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Abstract

Managing risk in dynamic decision problems
is of cardinal importance in many fields such
as finance and process control. The most
common approach to defining risk is through
various variance related criteria such as the
Sharpe Ratio or the standard deviation ad-
justed reward. It is known that optimiz-
ing many of the variance related risk crite-
ria is NP-hard. In this paper we devise a
framework for local policy gradient style al-
gorithms for reinforcement learning for vari-
ance related criteria. Our starting point is a
new formula for the variance of the cost-to-
go in episodic tasks. Using this formula we
develop policy gradient algorithms for crite-
ria that involve both the expected cost and
the variance of the cost. We prove the con-
vergence of these algorithms to local minima
and demonstrate their applicability in a port-
folio planning problem.

1. Introduction

In both Reinforcement Learning (RL; Bertsekas &
Tsitsiklis, 1996) and planning in Markov Decision Pro-
cesses (MDPs; Puterman, 1994), the typical objective
is to maximize the cumulative (possibly discounted)
expected reward, denoted by J . When the model’s
parameters are known, several well-established and ef-
ficient optimization algorithms are known. When the
model parameters are not known, learning is needed
and there are several algorithmic frameworks that
solve the learning problem efficiently, at least when the
model is finite. In many applications, however, the
decision maker is also interested in minimizing some
form of risk of the policy. By risk, we mean reward
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criteria that take into account not only the expected
reward, but also some additional statistics of the to-
tal reward such as its variance, its Value at Risk, etc.
(Luenberger, 1998). Risk can be measured with re-
spect to two types of uncertainties. The first type,
termed parametric uncertainty is related to the imper-
fect knowledge of the problem parameters. The sec-
ond type, termed inherent uncertainty is related to the
stochastic nature of the system (random reward and
transition function). Both types of uncertainties can
be important, depending on the application at hand.

Risk aware decision making is important both in plan-
ning and in learning. Two prominent examples are
in finance and process control. In financial decision
making, a popular performance criterion is the Sharpe
Ratio (SR; Sharpe, 1966) – the ratio between the ex-
pected profit and its standard deviation. This measure
is so popular that it is one of the reported metrics
each mutual fund reports annually. When deciding
how to allocate a portfolio both types of uncertainties
are important: the decision maker does not know the
model parameters or the actual realization of the mar-
ket behavior. In process control as well, both uncer-
tainties are essential and a robust optimization frame-
work (Nilim & El Ghaoui, 2005) is often adopted to
overcome imperfect knowledge of the parameters and
uncertainty in the transitions. In this paper we focus
on inherent uncertainty and use learning to mitigate
parametric uncertainty.

The topic of risk-aware decision making has been of in-
terest for quite a long time, and several frameworks for
incorporating risk into decision making have been sug-
gested. In the context of MDPs and addressing inher-
ent uncertainty, Howard & Matheson (1972) proposed
to use an exponential utility function, where the factor
of the exponent controls the risk sensitivity. Another
approach considers the percentile performance crite-
rion (Filar et al., 1995), in which the average reward
has to exceed some value with a given probability. Ad-
dressing parameter uncertainty has been done within



Policy Gradients with Variance Related Risk Criteria

the Bayesian framework (where a prior is assumed on
the unknown parameters, see Poupart et al., 2006) or
within the robust MDP framework (where a worst-
case approach is taken over the parameters inside an
uncertainty set). Much less work has been done on
risk sensitive criteria within the RL framework, with a
notable exception of Borkar & Meyn (2002) who con-
sidered exponential utility functions and of Geibel &
Wysotzki (2005) who considered models where some
states are “error states,” representing a bad or even
catastrophic outcome.

In this work we consider an RL setup and focus on risk
measures that involve the variance of the cumulative
reward, denoted by V . Typical performance criteria
that fall under this definition include

(a) Maximize J s.t. V ≤ c

(b) Minimize V s.t. J ≥ c

(c) Maximize the Sharpe Ratio: J/
√
V

(d) Maximize J − c
√
V

The rationale behind our choice of risk measure is that
these performance criteria, such as the SR mentioned
above, are being used in practice. Moreover, it seems
that human decision makers understand how to use
variance well, and that exponential utility functions
require determining the exponent coefficient which is
non-intuitive.

Variance-based risk criteria, however, are computa-
tionally demanding. It has long been recognized (So-
bel, 1982) that optimization problems such as (a)
are not amenable to standard dynamic programming
techniques. Furthermore, Mannor & Tsitsiklis have
shown that even when the MDP’s parameters are
known, many of these problems are computationally
intractable, and some are not even approximable. This
is not surprising given that other risk related criteria
such as percentile optimization are also known to be
hard except in special cases.

Despite these somewhat discouraging results, in this
work we show that this important problem may be
tackled successfully, by considering policy gradient
type algorithms that optimize the problem locally. We
present a framework for dealing with performance cri-
teria that include the variance of the cumulative re-
ward. Our approach is based on a new fundamen-
tal result for the variance of episodic tasks. Previous
work by Sobel, 1982 presented similar equations for
the infinite horizon discounted case, however, the im-
portance of our result is that the episodic setup al-
lows us to derive policy gradient type algorithms. We

present both model-based and model-free algorithms
for solving problems (a) and (c), and prove that they
converge. Extension of our algorithms to other perfor-
mance criteria such as (b) and (d) listed above is im-
mediate. The effectiveness of our approach is further
demonstrated numerically in a risk sensitive portfolio
management problem.

2. Framework and Background

In this section we present the framework considered in
this work and explain the difficulty in mean-variance
optimization.

2.1. Definitions and Framework

We consider an agent interacting with an unknown
environment that is modeled by an MDP in discrete
time with a finite state set X , {1, . . . , n} and finite
action set U , {1, . . . ,m}. Each selected action u ∈ U
at a state x ∈ X determines a stochastic transition to
the next state y ∈ X with a probability Pu(y|x).
For each state x the agent receives a corresponding re-
ward r(x) that is bounded and depends only on the
current state1. The agent maintains a parameterized
policy function that is in general a probabilistic func-
tion, denoted by µθ(u|x), mapping a state x ∈ X into
a probability distribution over the controls U . The
parameter θ ∈ R

Kθ is a tunable parameter, and we as-
sume that µθ(u|x) is a differentiable function w.r.t. θ.
Note that for different values of θ, different probabil-
ity distributions over U are associated for each x ∈ X.
We denote by x0, u0, r0, x1, u1, r1, . . . a state-action-
reward trajectory where the subindex specifies time.
For notational easiness, we define xk

i , u
k
i , and rki to be

xi . . . , xk, ui . . . , uk, and ri . . . , rk, respectively, and
Rk

i to be the cumulative reward along the trajectory

Rk
i =

∑k

j=i rj .

Under each policy induced by µθ(u|x), the environ-
ment and the agent induce together a Markovian
transition function, denoted by Pθ(y|x), satisfying
Pθ(y|x) =

∑

u µθ(u|x)Pu(y|x). The following assump-
tion will be valid throughout the rest of the paper.

Assumption 2.1. Under all policies, the induced
Markov chain Pθ is ergodic, i.e., aperiodic, recurrent,
and irreducible.

Under assumption 2.1 the Markovian transition func-
tion Pθ(y|x) induces a stationary distribution over the
state space X, denoted by πθ. We denote by Eθ[·] and

1Generalizing the results presented here to the case
where the reward depends on the state and the action re-
wards is straightforward.
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Varθ[·] to be the expectation and variance operators
w.r.t. the measure Pθ(y|x).
There are several performance criteria investigated in
the RL literature that differ mainly on their time hori-
zon and the treatment of future rewards (Bertsekas
& Tsitsiklis, 1996). One popular criterion is the av-
erage reward defined by ηθ =

∑

x πθ(x)r(x). Under
this criterion, the agent’s goal is to find the parame-
ter θ that maximizes ηθ. One appealing property of
this criterion is the possibility of obtaining estimates
of ∇ηθ from simulated trajectories efficiently, which
leads to a class of stochastic gradient type algorithms
known as policy gradient algorithms. In this work, we
also follow the policy gradient approach, but focus on
the mean-variance tradeoff. While one can consider
the tradeoff between ηθ and Varπ[r(x)], defined as the
variance w.r.t the measure πθ, these expressions are
not sensitive to the trajectory but only to the induced
stationary distribution, and represent the per-round
variability.

Consequently, we focus on the finite horizon case, also
known as the episodic case, that is important in many
applications. Assume (without lost of generality) that
x∗ is some recurrent state for all policies and let τ ,

min{k > 0|xk = x∗} denote the first passage time to
x∗.

Let the random variable B denote the accumulated re-
ward along the trajectory terminating at the recurrent
state x∗

B ,

τ−1
∑

k=0

r(xk). (1)

Clearly, it is desirable to choose a policy for which B is
large in some sense 2. In this work, we are interested
in the mean-variance tradeoff in B.

We define the value function as

J(x) , Eθ [B|x0 = x] , , x = 1, . . . , n, (2)

and the trajectory variance function as

V (x) , Varθ [B|x0 = x] , , x = 1, . . . , n.

Note that the dependence of J(x) and V (x) on θ is
suppressed in notation.

The questions explored in this work are the following
stochastic optimization problems:

(a) The constrained trajectory-variance problem:

max
θ

J(x∗) s.t. V (x∗) ≤ b, (3)

2Note that finite horizon MDPs can be formulated as a
special case of (1).

where b is some positive value.

(b) The maximal SR problem:

max
θ

S(x∗) ,
J(x∗)
√

V (x∗)
. (4)

In order for these problems to be well defined, we make
the following assumption:

Assumption 2.2. Under all policies J(x∗) and V (x∗)
are bounded.

For the SR problem we also require the following:

Assumption 2.3. We have V (x∗) > ǫ for some ǫ > 0.

In the next subsection we discuss the challenges in-
volved in solving problems (3) and (4), which motivate
our gradient based approach.

2.2. The Challenges of Trajectory-Variance

Problems

As was already recognized by Sobel (1982), optimizing
the mean-variance tradeoff in MDPs cannot be solved
using traditional dynamic programming methods such
as policy iteration. Mannor & Tsitsiklis showed that
for the case of a finite horizon T , in general, solving
problem (3) is hard and is equivalent to solving the
subset-sum problem. Since our case can be seen as a
generalization of a finite horizon problem, (3) is a hard
problem as well. One reason for the hardness of the
problem is that, as suggested by Mannor & Tsitsiklis,
the underlying optimization problem is not necessarily
convex. In the following, we give an example where the
set of all (J(x∗), V (x∗)) pairs spanned by all possible
policies is not convex.

Consider the following symmetric deterministic MDP
with 8 states X = {x∗, x1a, x1b, x2a, x2b, x2c, x2d, t},
and two actions U = {u1, u2}. The reward is equal
to 1 or −1 when action u1 or u2 are chosen, respec-
tively. The MDP is sketched in Figure 1, left pane.
We consider a set of random policies parameterized by
θ1 ∈ [0, 1] and θ2 ∈ [0, 1], such that µ(u1|x∗) = θ1 and
µ(u1|x1a) = µ(u1|x1b) = θ2.

Now, we can achieve J(x∗) ∈ {−2, 0, 2} with zero vari-
ance if we choose (θ1, θ2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},
i.e., only with the deterministic policies. Any −2 <
J(x∗) < 2, J(x∗) 6= 0, can be achieved but only with
a random policy, i.e., with some variance. Thus, the
region is not convex. The achievable (J(x∗), V (x∗))
pairs are depicted in the right pane of Figure 1.
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Figure 1. (left) A diagram of the MDP considered in Sec-
tion 2.2. (right) A phase plane describing the non-convex
nature of J(x∗)− V (x∗) optimization.

3. Formulae for the Trajectory Variance

and its Gradient

In this section we present formulae for the mean and
variance of the cumulated reward between visits to the
recurrent state. The key point in our approach is the
following observation. By definition (1), a transition to
x∗ always terminates the accumulation in B and does
not change its value. Therefore, the following Bellman
like equation can be written for the value function

J(x) = r(x) +
∑

y 6=x∗

Pθ(y|x)J(y) x = 1, . . . , n. (5)

Similar equations can be written for the trajectory
variance, and in the following lemma we show that
these equations are solvable, yielding expressions for
J and V .

Proposition 3.1. Let P be a stochastic matrix corre-
sponding to a policy satisfying Assumption 2.1, where
its (i, j)-th entry is the transition from state i to state
j. Define P ′ to be a matrix equal to P except that
the column corresponding to state x∗ is zeroed (i.e.,
P ′(i, x∗) = 0 for i = 1, . . . , n). Then,

(a) the matrix I − P ′ is invertible;

(b) J = (I − P ′)−1r;

(c) V = (I − P ′)−1ρ,

where ρ ∈ R
n and

ρ(x) =
∑

y

P ′(y|x)J(y)2 −
(

∑

y

P ′(y|x)J(y)
)2

.

Proof. (a) Consider an equivalent Stochastic Shortest
Path (SSP) problem where x∗ is the termination state.

The corresponding transition matrix Pssp is defined
by Pssp(i, j) = P (i, j) for i 6= x∗, Pssp(x

∗, j) = 0 for
j 6= x∗, and Pssp(x

∗, x∗) = 1. Furthermore, let P ∗ ∈
R

n−1×n−1 denote the matrix P with the x∗’th row and
column removed, which is also the transition matrix of
the SSP problem without the terminal state. By the
irreducibility of P in Assumption 2.1 Pssp is proper,
and by proposition 2.2.1 in (Bertsekas, 2006) we have
that I − P ∗ is invertible.
Finally, observe that by the definition of P ′ we have

det(I − P ′) = det(I − P ∗),

thus, det(I − P ′) 6= 0.

(b) Choose x ∈ {1, . . . , n}. Then,

J(x) = r(x) +
∑

y 6=x∗

P (y|x)J(y),

where we excluded the recurrent state from the sum
since after reaching the recurrent state there is no
further rewards by definition (2). In vectorial form,
J = r + P ′J where using (a) we conclude that J =
(I − P ′)−1r.

(c) Choose x ∈ {1, . . . , n}. Then,

V (x) =E





(

τ−1
∑

k=0

r(xk)

)2
∣

∣

∣

∣

x0 = x



− J(x)2

=r(x)2 + 2r(x)
∑

y 6=x∗

P (y|x)E
[

τ−1
∑

k=1

r(xk)

∣

∣

∣

∣

x1 = y

]

+

∑

y 6=x∗

P (y|x)E





(

τ−1
∑

k=1

r(xk)

)2
∣

∣

∣

∣

x1 = y



− J(x)2,

=r(x)2 + 2r(x)
∑

y 6=x∗

P (y|x)J(y) +
∑

y 6=x∗

P (y|x)V (y)

+
∑

y 6=x∗

P (y|x)J(y)2 − J(x)2,

where in the second equality we took the first term out
of the summation, and in the third equality we used
the definition of J and V . Next, we show that r(x)2+
2r(x)

∑

y 6=x∗ P (y|x)J(y)+∑y 6=x∗ P (y|x)J(y)2−J(x)2

is equal to ρ(x):

r(x)2 + 2r(x)
∑

y 6=x∗

P (y|x)J(y)− J(x)2 +
∑

y 6=x∗

P (y|x)J(y)2

=(r(x) + J(x)) (r(x)− J(x))

+ 2r(x)
∑

y 6=x∗

P (y|x)J(y) +
∑

y 6=x∗

P (y|x)J(y)2

=(r(x) + J(x))



−
∑

y 6=x∗

P (y|x)J(y)
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+ 2r(x)
∑

y 6=x∗

P (y|x)J(y) +
∑

y 6=x∗

P (y|x)J(y)2

=(r(x)− J(x))
∑

y 6=x∗

P (y|x)J(y) +
∑

y 6=x∗

P (y|x)J(y)2

=
∑

y 6=x∗

P (y|x)J(y)2 −





∑

y 6=x∗

P (y|x)J(y)





2

.

Proposition 3.1 can be used to derive expressions for
the gradients w.r.t. θ of J and V . Let A ◦ B denote
the element-wise product between vectors A and B.
The gradient expressions are presented in the following
lemma.

Lemma 3.2. We have

∇J = (I − P ′)
−1 ∇P ′J, (6)

and
∇V = (I − P ′)

−1
(∇ρ+∇P ′V ) , (7)

where

∇ρ = ∇P ′J2+2P ′ (J ◦ ∇J)−2P ′J ◦(∇P ′J + P ′∇J) .
(8)

The proof is a straightforward differentiation of the
expressions in Lemma 3.1, and is described in Section
A of the supplementary material 3.

We remark that similar equations for the infinite hori-
zon discounted return case were presented by Sobel
(1982), in which I−P ′ is replaced with I−βP , where
β < 1 is the discount factor. The analysis in (Sobel,
1982) makes use of the fact that I − βP is invertible,
therefore an extension of their results to the undis-
counted case is not immediate.

4. Gradient Based Algorithms

In this section we derive gradient based algorithms for
solving problems (3) and (4). We present both exact
algorithms, which may be practical for small problems,
and simulation based algorithms for larger problems.
Our algorithms deal with the constraint based on the
penalty method, which is described in the following
subsection.

4.1. Penalty methods

One approach for solving constrained optimization
problems (COPs) such as (3) is to transform the
COP to an equivalent unconstrained problem, which
can be solved using standard unconstrained optimiza-
tion techniques. These methods, generally known as

3http://tx.technion.ac.il/~avivt/icml12supp.pdf

penalty methods, add to the objective a penalty term
for infeasibility, thereby making infeasible solutions
suboptimal. Formally, given a COP

max f(x), s.t. c(x) ≤ 0, (9)

we define an unconstrained problem

max f(x)− λg (c(x)) , (10)

where g(x) is the penalty function, typically taken as

g(x) = (max (0, x))
2
, and λ > 0 is the penalty coeffi-

cient. As λ increases, the solution of (10) converges to
the solution of (9), suggesting an iterative procedure
for solving (9): solve (10) for some λ, then increase λ
and solve (10) using the previous solution as an initial
starting point.

In this work we use the penalty method to solve the
COP in (3). An alternative approach, which is de-
ferred to future work, is to use barrier methods, in
which a different penalty term is added to the objective
that forces the iterates to remain within the feasible
set (Boyd & Vandenberghe, 2004).

4.2. Exact Gradient Algorithm

When the MDP transitions are known, the expressions
for the gradients in Lemma 3.2 can be immediately
plugged into a gradient ascent algorithm for the fol-
lowing penalized objective function of problem (3)

fλ = J(x∗)− λg (V (x∗)− b) .

Let αk denote a sequence of positive step sizes. Then,
a gradient ascent algorithm for maximizing fλ is

θk+1 = θk + αk (∇J(x∗)− λg′ (V (x∗)− b)∇V (x∗)) .
(11)

Let us make the following assumption on the smooth-
ness of the objective function and on the set of its local
optima. 4

Assumption 4.1. For all θ ∈ R
Kθ and λ > 0, the

objective function fλ has bounded second derivatives.
Furthermore, the set of local optima of fλ is countable.

Then, under Assumption 4.1, and suitable conditions
on the step sizes, the gradient ascent algorithm (11)
can be shown to converge to a locally optimal point
of fλ.

For the SR optimization problem (4), using the quo-
tient derivative rule for calculating the gradient of S,

4Note that the smoothness of J(x∗) and V (x∗) may be
satisfied by choosing a suitable policy function such as the
softmax function.

http://tx.technion.ac.il/~avivt/icml12supp.pdf
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we obtain the following algorithm

θk+1 = θk +
αk

√

V (x∗)

(

∇J(x∗)− J(x∗)

2V (x∗)
∇V (x∗)

)

,

(12)

which can be shown to converge under similar condi-
tions to a locally optimal point of (4).
When the state space is large, or when the model is not
known, computation of the gradients using equations
(6) and (7) is not feasible. In these cases, we can use
simulation to obtain unbiased estimates of the gradi-
ents, as we describe in the next section, and perform
a stochastic gradient ascent.

4.3. Simulation based optimization

When a simulator of the MDP dynamics is available,
it is possible to obtain unbiased estimates of the gra-
dients ∇J and ∇V from a sample trajectory between
visits to the recurrent state. The technique is called
the likelihood ratio method, and it underlies all policy
gradient algorithms (Baxter & Bartlett, 2001; Mar-
bach & Tsitsiklis, 1998). The following lemma gives
the necessary gradient estimates for our case.

Lemma 4.2. We have

∇J(x) = E[Rτ−1
0 ∇ logP

(

xτ−1
0

)

|x0 = x],

and

∇V (x)=E[
(

Rτ−1
0

)2 ∇ logP
(

xτ−1
0

)

|x0 = x]−2J(x)∇J(x),

where the expectation is over trajectories.

The proof is given in Section B of the supplementary
material.

Given an observed trajectory xτ−1
0 , uτ−1

0 , rτ−1
0 , and us-

ing Lemma 4.2 we devise the estimator ∇̂J(x∗) ,

Rτ−1
0 ∇ logP

(

xτ−1
0

)

which is an unbiased estimator of
∇J(x∗). Furthermore, using the Markov property of
the state transition and the fact that the only depen-
dance on θ is in the policy µθ, the term ∇ logP

(

xτ−1
0

)

can be reduced to

∇ logP
(

xτ−1
0

)

=

τ−1
∑

k=0

∇ logµθ (uk|xk) ,

making the computation of ∇̂J(x∗) from an observed
trajectory straightforward. Assume for the moment
that we know J(x∗) and V (x∗). Then ∇̂V (x∗) ,

(Rτ−1
0 )2∇ logP

(

xτ−1
0

)

−2J(x∗)∇̂J(x∗) is an unbiased

estimate of ∇V (x∗), and plugging ∇̂V and ∇̂J in (11)
gives a proper stochastic gradient ascent algorithm.

Unfortunately, we cannot calculate J(x∗) exactly with-
out knowing the model, and obtaining an unbiased es-
timate of J(x)∇J(x) from a single trajectory is impos-
sible (for a similar reason that the variance of a random
variable cannot be estimated from a single sample of
it). We overcome this difficulty by using a two time-
scale algorithm, where estimates of J and V are cal-
culated on the fast time scale, and θ is updated on a
slower time scale.

The algorithm updates the parameters every episode,
upon visits to the recurrent state x∗. Let τk where
k = 0, 1, 2, . . . denote the times of these visits. To
ease notation, we also define xk = (xτk−1

, . . . , xτk−1)

and Rk =
∑τk−1

t=τk−1
rt to be the trajectories and accu-

mulated rewards observed between visits, and denote
zk , ∇ logP (xk) to be the likelihood ratio derivative.
The simulation based algorithm for the constrained
optimization problem (3) is

J̃k+1 = J̃k + αk

(

Rk − J̃k

)

Ṽk+1 = Ṽk + αk

(

(Rk)2 − J̃2
k − Ṽk

)

θk+1 = θk + βk

(

Rk − λg′
(

Ṽk − b
)(

(Rk)2 − 2J̃k

))

zk,

(13)

where αk and βk are positive step sizes. Similarly, for
optimizing the SR (4), we change the update rule for
θ to

θk+1 = θk +
βk
√

Ṽk

(

Rk − J̃k(R
k)2 − 2RkJ̃2

k

2Ṽk

)

zk.

(14)

In the next theorem we prove that algorithm (13) con-
verges almost surely to a locally optimal point of the
corresponding objective function. The proof for Al-
gorithm (14) is essentially the same and thus omit-
ted. For notational clarity, throughout the remainder
of this section, the dependence of J(x∗) and V (x∗) on
θ is made explicit using a subscript.

Theorem 4.3. Consider algorithm (13), and let
Assumptions 2.1, 2.2, and 4.1 hold. If the step
size sequences satisfy

∑

k αk =
∑

k βk = ∞,
∑

k α
2
k,
∑

k β
2
k < ∞, and limk→∞

βk

αk

= 0, then al-
most surely

lim
k→∞

∇ (Jθk(x
∗)− λg (Vθk(x

∗)− b)) = 0. (15)

Proof. (sketch) The proof relies on representing Equa-
tion (13) as a stochastic approximation with two time-
scales (Borkar, 1997), where J̃k and Ṽk are updated on
a fast schedule while θk is updated on a slow schedule.
Thus, θk may be seen as quasi-static w.r.t. J̃k and Ṽk ,
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suggesting that J̃k and Ṽk may be associated with the
following ordinary differential equations (ODE)

J̇ = Eθ[B|x0 = x∗]− J,

V̇ = Eθ[B
2|x0 = x∗]− J2 − V.

(16)

For each θ, the ODE (16) can be solved analytically to
yield J(t) = J∞+c1e

−t and V (t) = V ∞−2J∞c1te
−t+

c21e
−2t + c2e

−t, where c1 and c2 are constants, and
{J∞, V ∞} is a globally asymptotically stable fixed
point which satisfies

J∞ = Jθ(x
∗), V ∞ = Vθ(x

∗). (17)

In turn, due to the timescale difference, J̃k and Ṽk in
the iteration for θk may be replaced with their station-
ary limit points J∞ and V ∞, suggesting the following
ODE for θ

θ̇ = ∇ (Jθ(x
∗)− λg (Vθ(x

∗)− b)) . (18)

Under Assumption 4.1, the set of stable fixed point
of (18) is just the set of locally optimal points of the
objective function fλ. Let Z denote this set, which
by Assumption 4.1 is countable. Then, by Theorem 5
in Leslie & Collins, 2002 (which is extension of Theo-
rem 1.1 in Borkar, 1997), θk converges to a point in Z
almost surely.

5. Experiments

In this section we apply the simulation based algo-
rithms of Section 4 to a portfolio management prob-
lem, where the available investment options include
both liquid and non-liquid assets. In the interest of
understanding the performance of the different algo-
rithms, we consider a rather simplistic model of the
corresponding financial problem. We emphasize that
dealing with richer models requires no change in the
algorithms.

We consider a portfolio that is composed of two types
of assets. A liquid asset (e.g., short term T-bills),
which has a fixed interest rate rl but may be sold at
every time step t = 1, . . . , T , and a non-liquid asset
(e.g., low liquidity bonds or options) that has a time
dependent interest rate rnl(t), yet may be sold only
after a maturity period of N steps. In addition, the
non-liquid asset has some risk of not being paid (i.e.,
a default) with a probability prisk. A common invest-
ment strategy in this setup is laddering–splitting the
investment in the non-liquid assets to chunks that are
reinvested in regular intervals, such that a regular cash
flow is maintained. In our model, at each time step the
investor may change his portfolio by investing a fixed
fraction α of his total available cash in a non-liquid
asset. Of course, he can only do that when he has at

least α invested in liquid assets, otherwise he has to
wait until enough non-liquid assets mature. In addi-
tion, we assume that at each t the interest rate rnl(t)

takes one of two values - rhighnl or rlownl , and the tran-
sitions between these values occur stochastically with
switching probability pswitch. The state of the model at
each time step is represented by a vector x(t) ∈ R

N+2,
where x1 ∈ [0, 1] is the fraction of the investment in liq-
uid assets, x2, . . . , xN+1 ∈ [0, 1] is the fraction in non-
liquid assets with time to maturity of 1, . . . , N time
steps, respectively, and xN+2(t) = rnl(t) − E[rnl(t)].
At time t = 0 we assume that all investments are in
liquid assets, and we denote x∗ = x(t = 0). The binary
action at each step is determined by a stochastic pol-
icy, with probability µθ(x) = ǫ + (1 − 2ǫ)/

(

1 + e−θx
)

of investing in a non-liquid asset. Note that this ‘ǫ-
constrained’ softmax policy comes to satisfy Assump-
tion 2.3. Our reward is just the logarithm of the return
from the investment (which is additive at each step).
The dynamics of the investment chunks are illustrated
in Figure 2.

Figure 2. Dynamics of the investment.

We optimized the policy parameters using the sim-
ulation based algorithms of Section 4 with three
different performance criteria: (a) Average re-
ward: max J(x∗), (b) Variance constrained re-
ward max J(x∗) s.t. V (x∗) ≤ b, and (c) the SR
max J(x∗)

√

V (x∗). Figure 3 shows the distribution
of the accumulated reward. As anticipated, the pol-
icy for criterion (a) was risky, and yielded higher gain
than the policy for the variance constrained criterion
(b). Interestingly, maximizing the SR resulted in a
very conservative policy, that almost never invested
in the non-liquid asset. The parameters for the ex-
periments are detailed in the supplementary material,
Section C.

6. Conclusion

This work presented a novel algorithmic approach for
RL with variance related risk criteria, a subject that
while being important for many applications, has been



Policy Gradients with Variance Related Risk Criteria

Figure 3. Distribution of the accumulated reward. Solid
line: corresponds to the policy obtained by maximizing
total reward. Dash-dotted line: maximizing total reward
s.t. variance less than 20. Dashed line : maximize the SR.

notoriously known to pose significant algorithmic chal-
lenges. Since getting to an optimal solution seems hard
even when the model is known, we adopted a gradient
based approach that achieves local optimality.

A few issues are in need of further investigation. First,
we note a possible extension to other risk measures
such as the percentile criterion (Delage & Mannor,
2010). This will require a result reminiscent to Propo-
sition 3.1 that would allow us to drive the optimiza-
tion. Second, we could consider variance in the opti-
mization process to improve convergence time in the
style of control variates. Policy gradient algorithms
are known to suffer from high variance when the re-
current state in not visited frequently. One technique
for dealing with this difficulty is by using control vari-
ates (Greensmith et al., 2004). Imposing a variance
constraint as described in this work also acts along
this direction, and may in fact improve performance of
such algorithms even if variance is not part of the cri-
terion we are optimizing. Third, policy gradients are
just one family of algorithms we can consider. It would
be interesting to see if a temporal-difference style algo-
rithm can be developed for the risk measures consid-
ered here. Lastly, we note that experimentally, maxi-
mizing the SR resulted in a very risk averse behavior.
This interesting phenomenon deserves more research.
It suggests that it might be more prudent to consider
other risk measures instead of the SR.
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