.2y(1) : 0.33

y(2) : 0.33
y(3) : 0.33

1

23

0.0

0.9

0.1

0.5

0.7

0.1

0.25

0.250.2

y(1) : 0.5
y(2) : 0.0
y(3) : 0.5

Figure D.1: Example 3 state hidden Markov model. The symbol emission probabilities in all

states sum to 1. All the transitions out of a state also sum to 1.

D.1.1 The Baum-Welch Algorithm

Training an HMM involves maximising the likelihood that the HMM models the train-

ing sequence. The Baum-Welch method is popular for training HMMs. There are

variations that make it gradient based or extend it to different emission probability

densities [Poritz, 1988]. Some of these are discussed in Appendix E. The Baum-Welch

method is an instance of Estimation-Maximisation (EM) training [Dempster et al.,

1977]. It is an iterative algorithm, repeated multiple times over a training sequence

ȳ. During model training, we are attempting to learn at the A and B matrices. For a

model with |S| states and |Y| symbols, this represents |S|2 + |S||Y| parameters.

Training starts by observing a symbol stream ȳ, generated by the underlying state

transition process. We assume there is an underlying target HMM that stochastically

generates symbols according to the true parameters m∗. We attempt to learn a model

m = m∗. Standard Baum-Welch requires us to define m to have a fixed number of

states |S| before hand, effectively assuming m∗ has the same number of states. The

number of symbols |Y| must also be defined, which is non-trivial if we are using |Y|

discrete symbols to quantise a real-valued observation.

For each time step t in the sequence we estimate two quantities from the training

data: αt(i) and βt(i). The quantity αt(i) is the probability of being in state i at time t,

assuming we have moved forward through a series of t transitions. Because α describes

the distribution of state occupation from the initial distribution π0 forward to time t,

232 Hidden Markov Models

it is known as the forward probability. It is recursively defined as

α0(i) = π0(i)

αt+1(j) =

(∑

i∈S

αt(i)aij

)
bjyt .

(D.1)

Strictly speaking, the forward probability and all the other quantities to be defined

should include dependences on ȳ and the current model m, in the same way that we

included the dependence on ȳ and φ in Equation (6.2). However, to simplify notation,

we shall treat all quantities as vectors of values rather than conditional probabilities.

The dependencies are always implied.

Define Sf ⊆ S to be the states the system is allowed to terminate in. The quantity

βt(i) is the probability of moving backwards from one of the states in Sf at time T to

some other state i at time t. The value of β is defined recursively as

βT (i) =

{
1 , i ∈ Sf

0 , otherwise

βt(i) =
∑

j∈S

βt+1(j)aijbjyt .
(D.2)

At the end of a sequence, the algorithm uses α and β to deterministically update A and

B in a way guaranteed to converge to a local maximum. Several intermediate values

are computed to perform the parameter updates, starting with the overall probability

of being in state i at time t

δt(i) =
αt(i)βt(i)

Pr(ȳ|m)
,

where the denominator is included as a normalising constant. Similarly, we define the

probability of making transition i→ j at time t as

ζt(i, j) =
αt(i)aijbjytβt+1(j)

Pr(ȳ|m)
. (D.3)

To maximise Pr(ȳ|m) the parameter updates are derived from the definitions of the

A and B matrices, where the values given above are used to compute the new model

values. The aij update is

aij =

∑T−1
t=0 ζt(i, j)∑T−1
t=0 δt(i)

, (D.4)

and the bjy update is

bjy =

∑
{t:yt=y} δt(j)∑T−1

t=0 δt(j)
.

§D.1 Standard Hidden Markov Models 233

Emission probabilities are also commonly modeled by mixtures of Gaussians, with the

advantage that continuous distributions can modeled. The update for the mean µj and

variance υj of a single real number yt modeled by a single Gaussian is

µj =

∑T−1
t=0 δt(j)yt∑T−1
t=0 δt(j)

(D.5)

υj =

∑T−1
t=0 (yt − µj)

2

∑T−1
t=0 δt(j)

. (D.6)

The extension to multiple variables and mixtures of Gaussians is relatively straight for-

ward and can be found in Poritz [1988]. Training can end in a number of ways, including

checking for convergence of the parameters, or using a cross-validation. Baum-Welch

maximises the probability Pr(ȳ|m), the probability that the symbol sequence ȳ fits

the model m. This represents a maximum likelihood training procedure rather than

maximising the preferred posterior probability. The latter can be obtained using Bayes

Rule provided the model priors are known. The value of Pr(ȳ|m) is given by

Pr(ȳ|m) =
∑

i∈Sf

αT (i), (D.7)

which is the total probability of being in any of the final states at the end of the symbol

stream. The forward probability α is important for many sections of this thesis. In

practice it is important to re-scale the forward probability at each time step to avoid

numerical instability when the probabilities become very small.

The HMM training algorithm can be recovered from Algorithm 9 (the Baum-Welch

training procedure for Input/Output HMMs) by setting |U| = 1.

D.1.2 The Viterbi Algorithm

During classification we may not know the signal boundaries that delimit segments

representing a particular model mt. In practice all the trained models are concatenated

together into a meta model. The most probable path through the meta model can be

computed using the Viterbi algorithm [Viterbi, 1967]. The algorithm tells us which

state is the most likely to be occupied at time t, hence which model we are most likely

in at time t, hence segmenting the signal.

The Viterbi algorithm computes the likelihood of the best path through the states

rather than likelihood of all paths through the states given by Equation (D.7). There-

fore, it is an approximation to Pr(ȳ|m). Despite this, it can still be used to train

HMMs. The Viterbi probability is the forward probability αt(i) but the summation in

234 Hidden Markov Models

i j

t t+1

0.2

α̂t(1) = 0.1

0.5

α̂t(2) = 0.5

α̂t(3) = 0.4

α̂t+1(1) = max[.08, .25, .08]
= 0.25

a11b1k = 0.8

Figure D.2: We select which phoneme i was most likely to make a transition into phoneme

j. The most likely state j defines the most likely trajectory back through the state lattice.

Equation (D.1) is replaced by a max operator

α̂0(i) = π0(i)

α̂t+1(j) = max
i

[α̂t(i)aij]bjyt.
(D.8)

In words, α̂t+1(j) is computed by iterating through all possible next states j, and

picking which current state i is most likely to make a transition into j, taking into

account the probability that the HMM was in state i to start with. Figure D.2 illustrates

this.

Every time the Viterbi decoder chooses a transition from state it to state it+1 it

stores the transition value of it, the predecessor node, in a table indexed by the time

t + 1 and the current node it+1. Once the end of the observation sequence has been

reached we can evaluate the most likely final state i∗T = arg maxi α̂(i). The table then

allows us traverse back through all the states that led up to state i∗T , defining the most

likely state sequence.

It is a feature of the Viterbi algorithm that it finds the most likely state sequence,

which is different to the sequence of most likely states based on evaluating the full

forward probability αt(i) for each t.

Viterbi decoding can also be used as an error correction mechanism in signal pro-

cessing. By limiting the length of the Viterbi lattice to l steps, we can find a path

through a sequence of states by locking in states that fall off the end of the lattice.

Although not optimal, it is a vast improvement over locking in the most likely state at

the current time, equivalent to l = 0. More details of this last approach can be found

in Section 10.3.1.2.

§D.2 Input/Output HMMs 235

D.2 Input/Output HMMs

If we define an HMM with multiple transition matrices in a set A, but still only one

set of states, we can use an input signal to select transition matrices, driving the state

transitions instead of letting them evolve purely stochastically. The HMM still emits

a stream of output symbols.

Following our convention of the last section, where we attempt to learn a model

that represents the evolution of world-states, we set the output symbols to be y ∈ Y,

and now the driving signals are the akin to the actions u ∈ U . We do not consider

how the input signal is generated and we assume that {y1, . . . , yT } and {u1, . . . , uT }

are known prior to a training episode.

This system is illustrated in Figure D.3. If the HMM receives input ut = 0 then we

lookup the probability distribution for the next state from row it of transition matrix

A0. If ut = 1 we use A1, and so on. A single B emission matrix still generates symbols

y depending on the current HMM state. This is a simple lookup-table instance of the

more general input/output hidden Markov model (IOHMM) described by Bengio and

Frasconi [1995, 1996]. This system also fits into the framework of conditional random

fields developed by Lafferty et al. [2001] and McCallum et al. [2000]. In particular, the

paper by McCallum suggests the possibility of using the Baum-Welch algorithm for

training, just as we present in this section. We will prefer the term IOHMM to refer

to an HMM that is driven by an input sequence.

Using the notation defined in Chapter 2 we could express the set of transition

matrices A as q(j|i, u) and the emission matrix B as ν(y|i). However, we continue with

the matrix notation we used to describe HMMs.

This setting is different from the IOHMM classification experiments of Section 10.2.2

where we swapped the input and output sequences so that the observations y were the

input, and the actions (classification labels) u were the outputs. In that case the

IOHMM is acting as the POMDP agent rather than the partially observable world

Markov process.

So far we have only re-cast IOHMMs as HMMs with multiple transition matrices.

More formally:

Definition 6. An input/output hidden Markov model (IOHMM) has:

1. |S| states S = {1, . . . , |S|} s.t. it ∈ S is the current state and j = it+1 is the next

state;

2. |Y| symbols Y = {1, . . . , |Y|} encoding the output signal such that yt ∈ Y is the

output symbol at time t;

236 Hidden Markov Models

A A A A A A A A A A A A B B B B B B B B B B

A, B

00000 0 0 0 0 0 0 001 11 1 1 1 1 1 1

Segment boundary

Input ut

Output yt

it

|S| × |Y|

B

|S| × |S||S| × |S|

A0 A1

Figure D.3: Illustration of an IOHMM. The inputs switch between transition matrices and

the IOHMM learns emission distributions for output observations.

3. |U| symbols U = {1, . . . , |U|} encoding the input signal such that ut ∈ U is the

input at time t;

4. a set of |Y| independent |S| × |S| transition matrices A = {A1, . . . , A|U|};

5. a single |S| × |Y| stochastic emission matrix B;

6. initial state distribution π0.

A IOHMM is completely described by m = (A, B, π).

HMMs attempt to generate or predict an output signal given a model [Saul and

Rahim, 1997], whereas IOHMMs are driven by the input signal while generating the

output. IOHMMs can be seen as a discriminative version of HMMs. We can train a

single large IOHMM to perform the same task as a number of normal HMMs. For

example, an IOHMM can be trained to perform speech recognition by emitting speech

labels based on the input wave-form. This is the setup used in Section 10.2.2 for

the IOHMM classification of source HMMs experiment. Alternative modifications to

HMMs attempt discriminative training by using a maximum mutual information crite-

rion instead of ML [Reichl and Ruske, 1995, Warakagoda, 1996], however these systems

still train an independent model per class, as discussed in Appendix E.

With minor changes to the Baum-Welch training algorithm we can use it to train

IOHMMs. The first change is to the forward and backward probabilities defined by

§D.2 Input/Output HMMs 237

Equation (D.1) which must now index the correct transition matrix using the input

symbol ut

α0(i) = π0(i)

αt+1(j) =

(∑

i∈S

αt(i)autij

)
bjyt ,

βT (i) = 1

βt(i) =
∑

j∈S

βt+1(j)autijbjyt.
(D.9)

In this case the history ȳ is assumed to include the history of actions as well as ob-

servations, that is, ȳT = {(y1, u1), . . . , (yT , uT)}. The probability of emitting sequence

{y1, . . . , yT } given input sequence {u1, . . . , uT } is

Pr(ȳ|m) =
∑

i∈S

αT (i).

The arc probability given by Equation (D.3) changes to

ζt(i, j) =
αt(i)autijbjytβt(j)

Pr(ȳ|m)
.

The calculation of δt(i) is unchanged. The updates to each auij must account for only

the transitions i → j made using matrix Au. This is achieved by summing over only

the steps {t : ut = ũ} instead of all times as used in Equation (D.4), using the Markov

property that these transitions are independent of any others

aũij =

∑
{t:ut=ũ} ζt(i, j)∑
{t:ut=ũ} δt(i)

.

The bjy update is unchanged. IOHMM training is summarised by Algorithm 9. The

only modification needed for single Gaussian emission distributions is to replace line

20 with Equations (D.5) and (D.6).

238 Hidden Markov Models

Algorithm 9 Baum-Welch training of IOHMMs

1: Given:

• Initialised transition matrices A = {A1, . . . , A|U|}.

• Initialised emission matrix B.

• Initial state occupancy probabilities π0(i).

• Training sequence ȳ = {(y1, u1), . . . (yT , uT)}.

2: while error decreases on a cross validation test do
3: α0(i) = π0(i)
4: for each state j at each time step t = 0 to t = T − 1 do

5: αt+1(j) =

(∑
i∈S αt(i)autij

)
bjyt

6: end for
7: βT (i) = 1
8: for each state i at each time step t = T − 1 to t = 0 do
9: βt(i) =

∑
j∈S βt+1(j)autijbjyt

10: end for
11: Pr(ȳ|m) =

∑
i∈S αT (i)

12: for each state i, j at each time step t = 0 to t = T − 1 do

13: ζt(i, j) =
αt(i)autijbjyt

βt(j)

Pr(ȳ|m)

14: δt(i) = αt(i)βt(i)
Pr(ȳ|m)

15: end for
16: for each i, j, ũ do

17: aũij =
∑

{t:ut=ũ} ζt(i,j)
∑

{t:ut=ũ} δt(i)

18: end for
19: for each j, ỹ do

20: bjỹ =
∑

{t:yt=ỹ} δt(j)
∑T−1

t=0 δt(j)

21: end for
22: end while

Appendix E

Discriminative and Connectionist

Speech Processing

This appendix provides background into existing speech methods that are related to

those in Chapter 10, and more particularly, the large vocabulary continuous speech

recognition experiments of Section 10.3. We focus on so called discriminative methods.

They seek to rectify a failing of simple HMM implementations: each model is trained

independently on the subset of the data that pertains to that model. Due to training

errors and insufficient data this can result in failures arising from an incorrect model

giving a higher likelihood than the correct model, even though the likelihoods for

both models peak on the data that they model. Discriminative methods make models

compete: while maximising the likelihood of the correct model they also minimise the

likelihood of all other models on that data. This appendix can be read independently

of the thesis body since it defines its own notation.

E.1 Overview

Discriminative methods for speech include using training criteria such as MMI (maxi-

mum mutual information) and MCE (minimum classification error) during the training

of HMMs (hidden Markov models). These criteria will be explained in detail in Sec-

tion E.3. Connectionist methods bring to mind the use of ANNs (artificial neural

networks). HMMs and connectionist methods are closely related, sharing common

solutions for tackling the complex problem of how to design MAP (maximum a poste-

riori) classifiers for speech. For example, the MMI training criterion can be applied to

both ANN training and to discriminative HMM training. Also, ANNs can be trained

to directly output the maximum a posteriori probability of each output class given the

input vector [Mitchell, 1997], which is inherently discriminative. In addition, several

authors have shown that it is possible to specify an ANN architecture equivalent to

discriminative HMM training [Bridle, 1990, Niles and Silverman, 1990, Young, 1990].

240 Discriminative and Connectionist Speech Processing

Discriminative HMM methods begin to look, in theory, synonymous to connectionist

approaches.

ANNs were studied intensively for speech processing in the late 1980s and early

1990s before losing popularity in the face of better empirical results from pure HMM

approaches. At the this time there seems to be little interest in pure ANN approaches.

However, there is interest in hybrid ANN/HMM approaches [Schuster, 1999, Haton,

1997, Bourlard and Morgan, 1998].

In this survey we briefly present basic approaches to discriminative training methods

for HMMs and ANNs. We also compare these approaches, finding strong similarities

between them. Then we look at methods that try to combine the best of both: hybrid

HMM/ANN models trained with discriminative methods. The message of this survey

is that traditional HMM approaches are flawed and that discriminative approaches,

particularly those using hybrid approaches, may offer significant advantages.

Familiarity is assumed with the basics of both ANNs and HMMs. Appendix D

is a brief introduction to HMMs. Many good papers can be founds on these topics,

including Paul [1990], Poritz [1988], Rabiner and Juang [1986] for HMMs and Haykin

[1999], Müller et al. [1995] for ANNs.

E.2 The Speech Problem

Speech recognition is the problem of choosing

m∗ = arg max
m

Pr(m|Ou), (E.1)

where Ou = {Ou(1), . . . , Ou(Tu)} is a time sequence of speech frames associated with

utterance u and the m’s are the models or classes that categorise the data. The correct

model given the data is m∗. The model may represent a phone, word, speaker or some

other such unit depending on the problem at hand. This is the MAP (maximum a

posteriori) criterion for selecting the correct model. Using Bayes’ rule we can transform

(E.1) into

m∗ = arg max
m

Pr(Ou|m) Pr(m)

Pr(Ou)
. (E.2)

Since all data is assumed equally likely Pr(Ou) is constant. If we further assume that

all models (or classes) are equally likely, then we end up with the ML (maximum

likelihood) criterion

m∗ = arg max
m

Pr(Ou|m), (E.3)

§E.2 The Speech Problem 241

which can be interpreted as saying assuming a model, what is the probability that the

given data belongs to it? By itself this is not a discriminative method since the mod-

els do not compete to classify the data. Instead, each model is trained individually

to maximise the probability that it generates only the data for that model. The ML

criterion is the one used in standard Baum-Welch training of HMMs [Rabiner, 1989].

Once the ML models have been trained we could use Equation (E.2) to compute the

discriminative probability Pr(m|Ou). However, the individually trained models pro-

duce only estimates of Pr(Ou|m), trained on limited amounts of data, and only to a

local maximum. Combined with errors in estimating Pr(m) — possibly from a different

source than the spoken training data — it is preferable to perform training that di-

rectly estimates Pr(m|Ou), or at least trains the likelihood models to not only maximise

Pr(Ou|m
∗) but at the same time minimise Pr(Ou|m) ∀m 6= m∗.

Since speech is a signal rather than a static pattern (E.3) should really be expressed

as probabilities of sequences of observations and models

m∗ = arg max
m

Pr(Ou|m)

= arg max
m

Pr(Ou(1), . . . , Ou(t)|m1,m2, . . . ,mt).

This expression finds most probable sequence of models up to time t having seen all

the data up to that time and assuming there is a model associated with each time step.

This is the computation performed by HMMs — or more precisely, Viterbi decoding

— where the model at each time step is a state of the HMM. HMMs are based on

the assumption that the Markov property holds for speech, which can be phrased as

the most probable model (or state) depends only on the current observation and the

previous model

m∗
t = arg max

mt

Pr(xt, |mt,mt−1),

and the probability of the sequence is the sum over all possible model trajectories,

where the probability of a trajectory is the product of the probability of each step

given only the current model and the previous model

Pr(Ou|m) =
∑

∀m1,...,mTu

Tu∏

t=1

Pr(xt|mt,mt−1). (E.4)

So now observations are assumed independent in time and the next model is assumed

dependent only on the previous model. It is these assumptions that make HMM train-

ing tractable since (E.4) can be computed with a dynamic-programming approach

[Bourlard and Morgan, 1998]. The simplifications of (E.3) and (E.4) admit good em-

242 Discriminative and Connectionist Speech Processing

pirical results while allowing real-time processing. Unfortunately, the simplifications

deliberately make untrue assumptions about speech [Rabiner, 1989]. This is not just

true of HMMs since ANN approaches typically make similar assumptions [Bourlard

and Morgan, 1994]. However, in ANNs we have the ability to relax these assumptions

more readily than we do in HMMs. For example, to incorporate dependence on n pre-

vious models instead of just a single model, we can add O(nM) inputs to the network.

To accomplish this with an HMM with M models we need to create O(M n) individual

models. This kind of increase in complexity is seen when HMMs move from modelling

context independent phones (approximately 61 for the TIMIT corpus) to triphones

where around 5000 models are used even after the unlikely or unhelpful triphones are

removed [Lee, 1989, Hwang and Huang, 1993].

E.3 Discriminative Methods for ANN and HMM training

In this section we briefly describe two popular methods for performing discriminative

training that can be applied to both ANNs and HMMs. We roughly follow the notation

and structure of [Reichl and Ruske, 1995] which presents both methods in a consistent

framework.

E.3.1 Maximum Mutual Information

The basic idea of MMI estimation is to maximise the extent to which knowing the data

helps us to know which model is correct. An alternative view is to look at MMI as

maximizing the ratio of the correct model likelihood to all other models, weighted by

the class probabilities.
Pr(Ou|m

∗)∑M
i=1 Pr(mi) Pr(Ou|mi)

.

MMI estimation methods are discussed and applied in too many papers to enu-

merate however some of the better descriptions are found in Reichl and Ruske [1995],

Rabiner [1989], and Warakagoda [1996]. MMI methods can be applied to the language

modelling phase of speech systems as well as the low level signal models [Ney, 1997].

In information theory mutual information is defined as

I(X,Y) = H(X)−H(X|Y), where (E.5)

H(X) = −
∑

x∈X

Pr(x) log Pr(x)

which is the entropy of the discrete random variable X. Another interpretation of

H(X) is as the expected amount of information in X where the information carried by

§E.3 Discriminative Methods for ANN and HMM training 243

event X = x is measured as I(x) = − logb Pr(x). If b = 2 the information is measured

in bits. I(X,Y) tells us to what extent knowing X helps us to know Y . To apply this

to speech with the intent of training model m∗, let Y = m∗, and take the information

expectation over the data in the set X = {Ou : m∗ = arg maxm Pr(m|Ou)}, that is,

all the training data available for model m∗. Maximising (E.5) increases how much X

tells us whether the model is m∗.

I(X,m∗) =H(X) −H(X|m∗)

=−
∑

Ou∈X

Pr(Ou) log Pr(Ou) +
∑

Ou∈X

Pr(Ou) log Pr(Ou|m
∗)

=
∑

Ou∈X

Pr(Ou)

[
log Pr(Ou|m

∗)− log
M∑

i=1

Pr(mi) Pr(Ou|mi)

]

=
∑

Ou∈X

Pr(Ou) log

(
Pr(Ou|m

∗)
∑M

i=1 Pr(mi) Pr(Ou|mi)

)
. (E.6)

Where the last summation can be interpreted as a sum over the data for each time

step. The second line makes use of the fact that

Pr(Ou) =
M∑

i=1

Pr(Ou,mi) =
M∑

i=1

Pr(Ou|mi) Pr(mi).

The speech technology community generally assumes that all observations are equally

probable and defines I with respect to a single observation Ou, in which case (E.6)

simplifies to

I(Ou,m
∗) = log

(
Pr(Ou|m

∗)
∑M

i=1 Pr(mi) Pr(Ou|mi)

)
, (E.7)

and from this form comes the intuition that MMI maximises the ratio of the correct

model likelihood to the likelihood of all models. Also, I(Ou,m
∗) + log(Pr(m∗)) gives

us Pr(m∗|Ou), the more desirable MAP criterion. We can also relate the MMI criterion

to the idea of minimising cross entropy. Equation (E.6) can be re-written as

−I(Ou,m
∗) =

∑

Ou∈X

Pr(Ou) log

(
Pr(Ou)

Pr(Ou|m∗)

)
,

which is the calculation for discrete cross entropy [Rabiner, 1989]. Thus, maximising

mutual information can be re-cast as minimising cross entropy, which can be thought

of as minimising the difference between the distribution of the data, and the data given

the model [Bridle, 1992].

244 Discriminative and Connectionist Speech Processing

E.3.1.1 Gradient Descent for MMI

Suppose we have some parameterised approximator (or possibly an approximator for

each model) that computes Pr(Ou|m, θ), where θ represent the parameters of the sys-

tem. By computing the gradient of −I(Ou,m) with respect to θ we can train our

approximator to perform speech processing according the MMI criterion. To reduce

clutter we label the numerator of (E.7) as L∗, the likelihood of the correct model, and

La as the combined likelihood of all models, giving

L∗ = Pr(Ou|m
∗), La =

M∑

i=1

Pr(mi) Pr(Ou|mi).

Rewriting (E.7) to be suitable for minimisation we have

−I(Ou,m
∗) = log

La

L∗

I(Ou,m
∗) = logLa − logL∗

−∂I(Ou,m
∗)

∂θ
=

1

La

∂La

∂θ
−

1

L∗

∂L∗

∂θ
.

Provided we can compute ∂L∗/∂θ and ∂La/∂θ gradient descent can be used to

optimise parameters θ.

How do we apply this to a real system? One approach is to use knowledge of

the model priors Pr(mi) (or assume they are uniform), and instead of approximating

Pr(Ou|mi) we approximate the posterior probability Pr(mi|Ou) using one large ANN

where each output represents a model. Interpreting ANN outputs as probabilities is

explained in Section E.4.1. This approach is used in Alphanets [Bridle and Dodd,

1991, Bridle, 1992, Niles and Silverman, 1990] and in several RNNs (Recurrent Neu-

ral Networks) [Robinson, 1994, Wei and Vuuren, 1998, Fallside, 1992]. Examples of

approximating Pr(Ou|m) with ANNs are rare since we might expect a single network

to share information more efficiently than m independent networks, requiring fewer

parameters and consequently requiring less training data. One example (that uses

the MCE described below rather than MMI) is Lee et al. [1995], described further in

Section E.4.3.1.

The difficulty with speech for ANNs is the time varying nature of the signal. The

question is how to represent Ou to the ANN so that it outputs a sequence of model

probabilities. ANNs usually assume a static pattern, however speech consists of a

possibly continuous stream of data broken down into frames of around 10 ms, each

with tens to hundreds of features [Lee, 1988]. A key difference between the various

§E.3 Discriminative Methods for ANN and HMM training 245

connectionist and hybrid inspired approaches is how they deal with the time varying

nature of speech. The natural way HMMs handle time varying signals has contributed

to their popularity.

E.3.1.2 MMI for HMMs

In general it is possible to use gradient ascent for training HMMs though care must

be taken to maintain stochastic constraints. For example, the transition probabilities

out of a state must sum to one. This can be achieved by mapping parameters in R to

probabilities [Niles and Silverman, 1990, Bridle, 1990]. Huo and Chan [1993] point out

that this method may introduce extra local maxima, which is undesirable since gradient

methods only guarantee convergence to one of these local maxima. Alternatively,

Lagrange multipliers can be used to perform gradient ascent subject to stochastic

constraints [Rabiner, 1989, Huo and Chan, 1993].

The gradients of the discriminative cost functions described here can be incorpo-

rated into an HMM update gradient, or HMM training can be run as normal and

then gradient descent on the discriminative objective function can be performed as

corrective training [Normandin, 1991, Huo and Chan, 1993]. Alternatively Reichl and

Ruske [1995], Normandin and Cardin [1992], and Gopalakrishnan et al. [1989] discuss

methods that extend the Baum-Welch updates to rational objective functions, which

are applicable to the objective functions outlined here.

All of these methods require the derivative of the cost function with respect to the

HMM parameters. The following equations [Warakagoda, 1996] give the gradient of

the MMI criterion with respect to the HMM parameters for the state transitions i→ j

of model m, denoted am
ij and the discrete observation probabilities for symbol Ou(t) in

state j, denoted bm
jOu(t)

−
∂I(Ou,m

∗)

∂am
ij

=

(
1

La
−
χm(m∗)

L∗

) T∑

t=1

αt−1(i)bmjOu(t)βt(j),

−
∂I(Ou,m

∗)

∂bm
jOu(t)

=

(
1

La
−
χm(m∗)

L∗

)
αt(j)βt(j)

bm
jOu(t)

, (E.8)

where αt(i) is the forward HMM probability of being in state i at time t and βt(i) is the

corresponding backwards probability. The identity function is represented by χx(y).

The sum of these gradients across all the training data will result in the gradient of the

negative of (E.6). The extension of (E.8) to the case of continuous densities represented

by a single Gaussian is given by Bridle and Dodd [1991].

246 Discriminative and Connectionist Speech Processing

E.3.2 Minimum Classification Error

Minimum Classification Error seeks to minimise exactly what we care about, the em-

pirical error rate. It is introduced and described in by Juang and Katagiri [1992] which

also compares this criterion to standard error measures such as the mean squared er-

ror. A similar measure called Minimum Empirical Error was introduced by Ljolje et al.

[1990]. The idea is to construct a distance measure between the probability of the

correct choice and the probability of all other choices

d∗(Ou) = Pr(Ou|m
∗)−

 1

M − 1

∑

mi 6=m∗

Pr(Ou|mi)
η

1
η

. (E.9)

The parameter η can be thought of as adjusting the distance metric used. If η = 1 we

have an L1 norm and we are simply summing the probabilities of incorrect models. As

η →∞ only the largest incorrect probability has any effect. We then use −d∗(Ou) in a

sigmoid function to construct a smooth cost function l that can be minimised in order

to maximise Equation (E.9)

l(d∗(Ou)) =
1

1 + exp(γd∗(Ou))
. (E.10)

By summing Equation (E.10) over all the training data for each model we achieve an

empirical estimate of the probability of misclassification. It is interesting to compare

the MCE to MMI. If we set η = 1 and take the log of both terms in Equation (E.9)

then we have

d∗(Ou) = log

(
Pr(Ou|m

∗)∑
mi 6=m∗

1
M−1 Pr(Ou|mi)

)
.

Which differs from Equation (E.7) only in whether the correct model m∗ is included in

the summation and the assumption of uniform priors Pr(mi). MCE is also very similar

to the idea of distance normalisation discussed in [Furui, 1994].

E.3.2.1 Gradient Descent for MCE

In practice it seems more common to use the log form of Equation (E.9) [Lee et al.,

1995, Reichl and Ruske, 1995], which results in the following gradient for l(d∗(Ou))

§E.3 Discriminative Methods for ANN and HMM training 247

with respect to an arbitrary set of parameters θ

∂l(d∗(Ou))

∂θ
=

M∑

i=1

l(d∗(Ou))(1 − l(d∗(Ou)))Gi(Ou)
∂ Pr(Ou|mi, θ)

∂θ
(E.11)

Gi(Ou) =

−1
Pr(Ou|mi)

if mi = m∗

Pr(Ou|mi,θ)
∑M

j=1 Pr(Ou|mj ,θ)
otherwise,

Summing Equation (E.11) over all the data for each model results in a gradient that

minimises the probability of misclassification.

We are now subject to the same questions about how to approximate Pr(Ou|m, θ)

as we were in Section E.3.1.1, and we can apply the same solutions. Juang and Katagiri

[1992] take the approach of training a single large ANN to approximate all the proba-

bilities (see Section E.4.1). Lee et al. [1995] train a single ANN for each Pr(Ou|m, θ)

(see Section E.4.3.1). Using ANNs is convenient because we know how to compute the

gradient of an ANN output with respect to its parameters.

E.3.2.2 MCE for HMMs

Reichl and Ruske [1995], and Nogueiras-Rodríıguez et al. [1998] use a gradient descent

version of MCE estimation. Denoting the state of HMM m occupied at time t as qm
t ,

the gradient for the state-specific observation densities is

∂l(d∗(Ou))

∂ Pr(Ou|j,m)
= l(d∗(Ou))(1− l(d∗(Ou)))Gi(Ou)

∑

t:qm
t =j

1

Pr(Ou(t)|j,m)
, (E.12)

which sums up the gradient contributions for all observations associated with state

j. In the case of discrete symbols we have Pr(Ou(t)|j,m) = bm
jOu(t). Equation (E.12)

requires that the optimal state sequence is known, which can be determined using the

Viterbi algorithm.

E.3.3 Results Comparison

Where possible this section provides comparative experimental results for the methods

described so far. Most of the results use the TIMIT database [Garofolo et al., 1993].

However, due to factors such as varying definitions of accuracy and the varying levels

of problem difficulty, the results should not be compared across different paragraphs.

Unless otherwise stated, the results should be assumed to be defined as 100% - %

deletions - % substitutions - % insertions, at the phoneme sequence level; although it

is not always clear from the cited papers if this is the metric used.

248 Discriminative and Connectionist Speech Processing

A German speech database was used by Reichl and Ruske [1995] to compare MMI

and MCE training of HMMs. Using the standard maximum likelihood criterion they

achieved a 59.5% accuracy. Applying MMI improved this to 62.0% and MCE achieved

64.8%. They also reported that MMI training was less stable than MCE, requiring

smaller step sizes.

On the TIMIT database with 39 phones Fallside [1992] demonstrated an RNN

(recurrent neural network) system trained with MMI with a frame by frame accuracy

of 75.1%. This is compared with the CMU Sphinx [Seymore et al., 1998] HMM system

that achieved 73.8%.

On a Cantonese digit test set MCE improved results from the ML baseline of 82.9%

to 90.0% [Lee et al., 1995]. This system used a small RNN for each digit. The same

system applied to English digits resulted in recognition improving from 92.3% to 93.5%.

The disparity in improvement arises from the inherent confusability of Cantonese digits

that allows discriminative approaches to work well.

E.4 Neural Network Speech Processing

Why should we bother with ANNs if HMMs provide a good way to represent speech

signals?

• ANNs can model arbitrary non-linear transformations of input parameters, in-

cluding the ability to model arbitrary probability distributions [Bourlard and

Morgan, 1998]. The most flexible pure HMMs typically assume probability dis-

tributions made up of mixtures of Gaussians with a covariance matrix that is 0

except along the diagonal.

• If trained properly, ANNs can directly estimate the discriminative MAP Pr(m|Ou)

criterion (see Section E.4.1).

• ANN systems can be 2–5 times faster during recognition than traditional methods

for equivalent performance [Schuster, 1998].

• A single ANN can be trained to do the same job as multiple HMMs, decreasing

the overall number of parameters to be trained, and improving the use of training

data [Schuster, 1998].

• ANNs can relax the Markov assumption by considering multiple frames of data

(past and future) at once [Lippmann, 1989, Bourlard and Morgan, 1994]. It is

difficult to do this with HMMs since it is necessary to minimise the dimensionality

of observations and the number of states to allow estimation of the parameters

with minimal data.

§E.4 Neural Network Speech Processing 249

• ANNs can consider categorical inputs. For example, encoding psycho-acoustic

features [Pols, 1997].

• ANNs can model arbitrary state durations, unlike HMMs in which durations

follow an exponential model. This is important for normalising the likelihood

contributions from short consonants against long vowels and other speech warping

phenomenon. HMMs can be modified to model arbitrary durations, however the

computational expense seems to outweigh the benefits [Rabiner, 1989]. Durations

can also be modeled in a post-processing phase, but these methods appear ad-hoc,

requiring extra weighting terms to be optimised.

• In practice, it appears necessary to carefully initialise the observation densities

used in HMMs to achieve good performance [Rabiner, 1989, Bourlard and Mor-

gan, 1998]. This is not the case with ANNs.

The disadvantages of ANNs include:

• The lack of a principled way to convert a sequence of observations into an optimal

sequence speech units. There is a need to include some form of search for the

globally optimal sequence of units given the local estimates of matches from an

ANN. This is the function usually achieved by the Viterbi search in HMMs.

Hybrid methods are a way to avoid this problem.

• ANN systems using gradient methods are 10–20 times slower to train than HMMs

using Baum-Welch training since they are restricted to small steps in parameter

space [Schuster, 1998]. Conjugate gradient [Fine, 1999] and line searches can

speed up gradient ascent training. Approximate gradient ascent algorithms such

as RPROP can also be used [Schuster, 1998].

• Speech ANNs have roughly 10 thousand to 2 million parameters [Schuster, 1998],

requiring a large amount of data and cross-validation to avoid over-fitting.

• Some sources quote that state-of-the-art HMMs with sophisticated tied and inter-

polated distributions and thousands of context dependent models, have roughly

25% better error rate than the best ANN/Hybrid systems when sufficient training

data is available [Bourlard and Morgan, 1998].

The rest of this section looks at different ways to contrive ANNs capable of handling

speech data.

250 Discriminative and Connectionist Speech Processing

E.4.1 Big, Dumb, Neural Networks

Ignoring for the moment the problem of time dependence in speech, it is possible to

view an ANN as performing a series of static probability estimation tasks. The input

to the network is a frame of speech plus future and past frames of speech to provide

context. Each output gives an estimate to the probability of a particular model given

the input.

Consider ANN outputs y1, . . . , yM ∈ R; how do we interpret these outputs as

probabilities? More specifically, how would we construct a network to compute the

posterior probabilities Pr(mi|Ou)? A standard method for doing this is to use a soft-

max distribution (3.8) at the output [Robinson, 1994, Morgan, 1994]. Assume that the

network is learning to estimate the MAP probability Pr(mi|Ou), then for each possible

model m1, . . . mM we define

Pr(mi|Ou) :=
exp(yi)∑M

j=1 exp(yj)
.

Given an arbitrary cost function J , such as −I(X,m∗), we compute

∂J

∂θj
=

∂J

∂ Pr(mi|Ou)

M∑

k=1

∂ Pr(mi|Ou)

∂yk

∂yk

∂θj
. (E.13)

The gradient of the soft-max distribution with respect to the network outputs is

∂ Pr(mi|Ou)

∂yk
= Pr(mi|Ou)(χi(k)− Pr(mk|Ou)) (E.14)

which can be interpreted as driving the difference between the desired probability

χi(k) and the actual output probability to zero. Once the gradient of the cost function

with respect to the outputs is known it is straight forward to use back propagation

to compute ∂yk

∂θ
. For example, consider the following simple cost function for the

observation Ou(t)

J = −logPr(m∗
t |Ou(t), θ) (E.15)

∂J

∂ Pr(m∗
t |Ou(t), θ)

= −
1

Pr(m∗
t |Ou(t), θ)

.

This is the equation for the normalised-likelihood cost function [Richard and Lippmann,

1991]. It simply measures the log probability of utterance Ou assuming we know

(or can estimate) the correct model m∗
t . Minimising this quantity will maximise the

posterior probability of the correct model given the observation. Minimising the sum

of (E.15) over time will maximise the log likelihood of the correct sequence of models.

§E.4 Neural Network Speech Processing 251

Substituting Equations (E.15) and (E.14) into Equation (E.13), we obtain

∂J

∂θj
= −

M∑

k=1

(χm∗
t
(mk)− Pr(mk|Ou(t), θ))

∂yk

∂θ
. (E.16)

In the simple case where yk represents the kth output of an ANN with linear output

nodes and whk is the weight from hidden node h to output k, (E.16) simplifies to

∂J

∂whk

= −(χm∗
t
(mk)− Pr(mk|Ou(t), θ))whk.

E.4.1.1 Alternative Cost Functions for MAP Estimation

Provided there is sufficient training data and the ANN is sufficiently complex to rep-

resent Pr(mi|Ou(t)), minimising Equation (E.15) will result in an ANN that estimates

Pr(mi|Ou(t)). This is proved in [Richard and Lippmann, 1991], which also proves that

the same is true of the mean square error cost function and the cross entropy function

J = −
M∑

i=1

di log Pr(mi|Ou(t), θ) + (1− di) log(1− Pr(mi|Ou(t), θ))

∂J

∂θj
= −

M∑

i=1

di − Pr(mi|Ou(t), θ)

Pr(mi|Ou(t))(1 − Pr(mi|Ou(t)))

∂ Pr(mi|Ou(t))

θj
,

where di = 1 if mi = m∗
t and 0 otherwise. Cross entropy has been popular for speech

recognition applications, for example [Wei and Vuuren, 1998, Fallside, 1992].

The experimental comparisons of Richard and Lippmann [1991] indicate that these

three cost functions produce similar results if enough training data is available. The

cross entropy cost and normalised likelihood weight cost converged faster than MSE,

and the normalised likelihood resulted in marginally better estimation accuracy in

regions of low probability.

These cost functions differ from those covered in Section E.3 because they estimate

posterior probabilities of models rather than likelihoods Pr(Ou(t)|m). Despite this,

these training methods can be used to estimate scaled likelihoods simply by divid-

ing the outputs by the prior probability of the models. This is discussed further in

Section E.5.1.

E.4.1.2 Implementation Issues

In the case where unlabelled data is available, it is sufficient to train the system using

as much labelled data as is available, then use the resultant classifier to label the

unlabelled data, using this new larger labelled set to train a new classifier. This process

252 Discriminative and Connectionist Speech Processing

is repeated, with each classifier bootstrapping off the labelling of the previous classifier,

until no improvement is gained [Bourlard and Morgan, 1998].

In practice, networks that classify the 61 phone TIMIT database have several hun-

dred inputs (including frames for context), 500–4000 hidden units, and 61 outputs,

requiring in the order of 106 parameters [Morgan, 1994]. Training such networks pro-

vides interesting challenges [Aberdeen et al., 2000]. Once such a network has been

trained some form of search is needed to compute the most likely temporal phone

sequence from the individual frame probabilities. Alternatively, ANNs that handle

time-series data can be used as discussed in the following sections.

E.4.2 Time-Delay Neural Networks

Time-delay neural networks (TDNNs) were one of the earliest attempts to modify

ANNs to cope with sequences of inputs. The output of each node of a TDNN is the

same as a standard ANN, the weighted sum of its inputs, but integrated over Tl frames.

Each layer l may integrate over a different time period. Thus each node in layer l must

have a local shift register to store the weighted sum of the last Tl inputs. If the input

to a node at the current time t is xt, then the output is

yt =

Tl−1∑

s=0

csf(xt−s),

where cs is an optional weighting term for each past frame and f is the ANN activation

function for that layer. Figure E.1 illustrates this idea. TDNNs can be thought of

as integrating evidence for or against a class over a finite period of time. They are

trained using a modified form of error back propagation. Good results were obtained

for classifying plosive consonants using TDNNs compared to standard ANNs [Waibel,

1989]. They have also been used to approximately determine phone labels to use as

discrete HMM symbols by Ma and Compernolle [1990]. This system recognised Dutch

digits, discriminating between 21 phonemes. Results improved from 90% to 93% over

a HMM with 200 discrete symbols from a codebook. A drawback of TDNNs is the

fixed amount of memory for each node. This is somewhat rectified in [Lin, 1994] where

TDNNs are extended to automatically adapt the value of Tl. TDNNs are further

reviewed by Lippmann [1989], Haton [1997], and Bridle [1992].

E.4.3 Recurrent Neural Networks

RNNs avoid the main problem of TDNNs by allowing all previous inputs to effect the

current output. Any traditional network architecture can be classed as an RNN if it

involves feedback from the output back into the inputs and/or hidden units [Haton,

§E.4 Neural Network Speech Processing 253

t t−1

t t−1 t−2

t t−1 t−2 t−3

y

y

x

x

 1

 3

 1

 7

Figure E.1: A Time-Delay Neural Network with 7 inputs and 2 frames of memory, 5 hidden

nodes with 3 frames of memory and 3 outputs with 4 frames of memory.

u u uO (1)

x(1)

y(1)

x(2) x(2)

O (2) y(2)

x(3)

O (N)

x(N) x(N+1)

y(N)

Figure E.2: An RNN unfolded N times for training.

1997]. In a typical application the inputs are augmented with a real-valued state

vector which was output by the network at the previous time step. This implies that

the outputs are augmented to provide the next state given the current input Ou(t)

and previous state xt. RNNs draw theoretical justification from their similarity to the

feedback methods used in linear state-based control systems [Fallside, 1992].

The most common training method is Back-Propagation Through Time (BPTT),

which unfolds the network N times and propagates the errors at the outputs yt and

state xt back through each time step (see Figure E.2). The initial state can be set to an

arbitrary fixed value. The state error at time N is zero because the final state has no

effect on the classification being made. Unfortunately, this method limits the amount

of past context the network can be trained to consider up to N frames. More complex

methods exist which avoid this limitation [Robinson, 1994, Schmidhuber, 1992].

In Robinson [1994] an RNN was used to classify the 61 phone TIMIT database.

The network was trained using the cross-entropy criterion described in Section E.4.1.

This allowed the 61 outputs to be interpreted as Pr(mi|Ou(1), Ou(2), . . . , Ou(t)) and

fed into a Viterbi state decoder. Thus, this application is actually a hybrid approach.

The state dimension was 176, with 47,400 parameters, trained with Back-Propagation

Through Time using the fast RPROP error descent algorithm [Schuster, 1998]. Results

show that 72.8% of phones were correctly identified by the RNN compared to 74.4%

for a mono-phone HMM system trained with the MMI criterion. At the time the best

results were from an HMM based system [Woodland, 2001] with 76.7%. RNNs are

254 Discriminative and Connectionist Speech Processing

further reviewed by Lippmann [1989], Haton [1997], and Schuster [1999].

E.4.3.1 Modelling Likelihoods with RNNs

If we wish to approximate the likelihoods Pr(Ou|mi) we could use a separate small

ANN for each model and have a single output giving the probability of Ou. This is the

approach used by Lee et al. [1995], where one RNN is trained for each of 11 Cantonese

digits. The number of outputs is approximately the number of identifiable acoustic

units, or states, that exist in the digit. At each time step the current state in each

network is qj = arg maxi yi. A network has a high probability of being the correct

model for the observations if the state index j increases monotonically to the final

state along the duration of the utterance.

E.4.3.2 Bi-Directional Neural Networks

As they have been formulated above RNNs cannot take into account future frames of

data in computing Pr(m|Ou). It is natural to expect that we need future context as

well as past context to optimally identify a unit of speech. A simple way to provide

future context is to train the network to delay its decision on frame t until frame t+ c

where c is the number of future frames to consider. An alternative is to extend RNNs

to allow all frames, past and present, to be considered. This architecture is called the

the Bi-Directional RNN [Schuster, 1996, 1998, 1999]. BRNNs have two sets of state

vectors, one for the forward time direction and one for the reverse time direction. At

time t separate hidden layers compute the next forward and backward state vectors,

while the output layer estimates Pr(mi|Ou(1), Ou(2), . . . , Ou(Tu)) based on Ou(t), the

forward state computed at t− 1 and the backward state computed at t+ 1. For real-

time recognition some window of speech data needs to be considered if utterances are

longer than a few tens of frames.

A subset of the TIMIT 61 phone database was trained using BRNNs in [Schuster,

1996] and compared to RNNs using delayed decisions of up to 4 frames. The best

RNN actually had 0 delay with an accuracy of 51.2% using 8 state variables and 1518

parameters. The BRNN had an accuracy of 55.3% using 8 state variables in each

direction and a total of 2182 parameters. The poor performance of the delayed RNNs

in this experiment is not consistent with other results and may be due to the use of a

small data training set and the extra difficulty in training for delayed decisions.

E.4.4 Representing HMMs as ANNs

Young [1990] emphasised the similarity between HMMs and RNNs. We do not usually

attempt to interpret the value of an RNN state vector xt, but we might conceive of a

§E.4 Neural Network Speech Processing 255

u

u

ij

j

alpha(t) alpha(t+1)

log

a

z z

z

Product

Sum

Quotient

P(O |m)

O (t) b

−1−1

−1

Figure E.3: An RNN implementation of an HMM.

network trained to produce a state vector equivalent to the forward state probability

used in the Baum-Welch training procedure for HMMs, that is, xt = αt. The key idea

is to note that the recursive forward probability computation for a single HMMs can

be written as

αt(j) =
∑

i

αt−1(i)aijbjOu(t) (E.17)

=
∑

i

αt−1(i)wij(t),

which looks like the computation performed to compute the activation of an ANN node

except that the weights are dependent on the current observation.

E.4.5 Alphanets

The concepts of the previous section are extended by Bridle [1990], and Bridle and Dodd

[1991], resulting in Alphanets, and the work of Niles and Silverman [1990]. Both reach

the conclusion that HMMs can be cast exactly as an RNN if we allow multiplication

and division units as well as the standard summation units. The first two factors in

Equation (E.17) can be computed with a feed forward pass where the inputs are αt

and the weights are the stochastic matrix elements aij . The observation probabilities

bjO(t) can be estimated with another feed forward network where the inputs are Ou(t)

and there is an output for the probability given each state. The outputs are multiplied

for each state, and then normalised to give αt+1. The output of the network is the log

sum of αt+1. A possible network is shown in Figure E.3.

Applications based on the Alphanets methodology appear to assume one HMM

state per acoustic model, using one network to represent one large HMM. They use

discriminative forms of HMM training to update the parameters such as those discussed

256 Discriminative and Connectionist Speech Processing

in Section E.3.1.2. Alphanets were not a new method for speech processing, rather,

the importance of Alphanets is in providing a new view of existing HMM methods

and unifying the idea of discriminative and connectionist approaches to speech [Bridle,

1992].

E.4.6 Other uses of Neural Networks for Speech

In this section we have focused on ANN methods that attempt to determine the prob-

ability of a model (such as a phone) given the observations Ou. However, ANNs can

be used in speech processing in many other ways:

• Phone recognition – Alternative methods of performing phone recognition include

the use of Kanerva models, Classification & Regression Trees and other ANNs

with novel processing units [Fallside, 1992].

• Vector Quantisation – Learning vector quantisers based on self-organizing feature

maps and other ANN approaches can be used to process observations to generate

symbols for discrete HMMs [Kurimo, 1997, Anderson, 1994].

• Pre-processing – ANNs can perform arbitrary non-linear transformations of the

input. This can perform tasks such as removing noise, or adapting to a new

speaker [Huang et al., 1991, Ran and Millar, 1993, Zhang and Millar, 1994].

• Hierarchical Mixtures of Experts – Various expert classifiers including those dis-

cussed already can be combined through the use of a hierarchy of gating networks

[Schuster, 1998, Ran and Millar, 1991] trained with the EM algorithm [Dempster

et al., 1977].

• Predictive Networks – ANNs can be used to predict extra features. For example,

they can be trained as auto-regressive models given previous observations and

the current state [Bourlard and Morgan, 1998].

• Language Modelling – ANNs can be used to estimate the probabilities of se-

quences of phones, used for re-scoring N-best lists of phone sequences [Bourlard

and Morgan, 1998].

E.5 Hybrid Speech Processing

In this section we present two of the most common hybrid approaches. The first is a

broad approach, allowing many theoretically justified variations, and is the subject of

active research. The second describes a method for globally optimising both the ANN

and HMM components of hybrid systems.

§E.5 Hybrid Speech Processing 257

y1 y2 y3

P(i=1) P(i=2) P(i=3)

softmax

HMM

1 2 3

uup(O (t)|1)

P(1|O (t)) P(2|O (t)) P(3|O (t))u uu

u p(O (t)|2) p(O (t)|3)

ANN

O (t)u

Figure E.4: Using an ANN to generate HMM observation likelihoods.

E.5.1 Estimating Observation Densities with ANNs

Each state i of an HMM is associated with a probability distribution over the ob-

servations Pr(Ou(t)|i). Section E.4 noted that an advantage of ANNs over HMMs is

their ability to model an arbitrary distribution, non-linear in the inputs. A large body

of work including Bourlard and Morgan [1998], Bourlard et al. [1995], Bourlard and

Morgan [1994], and Morgan [1994] is devoted to this idea. Essentially, the methods of

Section E.4.1 are applied to estimate observation likelihoods p(Ou(t)|i), and those like-

lihoods are used in the HMM procedures in place of biOu(t) for equations such as (E.17).

However, the ANN methods of Section E.4.1 estimate the posterior Pr(m|Ou(t))

rather than the likelihoods used by the HMM search. It is easy to convert from a

posterior to a scaled likelihood by assuming Pr(Ou(t)) is constant and using Bayes’ rule

p(Ou(t)|m) ∝
Pr(m|Ou(t))

Pr(m)
.

This simply amounts to dividing the network output probabilities by the model priors

estimated from the training data. This quantity can be used in Equation (E.17) as the

model likelihood. In this context a model m and an HMM state i are synonymous,

since the ANN estimates a phone probability and the HMM consists of one phone per

state. Figure E.4 illustrates the process. One phone per state limits the applicability

of the algorithm though in principle there is no reason why ANNs could not be used

to estimate probabilities for multi-state phones. Once the ANN has been trained, an

HMM training procedure can be used to estimate the state transition probabilities

aij. On an 152 speaker subset of the TIMIT database with 63 phones, the method

258 Discriminative and Connectionist Speech Processing

described above achieved a frame by frame accuracy of 54.8% with 351 inputs and

1024 hidden nodes [Bourlard and Morgan, 1994]. Each frame had 39 inputs and ±4

frames of context were provided for a total of 351 ANN inputs. Single Gaussian per

phone density estimates achieved 43.3%.

E.5.1.1 MAP Estimation with ANN/HMM Hybrids

It may seem counter-intuitive to estimate posterior probabilities, just to turn them into

less informative scaled likelihoods. Let us return to the idea of using ANNs to estimate

state probabilities for HMMs rather than just emission probabilities. By estimating

state transition probabilities Pr(it|it−1, Ou(t)) instead of just occupancy probabilities

Pr(it|Ou(t)) we can avoid computing the scaled likelihood. The probability of the model

is the product of Pr(j|i, Ou(t)) for each state it in the sequence, summed across all

possible state sequences. Taking into account that HMM m may model extra language

information not modeled by the ANN transition probabilities, we have [Bourlard and

Morgan, 1998]

Pr(m|Ou, θ) = Pr(m)
∑

∀i1,...,iT

[
T∏

t=1

Pr(it|it−1, Ou(t), θ)
Pr(it|it−1,m)

Pr(it|it−1)

]

and the Viterbi approximation replaces the sum with a maximisation at each step.

Pr(it|it−1,m) is the state transition probability according to the model. Pr(it|it−1) is

the state transition probability estimated from the training data by counting transi-

tions. The dependency on θ emphasises the dependency on the ANN parameters. If

the HMM model simply models the transitions in the data we have Pr(it|it−1,m) =

Pr(it|it−1) and the last factor vanishes. Otherwise, Pr(it|it−1,m) allows us to encode

useful knowledge that may not be evident in the training data, for example, the task

may involve a restricted set of words, altering the distribution of phones.

E.5.2 Global Optimisation of ANN/HMM Hybrids

An alternative ANN/HMM approach taken by Bengio et al. [1992]. This work views the

ANN as mapping a high dimensionality set of frame data into a small set of continuous

observations to be input to an HMM. The HMM estimates observation probabilities

using a mixture of Gaussians. Used in this way the ANNs are performing regression

rather than classification. Multiple networks can be used to pre-process the data in

different ways, each concentrating on various hard to distinguish features. For example,

one network is trained to produce observations particularly useful for difficult plosive

classification, while another network may produce broadly useful features.

§E.6 Summary 259

The clever aspect of this structure is that the gradients of the HMM parameters,

computed in Section E.3.1.2, can be propagated back into the ANNs, simultaneously

maximising the discriminative powers of the HMMs and the ANNs. This requires

computing ∂bjOu(t)/∂yk, the derivative of the observation probability at time t for

state j with respect to the kth output of the combined networks. Having derived this

quantity back-propagation can be used to derive the gradients of the network weights.

The same globally trained ANNs are used to provide observations for all states of all

HMMs.

This method was evaluated using the TIMIT database with 7214 triphone models.

Observation features were calculated with 3 networks: a recurrent network for broad

features using 12 inputs, a recurrent network for plosive features using 74 inputs, and

a linear network to combine the results of the first two. The result was 8 continuous

observations for the HMMs. The networks use a total of 23,578 weights. The first two

networks were pre-trained to perform recognition tasks. Each HMM had 14 states and

3 distributions, tied to the transitions between the states. Global optimisation boosted

accuracy from 81% to 86%. A hybrid based on the ideas in Section E.5.1 achieved 74%.

E.6 Summary

This survey has described the popular MMI and MCE criteria for discriminative speech

processing systems. We showed how either criteria can be applied to HMMs, ANNs,

or some arbitrary parameterised probability estimator. Connectionist approaches to

probability estimation were reviewed, including static multi-layer perceptrons, TDNNs,

RNNs and Bi-Directional RNNs. The close link between HMM approaches and con-

nectionist approaches was also explored by showing how ANN architectures such as

Alphanets perform the same calculation as the HMM forward probability calculation.

The advantages of ANNs for speech processing compared to HMMs were also listed,

noting that while ANNs have many theoretical advantages over HMMs, taking ad-

vantage of them is difficult, requiring the training of very large ANNs. Finally, we

described the hybrid methods that use ANNs to estimate phone likelihoods for HMM

states, and methods that allow the global optimisation of HMM/ANN hybrids.

260 Discriminative and Connectionist Speech Processing

Appendix F

Speech Experiments Data

This appendix provides extra experimental details and results to go with Chapter 10.

F.1 Cases for HMM classification

The matrices below define the 4 sets of HMMs used in the discrimination tests of

Section 10.2.2.1. All sets define 2 or 3 models, all with 2 states and 2 symbols. Common

matrices are only shown once. The matrices that are different for models within the

same test are differentiated with the letter subscript A for the first model, B for the

second model, and so on. Test I (see Figure 10.2):

AA =

[
0.9 0.1

0.1 0.9

]
AB =

[
0.1 0.9

0.9 0.1

]
B =

[
1 0

0 1

]
.

Test II:

AA =

[
0.9 0.1

0.1 0.9

]
AB =

[
0.1 0.9

0.9 0.1

]
B =

[
0.75 0.25

0.25 0.75

]
.

Test III:

AA =

[
0.9 0.1

0.1 0.9

]
AB =

[
0.1 0.9

0.9 0.1

]
AC =

[
0.5 0.5

0.5 0.5

]
B =

[
1 0

0 1

]
.

262 Speech Experiments Data

Test IV:

AA =

[
0.9 0.1

0.1 0.9

]
BA =

[
0.5 0.5

0.9 0.1

]
AB =

[
0.1 0.9

0.9 0.1

]
BB =

[
0.1 0.9

0.9 0.1

]
.

F.2 Bakis Model Signal Segmentation

This experiment uses a similar procedure to the HMM discrimination experiments of

Section 10.2.2.1. Hand crafted HMMs are used to generate segments of observations yt.

IState-GPOMDP is used to train an FSC that labels each observation with the HMM

that emitted it. Following on from those experiments, we label the HMMs used in this

experiment as Test V.

Test V was created to measure the ability of the system to split a continuous stream

of observations into segments belonging to each model, that is, we do not assume the

length of the segments is known. The HMMs for Test 5 are more complex than the

previous tests. We use two Bakis type HMMs with 5 states and 5 discrete output

symbols:

A =

0.9 0.1 0 0 0

0 0.9 0.1 0 0

0 0 0.9 0.1 0

0 0 0 0.9 0.1

0 0 0 0 1

BA =

0.0 0.2 0.4 0.4 0.0

0.0 0.0 0.2 0.4 0.4

0.2 0.4 0.4 0.0 0.0

0.4 0.4 0.0 0.0 0.2

0.4 0.0 0.0 0.2 0.4

BB =

0.0 0.2 0.4 0.4 0.0

0.0 0.0 0.2 0.4 0.4

0.4 0.0 0.0 0.2 0.4

0.4 0.4 0.0 0.0 0.2

0.2 0.4 0.4 0.0 0.0

.

The Bakis HMM structure only allows self transitions and forward transitions. This

structure has previously been used to model speech [Bakis, 1976]. The only difference

between the two source HMMs is the emission distributions for states 3 and 5, making

this a difficult problem.

F.2.1 Experimental Protocol

This experiment used an ANN with a single hidden layer of nh = 8 hidden units. The

hidden layer was squashed using the tanh function. The gradient time was T = 1×107

§F.2 Bakis Model Signal Segmentation 263

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

M
od

el

Time

true
label

segmentation

Figure F.1: Solid lines indicate which model is generating the observations, showing the

correct label. Crosses indicate the label (action) output by the system at each time step. The

dashed line indicates the rectangular window smoothed decision from Equation (10.2).

steps and the line search estimation time was 2.5 × 106 steps. The discount factor

was β = 0.9. The quadratic penalty was ℘ = 0.0005. The best number of I-states

was found experimentally to be 16. A deterministic µ(u|g) was used as described in

Section 10.2.1.1. The reward function was also unchanged with a reward of 1 for a

correct label and -1 for an incorrect label.

F.2.2 Results

Results are shown in Figure F.1 for a fragment of the output of the best out of 10

trained agents. The crosses indicate the raw decision output by the system for each

time step. The solid line indicates the true segment boundaries, and the dashed line

is the output of the rectangular filter. The correct raw decision was made 77% of the

time.

We experimented with using a w = 30 step rectangular window described by Equa-

tion (10.2). The window length was chosen from trials of w = 10, 20, 30, 40. The

distance of the dotted line from 0 on the model axis can be interpreted as a confidence

in the decision. Declaring a segment when the filtered decision crosses a threshold of

±0.25 on the model axis correctly identified 10 segments with 2 deletions.

264 Speech Experiments Data

Table F.1: The mapping from the 48 numbered phonemes used in our experiments to the 63

TIMIT phonemes. The third column counts the instances of each phoneme in the training set.

Num. TIMIT phones instances Num. TIMIT phones instances

0 b 1517 24 y 700
1 d 1672 25 hh, hv 1165
2 g 796 26 iy 3233
3 p 1790 27 ih 2837
4 t 2768 28 eh 2271
5 k 2666 29 ey 1599
6 dx 1344 30 ae 1622
7 q 1691 31 aa 1592
8 jh 710 32 aw 496
9 ch 573 33 ay 1355
10 s 4336 34 ah 1548
11 sh 943 35 ao 1343
12 z 2546 36 oy 215
13 zh 115 37 ow 1173
14 f 1562 38 uh 334
15 th 515 39 uw, ux 1385
16 v 1398 40 er, axr 2897
17 dh 1684 41 ax 2600
18 m, em 2470 42 ix 5073
19 n, en, nx 5287 43 pau, #h, h# 5851
20 ng, eng 857 44 epi 614
21 l, el 3736 45 pcl, tcl, kcl, qcl 8814
22 r 3278 46 bcl, dcl, gcl 4983
23 w 1556 47 ax-h 301

F.3 TIMIT Phoneme Mapping

The TIMIT continuous speech database [Garofolo et al., 1993] is labelled with 63

different phonemes. Some of these phonemes are allophones, or groups of phonemes

that sound the same and rely on context to define them. For the low level phoneme

recognition part of an LVCSR system it is usual to combine groups of allophones into

one phoneme, eliminating the ambiguity that they represent. We used the mapping

outlined in Lee [1989], given by Table F.1.

Appendix G

Bunyip Communication

This appendix discusses the communication costs associated with the distributed ANN

training described in Section 11.5. We show that the communication costs for dis-

tributed training of an ULSNN are not trivial. A reduce algorithm optimised for

Bunyip’s topology is also described and some experimental timings given.

G.1 Communication Costs

The inter-process communication costs during ANN training arise from broadcasting

the ANN parameters to all processes and reducing the ANN error and gradients from

each process to the master process. The parameter broadcast is cheap, since many

copies of the same data is sent to all processes. Broadcasts can take advantage of

features such as TCP/IP broadcasting. The reduce process is more difficult with each

process generating unique vectors that must be collected and summed by the master

process. The time taken to reduce data grows with both the number of parameters

and the number of processes. The remaining communication consists of start and stop

messages which are negligible.

A typical neural network with 100 inputs, 50 hidden layer neurons, and 50 output

neurons, requires 7500 parameters, or 30 KBytes of data (single precision), to be sent

from every node to the master node after the gradient estimation has completed. A

naive reduction over 194 processes using a 1 Gb/s link, such as used in Bunyip, would

take 0.05 seconds assuming 100% network utilisation. Our ULSNN with 400 inputs,

480 hidden layer neurons and 3203 output neurons requires 1,729,440 parameters or

6.6 MBytes of data per process, which would require 10.1 seconds. There is sufficient

memory on each node to occupy both processors for 446 seconds calculating gradients

before a reduce operation is required. Consequently, the reduce operation would cost

at least 2.3% of the available processing time, more if not enough training data is

available or the network size is increased.

This demonstrates that although communication costs for distributed ANN training

266 Bunyip Communication

are minimal for commonly implemented network sizes, ULSNN training must optimise

inter-process communication to achieve the best performance.

We reduced communication as much as possible by only distributing the neural-

network parameters to all the slaves at the very start of training (rather than at each

step), and thereafter communicating only the search direction and the amount to step

in that direction. One significant reduce operation is required per epoch to send the

error gradient vector from each process to the master. The master then co-ordinates

the step size search with the slaves.

All inter-node communication was done using the LAM implementation of MPI

[LAM Team, 1999]. Communicating parameters or directions to all processors required

a 6.6 MBytes broadcast operation from the server to each of the 194 processors in the

cluster, while reducing the gradient back to the master required 6.6 MBytes of data to

be communicated from each process back to the server. LAM/MPI contains a library

reduce operation that uses a simple O(log n) algorithm that distributes the load of the

reduce over many processes instead of naively sending 194 gradient vectors to one node.

This results in a reduce operation on Bunyip that takes 8.5 seconds over 8 stages.

G.2 Optimising Reductions

There are two problems with existing free implementations of MPI reduce operations.

The first is the lack of shared memory protocols on clusters with multi-processor nodes.

Instead, they use slow TCP/IP communication between processors on the same moth-

erboard. Secondly, the reduce operation does not take advantage of the topology of

the cluster. For example, the best reduce algorithm to use on a ring network might be

to send a single vector to each node on the ring in turn, which adds its contribution

before passing the vector to the next node. On a star network the best algorithm might

be to send each contribution to the central server and sum as they arrive.

To decrease the time taken per reduce, a customised reduce was written, using

shared memory for intra-node communication, and MPI non-blocking calls for inter-

node communication. This routine is summarised by Figure G.1. It is split into 4

stages, each of which takes advantage of an aspect of Bunyip’s topology shown in

Figure 11.1.

1. Each node contains two processors, both running an instance of the training

process. All 97 nodes (including the server), reduce 6.6 MBytes of data between

processes by using shared memory, taking 0.18 seconds. The time taken to add

the two sets of data together is approximately 0.005 seconds.

2. Each node in group A can open a 100 Mb/s connection to any node in group

§G.2 Optimising Reductions 267

ca

da

cx

dxba

ba

aa

aa

p1

p2

ab

bb

ax

bx

100Mbps

ac

bc bd

adaa

be bu deda du300Mbps

bunyip

1Gbps

p1

p2

dx

dx

96->48

48->12

12->1

192->96

Figure G.1: The four stages of our customised reduce: stage 1: SHM intra-node reduce; stage

2: all nodes in group A and C reduce to their counterparts; stage 3: groups B and D reduce to

12 nodes using 3 NICs; stage 4: MPI library reduce to the server node.

B via switch 0. Thus all 24 nodes in A can reduce to their B counterparts in

parallel. This requires 0.66 seconds. The same trick is used for reducing from

group C to D. The reduced data now resides only on the B and D nodes. The

total bandwidth for all 96 nodes in this stage is 4.03 Gb/s.

3. Each node contains 3x100 Mb/s NICs. This allows a node to receive data from

three other nodes simultaneously provided the TCP/IP routing tables are cor-

rectly configured. We split the 24 nodes in each group into 6 sets of 4 nodes. The

first of each set (see node BA in Figure G.1) is designated as the root and the

other three nodes send to it via different NICs. This takes 0.9 seconds achieving

a bandwidth of 185 Mb/s into each root node, or 2.22 Gb/s across all 12 root

nodes.

4. The final step is a standard MPI library reduce from 6 B nodes and 6 D nodes to

the master process. This is the slowest step in the process taking 3.16 seconds,

including the time spent waiting for the nodes to synchronise since there is some

variance in the time taken for the previous steps.

The overall time taken for the optimised reduce to complete is 4.9 seconds. The

actual time saved per reduction is 3.6 seconds. The training performance speedup

from this saving varies with the duration of the gradient calculation, which depends

linearly on the number of training patterns. Figure G.2 illustrates the expected speedup

achieved by using the optimised reduce instead of the MPI library reduce, against the

268 Bunyip Communication

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1000 10000 100000 1e+06

S
pe

ed
up

Total training pattens

Figure G.2: The theoretical training speedup exhibited after replacing the MPI library reduce

with our optimised reduce against the total number of training patters used.

total number of training patterns used. In practice our peak performance of 163.3

GFlops/s benefits by roughly 1% from the optimised reduce, however the speedups are

much more marked for smaller (and more frequently encountered) data sets.

Bibliography

Douglas Aberdeen and Jonathan Baxter. General matrix-matrix multiplication using
SIMD features of the PIII. In Euro-Par 2000: Parallel Processing, Munich, Germany,
August 2000. Springer-Verlag.

Douglas Aberdeen and Jonathan Baxter. Emmerald: A fast matrix-matrix multiply us-
ing Intel SIMD technology. Concurrency and Computation: Practice and Experience,
13:103–119, 2001.

Douglas Aberdeen and Jonathan Baxter. Scaling internal-state policy-gradient meth-
ods for POMDPs. In Proceedings of the 19th International Conference on Machine
Learning, Syndey, Australia, 2002. Morgan Kaufmann. http://csl.anu.edu.au/

~daa/papers.html.

Douglas Aberdeen, Jonathan Baxter, and Robert Edwards. 92 /MFlop/s, Ultra-Large-
Scale Neural-Network training on a PIII cluster. In Proceedings of Super Computing
2000, Dallas, TX., November 2000. SC2000 CDROM.

V. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva. Stochastic optimaization.
Engineering Cybernetics, 5:11–16, 1968.

Timothy R. Anderson. Auditory models with Kohonen SOFM and LVQ for speaker
independent phoneme recognition. In IEEE Internation Conference on Neural Net-
works, volume VII, pages 4466–4469, Orlando, Florida, June 1994. IEEE.

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-
dations. Cambridge University Press, 1999. ISBN 0 521 57353 X.

Howard Anton and Chris Rorres. Elementary Linear Algebra: applications version.
Wiley, 6th edition, 1991.

Krste Asanović and Nelson Morgan. Experimental determination of pre-
cision requirements for back-propagation training of artificial neural net-
works. Technical report, The International Computer Science Institute, 1991.
ftp://ftp.ICSI.Berkeley.EDU/pub/techreports/1991/tr-91-036.ps.gz.

K. J. Åström. Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications, 10, 1965.

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, and Gary D. Hachtel. Algebraic
decision diagrams and their applications. In International Conference of Computer-
Aided Design, pages 188–191. IEEE, 1993.

270 BIBLIOGRAPHY

Leemon C. Baird and Andrew W. Moore. Gradient descent for general reinforcement
learning. In Advances in Neural Information Processing Systems, volume 11. MIT
Press, 1999.

R. Bakis. Continuous speech recognition via centisecond acoustic states. In 91st Meeting
of the Acoustical Society of America, April 1976.

Bram Bakker. Reinforcement learning with LSTM in non-Markovian tasks with long-
term dependencies. Technical report, Leiden University, 2001. http://www.fsw.

leidenuniv.nl/www/w3_func/bbakker/abstracts.htm.

Peter L. Barlett and Jonathan Baxter. Hebbian synaptic modifications in spiking
neurons that learn. Technical report, Computer Sciences Laboratory, RSISE, ANU,
November 1999.

Peter L. Barlett and Jonathan Baxter. Estimation and approximation bounds for gradi-
ent based reinforcment learning. In Thirteenth Annual Conference on Computational
Learning Theory, 2000. http://discus.anu.edu.au/~bartlett/.

Peter Bartlett and Jonathan Baxter. Estimation and approximation bounds for
gradient-based reinforcement learning. Journal of Computer and System Sciences,
2002. To appear.

Peter L. Bartlett, Stephane Boucheron, and Gabor Lugosi. Model selection and error
estimation. Technical report, Computer Sciences Laboratory, RSISE, ANU, 2000.

Jonathan Baxter. Sketch proof of Exp-GPOMDP convergence. Personal communication,
July 2002.

Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in POMDP’s via direct
gradient ascent. In Proc. 17th International Conf. on Machine Learning, pages 41–
48. Morgan Kaufmann, San Francisco, CA, 2000.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001.

Jonathan Baxter, Peter L. Bartlett, and Lex Weaver. Experiments with infinite-
horizon, policy-gradient estimation. Journal of Artificial Intelligence Research, 15:
351–381, 2001a.

Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Reinforcement learning and chess.
In Machines that Learn to Play Games, Advances in Computation: Theory and
Practice, chapter 5, pages 91–116. Nova Science Publishers, Huntington, NY, 2001b.

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation — a new compu-
tational technique in dynamic programming: allocation processes. Mathematics of
Computation, 17:155–161, 1963.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J.,
1957.

BIBLIOGRAPHY 271

Yoshua Bengio and Paolo Frasconi. An input output HMM architecture. In Advances
in Neural Information Processing Systems, volume 7, pages 427–434. The MIT Press,
1995. URL citeseer.nj.nec.com/bengio95input.html.

Yoshua Bengio and Paolo Frasconi. Input-output HMM’s for sequence processing.
IEEE Transactions on Neural Networks, 7(5):1231–1249, 1996. URL citeseer.nj.

nec.com/bengio95inputoutput.html.

Yoshua Bengio, Renato De Mori, Giovanni Flammia, and Ralf Kompe. Global opti-
mization of a neural network-hidden Markov model hybrid. IEEE Transactions on
Neural Networks, 3(2):252–259, March 1992.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dymanic Programming. Athena
Scientific, 1996.

J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C. W. Chin. PHiPAC: A portable,
high-performace, ANSI C coding methodology and its application to matrix mul-
tiply. Technical report, University of Tennessee, August 1996. http://www.icsi.

berkeley.edu/~bilmes/phipac.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Using PHiPAC to
speed Error Back-Propogation learning. In ICASSP, April 1997.

Jim Blythe. Decision-theoretic planning. AI Magazine, 1(20), Summer 1999. http:

//www.isi.edu/~blythe/papers/aimag.html.

Blai Bonet. An ǫ-optimal grid-based algorithm for partially observable Markov decision
processes. In 19th International Conference on Machine Learning, Sydney, Australia,
June 2002.

Herv A. Bourlard and Nelson Morgan. Connectionist Speech Recognition A Hybrid
Approach. Kluwer Academic Publishers, 1st edition, 1994.

Hervé Bourlard, Yochai Konig, and Nelson Morgan. Remap : Recursive estimation
and maximization of a posteriori probabilities in connectionist speech recognition.
In Proc. EUROSPEECH ’95, Madrid, September 1995.

Hervé A. Bourlard and Nelson Morgan. Hybrid HMM/ANN Systems for Speech Recog-
nition: Ovierview and New Research Directions, volume 1387 of Lecture Notes in
Artificial Intelligence, pages 389–417. Springer-Verlag, 1998.

C. Boutilier and D. Poole. Computing optimal policies for partially observable decision
processes using compact representations, 1996.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes.
In Conference on Uncertainty in Artificial Intelligence, pages 33–42, 1998. URL
citeseer.nj.nec.com/boyen98tractable.html.

Ronen I. Brafman. A heuristic variable grid solution method for POMDPs. In Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI ’97),
1997.

272 BIBLIOGRAPHY

Leo Breiman. Probability. Addison-Wesley, 1966.

J. S. Bridle and L. Dodd. An alphanet approach to optimising input transformations
for continuous speech recognition. In Proc. International Conference on Acoustics,
Speech and Signal Processing, number 5.7, pages 277–280. IEEE, 1991.

John S. Bridle. ALPHA-NETS: A recurrent ‘neural’ network architecture with a hidden
Markov model interpretation. Speech Communication, 9:83–92, February 1990.

John S. Bridle. Spech Recognition and Understanding. Recent Advances, chapter Neural
Networks or Hidden Markov Models for Automatic Speech Recognition: Is there a
Choice?, pages 225–236. Number F75 in NATO ASI. Springer-Verlag Berlin, 1992.

George W. Brown. Statistical Papers in Honor of George W. Snedecor, chapter Re-
cursive Sets of Rules in Statistical Decision Processes, pages 59–76. Iowa State
University Press, Ames, Iowa, 1972. ISBN 0-8138-1585-1.

George Casella and Christian P. Robert. Rao-Blackwellisation of sampling schemes.
Biometrika, 83(1):81–94, March 1996.

Anthony Cassandra. Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Brown University, May 1998.

Anthony R. Cassandra. POMDPs for Dummies: POMDPs and their algorithms,
sans formula, January 1999. http://www.cs.brown.edu/research/ai/pomdp/

tutorial/index.html.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting op-
timally in partially observable stochastic domains. In Proceedings of the Twelfth
National Conference on Articial Intelligence, 1994.

Hsien-Te Cheng. Algorithms for Parially Observable Markov Decision Processes. PhD
thesis, University of British Columbia, British Columbia, Canada, 1988.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In National Conference on Artificial Intelligence, pages 183–
188, 1992.

T. Dean and K. Kanazawa. A model for reasoning about presistence and causation.
Computational Intelligence, 5(3):142–150, 1989.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Roayal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

L. Deng. A dynamic feature based approach to the interface between phonology and
phonetics for speech modelling and recognition. Speech Communications, (24):299–
323, 1998.

Thomas G. Dietterich. An overview of MAXQ hierarchical reinforcement learning. In
SARA, pages 26–44, 2000. URL citeseer.nj.nec.com/dietterich00overview.

html.

BIBLIOGRAPHY 273

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679: A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16:18–28, 1990.
http://www.netlib.org/blas/index.html.

D. Draper, S. Hanks, and D. Weld. A probabilistic model of action for least-
commitment planning with information gathering. In Proceedings of the Tenth Con-
ference on Uncertainty in Artificial Intelligence, pages 178–186. Morgan Kaufmann,
1994.

Alain Dutech. Solving POMDPs using selected past events. In Proceedings of the 14th
European Conference on Articial Intelligence, ECAI2000, pages 281–285, 2000. URL
citeseer.nj.nec.com/dutech00solving.html.

Alain Dutech, Olivier Buffet, and Francois Charpillet. Multi-agent systems by incre-
mental gradient reinforcement learning. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Articial Intelligence, IJCAI-01, pages 833–838, Seattle,
WA, 4–10 August 2001. URL citeseer.nj.nec.com/dutech01multiagent.html.

Stephen Elliott. Signal Processing for Active Control. Academic Press, 2001.

Yaalov Engel and Shie Mannor. Learning embedded maps of Markov processes. In The
Eighteenth International Conference on Machine Learning, June 2001.

Examiner. Auxillary memory examples. Comments from an anonymous examiners
report, January 2003.

Frank Fallside. Speech Recognition and Understanding. Recent Advances, chapter Neu-
ral Networks for Continuous Speech Recognition, pages 237–257. Number F75 in
NATO ASI. Berlin: Springer-Verlag, Cambridge University, 1992.

Paul Fearnhead. Sequential Monte Carlo methods in filter theory. PhD thesis, Merton
College, University of Oxford, 1998.

Terrence L Fine. Feedforward Neural Network Methodology. Springer, New York, 1999.

Sadaoki Furui. An overview of speaker recognition technology. In ESCA Workshop on
Automatic Speaker Recognition, Identification and Verification, pages 1–9. ESCA,
ESCA, 1994.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S.
Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT acoustic-phonetic continuous
speech corpus, 1993. http://www.ldc.upenn.edu/Catalog/LDC93S1.html.

Héctor Geffner and Blai Bonet. Solving large POMDPs by real time dynamic pro-
gramming. Working Notes Fall AAAI Symposium on POMDPs, 1998. http:

//www.cs.ucla.edu/~bonet/.

Mohammad Ghavamzadeh and Sridhar Mahadevan. Continuous-time hierarchical re-
inforcement learning. In Proceedings of the Eighteenth International Conference on
Machine Learning, pages 186–193. Morgan Kaufmann, June 2001.

274 BIBLIOGRAPHY

Matthew R. Glickman and Katia Sycara. Evolutionary search, stochastic policies with
memory, and reinforcement learning with hidden state. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, pages 194–201. Morgan Kauf-
mann, June 2001.

Peter W Glynn. Stochastic approximation for Monte-Carlo optimization. In Proceed-
ings of the 1986 Winter Simulation Conference, pages 356–365, 1986.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Commu-
nications of the ACM, 33:75–84, 1990.

Peter W. Glynn. Importance sampling for Monte Carlo estimation of quantiles.
Technical report, Dept. of Operations Research, Stanford University, 1996. URL
citeseer.nj.nec.com/glynn96importance.html.

Peter W Glynn and Paul L’Ecuyer. Likelihood ratio gradient estimation for regen-
erative stochastic recursions. Advances in Applied Probability, 27, 4 (1995), 27:
1019–1053, 1995.

P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo. A generalization of
the Baum algorithm to rational objective functions. In ICASSP-89, 1989.

Geoffrey J. Gordon. Reinforcement learning with function approximation converges to
a region. In Proceedings of Neural Information Processing Systems, volume 13, pages
1040–1046, 2001. URL citeseer.nj.nec.com/gordon01reinforcement.html.

Anne Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in applied
mathemtics. SIAM, Philadelphia, PA, 1997. ISBN 0-89871-396-X.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction tech-
niques for gradient estimates in reinforcement learning. In Advances in Neural Infor-
mation Processing Systems, volume 14, Vancouver, BC, December 2002. MIT Press.

Bruce Greer and Greg Henry. High performance software on Intel Pentium Pro
processors or Micro-Ops to TeraFLOPS. Technical report, Intel, August 1997.
http://www.cs.utk.edu/~ghenry/sc97/paper.htm.

Carlon Guestrin, Daphne Killer, and Ronald Parr. Solving factored POMDPs with
linear value functions. In IJCAI-01 workshop on Palling under Uncertainty and
Incomplete Information, Seattle, Washington, August 2001a. URL citeseer.nj.

nec.com/440372.html.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored
MDPs. In IJCAI’01, pages 673–682, Seattle, WA, 2001b. URL citeseer.nj.nec.

com/guestrin01maxnorm.html.

Eric A. Hansen. Solving POMDPs by searching in policy space. In The Eighth Con-
ference on Uncertainty in Artificial Intelligence, pages 211–219, Madison, WI, 1998.
URL citeseer.nj.nec.com/hansen98solving.html.

BIBLIOGRAPHY 275

Eric A. Hansen and Zhengzhu Feng. Dynamic programming for POMDPs using a
factored state representation. In The Fifth International Conference on Artificial
Intelligence Planning and Scheduling, pages 130–139, Breckenridge, Colarado, April
2000. URL citeseer.nj.nec.com/hansen00dynamic.html.

Jean-Paul Haton. Connectionist and hybrid models for automatic speech recognition.
In Proceedings of the NATO Advanced Study Institute on Computational Models of
Speech Pattern Processing, number F169 in NATO ASI, LORIA/Université Henri
Poincaré, France, July 1997. Springer-Verlag Berlin.

Thomas Hauser, Timothy I. Mattox, Raymond P. LeBeau, Henry G. Dietz, and
P. George Huang. High-cost CFD on a low-cost cluster. In Proceedings of SC2000
(CD-ROM), Dallas, TX., November 4–10 2000.

Milos Hauskrecht. Incremental methods for computing bounds in partially observable
Markov decision processes. In Proceedings of the 14th National Conference on Arti-
ficial Intelligence (AAAI-97), pages 734–739, Providence, Rhode Island, 1997. MIT
Press. ISBN 0-262-51095-2.

Milos Hauskrecht. Value-function approximations for partially observable Markov de-
cision processes. Journal of Artificial Intelligence Research, 13:33–94, August 2000.

Simon Haykin. Neural Networks: A comprehensive foundation. Prentice-Hall, New
Jersey, 2nd edition, 1999. ISBN 0-13-273350-1.

Natialia Hernandez-Gardio and Sridhar Mahadevan. Hierarchical memory-based re-
inforcement learning. In Advances in Neural Information Processing Systems, vol-
ume 13, 2001.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997. URL citeseer.nj.nec.com/hochreiter95long.html.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic plan-
ning using decision diagrams. In Proceedings of the Fifteenth Conference on Uncer-
tainty in Articial Intelligence, pages 279–288, 1999. URL citeseer.nj.nec.com/

hoey99spudd.html.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA., 1960.

X. D. Huang, K. F. Lee, and A Waibel. Connectionist speaker normalization and
its applications to speech recognition. In IEEE Workshop for Neural Networks for
Signal Processing, New Jersey, October 1991. IEEE.

Qiang Huo and Chorkin Chan. The gradient projection method for the training of
hidden Markov models. Speech Communication, 13:307–313, May 1993.

Mei-Yuh Hwang and Xuedong Huang. Shared distribution hidden Markov models for
speech recognition. IEEE Transactions on Speech and Audio Processing, 1(4):414–
420, 1993.

276 BIBLIOGRAPHY

Ilse C. F. Ipsen and Carl D. Meyer. The idea behind Krylov methods. American Mathe-
matical Monthly, 105(10):889–899, 1998. URL citeseer.nj.nec.com/135899.html.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers.
In Neural Information Processing Systems 11, 1998. URL citeseer.nj.nec.com/

jaakkola98exploiting.html.

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning
algorithm for partially observable Markov decision problems. In Advances in Neural
Information Processing Systems, volume 7, pages 345–352. The MIT Press, 1995.
URL citeseer.nj.nec.com/jaakkola95reinforcement.html.

Bing-Hwang Juang and Shigeru Katagiri. Discrimintative learning for minimum error
classification. IEEE Transactions on Signal Pocessing, 40(12):3043 – 3054, December
1992.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, (4):237–285, May
1996.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large Markov decision processes. In IJCAI, pages 1324–
1231, 1999. URL citeseer.nj.nec.com/kearns99sparse.html.

Kee-Eung Kim, Thomas Dean, and Nicolas Meuleau. Approximate solutions to factored
Markov decision processes via greedy search in the space of finite state controllers.
In Artificial Intelligence Planning Systems, pages 323–330, 2000. URL citeseer.

nj.nec.com/392137.html.

Seung Kim, Joon Hwang, and Chang Lee. Impact locating on aircraft structure using
low cost cluster. Denver, Colorado, 2001. Gordon Bell Award price/performance
ratio winner. Apparently no paper.

Hajime Kimura and Shigenobu Kobayashi. Reinforcement learning for continuous ac-
tion using stochastic gradient ascent. In Intelligent Autonomous Systems (IAS-5),
pages 288–295, 1998.

Hajime Kimura, Kazuteru Miyazaki, and Shigenobu Kobayashi. Reinforcement learn-
ing in POMDPs with function approximation. In Proc. 14th International Conference
on Machine Learning, pages 152–160. Morgan Kaufmann, 1997.

David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole Publishers, Pacific
Grove, California, 1991. ISBN 0-534-13014-3.

Daphne Koller and Ronald Parr. Policy iteration for factored MDPs, 2000. URL
citeseer.nj.nec.com/koller00policy.html.

V. Konda and J. Tsitsiklis. Actor-critic algorithms, 2000. URL citeseer.nj.nec.

com/434910.html.

BIBLIOGRAPHY 277

Mikko Kurimo. Training mixture density HMMs with SOM and LVQ. Com-
puter Speech and Language, 11(4):321–343, October 1997. citeseer.nj.nec.com/

kurimo97training.html.

Harold J. Kushner and Dean S. Clark. Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Number 26 in Applied Mathematical Sciences.
Springer-Verlag, 1978. ISBN 0-387-90341-0.

Ivo Kwee, Marcus Hutter, and Jürgen Schmidhuber. Market-based reinforcement
learning in partially observable worlds. In Proceedings of the 11th International
Conference on Artificial Neural Networks. Springer-Verlag, August 2001. URL
citeseer.nj.nec.com/440786.html.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proc. 18th In-
ternational Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San
Francisco, CA, 2001. URL citeseer.nj.nec.com/lafferty01conditional.html.

LAM Team. Lam/mpi source code v6.3.2, 1999.
http://www.mpi.nd.edu/lam/download/.

Pier Luca Lanzi. Solving problems in partially observable environments with classifer
systems. Technical Report N. 97.45, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, October 1997.

Pier Luca Lanzi. Adaptive agents with reinforcement learning and internal mem-
ory. In The Sixth International Conference on the Simulation of Adaptive Behavior
(SAB2000), 2000. URL citeseer.nj.nec.com/346913.html.

Adam Laud and Gerald DeJong. Reinforcement learning and shaping: Encouraging
intended behaviors. In Proceedings of the 19th International Conference on Machine
Learning, Syndey, Australia, 2002. Morgan Kaufmann.

Kai-Fu Lee. Large-Vocabulary Speaker-Independant Continuous Speech Recognition:
The SPHINX System. PhD thesis, Computer Science Department, Carnegie-Mellon
University, April 1988.

Kai-Fu Lee. Automatic Speech Recognition, The Development of the SPHINX System.
Kluwer international series in engineering and computer science. SECS 62. Kluwer
Academic Publishers, 1989.

Kanungo Lee. UMDHMM V1.02 hidden Markov model software. Software, 2000.
http://www.cfar.umd.edu/~kanungo/software/umdhmm-v1.02.tar.

Tan Lee, P. C. Ching, and L. W. Chan. An RNN based speech recognition system with
discriminative training. In Proceedings of EuroSpeech-95, volume 3, pages 1667–70,
1995.

R. Gary Leonard and George Doddington. TI Digits database. Texas Instruments,
1982. http://www.ldc.upenn.edu/Catalog/LDC93S10.html.

278 BIBLIOGRAPHY

D-T. Lin. The Adaptive Time-Delay Neural Network: Characterization and Applica-
tions to Pattern Recognition, Prediction and Signal Processing. PhD thesis, Institute
for Systems Research, University of Maryland, 1994. http://www.isr.umd.edu/

TechReports/ISR/1994/PhD_94-12/PhD_94-12.phtml.

Long-Ji Lin and Tom M. Mitchell. Memory approaches to reinforcement learning in
non-Markovian domains. Technical Report CS-92-138, Carnegie Mellon, Pittsburgh,
PA, 1992. http://citeseer.nj.nec.com/lin92memory.html.

Richard P. Lippmann. Review of neural networks for speech recognition. Neural Com-
putation, 1(1):1–38, 1989.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning poli-
cies for partially observable environments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning, pages 362–370, San Francisco, CA,
1995. Morgan Kaufmann. URL citeseer.nj.nec.com/littman95learning.html.

A. Ljolje, Y. Ephraim, and L. R. Rabiner. Estimation of hidden Markov model param-
eters by minimizing empirical error rate. In Proceedings ICASSP 1990, volume 2,
pages 709–712. IEEE Signal Processing Society, IEEE, April 1990.

John Loch and Satinder Singh. Using eligibility traces to find the best memoryless
policy in partially observable Markov decision processes. In Proc. 15th International
Conf. on Machine Learning, pages 323–331. Morgan Kaufmann, San Francisco, CA,
1998. URL citeseer.nj.nec.com/loch98using.html.

W. S. Lovejoy. A survey of algorithmic methods for partially observed Markov decision
processes. Annals of Operations Research, 28(1):47–65, 1991.

Christopher Lusena, Judy Goldsmith, and Martin Mundhenk. Nonapproximability
results for partially observable Markov decision processes. Journal of Artificial In-
telligence, 14:83–103, March 2001.

Weiye Ma and Dirk Van Compernolle. TDNN labeling for a HMM recognizer. In Proc.
International Conference on Acoustics, Speech and Signal Processing, number 8.3,
pages 421–424, Albuquerque, New Mexico, April 1990. IEEE.

O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning
and infinite-horizon paritally observable Markov decision problems. In Proceedings
poof the 16th National Conference of Artifical Intelligence, pages 541–548, 1999.

R. Makar, S. Mahadevan, and M. Ghavamzadeh. Hierarchical multiagent reinforce-
ment learning. In Proceedings of the Fifth International Conference on Autonomous
Agents, Montréal, Canada, May 2001. ACM. citeseer.nj.nec.com/article/

makar01hierarchical.html.

Perter Marbach and John N. Tsitsiklis. Gradient-based optimisation of Markov reward
processes: Practical variants. In 38th IEEE Conference on Decisions and Control,
December 1999.

BIBLIOGRAPHY 279

Perter Marbach and John N. Tsitsiklis. Gradient-based optimisation of Markov reward
processes: Practical variants. Technical report, Center for Communications Systems
Research, University of Cambridge, March 2000.

David A. McAllester and Satinder Singh. Approximate planning for factored POMDPs
using belief state simplification. In Proceedings of the Fifteenth Conference on Un-
certainty in Artificial Intelligence, pages 409–416, 1999.

Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy Markov
models for information extraction and segmentation. In Proceedings of ICML 2000,
2000. http://www.cs.cmu.edu/~mccallum/.

Andrew Kachites McCallum. Reinformcement Learning with Selective Perception
and Hidden State. PhD thesis, University of Rochester, 1996. http://www.cs.

rochester.edu/u/mccallum/phd-thesis/.

Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra.
Solving POMDPs by searching the space of finite policies. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, pages 127–136. Computer
Science Dept., Brown University, Morgan Kaufmann, July 1999a.

Nicolas Meuleau, Leonid Pechkin, Leslie P. Kaelbling, and Kee-Eung Kim. Off-policy
policy search. Technical report, MIT Artificial Intelligence Laboratory and Brown
University, 2000.

Nicolas Meuleau, Leonid Peshkin, and Kee-Eung Kim. Exploration in gradient-based
reinforcement learning. AI Memo 2001-003, MIT, April 2001. http://www.ai.mit.
edu/research/publications/2001-publications.shtml.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learn-
ing finite-state controllers for partially observable environments. In Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence. Computer Science
Dept., Brown University, Morgan Kaufmann, July 1999b.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

Tom M. Mitchell and Sebastian B. Thrun. Learning analytically and inductively. In
Mind Matters: A Tribute to Allen Newell, pages 85–110. Lawrence Erlbaum As-
sociates, Inc., Mahwah, New Jersey, 1996. URL citeseer.nj.nec.com/article/

mitchell95learning.html.

George E. Monahan. A survey of partially observable Markov decision processes: The-
ory, models, and algorithms. Management Science, 28(1):1–16, 1982.

Nelson Morgan. Big dumb neural nets: A working brute force approach to speech
recognition. In IEEE Internation Conference on Neural Networks, volume VII, pages
4462–4465, Orlando, Florida, June 1994. IEEE.

David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary algorithms
for reinforcement learning. Journal of Artificial Intelligence Research, (11):199–229,
August 1999.

280 BIBLIOGRAPHY

B. Müller, J. Reinhardt, and M. T. Strickland. Neural networks : an introduction.
Physics of neural networks. Springer-Verlag, New York, 2nd edition, 1995.

Hernamm Ney. The use of the maximum likelihood criterion in language modelling.
In Proceedings of the NATO Advanced Study Institute on Computational Models of
Speech Pattern Processing, number F169 in NATO ASI, RWTH Aachen – University
of Technology, July 1997. Springer-Verlag Berlin.

A. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and
POMDPs. In UAI, 2000, 2000. URL citeseer.nj.nec.com/297555.html.

Lee. T. Niles and Harvey. F. Silverman. Combining hidden Markov models and neural
network classifiers. In Proc. International Conference on Acoustics, Speech and Signal
Processing, number 8.2, pages 417–420, Albuquerque, New Mexico, April 1990.

N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company, 1980.

Albino Nogueiras-Rodríıguez, José B. Mari no, and Enric Monte. An adaptive gradient-
search based algorithm for discriminative training of HMMs. In Proceedings of
ICLSP’98. Universitat Politècnica de Catalunya, Causal Productions, 1998.

Yves Normandin. Hidden Markov models, maximum mutual information estimation
and the speech recognition problem. PhD thesis, McGill University, 1991.

Yves Normandin and Reǵis Cardin. Developments in High-Performance Connected
Digit Recognition, volume F.75 of NATO ASI Series, pages 89–94. Springer–Verlag,
Berlin, 1992.

I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-navigating robot. AI
Magazine, 16(2):53–60, 1995.

Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, New Jersey, U.S., 2nd
edition, 1990. ISBN 0-12-589128-0.

Luis E. Ortiz and Leslie Pack Kaelbling. Adaptive importance sampling for estima-
tion in structured domains. In Proceedings of the Sixteenth Annual Conference on
Uncertainty in Articial Intelligence (UAI2000), pages 446–454. Morgan Kaufmann
Publishers, 2000.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

Ronald Parr and Stuart Russell. Approximating optimal policies for partially ob-
servable stochastic domains. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, pages 1088–1094. Morgan Kaufmann, 1995. URL
citeseer.nj.nec.com/parr95approximating.html.

D. B. Paul. Speech recognition using hidden Markov models. The Lincoln Laboratory
Journal, 1:41–62, 1990.

BIBLIOGRAPHY 281

Mark D. Pendrith and Michael J. McGarity. An analysis of direct reinforcement
learning in non-Markovian domains. In Proc. 15th International Conf. on Ma-
chine Learning, pages 421–429. Morgan Kaufmann, San Francisco, CA, 1998. URL
citeseer.nj.nec.com/11788.html.

Leonid Peshkin. Policy Search for Reinforcement Learning. PhD thesis, Brown Uni-
versity, 2002. Draft.

Leonid Peshkin, Nicolas Meuleau, and Leslie Kaelbling. Learning policies with exter-
nal memory. In Proceedings of the Sixteenth International Conference in Machine
Learning, pages 307–314. Morgan Kaufmann, 1999.

Leonid Peshkin and Christian R. Shelton. Learning from scarce experience. In Pro-
ceedings of ICML, number 19, Sydney, Australia, 2002. http://www.ai.mit.edu/

~pesha/Public/papers.html.

Leonid M. Peshkin. Thesis proposal: Architectures for policy search. http://www.ai.
mit.edu/~pesha/Public/papers.html, July 2000.

Stephen M. Pollock. A simple model of search for a moving target. Operations Research,
18(5):883–903, 1970.

Louis C. W. Pols. Psycho-acoustics and speech perception. In Proceedings of the NATO
Advanced Study Institute on Computational Models of Speech Pattern Processing,
number F169 in NATO ASI, IFOTT, University of Amsterdam, July 1997. Springer-
Verlag Berlin.

Alan B. Poritz. Hidden Markov models: A guided tour. In ICASSP ’88, pages 7–13.
Morgan Kaufmann, 1988.

Pascal Poupart and Craig Boutilier. Value-directed belief state approximation for
POMDPs. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 409–416, 2000. http://www.cs.toronto.edu/~cebly/papers.

html.

Pascal Poupart and Craig Boutilier. Vector-space analysis of belief-state approximation
for POMDPs. In Uncertainty in Artificial Intelligence 2001, August 2001.

Pascal Poupart, Luis E. Ortiz, and Craig Boutilier. Value-directed sampling methods
for monitoring POMDPs. In Uncertainty in Artificial Intelligence 2001, August 2001.
URL citeseer.nj.nec.com/445996.html.

Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, Univer-
sity of Massachusetts, may 2000. URL citeseer.nj.nec.com/precup00temporal.

html.

John G. Proakis. Digital Communications. McGraw-Hill, 3rd edition, 1995. ISBN
0-07-051726-6.

282 BIBLIOGRAPHY

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley series in probability and mathematical statistics. Wiley, 1994.
ISBN 0-471-61977-9.

L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE
ASSP Magazine, pages 4–16, January 1986.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech processing. In Proceedings of the IEEE, volume 77. IEEE, February 1989.

S. Ran and J. B. Millar. Phoneme discrimination using hierarchically organised connec-
tionist networks. In Proceedings of Second Australian Conference of Neural Networks,
pages 279–282, Sydney, Australia, 4–6 February 1991.

S. Ran and J. B. Millar. Two schemes of phonetic feature extraction using artificial
neural networks. In Proceedings of Eurospeech’93, pages 1607–1610, Berlin, Germany,
1993.

W. Reichl and G. Ruske. Discriminative training for continuous speech recognition. In
Europ. Conf. on Speech Communication and Technology, volume 1, pages 537–540,
September 1995.

M I Reiman and A Weiss. Sensitivity analysis via likelihood ratios. In Proceedings of
the 1986 Winter Simulation Conference, 1986.

M I Reiman and A Weiss. Sensitivity analysis for simulations via likelihood ratios.
Operations Research, 37, 1989.

Michael D. Richard and Richard P. Lippmann. Neural network classifiers estimate
bayesian a posteriori probabilities. Neural Computation, 3(4):461–483, Winter 1991.

Tony Robinson. An application of recurrent nets to phone probability estimation. IEEE
Transactions on Neural Networks, 5(3):298–305, 1994.

Andrés Rodŕıguez, Ronald Parr, and Daphne Koller. Reinforcement learning using
approximate belief states. In Advances in Neural Information Processing Systems,
volume 12, 2000.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia. In Advances in
Neural Information Processing Systems, volume 6, pages 176–183. Morgan Kaufmann
Publishers, Inc., 1994. URL citeseer.nj.nec.com/ron94power.html.

Nicholas Roy and Sebastian Thrun. Integrating value functions and policy search for
continuous Markov decision processes. In Advances in Neural Information Processing
Systems, volume 14, 2001.

Reuven Y. Rubinstein. Some Problems in Monte Carlo Optimization. PhD thesis,
1969.

D. Rumelhart, G. Hinton, and R. R. Williams. Parallel Distributed Processing, chapter
Learning internal representations by error propagation. MIT Press, Cambridge, MA.,
1986.

BIBLIOGRAPHY 283

Brian Sallans. Learning factored representations for partially observable Markov deci-
sion processes. In Advances in Neural Information Processing Systems, volume 12.
MIT Press, 2000. URL citeseer.nj.nec.com/sallans00learning.html.

Rafa l Sa lustowicz and Jürgen Schmidhuber. Probabilistic incremental program evolu-
tion. Evolutionary Computation, 5(2):123–141, 1997.

Lawrence K. Saul and Mazin G. Rahim. Markov processes on curves. Technical report,
1997.

J. H. Schmidhuber. Learning complex, extended sequences using the principle of history
compression. Neural Computation, 2(4):234–242, 1992.

Jürgen Schmidhuber. Reinforcement learning in Markovian and non-Markovian envi-
ronments. In Advances in Neural Information Processing Systems, volume 3, pages
500–506. Morgan Kaufmann Publishers, Inc., 1991. URL citeseer.nj.nec.com/

100953.html.

Michael Schuster. On supervised learning from sequential data with applications for
speech recognition. PhD thesis, Graduate School of Information Science, Nara Insti-
tute of Science and Technology, February 1999.

Mike Schuster. Bi-directional recurrent neural networks for speech recognition. Tech-
nical report, 1996.

Mike Schuster. Encyclopedia of Electrical and Electronics Engineering, chapter Neural
networks for speech processing. John Wiley & Sons, June 1998.

Kristie Seymore, Stanley Chen, Sam-Joo Doh, Maxine Eskenaziand Evandro Gouvea,
Bhiksha Raj, Mosur Ravishankar, Ronald Rosenfeld, Matthew Siegler, Richard Stern
ane, and Eric Thayer. The 1997 CMU sphinx-3 english broadcast news transcription
system. In Proceedings of the 1998 DARPA Speech Recognition Workshop. DARPA,
1998.

Christian Shelton. Importance Sampling for Reinforcement Learning with Multiple
Objectives. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
August 2001a. http://robotics.stanford.edu/~cshelton/papers/.

Christian R. Shelton. Policy improvement for POMDPs using normalized importance
sampling. In Uncertainty in Artificial Intelligence, August 2001b.

Christian R. Shelton. Policy improvment for POMDPs using normalized importance
sampling. Technical Report AI Memo 2001-002, MIT, Cambridge, MA, March 2001c.
http://www.ai.mit.edu/people/cshelton/papers/.

Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially observ-
able environments. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence, pages 1080–1087, 1995. URL citeseer.nj.nec.com/article/

simmons95probabilistic.html.

284 BIBLIOGRAPHY

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially
observable Markovian decision processes. In Proceedings of ICML 1994, number 11,
1994.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning
with soft state aggregation. In Advances in Neural Information Processing Sys-
tems, volume 7, pages 361–368. The MIT Press, 1995. URL citeseer.nj.nec.com/

article/singh95reinforcement.html.

R D Smallwood and Edward J Sondik. The optimal control of partially observable
Markov decision processes over a finite horizon. Operations Research, 21(5):1071–
1088, 1973.

Richard D. Smallwood, Edward J. Sondik, and Fred L. Offensend. Toward an integrated
methodology for the analysis of health-care systems. Operations Research, 19(6):
1300–1322, October 1971.

Edward J. Sondik. The Optimal Control of Paritally Observable Markov Decision
Processes. PhD thesis, Stanford University, Standford, CA., 1971.

Edward J Sondik. The optimal control of partially observable Markov decision processes
over the infinite horizon: Discounted costs. Operations Research, 26(2):282–304,
1978.

S. N. Srihari, G. Srikantan, T. Hong, and S. W. Lam. Research in Japanese OCR:
Handbook on Optical Character Recognition and Document Image Analysis. World
Scientific Publishing Company, 1996. http://www.cedar.buffalo.edu/JOCR/.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969.

Malcom J. A. Strens and Andrew W. Moore. Direct policy search using paired sta-
tistical tests. In Proceedings of the Eighteenth International Conference on Machine
Learning, pages 545–552. Morgan Kaufmann, June 2001.

N. Suematsu and A. Hayashi. A reinforcement learning algorithm in partially observ-
able environments using short-term memory. In Advances in Neural Information
Processing Systems, volume 11, pages 1059–1065, 1999. URL citeseer.nj.nec.

com/suematsu99reinforcement.html.

Richard S. Sutton. Open theoretical questions in reinforcement learning. In European
Conference on Computational Learning Theory, pages 11–17, 1999. URL citeseer.

nj.nec.com/sutton99open.html.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge MA, 1998. ISBN 0-262-19398-1.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in Neural Information Processing Systems, 12:1057–1063, 2000.

BIBLIOGRAPHY 285

Richard S. Sutton, Satinder Singh, Doina Precup, and Balaraman Ravindran. Improved
switching among temporally abstract actions. In Advances in Neural Information
Processing Systems. MIT Press, 1999.

Nigel Tao, Jonathan Baxter, and Lex Weaver. A multi-agent, policy-gradient approach
to network routing. In Proceedings of the Eighteenth International Conference on
Machine Learning, pages 553–560. Morgan Kaufmann, June 2001.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6:215–219, 1994.

G Tesuro. Neurogammon: A neural-network backgammon program. In International
Joint Conference on Neural Networks, pages C33–40, New York, 1990. IEEE.

Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Mahadevan. Learning
and planning with hierarchical stochastic models for robot navigation. In ICML 2000
Workshop on Machine Learning of Spatial Knowledge, Stanford, 2000.

Sylvie Thiébaux, Froduald Kabanza, and John Slaney. Anytime state-based solution
methods for decision processes with non-Markovian rewards. In Proceedings of Un-
certainty in Artificial Intelligence, University of Alberta, Edmonton, Canada, August
1–4 2002. Pre-print.

Mithuna Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck. Tuning Strassen’s
matrix multiplication for memory efficiency. In Proceedings of Super Computing ’98,
November 1998. /cdrom/sc98/sc98/techpape/sc98full/thotteth/index.htm.

Sebastian Thrun. Monte Carlo POMDPs. In Advances in Neural Information Process-
ing Systems 12. MIT Press, 2000. http://citeseer.nj.nec.com/thrun99monte.

html.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Infomation Theory, 13(2):260–269, April
1967.

Alex Waibel. Modular construction of time-delay neural networks for speech recogni-
tion. Neural Computation, 1(1):39–46, 1989.

Narada Dilp Warakagoda. A hybrid ANN-HMM ASR system with NN based adaptive
preprocessing. Master’s thesis, Institutt for Teleteknikk, Transmisjonsteknikk, May
1996. http://jedlik.phy.bme.hu/~gerjanos/HMM/hoved.html.

R. Washington. BI-POMDP: Bounded incremental partially-observable Markov-model
planning. In Proceedings of the Fourth European Conference on Planning, Toulouse,
France, September 1997. Springer-Verlag.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforce-
ment learning. In Uncertainty in Artificial Intelligence: Proceedings of the Seven-
teenth Conference (2001), pages 538–545, Seattle, WA, 2–5 August 2001. Morgan
Kaufman.

286 BIBLIOGRAPHY

Wei Wei and Sarel Vuuren. Improved neural network training of inter-word context
units for connected digit recognition. In ICASSP’98, pages 497–500, Seattle, WA,
May 1998. IEEE.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra soft-
ware. Technical report, Computer Science Department, University of Tennessee,
1997. http://www.netlib.org/utk/projects/atlas/.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-
mizations of software and the ATLAS project. Technical report, Dept. of Computer
Sciences, Univ. of TN, Knoxville, March 2000. http://www.cs.utk.edu/~rwhaley/
ATLAS/atlas.html.

John K. Williams and Satinder Singh. Experimental results on learning stochastic
memoryless policies for partially observable Markov decision processes. In Advances
in Neural Information Processing Systems, volume 11, 1999.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recur-
rent neural network. Neural Computation, 1(2):270–280, 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

Phil Woodland. Hidden Markov Model Toolkit V3. University of Cambridge, 2001.
http://htk.eng.cam.ac.uk/.

S. J. Young. Competitive training in hidden Markov models. In Proc. International
Conference on Acoustics, Speech and Signal Processing, number 13.1, pages 681–684,
Albuquerque, New Mexico, April 1990. IEEE.

D. Zhang and J. B. Millar. Digit-specific feature extraction for multi-speaker isolated
digit recognition using neural networks. In Proceedings of 5th Australian Inter-
national Conference on Speech Science and Technology, pages 522–527, Brisbane,
Australia, 6–8 December 1994.

Nevin L. Zhang. Efficient planning in stochastic domains through exploiting prob-
lem characteristics. Technical Report HKUST-CS95-40, Dept. of Computer Science,
Hong Kong University of Science and Technology, August 1995.

Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem charac-
teristics and approximation. Technical Report HKUST-CS96-31, Dept. of Com-
puter Science, Hong Kong University of Science and Technology, 1996. URL
citeseer.nj.nec.com/article/zhang96planning.html.

Nevin L. Zhang and Weihong Zhang. Speeding up the convergence of value iteration
in partially observable Markov decision processes. Journal of Artificial Intelligence,
14:29–51, Febrauary 2001.

BIBLIOGRAPHY 287

Valentina Bayer Zubeck and Thomas G. Dietterich. A POMDP approximation algo-
rithm that anticipates the need to observe. In Pacific Rim International Confer-
ence on Artificial Intelligence, pages 521–532, 2000. URL citeseer.nj.nec.com/

bayer00pomdp.html.

