
Journal of Artificial Intelligence Research 50 (2014) 763-803 Submitted 1/14; published 8/14

Policy Iteration Based on Stochastic Factorization

André M. S. Barreto AMSB@LNCC.BR

Laboratório Nacional de Computação Cientı́fica

Petrópolis, Brazil

Joelle Pineau JPINEAU@CS.MCGILL.CA

Doina Precup DPRECUP@CS.MCGILL.CA

School of Computer Science

McGill University

Montreal, Canada

Abstract

When a transition probability matrix is represented as the product of two stochastic matrices,

one can swap the factors of the multiplication to obtain another transition matrix that retains some

fundamental characteristics of the original. Since the derived matrix can be much smaller than

its precursor, this property can be exploited to create a compact version of a Markov decision

process (MDP), and hence to reduce the computational cost of dynamic programming. Building

on this idea, this paper presents an approximate policy iteration algorithm called policy iteration

based on stochastic factorization, or PISF for short. In terms of computational complexity, PISF

replaces standard policy iteration’s cubic dependence on the size of the MDP with a function that

grows only linearly with the number of states in the model. The proposed algorithm also enjoys

nice theoretical properties: it always terminates after a finite number of iterations and returns a

decision policy whose performance only depends on the quality of the stochastic factorization. In

particular, if the approximation error in the factorization is sufficiently small, PISF computes the

optimal value function of the MDP. The paper also discusses practical ways of factoring an MDP

and illustrates the usefulness of the proposed algorithm with an application involving a large-scale

decision problem of real economical interest.

1. Introduction

Decisions rarely come up alone in real situations: usually, the outcome of a decision has an effect

over the next one, which in turn impacts on the next, and so on. Thus, a choice that seems beneficial

from a short-sighted perspective may reveal itself to be disastrous in the long run. When dealing

with a succession of interrelated choices, one must weigh the immediate effects of a decision against

its long-term consequences in order to achieve good overall performance. Formally, tasks involving

this trade-off between short- and long-term benefits are called sequential decision-making problems.

This work focuses on a particular decision-making model known as a Markov decision process

(MDP, Puterman, 1994). An MDP is a simple yet important mathematical model that describes a

sequential decision task in terms of transition probabilities and rewards. The transition probabilities

represent the dynamics of the process, while the rewards provide evaluative feedback for the deci-

sions made. Given an MDP, one is usually interested in finding an optimal decision policy, which

maximizes the expected total reward the decision maker will receive in the long run. The natural

c©2014 AI Access Foundation. All rights reserved.

BARRETO, PINEAU, & PRECUP

way to perform such a search is to resort to dynamic programming, a class of methods for solving

sequential decision problems developed concomitantly with the MDP model (Bellman, 1957).

Since the publication of Bellman’s (1957) seminal book, dynamic programming has been stud-

ied for more than 50 years, and is now supported by a strong and well understood theoretical basis.

Besides, it has long ago transcended the limits of academia to be tested in real situations (White,

1985, 1988, 1993). Despite the success of dynamic programming in several applications, there is a

serious obstacle that hinders its widespread use: the computational cost of dynamic programming

algorithms grows fast with the number of states of a problem, which precludes their use in many

domains. This limitation was noted by Bellman (1961), who also pointed out that the number of

states of a decision process grows exponentially with the number of dimensions of its state space—a

problem that came to be known as dynamic programming’s curse of dimensionality.

Nowadays there is a consensus that, in order to solve large-scale sequential decision problems,

one must exploit special structure in the corresponding model or resort to some form of approxima-

tion (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; Powell, 2007). One way of incorporating

approximation into the dynamic programming framework is to create a compact version of an MDP

that retains as much as possible of the information contained in the original model. The approach

presented in this paper is based on this idea. Specifically, it builds on the following insight: when

a transition probability matrix is approximated by the product of two stochastic matrices, one can

swap the factors of the multiplication to obtain another transition matrix, possibly much smaller than

the original, which is related to its precursor. This property, called here the “stochastic-factorization

trick,” can be exploited to create a compact version of an MDP, and hence to reduce the computa-

tional demands of dynamic programming. The main contribution of the paper is an approximate

policy iteration algorithm named policy iteration based on stochastic factorization (PISF). As will

be shown, the performance of the decision policy computed by PISF only depends on the quality of

the stochastic factorization; in particular, an exact factorization leads to an optimal policy. More-

over, the computational complexity of each iteration of the proposed algorithm is only linear in the

number of states of the MDP.

The stochastic factorization will be presented in detail in Section 2.4. Although simple, the

presentation depends on a few basic concepts, which will be introduced in Sections 2.2 and 2.3.

Section 3 discusses the use of stochastic factorization to approximate an MDP. This section also in-

troduces and analyzes the PISF algorithm, the main contribution of the paper. Section 4 investigates

the computational issues surrounding the use of PISF in practice and presents possible solutions to

efficiently compute the factorization of an MDP. In Section 5 some of the proposed solutions are put

to the test in a large-scale decision problem involving the maintenance of an asset with components

that deteriorate over time. Section 6 outlines the relationship between the stochastic factorization

and other approaches described in the literature. The paper ends in Section 7, where a brief summary

is presented along with suggestions for future research.

2. Background

This section introduces the notation adopted and briefly reviews some concepts that will be used

throughout the paper.

764

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

2.1 Notation

Boldface letters will be used to denote matrices and vectors. Given a matrix A, the symbol ai is used

to represent its ith row; ai j denotes the jth element of vector ai. Inequalities should be interpreted

element-wise; thus A≥ B means that ai j ≥ bi j for all i and all j. The operators ‘max’ and ‘argmax’

are applied row-by-row, that is, given A ∈ R
p×q, maxA is a vector b ∈ R

p such that bi = max j ai j
for all i. Finally, the symbols bmax and bmin are used as a shorthand for maxi bi and mini bi.

2.2 Markov Decision Processes

In the sequential decision-making model considered here decisions are made at discrete time steps.

At each instant t the decision maker occupies a state si ∈ S and must choose an action a from a set

A. The sets S and A are called the state and action spaces, respectively. In this paper it is assumed

that both S and A are finite (though possibly large). The execution of action a in state si moves the

decision maker to a new state s j, where a new action must be selected, and so on. Each transition

si
a
−→ s j has a certain probability of occurrence and is associated with a reward r ∈ R. The goal

of the decision maker is to find a policy π : S 7→ A, that is, a mapping from states to actions, that

maximizes the expected return associated with every state in S.1 The return is defined as follows:

Rγ(si) = rt+1+ γrt+2+ γ2rt+3+ ...+ γT−1rt+T = ∑
T

k=1
γk−1rt+k, (1)

where rt+k ∈ R is the reward received on the kth transition starting from state si at time step t. The

parameter γ ∈ [0,1) is the discount factor, which determines the relative importance of individual

rewards depending on how far in the future they are received. The sequential decision process may

last forever (T = ∞) or until the decision maker reaches a terminal state (T < ∞).

The decision-making process described above can be formalized as a Markov decision process,

or MDP for short. An MDP is a tuple M ≡ (S,A,P,R,γ) (Puterman, 1994). The element P is a

family of transition probability functions, one for each action a∈ A. The function Pa : S×S 7→ [0,1]
gives the transition probabilities associated with action a; Pa(s j|si) is the probability of a transition

to state s j when action a is executed in state si. Note that ∑
|S|
j=1P

a(s j|si) = 1, for all a ∈ A and

all si ∈ S (in this paper | · | is used to denote both the cardinality of a set and the absolute value

of a scalar; the distinction should be clear by the context). The remaining component of an MDP,

R, is defined analogously to P: the reward received at transition si
a
−→ s j is given by Ra(si,s j),

with
∣

∣Ra(si,s j)
∣

∣ ≤ Rmax < ∞. Usually one is interested in the expected reward resulting from the

execution of action a in state si, that is, r
a(si) = ∑

|S|
j=1R

a(si,s j)P
a(s j|si). A policy π defined over an

MDP induces a Markov process Mπ . The dynamics of Mπ are given by Pπ(si)(·|si), where π(si) is
the action selected by π in state si. Likewise, the expected reward to be collected by π in state si is

given by rπ(si)(si).
When both the state space S and the action space A are finite, the MDP can be represented

in matrix form. Each function Pa becomes a matrix Pa ∈ R
|S|×|S|, with pai j = Pa(s j|si). Since

the elements in each row of Pa are nonnegative and sum to one, this is a stochastic matrix (see

Definition 1). Stochastic matrices will play an important role in the rest of the paper. In matrix

1. More generally, decision policies are rules associating states to actions, and can range in generality from randomized

history-dependent to stationary deterministic (Puterman, 1994, Section 2.1.5). Since in discounted MDPs with finite

state and action spaces there always exists a stationary deterministic policy that performs optimally, this paper will

focus on this class of decision policies (Puterman, 1994, Thm. 6.2.7).

765

BARRETO, PINEAU, & PRECUP

form, each function ra is a vector ra ∈ R
|S|, where rai = ra(si). Thus, a finite MDP M can be

represented by |A| matrices Pa and the same number of vectors ra: M ≡ (S,A,Pa,ra,γ). A decision

policy defined over a finite MDP is a vector π ∈ A|S| whose element πi is the action selected by π

in si. The Markov process induced by π can be represented by a matrix Pπ ∈ R
|S|×|S| and a vector

rπ ∈ R
|S|. The ith row of Pπ corresponds to the row with the same index in the matrix Pπi , that is,

pπ
i = p

πi

i . The entries of r
π are given by rπ

i = r
πi

i .

In this paper it is assumed that A is a totally ordered set, and the symbol ‘a’ is used to refer to

both the action a itself and its index in A. This slight abuse of notation simplifies the presentation

considerably, and the distinction should be clear from the context.

2.3 Dynamic Programming

All dynamic programming theory is built upon the concept of a value function. The value of a state

si under a policy π , denoted byV π(si), is the expected return the decision maker will receive from si
when following π . Using (1), one can writeV π(si) = Eπ{Rγ(si)}. In the case of a finite state space,

the value function is a vector vπ ∈R|S|. The vector vπ makes it possible to impose a partial ordering

over decision policies. In particular, a policy π ′ is considered to be at least as good as another policy

π if vπ ′ ≥ vπ . The goal of the sequential decision problem is to find an optimal policy π∗ such

that v∗ ≥ vπ for all π . It is well known that there always exists at least one such policy for a given

MDP (Bertsekas, 1987; Puterman, 1994). When there is more than one optimal policy, they all

share the same value function v∗.

What makes the search for an optimal policy feasible is the Bellman equation, a recursive rela-

tion between state values that lies at the core of all dynamic programming algorithms. The Bellman

equation of a decision policy π is given by vπ = rπ + γPπvπ . It is possible to use this equation

to compute the value function of policy π . One way to do so is to simply convert it into the so-

called Bellman operator of π , T πv = rπ + γPπv. It is known that (T π)tv→ vπ as t → ∞ for any

vector v ∈ R
|S| (Bertsekas, 1987; Puterman, 1994). A more direct approach to compute vπ is to

interpret the Bellman equation as a system of linear equations and compute the value function as

vπ = (I− γPπ)−1rπ , where I is the identity matrix of dimension |S|.

Given vπ , it is possible to generate a decision policy whose performance is at least as good as

that of the original policy π . Let Ω : R|S| 7→ R
|S|×|A| be a mapping associated with a given MDP M

such that if Ωv=Q, then the ath column of Q is

qa = ra+ γPav. (2)

It should be clear that (T πv)i = (Ωv)ia, with a = πi. If instead a = argmax j(Ωv)i j , one has the

Bellman operator of the MDP—that is, Tv = maxΩv. Alternatively, Tv can be viewed as a single

application of T π ′ , with π ′ = argmaxΩv. The driving force of dynamic programming is the fact

that if π ′ is derived from vπ it cannot perform worse than π . Therefore, all dynamic programming

algorithms are variations of the same basic scheme: starting from an arbitrary v ∈ R
|S|, compute

policy π = argmaxΩv and apply the update rule v′←(T π)tv for some t > 0. Then, based on v′,

compute a new decision policy π ′, apply T π ′ for t steps, and so on. It can be shown that, regardless

of the value of t, this process will eventually converge to an optimal policy π∗ (Bertsekas, 1987;

Puterman, 1994).

When the scheme described above is adopted with t = 1, the process reduces to successive

applications of the Bellman operator T , and the resulting method is the popular value iteration

766

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

algorithm. This paper will focus on the other extreme of the spectrum, when t = ∞. In this case one

has the policy iteration method (Howard, 1960). Algorithm 1 shows a step-by-step description of

the computations performed by policy iteration (see also Appendix A.1).

Algorithm 1 Policy iteration

Require: MDPM: Pa ∈ R
|S|×|S| and ra ∈R

|S| for each a ∈ A, γ ∈ [0,1)
Ensure: π∗

1: π ′← random vector in A|S|

2: repeat

3: π←π ′

4: for i←1,2, ..., |S| do pπ
i←p

πi

i and rπ
i ←r

πi

i

5: vπ←(I− γPπ)−1rπ

6: π ′←argmaxΩvπ ⊲ Ties are broken randomly

7: until π = π ′

2.4 Stochastic-Factorization Trick

This section presents the stochastic-factorization trick, a mathematical concept recently introduced

by Barreto and Fragoso (2011) that will serve as a cornerstone for the subsequent developments.

The trick builds on the following definitions:

Definition 1. A matrix P∈Rn×z is called stochastic if and only if pi j ≥ 0 for all i, j and ∑z
j=1 pi j = 1

for all i. A square stochastic matrix is called a transition matrix.

Definition 2. Given a stochastic matrix P ∈Rn×z, the relation P=DK is called a stochastic factor-

ization of P if D ∈R
n×m and K ∈R

m×z are also stochastic matrices. The integer m> 0 is the order

of the factorization.

The relation P= DK and the fact that D is stochastic imply that every row of P can be obtained

as a convex linear combination of the rows of K. In other words, all n stochastic vectors pi ∈ R
1×z

lie within the convex hull defined by the set of m stochastic vectors ki ∈ R
1×z. Obviously, when

m ≥ n it is always possible to find such a hull, that is, it is always possible to compute a stochastic

factorization of P. When m < n, however, an exact factorization might not be possible. This leads

to the following definition:

Definition 3. The stochastic rank of a stochastic matrix P ∈Rn×z, denoted by srk(P), is the smallest
possible order of the stochastic factorization P=DK.

A matrix is called nonnegative if all its elements are greater than or equal to zero. That said,

the definitions of nonnegative factorization and nonnegative rank follow analogously to that of

their stochastic counterparts. Cohen and Rothblum (1991) have shown that it is always possible to

derive a stochastic factorization from a nonnegative factorization of a stochastic matrix (see their

Theorem 3.2). Since any stochastic factorization is also a nonnegative factorization, it follows that

the nonnegative and stochastic ranks of a stochastic matrix coincide. It is easy to show that if P has

only one nonzero element per row, the stochastic rank of this matrix coincides with its conventional

rank, that is, srk(P) = rk(P). In the general case, however, the only thing that can be said is that

rk(P)≤ srk(P)≤min(n,z) (Cohen & Rothblum, 1991).

767

BARRETO, PINEAU, & PRECUP

P=

0.10 0.90 0.00
0.28 0.63 0.09
0.70 0.00 0.30

 D=

1.0 0.0
0.7 0.3
0.0 1.0

 K=

[

0.1 0.9 0.0
0.7 0.0 0.3

]

P̄ =

[

0.73 0.27
0.70 0.30

]

Figure 1: Reducing the dimension of a Markov process from n = 3 states to m = 2 artificial states.

The original states are represented as white circles; black circles depict artificial states. These

figures have appeared before in the article by Barreto and Fragoso (2011).

The stochastic factorization has appeared before in the literature, either as defined above (Cohen

& Rothblum, 1991; Ho & van Dooren, 2007) or in slightly modified versions (Cutler & Breiman,

1994; Ding et al., 2010). However, this paper will focus on a useful property of this type of factor-

ization that has only recently been noted (Barreto & Fragoso, 2011).

Let P be a transition matrix of dimension n representing the dynamics of a Markov process. The

stochastic factorization P = DK admits an interesting interpretation in this case. Suppose m < n,

where m is the order of the factorization. The elements in each row of D can be seen as transition

probabilities from the states of the original Markov process to a set of m artificial states. Similarly,

the rows of K may be interpreted as probabilities of transitions in the opposite direction. With this

interpretation in mind, it is interesting to ask why the product DK restitutes the dynamics of the

original process. To answer this question, it suffices to see each element pi j = ∑m
l=1 dilkl j as the sum

of the probabilities associated with m two-step transitions: from si to each artificial state and from

these back to s j. In other words, pi j is the accumulated probability of all possible paths from si to

s j with a stopover in one of the artificial states. Following similar reasoning, it is not difficult to see

that by swapping the factors of the stochastic factorization, that is, by switching from DK to KD,

one obtains the transition probabilities between the artificial states. This makes it possible to define

a new Markov process, composed of m artificial states, whose dynamics are given by P̄ = KD.

Figure 1 illustrates this idea for the case in which a Markov process with three states is reduced to a

compact model containing only two artificial states.

By simply swapping the factors of a stochastic factorization, it is possible to derive a new ma-

trix P̄ that retains information about the dynamics of the original Markov process in a compact

way. The stochasticity of P̄ follows immediately from the same property of D and K. What is

perhaps more surprising is the fact that this matrix shares some fundamental characteristics with the

original matrix P. Specifically, it is possible to show that: (i) for each recurrent class in P there

is a corresponding class in P̄ with the same period and, given some simple assumptions about the

factorization, (ii) P is irreducible if and only if P̄ is irreducible and (iii) P is regular if and only if P̄

is regular (see Barreto & Fragoso, 2011, for details and formal definitions). This property is called

here the “stochastic-factorization trick”:

Given a stochastic factorization of a square matrix, P = DK, swapping the factors of the factor-

ization yields another transition matrix P̄ = KD, potentially much smaller than the original, which

retains the basic topology and properties of P.

768

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

3. Policy Iteration Based on Stochastic Factorization

This section introduces the main contribution of the paper, an approximate policy-iteration algo-

rithm built upon the stochastic-factorization trick. The section starts with a description of how the

stochastic-factorization trick can be used to reduce the computational cost of evaluating a Markov

process, and then generalizes the idea to an MDP.

3.1 Approximating a Markov Process

Suppose that during the search for an optimal policy of a given MDP one has to determine the value

function of the decision policy π . Instead of computing it directly, one can generate a compact

version of the Markov process induced by π and use its value function to recover the value function

of the original process. The following proposition provides the mathematical foundation for the

implementation of the strategy above.

Proposition 1. Let M ≡ (S,A,Pa,ra,γ) be an MDP, with 0 ≤ γ < 1. Given a policy π ∈ A|S|, let

Pπ ∈ R
|S|×|S| and rπ ∈ R

|S| be the transition probability matrix and the expected reward vector of

the Markov process Mπ induced by this policy in M. Let D ∈ R
|S|×m be a nonnegative matrix, let

K ∈ R
m×|S| be a stochastic matrix, and let r̄ be a vector in R

m such that

DK= Pπ and Dr̄= rπ . (3)

Then,

(i) P̄π =KD and r̄ define a Markov process M̄π with m states.

Let v̄π ∈R
m be the value function of M̄π computed with discount factor γ . Then,

(ii) vπ =Dv̄π is the value function of Mπ .

Proof. Since K is a stochastic matrix and D is nonnegative, the equality DK = Pπ implies that

D is also stochastic: 1 = ∑ j pi j = ∑ j ∑l dilkl j = ∑l dil ∑ j kl j = ∑l dil . The fact that D and K are

nonnegative implies that P̄π is nonnegative; since ∑ j p̄
π
i j = ∑ j ∑l kildl j = ∑l kil ∑ j dl j = ∑l kil = 1,

P̄π is a transition matrix (see Definition 1). This proves (i). In order to prove (ii), recall that v̄π , the

value function of M̄π , can be written as

v̄π = r̄+ γP̄π v̄π (4)

(the existence and uniqueness of a solution for (4) are guaranteed by the stochastic property of P̄π

and the fact that 0 ≤ γ < 1—see, for example, Lemma 2.3.3 of Golub & Loan, 1996 or Proposi-

tion 2.6 of Bertsekas & Tsitsiklis, 1996). Multiplying both sides of (4) by D, one has

Dv̄π = Dr̄+ γDP̄π v̄π = rπ + γDKDv̄π = rπ + γPπDv̄π . (5)

Expression (5) is the Bellman equation associated with the value function ofMπ ; since this equation

has a single fixed point, (ii) must be true (Bertsekas, 1987; Puterman, 1994).

The computation of a decision policy’s value function involves O(|S|3) arithmetic operations

(Littman et al., 1995). In theory, Proposition 1 makes it possible to reduce the computational com-

plexity of such a procedure to O(m3) (also see Appendices A.1 and A.2). Practically speaking,

769

BARRETO, PINEAU, & PRECUP

however, the application of Proposition 1 raises some difficulties. First, one must determine a rea-

sonable value for m, the number of artificial states in the compact model. Obviously, one wants

this value to be as small as possible, but it is not trivial to find the smallest m that allows for the

application of the proposition. Even if the stochastic rank of Pπ is known, it might not be possible

to simultaneously satisfy both equalities in (3) with m = srk(Pπ). Moreover, the computation of

D, K and r̄ requires a number of arithmetic operations that can easily exceed the number of opera-

tions involved in the original calculation of vπ .2 For all these reasons, one may have to resort to an

approximate factorization of the Markov process.

In the approximate version of the stochastic factorization problem, one is interested in finding

stochastic matrices D and K that represent Pπ as well as possible, i.e., that minimize a measure of

the dissimilarity between DK and Pπ . In order to apply Proposition 1, one must also search for a

vector r̄ ∈ R
m that makes Dr̄ as similar as possible to rπ . Once D, K, and r̄ have been determined,

one can swap the factors of the stochastic factorization to define a Markov process with m artificial

states. As described in Proposition 1, the value function of the resulting Markov process, v̄π , can be

used to restore the value function of the original model. Obviously, when DK ≈ Pπ and Dr̄ ≈ rπ ,

Dv̄π will be, too, only an approximation of vπ . An important issue in this case is to quantify the

impact that errors in the approximation of Pπ and rπ might have on the computation of the value

function. This section provides such an analysis for a specific dissimilarity measure. In particular,

it presents an upper bound for ‖ vπ −Dv̄π ‖∞ based on ‖ Pπ −DK ‖∞ and ‖ rπ −Dr̄ ‖∞. Here,

‖ · ‖∞ denotes the maximum norm, which induces the following norm over the space of matrices:

‖ A ‖∞ =maxi ‖ ai ‖1 =maxi ∑ j |ai j|.

Proposition 2. Let Pπ ∈R|S|×|S| and rπ ∈R|S| be the transition probability matrix and the expected-
reward vector describing the Markov process Mπ induced by decision policy π . Let D ∈R|S|×m and

K ∈ R
m×|S| be stochastic matrices, and let r̄ be a vector in R

m. Finally, let M̄π be the Markov

process described by P̄π =KD and r̄. Then,

‖ vπ −Dv̄π ‖∞ ≤ απ ≡
1

δ π

(

‖ rπ −Dr̄ ‖∞ +
γ

2(1− γ)
‖ Pπ −DK ‖∞∆π

)

, (6)

where vπ and v̄π are the value functions of Mπ and M̄π , both computed with the same γ ∈ [0,1),
δ π = 1− γ

(

1− 1
2
‖ Pπ −DK ‖∞

)

, and ∆π =max(rπ
max, r̄max)−min(rπ

min, r̄min).

Proof. Let M̃π be the Markov process with transition matrix DK and reward vector Dr̄. From

Proposition 1 it follows that the value function of M̃π is given by ṽπ = Dv̄π . Recall that a Markov

process can be seen as an MDP in which |A| = 1. Then, applying Whitt’s (1978) Theorem 6.2 (b)

toMπ and M̃π , with all mappings between the two models taken to be identities, one concludes that

ṽπ
i ≤ vπ

i +απ for all i. Since the mappings between Mπ and M̃π are the identity function, one can

apply Theorem 6.2 (b) again, exchanging the roles of the two models, to obtain vπ
i ≤ ṽπ

i +απ for all

i. The upper bound in (6) results from the combination of the two inequalities above.

According to Whitt (1978), it is possible to construct examples showing that (6) is a tight bound.

Proposition 2 makes it clear that the approximation of vπ depends on both the characteristics of Mπ

2. Vavasis (2009) has shown that the determination of the nonnegative rank of a stochastic matrix is an NP-hard problem.

This implies that no polynomial-time algorithm for computing D and K is currently known; if this were the case, one

could compute one factorization for each value of m = |S|, |S| − 1, ...,1, stopping when an exact factorization is no

longer possible, thus determining the matrix’s rank in polynomial time.

770

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

and the quality of the stochastic factorization. First, the right-hand side of (6) increases as γ → 1

and ∆π → ∞. This is expected, since both the magnitude of the individual rewards and the rate at

which they accumulate over time tend to increase the states’ values. More important, the difference

between vπ and Dv̄π directly depends on the stochastic factorization, and as DK→ Pπ and Dr̄→ rπ

the approximation Dv̄π gets closer to the real value function vπ . In the limit, when ‖ rπ −Dr̄ ‖∞ = 0

and ‖ Pπ −DK ‖∞ = 0, one recovers Proposition 1.

It is interesting to point out an intriguing property of Proposition 2. Observe that an increase

in the approximation error ‖ Pπ −DK ‖∞ has two opposite effects on the variables involved in the

derived bound: if on the one hand it increases the coefficient multiplying ∆π , as expected, on the

other hand it also decreases the factor 1/δ π scaling the entire right-hand of (6). This is precisely

what makes the bound tight, since the latter effect tends to alleviate the first. Needless to say, the

bound is still a monotonically increasing function of ‖ Pπ −DK ‖∞, as one can easily verify by

computing the appropriate partial derivative.

3.2 Approximating a Markov Decision Process

The most straightforward way to use the stochastic-factorization trick in the search for a decision

policy is to factor one by one the Markov processes that come up in the search. To be more specific,

let π be an arbitrary decision policy defined over a finite MDP M and let Pπ and rπ describe the

Markov process induced by this policy. Given approximations DK ≈ Pπ and Dr̄ ≈ rπ , one can

define a new Markov process with transition matrix P̄π = KD and reward vector r̄. This auxiliary

model potentially has many fewer states than the original Markov process. After determining the

value function of the compact model, v̄π , one can compute an approximation of the original value

function by making ṽπ = Dv̄π . Finally, a new policy π ′ = argmaxΩṽπ can be derived, restarting

the usual dynamic programming loop. Notice that if DK= Pπ and Dr̄= rπ for every policy π that

comes up during the search, this process will eventually converge to an optimal decision policy.

This is a direct consequence of Proposition 1.

Although feasible, the above strategy presents an obvious drawback: a new factorization must

be computed for each Markov process encountered in the search for a decision policy. Another pos-

sibility is to factor the entire MDP at once. In this case, a possible approach is to find approximate

factorizations for each Markov process Ma, DaKa ≈ Pa and Dar̄a ≈ ra, with a ∈ A, and solve the

reduced MDP M̄ whose transition matrices are KaDa and whose expected reward vectors are r̄a.

However, when the MDP M̄ is directly solved, the quality of the solution found does not depend on

the stochastic factorization only, and even an exact factorization of the MDP can lead to suboptimal

decision policies (for example, as shown in Barreto, Precup, & Pineau, 2011, Prop. 1, in the partic-

ular case in which a single matrix D is used to factor all the Markov processes, the approximation

error also depends on the “level of stochasticity” of D, measured by maxi (1−max j di j)). The re-
maining of this section discusses an alternative way of factoring an MDP in which the performance

of the final decision policy depends exclusively on the quality of the stochastic factorization.

LetM ≡ (S,A,Pa,ra,γ) be a finite MDP. Let Da ∈R|S|×m and K ∈Rm×|S| be stochastic matrices

such thatDaK≈Pa for all a∈A, and let r̄ ∈Rm be a vector such thatDar̄≈ ra, again with a∈A. Let
π ∈ A|S| be a policy defined on M and let Mπ be the corresponding Markov process. As discussed

in Section 2.3, the ith row of Pπ ∈ R
|S|×|S|, the transition matrix of Mπ , is the ith row of Pπi , where

πi is the action selected by π in si (see line 4 of Algorithm 1). From the approximations DaK≈ Pa,

one can see that the ith row of Pπi can be approximated as d
πi

i K (recall that d
πi

i is the ith row of Dπi).

771

BARRETO, PINEAU, & PRECUP

Thus, in order to build an approximation of Pπ , it suffices to construct matrix Dπ ∈ R
|S|×m whose

rows are given by dπ
i = dπi

i . Once Dπ has been determined, the transition matrix associated with

π can be approximated as Pπ ≈ DπK. Analogously, the vector rπ ∈ R
|S| can be approximated as

rπ ≈Dπ r̄.

Using the strategy above, it is straightforward to extend the ideas of Proposition 1 to a factoriza-

tion of the entire MDP. Given a decision policy π , one must first compute the matrix Dπ as described

and then define a reduced Markov process M̄π with transition matrix P̄π = KDπ and reward vector

r̄. The corresponding value function v̄π can then be used to compute an approximation of the value

function of π , which will serve as a reference for the derivation of a new decision policy π ′, and

so on. Algorithm 2 shows how these ideas can be embedded into policy iteration, giving rise to the

policy iteration based on stochastic factorization algorithm, or simply PISF.

Algorithm 2 Policy iteration based on stochastic factorization (PISF)

Require: Da ∈ R
|S|×m for all a ∈ A, K ∈ R

m×|S|, r̄ ∈ R
m, and γ ∈ [0,1)

Ensure: π ≈ π∗

1: π ′← random vector in A|S|

2: repeat

3: π←π ′

4: for i←1,2, ..., |S| do dπ
i←d

πi

i

5: P̄π←KDπ

6: v̄π ←(I− γP̄π)−1r̄
7: Let Q̃π ∈R

|S|×|A|

8: for a←1,2, ..., |A| do q̃π,a←Dav̄π ⊲ q̃π ,a is the ath column of Q̃π

9: π ′←argmax Q̃π ⊲ Ties are broken randomly

10: until π = π ′

In the standard policy iteration algorithm, the computation of a decision policy’s value function

takes O(|S|3) arithmetic operations, while the derivation of a new policy is O(|S|2|A|) (Littman

et al., 1995). In contrast, PISF only needs O(|S|m|A|) operations to derive a new policy—as shown

in lines 8 and 9 of Algorithm 2—and breaks the value function computation into several steps

whose overall complexity is O(|S|m2). The process of computing ṽπ is as follows. First, one has

to determine matrix Dπ , which involves O(|S|) operations (line 4 of Algorithm 2). Then, it is

necessary to perform O(m2|S|) operations to compute the transition matrix P̄π (line 5). Finally,

one must calculate v̄π , which is O(m3) (line 6). As one can see, the computational complexity of

one iteration of PISF is only linear in the number of states |S|. Thus, when m≪ |S|, the number of

arithmetic operations performed per iteration by PISF is much smaller than the number of operations

that would be executed by the conventional policy iteration algorithm.

Regarding the space complexity of PISF, storing Da, K and r̄ requires O(|S||A|m) bits. Note

though that in an actual implementation the matrices Da do not need to be stored in the main mem-

ory. Thus, if one is willing to trade space for time—since in this case Dπ would have to be computed

or loaded on demand—, the actual memory usage of the algorithm drops to O(|S|m) only.

772

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

3.3 Convergence and Error Bound

The PISF algorithm rests on the approximations DaK ≈ Pa and Dar̄ ≈ ra. If these approximations

happen to be exact, Proposition 1 is directly applicable to every decision policy generated by this al-

gorithm, which implies that it will converge to an optimal policy π∗. Nevertheless, in order for PISF

to be considered a stable method, it is necessary to show that errors in the above approximations

will not cause the algorithm to behave in a completely unpredictable way. The following proposition

shows that PISF is a well-behaved algorithm, in the sense that it always terminates in a finite number

of iterations and the quality of the decision policy returned improves when ‖DaK−Pa ‖∞→ 0 and

‖Dar̄−ra ‖∞→ 0 for all a ∈ A.

Proposition 3. Let M ≡ (S,A,Pa,ra,γ) be an MDP with γ ∈ [0,1). Let Da ∈R|S|×m andK ∈Rm×|S|

be stochastic matrices, with a ∈ A, and let r̄ ∈ R
|S|. Then, if PISF is executed with Da, K, r̄, and γ ,

(i) It will terminate after a finite number of iterations.

Let ṽ be the value function of the policy returned by PISF and let r̃a = Dar̄ for all a ∈ A. Then,

(ii)

‖ v∗− ṽ ‖∞ ≤
2

1− γ

(

maxa ‖ r
a− r̃a ‖∞ +

γ

2(1− γ)
maxa ‖ P

a−DaK ‖∞∆

)

, (7)

where v∗ is the optimal value function of M and ∆ =maxa r̃
a
max−mina r̃

a
min.

Proof. Let M̃ ≡ (S,A,DaK,Dar̄,γ), that is, M̃ is the MDP whose transition matrices are DaK and

whose expected reward vectors are Dar̄, for all a ∈ A. The strategy of the proof will be to show that

executing PISF with Da, K, r̄, and γ is equivalent to running standard policy iteration in M̃.

Let π , v̄π and Q̃π be the policy, value function, and matrix computed by PISF at the ith iteration

(lines 3, 6, and 8 of Algorithm 2, respectively). From the definition of Q̃π , one can write

q̃π,a = Dav̄π = Da(r̄+ γP̄π v̄π) = Da(r̄+ γKDπ v̄π) =Dar̄+ γDaKDπ v̄π , (8)

where Dπ is also a matrix constructed by PISF at the ith iteration (line 4 of Algorithm 2). Compar-

ing (2) and (8), it is clear that Q̃π = Ω̃Dπ v̄π . From Proposition 1, it follows that Dπ v̄π is the value

function of the Markov process described by DπK and Dπ r̄. But this is exactly the Markov process

induced by π in M̃ (see line 4 of Algorithm 1). Therefore, the policy computed in one iteration of

PISF starting with π , π ′ = argmax Q̃π = argmax Ω̃Dπ v̄π , is the same policy that would be computed

in one iteration of standard policy iteration applied to M̃ and also starting with π . This implies that

PISF will converge to the optimal policy of M̃ in a finite number of iterations, and hence (i) holds

(see, for example, Puterman, 1994, Thm. 6.4.2).

In order to show (ii), it suffices to resort to Whitt’s (1978) results comparing “dynamic pro-

grams,” a generalization of MDPs proposed by Denardo (1967). Specifically, if one applies the

corollary of Whitt’s Lemma 3.1 toM and M̃, with all mappings between the two MDPs taken to be

identities, it follows that

‖ v∗− ṽ ‖∞ ≤
2

1− γ
maxi j |hi j|, (9)

where hi j are the elements of matrixH= Ωṽ∗−Ω̃ṽ∗ and ṽ∗ is the optimal value function of M̃ (since

the policy computed by PISF is optimal in M̃, the last term appearing in Whitt’s bound vanishes).

773

BARRETO, PINEAU, & PRECUP

Based on Corollary (b) of Whitt’s Theorem 6.1, one can write:

maxi j |hi j| ≤maxa ‖ r
a− r̃a ‖∞ +

γ

2(1− γ)
maxa ‖ P

a−DaK ‖∞∆. (10)

Substituting the right-hand side of (10) in (9) one gets the desired bound.3

Proposition 3 states that PISF will converge to a decision policy after a finite number of iter-

ations. In fact, as the proof of the proposition shows, the solution returned by PISF is one of the

optimal policies of the MDP M̃ ≡ (S,A,DaK,Dar̄,γ). Thus, one can look at PISF as a fast special-

ized method to solve MDPs that have a specific type of structure—namely, MDPs that allow for an

exact factorization with a single K and a single r̄. Of course, PISF will converge to a decision pol-

icy even if the factorization is not exact; in this case the algorithm becomes an approximate policy

iteration method.

The error bound provided in Proposition 3 is not tight in general. This can be seen by noting

that when |A| = 1 the bound in (7) may be looser than its counterpart in (6). Also, the bound is

too pessimistic to be of practical value in many situations. Even so, Proposition 3 is of conceptual

importance because it establishes the soundness of PISF. In particular, it states that the performance

of the policy returned by this algorithm gets closer to optimal as the error in the MDP approximation

decreases. In fact, it is not difficult to show that, if the errors in the approximations DaK ≈ Pa and

Dar̄ ≈ ra are below a certain threshold, the policy returned by PISF performs optimally in M. In

order to do that, first note that r̃a = Dar̄ implies that r̄min ≤ r̃ai ≤ r̄max for all a, and thus one can

restrict the elements of r̄ to the interval [mina r
a
min,maxa r

a
max] and still get an exact factorization.

Assuming this is the case, the term ∆ appearing in the right-hand side of (7) can be replaced by

maxa r
a
max−mina r

a
min. This means that maxa ‖ P

a−DaK ‖∞ and maxa ‖ r
a−Dar̄ ‖∞ are the only

terms in (7) that vary with Da, K and r̄, and hence one can make the bound arbitrarily small by

driving the approximation errors to zero. Let Π⊂ A|S| be the set of non-optimal policies of M and

let ε = minπ∈Π ‖ v
∗−vπ ‖∞. Since ṽ is the value function of a specific policy, it follows that, if the

right-hand side of (7) is smaller than ε , then ṽ = v∗. Therefore, there exists a scalar ε ′ such that if

maxa ‖ P
a−DaK ‖∞ < ε ′ and maxa ‖ r

a−Dar̄ ‖∞ < ε ′ the policy returned by PISF is optimal.

4. Computing the Stochastic Factorization

As shown in the previous section, PISF’s performance depends crucially on the approximations

DaK≈ Pa and Dar̄ ≈ ra, with a ∈ A. This section discusses how to compute Da, K, and r̄. It starts

with a generic presentation of the problem and then gradually focuses on more specific formulations

that can be solved much more efficiently.

4.1 The Optimization Problem

In order to facilitate the exposition, it will be assumed that the vectors ra and matrices Pa have been

concatenated and stacked to obtain a single matrix M ∈ R
|S||A|×|S|+1 representing an entire MDP, as

3. Ravindran and Barto (2004) follow similar strategy to bound the approximation loss resulting from an approximate

homomorphism.

774

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

follows:

M=

r11 p111 p112 · · · p1
1|S|

...
...

...
. . .

...

r1|S| p1|S|1 p1|S|2 · · · p1|S||S|
...

...
...

. . .
...

r
|A|
1 p

|A|
11 p

|A|
12 · · · p

|A|
1|S|

...
...

...
. . .

...

r
|A|
|S| p

|A|
|S|1 p

|A|
|S|2 · · · p

|A|
|S||S|

. (11)

With the representation above, the objective of the factorization problem reduces to finding matrices

D and W such that DW ≈M. More formally, the approximate factorization of an MDP M can be

formulated as a constrained nonlinear optimization problem in the following way:

Problem 1. Given a matrix M ∈ R
|S||A|×|S|+1 representing an MDP, find D ∈ R

|S||A|×m and W ∈
R
m×|S|+1 in order to minimize a dissimilarity measure Φ(M,DW), subjected to the following con-

straints:

di j ≥ 0 for i= 1,2, ...|S||A| and j = 1,2, ...,m, (12)

wi j ≥ 0 for i= 1,2, ...m and j = 2,3, ..., |S|+1, (13)

∑
m

j=1
di j = 1 for i= 1,2, ...|S||A|, (14)

∑
|S|+1

j=2
wi j = 1 for i= 1,2, ...m. (15)

Note that the above problem formulation assumes that the first column of M is reserved for the

rewards, as in (11). This is why the elements in the first column of W are not subjected to the

stochasticity constraints (13) and (15). When |A|= 1 the model M is a Markov process. Also, the

problem statement can be easily modified to reflect the case in which M represents a Markov chain

(that is, when there are no rewards in the Markov process—see Barreto & Fragoso, 2011). This

modification does not have any major impact on the discussion to follow.

It is not hard to see that the feasible region defined by the constraints of the above optimization

problem is a convex set. Thus, if Φ is continuously differentiable, one can resort to one of the several

methods presented by Bertsekas (1999) to solve a constrained nonlinear optimization problem with

a convex feasible region. Among them, the most obvious choice is probably a gradient projection

method, in which a candidate solution is iteratively refined by an update rule that keeps it within

the problem’s feasible region. Another approach that seems promising in this context is the “block

coordinate descent” method (Bertsekas, 1999). In this case, only a subset of the variables is updated

at a time while the remaining are kept fixed. For the optimization problem at hand, there are two

blocks of variables corresponding to the elements of matrices D and W. Thus, at each iteration of

the algorithm one applies the following update rules:

D′←argmin
D∈D

Φ(M,DW) and W′←argmin
W∈W

Φ(M,D′W), (16)

whereD⊂R
|S||A|×m andW⊂R

m×|S|+1 are the feasible regions ofD andW, respectively. Depending

on the characteristics of the dissimilarity measure adopted, the repeated application of the above

775

BARRETO, PINEAU, & PRECUP

update rules will eventually converge to a stationary point of Φ (Grippo & Sciandrone, 2000). This

is true, for example, when Φ(M,DW) =‖M−DW ‖F, where ‖ · ‖F is the Frobenius norm (Cutler &

Breiman, 1994; Lin, 2007b). When ‖ · ‖F is used, one can compute D′ andW′ through a constrained

least-squares algorithm (Cutler, 1993).

The solution of the two subproblems in (16) may require a large number of arithmetic oper-

ations. Therefore, instead of searching for exact minima, one can take a small step per iteration

towards the solution of each subproblem, much like in conventional iterative descent methods (Lee

& Seung, 2000). In this case, it is relatively simple to enforce the stochasticity constraints by pro-

jecting the partial solutions onto the feasible region or by incorporating a penalty term into the

dissimilarity measure Φ (Lee & Seung, 1997). It should be noted, however, that when an iterative

update rule is used in place of (16), the guarantee of convergence to a solution may be lost (Lin,

2007a).

The ideas above have been extensively exploited in the study of a related optimization problem

known as nonnegative matrix factorization. As the name suggests, in this version of the problem

only constraints (12) and (13) are normally imposed (Paatero & Tapper, 1994; Lee & Seung, 1999).

There are many works available discussing theoretical and practical aspects of nonnegative matrix

factorization (for a survey, see Berry et al., 2007). Most of the ideas discussed in these works also

apply to the problem considered here. In particular, since one can derive a stochastic factorization

from a nonnegative factorization of a stochastic matrix, any algorithm designed for the latter can

also be used to compute the former (Cohen & Rothblum, 1991).

Instead of addressing Problem 1 as a generic nonnegative factorization, one can exploit the

particular structure of matrices D and W. As discussed in Section 2.4, the fact that D is stochastic

implies that an exact factorization DW = M is only possible when the rows of M are inside the

convex hull defined by the rows of W. So, one can try to solve the problem by (approximately)

computing a convex hull that contains the rows of M and then determining the coefficients that

recover mi as a convex combination of the vertices of the hull—which will naturally give rise to a

stochastic D. This approach is closely related to Cutler and Breiman’s (1994) “archetypal analysis”

and Ding et al.’s (2010) “convex nonnegative factorization.” There is also an interesting connection

with the problem known as “spectral unmixing” in the field of imaging spectroscopy, in which the

determination of matrix W is usually referred to as the task of “extracting end-members” (Keshava

& Mustard, 2002; Keshava, 2003).

Yet another way of approaching Problem 1 is to impose additional constraints and resort to

specialized methods. Consider for example the case in which D has only one nonzero element

per row. In this case, the factorization can be seen as a specific instance of the well-known data-

clustering problem: the vectors mi must be grouped into m clusters C j whose “centers” are the

vectors wj—the most common choice to define the centers is to have wj = 1/|C j|∑{i|mi∈C j}mi =
1/|C j|∑{i|di j=1}mi (Hartigan, 1975). The goal of the clustering problem is to determine an as-

signment of vectors mi to clusters C j in order to minimize Φ(M,DW). Since W is automatically

defined by a given assignment, the problem reduces to computing matrix D. An advantage of inter-

preting the factorization as a clustering problem is the availability of a large number of algorithms

specifically designed to solve this type of optimization (Kaufman & Rousseeuw, 1990; Gan et al.,

2007). Conveniently, depending on how Φ is defined, the cluster centers wj will naturally satisfy

the stochasticity constraints (12), (13), (14), and (15). This is the case when the Frobenius norm is

adopted as the objective function.

776

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

4.2 Reducing the Computational Cost of the Factorization

This work presents the stochastic factorization as a general approach to reduce the number of states

in an MDP. Of course, the main reason one would be interested in such a reduction is to save

computational resources. One potential gain is in the amount of memory required to represent the

model. Nevertheless, this paper is mainly concerned with the use of stochastic factorization as a

strategy to reduce the time complexity of dynamic programming algorithms, that is, the number of

arithmetic operations performed in the search for a decision policy. In this case, the computational

cost of the factorization process itself is a concern. In particular, it only makes sense to resort to

stochastic factorization if the number of operations involved in the factorization process is much

smaller than the number of operations saved by replacing the original model with a compact one.

As discussed, the stochastic factorization problem is equivalent to nonnegative matrix factor-

ization. Nonnegative matrix factorization has been a popular research topic in the last few years,

and as a result the efficiency of the algorithms has been increasing steadily—in fact, nowadays it is

possible to compute nonnegative factorizations of very large matrices in a matter of minutes (Esser

et al., 2012; Bittorf et al., 2012). Recently, Thurau et al. (2011, 2012) have proposed efficient al-

gorithms to approximately compute a convex hull that contains the rows of M. They show that, by

exploiting the extra structure in Problem 1, one can compute the approximation DW ≈M much

faster than algorithms that treat the problem as a conventional nonnegative factorization. There are

also methods for the spectral unmixing problem that were specifically designed to be computation-

ally efficient (Nascimento & Dias, 2004; Chang et al., 2006). Finally, if one interprets Problem 1

as a clustering task, it is possible to approximate very large matrices M by using some recently

proposed methods (Boutsidis et al., 2010; Shindler et al., 2011).

In principle, any of the methods above can be used to compute the approximation DW ≈M

required by PISF. Some of them are able to solve the problem in time linear in the number of rows

of M (Shindler et al., 2011; Thurau et al., 2012). Unfortunately, when it comes to Problem 1, this

does not mean that the factorization will depend linearly on |S|. The problem is that the vectors mi

live in R
|S|+1. This implies that the number of states in the MDP M defines not only the number of

vectors mi (the number of rows of M), but also their dimension (the number of columns of M). As

a consequence, even the “linear” methods will run in O(|S|2) time.

Depending on the size of the MDP and on the computational resources available, a quadratic de-

pendency on |S| may be acceptable. There are many algorithms available in this case. For example,

Shindler et al.’s (2011) clustering method can deliver an approximation DW ≈M in O(|S|2|A|m)
time, which corresponds tom iterations of the value iteration algorithm (Littman et al., 1995). There

are also situations in which the transition matrices Pa are sparse, meaning that the execution of ac-

tion a in state si can lead to a number of states z≪ |S|. In this case the factorization problem can be

solved in time linear in |S|. The remaining of this section focuses on the worst case scenario, that

is, the case in whichM is not sparse and a quadratic dependency on |S| is not acceptable.

4.2.1 BREAKING THE DOUBLE DEPENDENCY ON THE SIZE OF THE MDP

In order to make the stochastic factorization problem tractable for large MDPs, one needs to cir-

cumvent the fact that |S| defines both the number of rows and the number of columns of M. The

strategy proposed in this section is to rewrite the problem in terms of a dissimilarity measure whose

computation does not depend on the number of states in the MDP.

777

BARRETO, PINEAU, & PRECUP

Let φ be a dissimilarity measure defined in R
|S|+1×R

|S|+1 (such as a distance function, for

example). This section will assume that the measure Φ previously introduced is induced by φ . For

a few examples, let A and B be two arbitrary matrices of the same dimension. Then one can have,

for instance,

φ(ai,bi)≡‖ ai−bi ‖F and Φ(A,B)≡∑i
φ(ai,bi) =‖A−B ‖F,

φ(ai,bi)≡ ‖ ai−bi ‖1 and Φ(A,B)≡maxi φ(ai,bi) = ‖ A−B ‖∞, (17)

φ(ai,bi)≡‖ ai−bi ‖2 and Φ(A,B)≡ max
x,‖x‖2=1

∑i

√

[(ai−bi)x]
2 = max

x,‖x‖2=1
‖ (A−B)x ‖2, (18)

where ‖ · ‖2 is the Euclidean norm. Based on the expressions above, it is clear that in order to mini-

mize Φ(DW,M) one can focus instead on minimizing φ(∑ j di jwj,mi) for all i. One way of looking
at ∑ j di jwj ≈mi is to think of the rows wj as a set of “prototypical” vectors that are representative

of the dynamics of the MDPM. Recalling that each row of D forms a convex combination, the ele-

ment di j can be seen as the weight of representative vector wj in the approximation of mi (Cutler &

Breiman, 1994; Keshava & Mustard, 2002). The core assumption of this section is that, in general,

di j should decrease with φ(mi,wj). Although this is not necessarily true in an exact factorization,

many approximation schemes rely implicitly or explicitly on such a premise (Hastie et al., 2002).

One example is local kernel smoothing techniques such as the Nadaraya-Watson kernel-weighted

estimator (Hastie et al., 2002, Chap. 6). In this case, the elements of D would be computed as:

di j =
exp(−φ(mi,wj)/τ)

∑k exp(−φ(mi,wk)/τ)
, (19)

where τ controls the relative magnitude of the elements in one row of this matrix. More generally,

di j should be computed based on a function ω that is non-increasing with respect to φ(mi,wj).
The assumption that di j decreases with φ(mi,wj) makes it possible to compute D based ex-

clusively on φ , as in the example given in (19). It is also possible to compute W using only this

dissimilarity measure. For example, Thurau et al. (2012) argue that, if one restricts the rows of W

to be a subset of the rows of M, the minimization of Φ as defined in (18) can be accomplished

through the maximization of the volume of the simplex defined by the rows of W. Based on con-

cepts from distance geometry, the authors show that it is possible to efficiently compute the volume

of the simplex defined by a candidate W using φ only. There are also several clustering algorithms

that only require a distance matrix to work, never accessing the vectors mi directly (Kaufman &

Rousseeuw, 1990). Finally, one can derive simple heuristics that use φ to compute a matrix W that

“covers” as well as possible the convex set defined by M, ensuring that every row mi is close to

at least one representative vector wj. For example, one can adopt a constructive method that goes

through all vectors mi and successively adds new rows to the matrix W in order to guarantee that

min j φ(mi,wj)< σ for all i, where σ is a predefined threshold. Notice that in this case the number

of representative rows wj will be automatically determined by the value of σ . This idea will be

further explored in Section 4.2.2.

The obvious advantage of computing DW≈M based solely on φ is that the problem of reducing

the computational cost of the factorization comes down to finding efficient ways of computing

φ . Specifically, one can replace φ with an approximation φ̃ whose computation requires fewer

arithmetic operations. One way to define φ̃ is to restrict the computation of φ(mi,mj) to a properly
defined subset of the elements of mi and mj—which corresponds to enforcing some degree of

778

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

sparsity in M (see Mahoney, 2011). This section goes in another direction, though: it exploits the

fact that each vectormi is associated with a specific state-action pair which can often be represented

by a feature vector whose dimension is much smaller than |S|.

From dynamic programming’s perspective, a state sk is nothing but an index k ∈ {1,2, ..., |S|}.
However, in an MDP describing a real decision problem, each state has a clear semantic interpreta-

tion. In general, a given state of the MDP can be represented by a set of features that are descriptive

of the real state of the problem. Based on the state features, it is usually easy to define feature

vectors that represent state-action pairs. Therefore, S×A can be thought of as a finite subset of a

vector space; with a slight abuse of notation (si,a) will be used to refer to the vectors representing

state-action pairs and dim(S×A) will denote the number of components of (si,a).

In many cases, it is reasonable to assume that state-action features provide some information

regarding the dynamics of the MDP. To be more precise, let φ̃ be a dissimilarity measure defined in

S×A. The assumption is that, if state-action pair (sk,a) is similar to state-action pair (sl,b), then the
associated transition probabilities and rewards should also be similar—that is, the distance between

the corresponding vectors mi and mj should be small. Thus, one can use φ̃ as a surrogate for φ .

Note that this direct relationship between φ and φ̃ will naturally happen when the MDP M is the

result of the discretization of a model with continuous state space, as long as the functions defining

the MDP’s dynamics are reasonably smooth and the resolution of the discretization is sufficiently

fine. Moreover, often only the relative magnitude of the distance matters for the proper functioning

of the algorithms (Kaufman & Rousseeuw, 1990; Thurau et al., 2012). Therefore, an approximation

φ̃ ((sk,a),(sl ,b)) ≈Cφ(mi,mj), withC > 0, should suffice in many cases.

The strategy of replacing φ with a dissimilarity measure φ̃ defined in the state-action space can

result in significant computational savings when dim(S×A)≪ |S|+ 1. This is akin to the well-

known “kernel trick,” in which an algorithm is rewritten in terms of inner products which are then

replaced by an appropriately defined kernel (Schölkopf & Smola, 2002). The kernel trick allows

one to work in very high-dimensional feature spaces without ever explicitly computing the features.

Similarly, by adopting an algorithm based exclusively on φ , and then replacing the latter by φ̃ , one

can compute the approximation DW ≈M without ever manipulating the vectors mi directly. This

strategy can be used with any algorithm that computes D and W based on φ . As an illustration, the

next section describes a concrete algorithm that does just that.

4.2.2 AN ALGORITHM TO COMPUTE THE FACTORIZATION OF AN MDP IN LINEAR TIME

The previous sections discussed several ways to address the stochastic factorization problem (Prob-

lem 1). Each approach has its advantages and drawbacks, and the decision about which method to

adopt should take into account factors like the size of the problem, the level of accuracy required

for the solution, and the computational resources available. This section describes in more detail a

specific algorithm to compute the approximation DW≈M. The objective is to provide an illustra-

tion of how some of the ideas described above can be implemented, and also make the discussion

regarding computational and theoretical aspects of the factorization problem more concrete.

The proposed method, described in Algorithm 3, builds on the ideas discussed in Section 4.2.1.

The strategy is to select a subset of the rows of M to form matrix W, such that each row mi has

a representative vector wj within a predefined neighborhood. Such a neighborhood is induced by

a dissimilarity measure φ̃ defined in S×A. The mechanics of the method are very simple. It goes

over each state-action pair of the MDP and computes their distance to the η-closest neighbors in

779

BARRETO, PINEAU, & PRECUP

the set E of state-action pairs already selected to be part of the model (line 7 of Algorithm 3). If the

distance to the closest neighbor is above a predefined threshold σ , the corresponding row of M is

added toW (lines 9 to 11). If not, the number of representative state-action pairs remains the same.

Regardless of whether the model has grown or not, the η-closest neighbors are used to compute

the elements in the zth row of D, where z is the index of the current state-action pair in M (lines 13

and 14). The elements di j can be computed by any function ω that does not increase with φ̃ (see

discussion in Section 4.2.1 and equation (19) for an example).

Algorithm 3 Stochastic-factorization computation

Require:

MDPM M ∈ R
|S||A|×|S|+1 and the corresponding features (si,a)

φ̃ : (S×A)× (S×A) 7→ R similarity function

ω : R 7→ R non-decreasing function

σ ∈ R
+ neighborhood radius

η ∈N
∗ number of neighbors in the approximation

Ensure: Factorization DW≈M

1: E←{(s1,0)} ⊲ E are the representative state-action pairs (|E|= m)

2: D←0 ∈R
|S||A|×1; W←m1 ∈ R

1×|S|+1

3: for i←1,2, ..., |S| do
4: for a←1,2, ..., |A| do
5: z←(a−1)∗ |S|+ i ⊲ z is the row index of (si,a) in M (see (11))

6: h←min(η , |E|)
7: find the h nearest elements to (si,a) in E according to φ̃ ; call the jth closest pair (s,b) j
8: if φ̃((s,b)1,(si,a))> σ then ⊲ A new representative state-action pair must be added

9: E←E+{(si,a)}
10: W←

[

W
mz

]

⊲ Add one row toW

11: D← [D 0] ⊲ Add one column to D

12: for j←1,2, ...,h do

13: k← index of (s,b) j inW
14: dzk←ω(φ̃((s,b) j,(si,a)))

15: for j←1,2, ..., |E| do dz j←dz j/∑
|E|
l=1 dzl ⊲ Make sure that D is stochastic

The parameter σ has a strong effect on the output of Algorithm 3: decreasing its value usually

leads to a more accurate approximation DW ≈M, but it also increases the number m of represen-

tative state-action pairs (or, equivalently, representative vectors wj). The algorithm can go through

the state-action pairs of the MDP in any order, and in the end every pair will have at least one rep-

resentative counterpart within a distance of σ in the space (S×A, φ̃). However, since Algorithm 3

is a greedy method, the set of state-action pairs selected to be part of the model may change de-

pending on the order in which the pairs are visited. The parameter η determines the number of

representative vectors wj used to approximate each mi, and can be seen as a device to control how

local the approximation should be (this is akin to setting the parameter ‘k’ of a k-nearest neighbor

approximation; see Hastie et al., 2002, Chap. 2, for an intuitive discussion). The parameter η also

has a direct effect on the computational cost of the algorithm, as discussed next.

The most demanding operation in each iteration of Algorithm 3 is the computation of the η-

nearest neighbors of the current state-action pair. There are several efficient algorithms available

780

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

to perform this search, either exactly or approximately (Liu et al., 2005). The most popular exact

method is to use a KD-tree, which takes O(dim(S×A)m logm) operations to be constructed and

allows the search to be performed in O(η logm) time, on average (Friedman et al., 1977). Since

Algorithm 3 performs |S||A| iterations, its overall complexity is linear in |S|. Therefore, using

this algorithm to build the approximation DW ≈M, and assuming that the number of iterations

performed by PISF is much smaller than |S|, the cost of the entire process of computing a decision

policy depends only linearly on the number of states in the MDP. This is the best one can do without

assuming any extra structure in the model.

As for the space complexity of Algorithm 3, note that in an actual implementation the matrixM

is not really necessary, and neither W nor D must be explicitly stored: W can be represented by an

m-dimensional vector containing the indices of the representative state-action pairs and D can be a

data structure with the |S||A|×η nonzero elements di j.

As mentioned, when Algorithm 3 terminates all state-action pairs of the MDP have at least one

representative state-action pair within a neighborhood of radius σ defined in the space (S×A, φ̃).
In order to extrapolate this guarantee to the performance of PISF, it is necessary to relate φ̃ to φ . Let

(sk,a) and (sl ,b) be two state-action pairs associated with vectors mi and mj, respectively. Then, if

φ̃((sk,a),(sl ,b))< σ =⇒ φ(mi,mj)< ε , (20)

it should be relatively straightforward to provide guarantees regarding PISF’s solution. For example,

if (17) is adopted and η = 1, one can resort to Proposition 3 to obtain such guarantees. There are

specific scenarios where it should be easy to ensure that assumptions like (20) hold, such as for

example when the MDP M results from the discretization of a continuous model. It may also be

possible to derive guarantees similar to (20) based on knowledge about the problem, for example by

looking at the transition equations describing the dynamics of the MDP. In general, though, it may

be difficult to relate φ̃ to φ . Note that it is trivial to modify Algorithm 3 to reflect the case in which

φ̃ is computed based on a subset of the elements of mi and mj. In this case deriving guarantees

analogous to (20) is considerably easier (see for example Mahoney, 2011).

Algorithm 3 relies on two premises: (i) given M and W, making the elements di j inversely

proportional to φ(mi,wj) results in a good approximation DW ≈ M; (ii) it is possible to define

a dissimilarity measure φ̃ : (S×A)× (S×A) 7→ R such that φ̃((sk,a),(sl ,b)) ≈ Cφ(mi,mj), with
C > 0, where mi and mj are the rows of M associated with (sk,a) and (sl,b), respectively. It is

important to point out that building an algorithm based on such assumptions is only one possible

artifice to circumvent the computational cost of factoring an MDP. Other strategies may be possible,

such as resorting to domain knowledge or developing methods that exploit some structural regularity

of the MDP (see Section 5.3.3). In fact, there are scenarios where an exact factorization is readily

available without the need for any computation (see Barreto, 2014, for an example). In any case, the

next section shows empirically how Algorithm 3 can generate very good decision policies in some

problems.

5. Computational Experiment

This section illustrates how PISF can be useful in practice with a real-world application of significant

economical interest.

781

BARRETO, PINEAU, & PRECUP

5.1 The Multicomponent-Replacement Decision Task

One of the big challenges faced by industry is the maintenance of assets over a long period of time.

For example, a commercial airline or a cargo company must have an operational fleet, while a power

company needs to maintain its electric power grid functioning at all times (Powell, 2007). In many

cases, the maintenance of expensive equipments involves sums of money counted in the millions

of dollars. In such situations, the decisions made during the maintenance activities may have an

enormous economical impact.

Usually, an equipment such as a jet engine or an electric generator is composed of several com-

ponents that degrade over time. If a critical component breaks, it has to be replaced immediately. It

is often the case that such a maintenance operation has an associated setup cost which is indepen-

dent of the number of components being replaced. This may be financial losses caused by the down

time or costs associated with activities such as the disassembling of the equipment, delivery of new

components, and displacement of specialists. Thus, in some circumstances, it may be advantageous

to perform opportunistic replacements of functioning components to avoid future setup costs. As

discussed, this trade-off between immediate and future costs is typical of decision making tasks.

The importance of the decision problem described above is attested by a huge body of literature

originated in the 1960’s and spanning the subsequent four decades (Barlow & Proschan, 1965;

McCall, 1965; Pierskalla & Voelker, 1976; Sherif & Smith, 1981; Cho & Parlar, 1991; Dekker

et al., 1997; Wang, 2002). The problem can be formalized as follows. Suppose that the asset of

interest has nc components and let l j ∈ N
+ denote the expected lifetime of component c j measured

in some discrete time unit. Then, each state si is a vector si ∈ N
nc whose jth entry si j represents the

remaining lifetime of component c j. At each time step the remaining lifetime of c j is decreased by

one, and si j = 0 indicates that this component is no longer operational. Even if c j has not reached

the end of its useful life, it may fail with a given probability, which is a function of si j and possibly

of the other components’ remaining lifetimes siu. An inactive component c j causes the entire asset

to stop working, and if c j is not replaced immediately a penalty of −∞ takes place in the next

transition. To avoid that, one must replace c j, which incurs a cost of r j dollars. On top of that,

every replacement activity—joint or not—has an associated setup cost. The setup cost is composed

of two terms, a fixed amount of Rs dollars plus an extra fee of R f dollars which is only charged

if a component has failed before reaching its expected lifetime. The extra fee covers the expenses

of last-minute measures required by unexpected failures. Let action a be represented by a binary

vector ah ∈ {0,1}
nc where ah j = 1 indicates that component c j should be replaced. The goal of

the decision maker is to select an action ah at each time step in order to minimize the expected

discounted future cost.

As one can see, this problem suffers from a particularly severe version of the curse of dimension-

ality: not only does its state space grow fast with nc, with |S| = ∏i(li+ 1), but also the cardinality

of the action space is an exponential function of this variable, since |A|= 2nc . Thus, even instances

of the problem with only a small number of components already represent a difficult challenge for

dynamic programming.

Given this scalability issue, researchers usually focus on particular cases of the multicomponent-

replacement task whose structure can be exploited somehow. For example, it has been noted in the

literature that when the failure cost R f is not considered the state space of the multicomponent-

replacement problem can be reduced in more than 50% by simply eliminating the states of S in

which all components are functional (i.e., si j > 0 for all j). Since one knows that the optimal action

782

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

in the excluded states is to replace zero components, this modification does not change the optimal

policy of the problem (see Sun et al., 2007; Arruda & Fragoso, 2011). Note though that when

R f > 0 it may be advantageous to carry out replacements even if no components have expired; as

will be seen, in this case the reduction strategies cited above may fail.

Researchers and practitioners have also explored other constrained versions of the multicompo-

nent-replacement task. For example, if the replacement costs r j and the lifetimes l j are the same for

all components c j, all permutations of a given vector si can be considered as being the same state,

which reduces the state space considerably (Haurie & L’Ecuyer, 1982). Another simplification

of the problem is to assume that the probability of component c j failing is independent of the

other components’ remaining lifetimes siu. In this case, the components are related only through

the “economical dependence” represented by the setup cost (Cho & Parlar, 1991). The resulting

model, a factored MDP, can be solved orders of magnitude faster than a conventional MDP (see

Section 5.3.3). It is also possible to reduce the action space of the multicomponent maintenance

task by making some assumptions regarding the problem’s dynamics (Xia et al., 2008).

Although the methods above can be very effective in particular instances of the maintenance

task, they are not directly applicable to the most general version of the problem, in which compo-

nents have different characteristics and depend on each other both economically and structurally.

Hence, in practice industry often relies on simple “threshold policies” that replace all components

with remaining lifetime above a given value (Haurie & L’Ecuyer, 1982; van der Duyn Schouten

& Vanneste, 1990). Unfortunately, it is known that, in general, the optimal policy for the multi-

component-replacement problem does not lie in the space of threshold decision policies (Özekici,

1988; Xia et al., 2008).

5.2 Experimental Setup

The experiments described in this section were carried out assuming a general version of the main-

tenance task in which components interact with each other. The failure probability of component c j
was modeled as a linear function of the asset’s general condition. Suppose the asset is in state si and

the decision maker decides to perform action ah. Then, denoting the next state by sk, the probability

of component c j failing is:

P(sk j = 0 | si j > 1,ah j = 0) = f −
(f − fmin)(si j−1)

l j−1
+ f̂

∑u6= j(lu− siu)

∑u6= j lu
, (21)

where f , fmin and f̂ are parameters of the model and it is assumed that l j > 1 for all j. The motivation

for equation (21) is that the probability of a given component failing should depend not only on the

condition of the component itself, but also on the condition of all other components of the asset.

This is in fact a generalization of a commonly used model of the problem; when f = fmin and f̂ = 0,

equation (21) reduces to the fixed failure probability often assumed in the literature (Sun et al.,

2007; Arruda & Fragoso, 2011). In the experiments, equation (21) was considered with f = 0.1,
fmin = 0.01, and f̂ = 0.1. Thus, if many components in the asset are about to expire, the probability

of component c j failing can more than double.

The formulation of the problem considered here is also general with respect to the character-

istics of the individual components of the asset. Instead of assuming that all components have the

same lifetime and cost, which seems unrealistic, the variables l j and r j were drawn from normal

distributions with means µl = 10 and µr =−10 and common standard deviation σlr = 3 (the values

783

BARRETO, PINEAU, & PRECUP

sampled for l j were rounded to the closest natural number and sampled again in case the result was

smaller than 2). With this configuration, the expected value of the model’s parameters coincide with

the ones adopted by Sun et al. (2007). The constant term of the setup cost was fixed at Rs = −10
and the failure cost was set as R f = −5nc. As discussed above, when R f > 0 it might happen that

π∗(si) 6= 0 even if si j > 0 for all j. This increases the effective size of the state space, since one

cannot simply discard states without expired components.

The multicomponent-replacement task was modeled as a discounted problem with γ = 0.999
(as discussed in Puterman, 1994, in this case γ can be seen as a way of emulating the devaluation of

money). For each value of nc ∈ {2,3, ...,7}, 100 instances of the problem were randomly generated.

The policy iteration algorithm was then used to find an optimal policy for the resulting MDPs (see

Appendix A.3). As a means of comparison, policy iteration was also applied to the reduced version

of the problem, in which a state si is removed from the MDP if and only if si j > 0 for all j. Note that

such a modification requires the recalculation of the transition probabilities between the states that

remain in the model (Arruda & Fragoso, 2011). Here, in order to accomplish this reduction, actions

were replaced with their temporally extended counterparts, “options,” giving rise to a “semi-MDP”

(options are closed-loop policies with a well-defined termination condition and an initiation set; see

Sutton et al., 1999, for details) .

In order to evaluate the heuristics usually adopted by industry, threshold policies using values

ranging from 1 to 10 were considered. For each value of nc, these policies were compared and

the one providing the lowest expected cost was used in the comparisons with the other algorithms.

Notice that a threshold policy using a value of 0 corresponds to the “naive” strategy of only replac-

ing non-operational components. The performance of such a policy was used as a baseline in the

comparisons.

As discussed in Section 4, PISF’s configuration comes down to the definition of matrices D ∈
R
|S||A|×m and W ∈ R

m×|S|+1. In the experiments of this section these matrices were computed by

Algorithm 3. The following function was used as a similarity measure between state-action pairs:

φ̃ ((si,ah),(sk,ag)) =

{

∞ if ah 6= ag,

∑
nc
j=1(1−ah j)|r j|(si j− sk j)

2 otherwise.
(22)

The intuition behind (22) is straightforward: two state-action pairs should be considered similar

if, after the application of the actions to the corresponding states, the remaining lifetimes of the

components are approximately the same (except for eventual failures). Note that the difference

between the remaining lifetimes si j and sk j is weighed by the magnitude of the cost r j of replacing

the jth component. The other parameters of Algorithm 3 were defined as follows. The number of

neighbors η used in the approximation was set to nc, the function ω was defined as the constant

1/η , and the neighborhood radius σ was varied in {200,400,600}. Since σ was the only parameter

that varied across the experiments, the specific instances of PISF will be referred to as PISF-σ (see

Appendix A.3 for more details regarding the implementation of PISF).

5.3 Results

Throughout this section, the following measure will be used to evaluate the algorithms:

ϕ(vπ , v̂ | Ŝ) =
1

|Ŝ|
∑

{i | si∈Ŝ}

vπ
i − v̂i

|v̂i|
, (23)

784

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

2 3 4 5 6 7

0
.1

2
0
.1

3
0
.1

4
0
.1

5
0
.1

6
0
.1

7

Number of components (nc)

ϕ
(v

π
,
v

π
N
)

PI
PI−RED
BEST THR
PISF−200
PISF−400
PISF−600

Figure 2: Expected gain on the multicomponent-replacement problem with respect to the naive

decision policy. Error bars represent one standard error over 100 runs.

where vπ is the value function of the policy π returned by the algorithm under evaluation, v̂ is a

reference value function, and Ŝ ⊆ S is the set of test states used in the evaluation (note that ϕ can

take on negative values).

5.3.1 STANDARD SOLUTIONS

The two most natural ways of addressing the multicomponent-replacement problem is to use dy-

namic programming or to resort to the threshold policies normally adopted in practice. This section

compares these methods with PISF. The performance measure used to evaluate the algorithms is

the relative gain one should expect when using them instead of naively replacing a component only

when it fails. Hence, the reference function v̂ in (23) is the value function of the naive policy, vπN .

When nc ≤ 5, it is possible to compute the value functions vπ and vπN exactly, and thus in this

case the set Ŝ appearing in (23) is the entire state space S. However, for nc > 5 computing vπ and

vπN becomes infeasible in the computers used for the experiments. In this case Ŝ was composed of

10,000 test states si sampled uniformly at random from S, and the corresponding values vπ
i and v

πN

i

were approximated through Monte Carlo roll-outs of length 5,000.4

Figure 2 compares the results of policy iteration (PI), policy iteration applied to the reduced

version of the problem (PI-RED), the best threshold policy (BEST THR), and PISF using σ = 200,

σ = 400, and σ = 600. One thing that immediately stands out in the figure is the fact that the perfor-

mance of the optimal policies improves as the number of components nc increases. This indicates

that the financial losses of a company that does not make opportunistic replacements increase with

the number of components in the asset.

4. The roll-outs were truncated at a point in which the value of the rewards (in the case of the current application,

dollars) has already decreased in more than 99% (that is, γ5000 < 0.01).

785

BARRETO, PINEAU, & PRECUP

THR policies perform better than the naive policy in general. Notice though that the results

shown in Figure 2 correspond to the performance of the best THR policy selected independently for

each value of nc. So, for example, while the average gain provided by the best THR policy when

nc = 5 is 13.36%, the average gain of the worst policy of this type is only 3.77%. This means that,

in order to achieve the level of performance shown in Figure 2 in a real application, one cannot

arbitrarily pick one specific THR policy. Rather, it is necessary to have a model of the problem

and be willing to systematically compare all possible threshold values. Even in this case, the re-

sulting policy will be suboptimal. For example, when nc = 5, making optimal decisions increases

the expected profit ϕ of the best THR policy in 27.8%, on average (see Figure 2). Considering the

amounts of money often involved in maintenance activities, such a difference can represent signifi-

cant monetary gains. This is a good illustration of the impact that dynamic programming may have

in practice.

Unfortunately, dynamic programming does not scale well with the number of components in

the multicomponent-replacement task. As mentioned above, in the experiments described here the

optimal policy could not be computed for instances of the problem in which nc > 5. Since in

standard dynamic programming algorithms there is no easy way to control the amount of memory

used, one is left with very few alternatives. In the case of the multicomponent-replacement task, one

possibility is to eliminate states si > 0 and apply dynamic programing to the reduced MDP. Such a

strategy reduces the state space considerably, which makes it possible to solve MDPs one order of

magnitude bigger (see Figure 2). Although the technique works well with the version of the problem

considered by Arruda and Fragoso (2011), it may fail on the version of the problem considered here,

in which the optimal policy may carry out opportunistic replacements in states without expired

components. This is illustrated by the PI-RED curve in Figure 2, which clearly shows that the

optimal policies of the reduced MDPs do not perform optimally in the original models.

PISF represents an alternative between the two extremes of computing an optimal policy and

resorting to simple heuristics such as the threshold policies. In contrast with conventional dynamic

programming algorithms, PISF provides a practical mechanism to control the trade-off between the

computational resources used and the quality of the resulting decision policy (the order m of the

stochastic factorization, here indirectly defined by the neighborhood radius σ). This point is better

illustrated when Figure 2 is analyzed in conjunction with Figure 3, which shows the size of the

models generated by each algorithm and the associated time needed to solve them.

The dimension of the matrices processed by the algorithms during the value function computa-

tion is defined by the number of states in the corresponding Markov process. Thus, this number is a

good measure of the algorithms’ time and space complexities. In the case of policy iteration, what

defines the size of the Markov processes is the number of states in the MDP; for PISF, such a num-

ber is m, the order of the stochastic factorization. The size of the Markov processes generated by

each method is shown in Figure 3a. The figure makes it clear how the amount of memory required

by the methods restricts their application. For example, if PI-RED was not run in the MDPs with

nc = 7 components, it is because the resulting Markov processes would be bigger than the largest

model shown.

As expected, the size of the Markov processes generated by PISF decreases with σ . Take the

MDPs with nc = 5, for instance. In this case the average reduction on the original models provided

by PISF was 60% when σ = 200, 88% when σ = 400, and 95% when σ = 600. When analyzing

these numbers, one should keep in mind that the computational cost of evaluating a decision policy

is cubic in the size of the Markov process. Thus, if the value functions are computed exactly, a

786

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

2 3 4 5 6 7

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

8
e
+

0
5

1
e
+

0
6

Number of components (nc)

S
iz

e
PI
PI−RED
PISF−200
PISF−400
PISF−600

(a) Size of the Markov processes

2 3 4 5 6 7

0
5

1
0

1
5

Number of components (nc)

H
o
u
rs

PI
PI−RED
PISF−200
PISF−400
PISF−600

(b) Run time (PISF’s values include the time to com-

pute the MDP factorization through Algorithm 3)

Figure 3: Size of the models generated by the algorithms and the associated time needed to compute

a solution. Error bars represent one standard error over 100 runs.

reduction of 88% in the model’s size translates to a decrease of 99,82% on the number of arithmetic

operations performed at each value-function computation.

Of course, in a real application the value function is seldom computed exactly. Besides, in

order to use PISF one has to compute the factorization of the MDP. Even considering these factors,

replacing PI with PISF can result in significant time savings. This is illustrated in Figure 3b, which

shows the actual run times of the algorithms. For a concrete example, take again the MDPs with

nc = 5 components. In this case, adopting PISF-600 instead of PI results in a 97% reduction of

computing time—which is equivalent to saying that the former algorithm is 37 times faster than

the latter. To put this number in perspective, if it were possible to run PI in the MDPs with nc = 7

components, finding a decision policy would take over 8 days. PISF-600 was able to compute an

approximation in less than 5 hours.

But the reduction on the computational cost and memory usage provided by PISF are meaning-

less if the resulting decision policies perform poorly. Comparing Figures 2 and 3, one can clearly

see that this is not the case in the multicomponent-replacement problem. For example, by replac-

ing PI with PISF-400, the average reduction on computing time is over 90% for all values of nc.

In contrast, the expected decrease on the profit ϕ is below 6.2%. If one adopts PISF-600 instead

of PISF-400, the reduction on the computational cost is at least 94%, for all values of nc, while

the associated losses are below 9.5%. This illustrates how PISF’s performance degrades grace-

fully with the quality of the MDP’s factorization, as indicated by the theoretical results presented in

Section 3.3.

There is however a clear decrease on the expected gain provided by PISF when nc increases from

6 to 7, as shown in Figure 2. One possible explanation for this is the fact that in the multicomponent-

replacement task increasing the number of components in the asset increases not only the size of

the state space S, but also the number of actions in A. This means that both the dimension and

787

BARRETO, PINEAU, & PRECUP

the number of matrices Pa increase exponentially with nc, making it harder to “summarize” all

the information in a single matrix K. On top of that, and perhaps more important, by keeping the

neighborhood radius σ fixed, the relative size of the models generated by PISF actually decreases.

For example, for PISF-400, the average ratio m/|S| is equal to 0.23 when nc = 3, 0.12 when nc = 5,

and only 0.06 when nc = 7. Thus, in order to keep the relative size of m fixed, σ must increase with

nc. In any case, even in the MDPs with nc = 7 components PISF clearly outperforms the best THR

policy, which is the only feasible alternative among the methods considered in this section. The next

sections investigate other approximate solutions for the multicomponent-replacement problem.

5.3.2 UPPER CONFIDENCE BOUNDS FOR TREES (UCT)

It is only possible to compute an optimal policy for the multicomponent-replacement problem if

the number of components in the asset is below a certain threshold defined by the computational

resources available. Above this threshold, the standard solution adopted by industry is to resort to

simple heuristics. The previous section presented PISF as an alternative solution that allows for

some control on the trade-off between the computational resources used and the quality of the re-

sulting policy. It is only natural to ask whether other approximate methods would also be applicable

in this case.

Two popular approaches for approximately solving an MDP are value-function approximation

and state aggregation. These techniques are closely related to the stochastic-factorization trick, and

will be discussed in Section 6. This section will focus on a set of methods collectively known as

Monte-Carlo tree search (MCTS). MCTS methods are capable of computing approximate solutions

for very large MDPs by combining tree search and random sampling (Browne et al., 2012). These

methods have been receiving a lot of attention recently due to their enormous success in several

applications, most notably in the game of Go (Bouzy & Helmstetter, 2003). MCTS algorithms use

Monte Carlo roll-outs to estimate the return associated with the actions available at the current state.

In order to do so, they build a tree, rooted at the current state, whose structure reflects the transitions

performed during the roll-outs.

The main feature that distinguishes the different MCTS algorithms is the strategy used to select

actions during the roll-outs. The most popular MCTS algorithm is Kocsis and Szepesvári’s (2006)

upper confidence bounds for trees (UCT). In UCT the action selection process is interpreted as

a multi-armed bandit problem in which each arm corresponds to an action (Auer et al., 2002).

Intuitively, UCT works by adding an “exploration bonus” to the values of actions that have been

tried less often. One of the main parameters of the algorithm is the exploration constant Cp used to

weigh the bonus against the value of actions (Kocsis & Szepesvári, 2006).

UCT has nice theoretical properties: given some ε > 0, it is guaranteed to return an ε-optimal

action if the depth of the tree and the number of roll-outs are large enough (Kocsis & Szepesvári,

2006). Therefore, given enough computation, UCT will always be able to perform at the same level

as PISF (and eventually better, if PISF’s policy is not optimal). An interesting question in this case

is how much computation is needed in practice for that to happen.

In order to answer this question, an experiment was carried out in which UCT and PISF were

compared in the multicomponent-replacement problem. The algorithms were evaluated on the 100

MDPs with nc = 5 components described in Section 5.2. As before, the performance of the resulting

policies was contrasted with that of the naive policy πN . The comparisons were based on a single

roll-out starting from a state selected uniformly at random and independently for each MDP. More

788

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

Seconds per step (tmax)

ϕ
(v

π
,
v

π
N
)

1 3 5 7 9 11 13 15

UCT

PISF−600

Figure 4: Expected performance on the multicomponent-replacement problem with respect to the

naive decision policy. Error bars and shadow represent three standard errors over 100 runs.

specifically, the set of test states Ŝ appearing in (23) was composed of a single state si, and, as

before, the corresponding values vπ
i and v

πN

i were approximated through a Monte Carlo roll-out of

length 5,000.5

As described above, before each action selection UCT builds a tree based on Monte-Carlo roll-

outs. As the number of roll-outs grows, the quality of the value function approximation increases,

but so does the computational cost of the algorithm. Thus, one way of evaluating UCT is to impose a

time limit tmax on each iteration of the algorithm and check the performance of the resulting policy

as a function of tmax. Note that, given a fixed time budget tmax, there is a trade-off between the

number of roll-outs carried out and their length, and finding the right compromise between these

two corresponds to finding the right balance between the bias and the variance of the value function

approximation (Hastie et al., 2002). Here this issue was resolved by changing the maximum depth

of the tree, hmax, in the set {5,50,500,5000}.6 Also, UCT’s exploration parameter Cp was varied

in {100,101,102,103}. Therefore, for each MDP and each value of tmax, UCT was run 16 times—

corresponding to all possible combinations of values for hmax andCp—, and then the best result was

selected and compared to that of the naive policy through (23). Figure 4 shows the average value of

ϕ(vπ ,vπN) as a function of tmax. As a reference for comparison, the average result of PISF-600 on

the same MDPs is also shown.

As shown in Figure 4, UCT performs worse than the naive policy πN for tmax≤ 15. Assuming the

logarithmic trend shown in the figure will persist for tmax > 15, UCT would need over 46 seconds

per step to reach the level of performance of πN . In order to find solutions comparable to those

found by PISF-600, UCT would require around 115 seconds per step, or approximately 1.74 times

the time needed by the former algorithm to compute a decision policy for the entire state space.

5. The policies were evaluated from a single test state only because the nature of the UCT algorithm makes it compu-

tationally impractical to carry out many roll-outs of length 5,000. In any case, the small variance of (23) across the

MDPs indicates that this decision did not have a strong effect on the comparisons.

6. Since |(v∗max−v∗min)/v̄
∗|< 0.002 for all MDPs, where v̄∗ = 1/|S|∑

|S|
i=1 v

∗
i , the value of leaf nodes was set to zero.

789

BARRETO, PINEAU, & PRECUP

Note that, even though a time limit of tmax = 15 seconds per step may not seem like much at first,

the run time of UCT quickly escalates with the horizon of the problem. This becomes clear when

one observes that a trajectory of 5,000 steps with UCT using tmax = 15 takes more than 20 hours,

while computing the optimal decision policy for the same problem takes an average of 34 minutes.

It should be mentioned that the most basic version of UCT was used in the experiments of this

section. Nowadays there are several extensions available in the literature (see for example Chaslot

et al., 2008; Gelly et al., 2012; Keller & Eyerich, 2012). These strategies, when built on top of

UCT, tend to improve its performance. That said, the fact that UCT needs orders of magnitude

more computation than PISF to reach the same level of performance is not surprising, since the

former only uses the MDP as a generative model—that is, the algorithm only samples from the

conditional distributions represented by the transition matrices—while the latter fully exploits all

the information available in the model.

5.3.3 FACTORED MDPS

The previous section illustrated how exploiting all the information available about a problem can

be important for computational efficiency. This section shifts the focus of the discussion to another

issue, namely that of the structure of the model. In particular, it describes a specific structured model

known as factored MDPs.

In a factored MDP the transition dynamics can be described by a dynamic Bayesian network

(DBN, Dean & Kanazawa, 1989; Boutilier et al., 1995). Let s(t) and s(t+1) denote, respectively, the

state at the current time and at the next step. The transition graph of a DBN is a two-layer directed

acyclic graph whose nodes are the variables in the set S = {s(t)1 ,s
(t)

2 , ...,s
(t)
n ,s

(t+1)

1 ,s(t+1)

2 , ...,s(t+1)
n }. An

arc from s
(t)

j to s
(t+1)

i indicates that the value of the ith variable at time t+1 depends on the value of

the jth variable at time t. Let ρ(s(t+1)

i) denote the set of all nodes with an arc to s
(t+1)

i . The transition

model of a factored MDP is given by P(s(t+1) |s(t)) = ∏iP(s
(t+1)

i |ρ(s(t+1)

i)). What allows a compact

representation—and efficient solution—of a factored MDP is the assumption that the DBN is sparse,

that is, ρ(s(t+1)

i) is restricted to a small subset of S for all i. In addition, it is assumed that the reward

is given by a summation of functions that depend on the status of only a few variables. When these

assumptions hold, that is, when the MDP is truly factored, it is possible to represent the model’s dy-

namics very compactly using structures like decision trees or algebraic decision diagrams (Boutilier

et al., 1995; Hoey et al., 1999). Therefore, the number of states in the MDP remains the same; the

computational gain comes from the fact that the state space is never explicitly enumerated.

At first, one might expect that the structure of a factored MDP would induce a value function

with similar structure. If this were indeed the case, it would be possible to compute an optimal policy

for a factored MDP much faster than dynamic programming algorithms that ignore the models’

special structure. Unfortunately, Koller and Parr (1999) have shown that, in general, the value

function of a factored MDP is not factored. Therefore, practical algorithms developed for factored

MDPs only compute an approximate solution (see Guestrin et al., 2003, and references therein).

The factored MDPmodel captures the dynamics of many real-world decision-making tasks (Pow-

ell, 2007). In fact, it is safe to say that some MDPs solved using this technique are among the largest

solved to date (Guestrin et al., 2003, see also Section 5.4). However, there are decision problems

of great interest whose dynamics do not satisfy the assumptions of such models. The version of the

multicomponent-maintenance problem addressed here is a good example: since the probability of

a given component failing depends on the condition of all other components, the resulting DBN is

790

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

not sparse (cf. equation (21)). But what happens if one ignores the fact that an MDP is not truly

factored and applies the algorithms developed under such an assumption anyway?

To help answering this question, an experiment was performed in the following way. Let M

be one of the MDPs with nc = 5 components described in Section 5.2. For each component c j
and each value of z ∈ {1,2,3,4}, a set ρz(c j) ⊂ {1,2,3,4,5}−{ j} containing z distinct elements

was generated uniformly at random. Then, for each value of z, the transition matrices of M were

regenerated with (21) replaced by

P(sk j = 0|si j > 1,ah j = 0) = f −
(f − fmin)(si j−1)

l j−1
+ f̂

∑u/∈ρz(c j)(lu− siu)+∑u∈ρz(c j)(lu− lu/2)

∑u6= j lu
,

(24)

giving rise to the MDPMz. Using (24) corresponds to enforcing the sparsity of the DBN describing

the components’ failure probabilities. Note that, instead of completely ignoring the influence of the

components cu with u ∈ ρz(c j), their remaining lifetimes was replaced by lu/2, the middle point

of the range of possible values. This is a way of making the factored model closer to the original

one without incurring in a denser DBN. After the transition matrices of Mz were generated, policy

iteration was used to compute an optimal policy, π∗z (note that this computation is exact). Finally,

the performance of π∗z in the original MDP M was compared to that of π∗, an optimal policy of M

(thus, in this experiment the reference value function v̂ appearing in (23) is v∗, and Ŝ = S). This

entire process was repeated for each one of the 100 MDPs with nc = 5 components.

Figure 5a compares the performance of π∗z , the policies returned by policy iteration on the

artificially-factored MDPs (PI-FAC), with that of PISF-200, PISF-400, and PISF-600. Observe how

the performance of PI-FAC degenerates as the level of sparsity z of the artificially-factored MDPs

increases. This is expected, since the derived models deviate from the original ones as z approaches

nc. Since the computational cost of the algorithms developed for factored MDPs decreases with

z, one has to trade performance for speed when choosing which interactions between variables to

ignore. But the important point to note here is the fact that PI-FAC is outperformed by all instances

of PISF when z > 1. Since π∗z is an optimal policy of the factored MDPs, its performance is the

best one can reasonably hope for when using algorithms that approximate it. In other words, a

factored MDP algorithm using (24) will outperform PISF on the multicomponent-replacement task

only if the approximation it computes “luckily” induces a policy that performs better than π∗z in the

original, non-factored, MDP.

This experiment shows that, by “pretending” that a non-factored MDP is factored, one may

severely restrict the quality of the resulting policy, regardless of the specific algorithm chosen to

solve the factored MDP. There is no reason to believe that this phenomenon is restricted to the

multicomponent-replacement domain. Thus, there is a niche of problems that are too big to be

solved by standard dynamic programming and cannot be reliably solved by algorithms developed

for factored MDPs. For these problems, it might be a good alternative to resort to algorithms that

exploit other types of structure, such as PISF.

This is not to say that the stochastic-factorization trick should be seen as an alternative to fac-

tored MDPs. In principle, the properties of an MDP being “factored” or “factorizable” are orthog-

onal to each other, and therefore both structures can potentially be exploited in conjunction. To

illustrate this point, an experiment was carried out in which PISF and the THR policies were run in

the factored MDPsMz. Note the difference with respect to the previous experiment: while there the

models Mz were considered as approximations of the MDPsM, here it is assumed that they are the

true models. Thus, both PISF and the THR policies were compared to the optimal policies π∗z . The

791

BARRETO, PINEAU, & PRECUP

−
0
.0

5
−

0
.0

4
−

0
.0

3
−

0
.0

2
−

0
.0

1

Level of sparsity (z)

ϕ
(v

π
,
v
*)

1 2 3 4

PI−FAC

PISF−200

PISF−400

PISF−600

(a) Artificially-factored MDPs

−
0

.1
4

−
0
.1

0
−

0
.0

6
−

0
.0

2

Level of sparsity (z)

ϕ
(v

π
,
v

z
*)

1 2 3 4

PISF 200
PISF 400
PISF 600

BEST THR

(b) Truly-factored MDPs

Figure 5: Expected loss on the multicomponent-replacement problem with respect to the optimal

decision policy. Error bars and shadows represent one standard error over 100 runs.

idea is to investigate how the structure of a transition matrix induced by a sparse DBN affects PISF’s

performance. Figure 5b shows the performance of PISF and the best THR policy on the factored

MDPs Mz as a function of the level of sparsity z (cf. equation (24)). Although the performance of

PISF degenerates slightly when z increases, the relative performance with respect to the best THR

policy generally improves as the model gets more sparse.

This experiment illustrates how the stochastic-factorization trick can potentially be useful in

the computation of a policy for a factored MDP, which may lead to the solution of very large

sequential decision problems. Of course, in order to simultaneously exploit the “factored” and

“factorizable” structures of a model, one has to apply the trick without explicitly manipulating the

matrices involved. This constitutes an interesting extension of the current research, and is left as a

suggestion for future work.

5.4 Discussion

This section described the application of PISF to a large problem of real interest. It was shown that,

by using Algorithm 3 to compute D andW, it is possible to handle MDPs whose exponentially large

state and action spaces preclude the use of standard dynamic programming. The largest instance

of the problem solved by PISF had 39,916,800 states and 128 actions, or 359 times the size of the

largest MDP solved by policy iteration. Note that in the maintenance problem studied here it is

trivial to define heuristics that perform reasonably well, but in other applications this may not be

true. For example, Dekker et al. (1996) point out that the multicomponent-replacement problem

has a structure similar to that of other important decision-making tasks arising in production and

inventory control. In such scenarios PISF can be an even more valuable tool.

792

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

It should be mentioned that the experiments of this section considered the classical scenario of

dynamic programming, in which one seeks a decision policy defined over the entire state space S.

Other formulations of the decision problem are possible. For example, in the field of automated

planning it is often assumed that the decision maker must perform well from a small number of

initial states only, and that at any state si ∈ S only a small set of actions A(s)⊂A is available (Ghallab

et al., 2004; Geffner & Bonet, 2013). On top of that, it is sometimes assumed that the dynamics

of the MDP are truly factored (Sanner, 2010). When all these assumptions hold, it is possible for

the decision maker to perform well visiting only a small fraction of the state space, and, since the

MDP’s dynamics are factored, sometimes not even this small subset must be explicitly enumerated.

Therefore, algorithms developed for this scenario can be applied to very large MDPs (Keller &

Eyerich, 2012; Kolobov et al., 2012).

PISF is not a direct competitor of planning algorithms developed for the scenario above because

it was not designed with such assumptions in mind. Since PISF is an offline method that computes

a policy for the entire state space, it will never scale to MDPs as large as those handled by on-line

methods that compute a policy on demand, such as UCT. Similarly, an MDP with truly factored

dynamics should favor methods that exploit this structure. On the other hand, as the experiments of

this section show, when the assumptions that underlie other planning algorithms do not hold, they

can be largely outperformed by PISF.

In the end, what determines the success of a given algorithm is the suitability of its underlying

assumptions to the scenario of interest. PISF has been developed for MDPs that are factorizable or

nearly so—a structural regularity not exploited by any other dynamic programming algorithm. How

often this structure arises in problems of interest and how well it can be exploited together with other

assumptions, such as those usually considered in automated planning, are interesting questions to

be addressed in future research.

6. Related Work

This section reviews some of the approaches that have been proposed to circumvent dynamic pro-

gramming’s curse of dimensionality, and discusses how these methods relate to the stochastic-

factorization trick.

6.1 Value-Function Approximation

Perhaps the most straightforward approach to deal with a large MDP is to use a compact parametric

representation of its value function. This is not a new idea; in fact, Bellman and Dreyfus explored

the use of polynomials to approximate the value function in as early as 1959. Since then the theory

has evolved a lot, and nowadays it is possible to find books that cover the subject in detail (Bertsekas

& Tsitsiklis, 1996; Powell, 2007).

The main issue regarding the use of a parametric representation of the value function is the dam-

aging effect it may have on dynamic programming algorithms. In particular, it is well known that the

use of general approximators may cause instabilities or even the divergence of the algorithms (Boyan

& Moore, 1995; Baird, 1995; Tsitsiklis & Roy, 1996, 1997). The most common strategy to deal

with this problem is to restrict the structure of the approximator to compact representations with a

linear dependence on the parameters (Tsitsiklis & Roy, 1997; Tadić, 2001; Schoknecht & Merke,

2003). Indeed, the use of linear approximators has led to a number of successful algorithms with

793

BARRETO, PINEAU, & PRECUP

good convergence properties (Tsitsiklis & Roy, 1996; Bradtke & Barto, 1996; Perkins & Precup,

2003; Lagoudakis & Parr, 2003; Sutton et al., 2008).

There is some evidence in the literature that the instability caused by some function approxima-

tors is related to their tendency to exaggerate the difference between two successive estimates of the

value function (Thrun & Schwartz, 1993; Gordon, 1995; Ormoneit & Sen, 2002). For this reason,

many researches have advocated the use of “conservative” function approximators that compute the

value of a state as a weighted average of other states’ values (Gordon, 1995; Tsitsiklis & Roy, 1996;

Rust, 1997; Munos & Moore, 1999; Ormoneit & Sen, 2002; Szepesvári & Smart, 2004). Examples

of such approximators include kernel averaging, linear interpolation, k-nearest neighbor, and some

types of splines. In general, the combination of these approximators with dynamic programming

leads to convergent algorithms (Gordon, 1995; Tsitsiklis & Roy, 1996).

Conservative function approximators are similar in nature to the stochastic-factorization trick.

To see why this is so, consider the class of function approximators which Gordon (1995) called

averagers. An averager approximates the value of a state by a convex combination of other states’

values and possibly some predetermined constants. Given an MDP M ≡ (S,A,P,R,γ), let S̄ be a

subset of the state space S, with |S̄| = m, and let v̄ ∈ R
m represent the values of the states in this

subset. An averager would compute an approximation of the value function as

ṽi = di0ci+∑
m

j=1
di j v̄ j, (25)

with ci ∈ R, di j ∈ R
+ and ∑m

j=0 di j = 1. Since in the approximation scheme above the values of all

states can be determined from the values of the states in S̄, only the latter must be updated during

dynamic programming’s iterative process.

For the sake of simplicity, suppose that there is an averager for which dio = 0 for all i ∈
{1,2, ..., |S|}. In this case, approximate dynamic programming using (25) corresponds to its exact

version in a reduced MDP M̄≡ (S̄,A, P̄, R̄,γ)where P̄a(s j|si) =∑
|S|
k=1 p

a
ikdk j and r̄

a(si) = ra(si) (Gor-
don, 1995, Thm. 4.1). This model represents a particular case of the stochastic-factorization trick

in which there is a single matrix D ∈ R
|S|×m and one matrix Ka ∈ R

m×|S| for each a ∈ A (Barreto

et al., 2011). The dynamics of the reduced model are given by P̄a = KaD, where Ka is the matrix

composed of the rows of the original transition matrix Pa ∈R|S|×|S| associated with the states si ∈ S̄.
By interpreting conservative approximators as a particular case of the stochastic-factorization trick,

schemes similar to (25) can be thought of as approximating the MDP itself. Thus, both the definition

of the approximator’s architecture and the configuration of its parameters are converted into a well

defined optimization problem, in which the objective is to find matrices D and Wa that minimize

Φ(Ma,DWa) for all a ∈ A.

6.2 Model Reduction

Another way of handling large-scale decision-making problems is to find a compact representation

of the associated MDP. In this case, the simplest idea is to aggregate states that share a common

characteristic. There are many proposals of this type in the literature, and what distinguishes them

is the criterion used to group states. For a detailed account of model approximation techniques, the

reader is referred to the review provided by Li et al. (2006).

One of the earliest works on model approximation was that of Bertsekas and Castañon (1989),

who propose aggregating and disaggregating states dynamically, during the value function compu-

tation, according to the residual left after a few applications of the Bellman operator. An alternative

794

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

approach is to group states based on their associated transition probabilities and rewards. Following

this line, Givan et al. (2003) suggest the notion of stochastic bisimulation as a criterion to aggregate

states. Roughly speaking, two states are bisimilar if they have the same expected reward associated

with each action, and the same transition probabilities to all groups of bisimilar states. This notion

is closely related to Ravindran’s (2004) concept of homomorphism between MDPs. Both bisimula-

tion and homomorphism are principled criteria for state aggregation, and as such they guarantee the

optimality of the decision policy “lifted” from the compact model. However, they are too restrictive

to be applied in many real situations. Realizing that, several authors have proposed relaxed versions

of these criteria (Dean et al., 1997; Ferns et al., 2006; Ravindran, 2004; Sorg & Singh, 2009).

Regardless of the specific criterion used to group states, state aggregation can be very naturally

represented as a stochastic factorization. In this case, the rows of matrix W represent the dynamics

associated with each group and matrix D has one nonzero element per row indicating the group to

which each state-action pair belongs (note the flexibility of aggregating state-action pairs instead of

states only). In this context, applying the stochastic-factorization trick corresponds to computing

the probabilities of transitions between groups. A slightly more general approach for model reduc-

tion is to assume a soft aggregation of states, in which each state belongs to a group with given

probability (Singh et al., 1995; Sorg & Singh, 2009). Soft aggregation is also naturally represented

as a stochastic factorization by letting D have more than one nonzero element per row. In fact, it can

be shown that Sorg and Singh’s (2009) concept of soft homomorphism is equivalent to the particular

case of the stochastic-factorization trick discussed in Section 6.1 (Barreto et al., 2011).

As one can see, the stochastic-factorization trick can serve as a useful formalism for thinking

about state aggregation. For example, a hard aggregation of states corresponds to a matrix D in

which each row contains a single ‘1’ and all rows associated with a given state have the nonzero el-

ement in the same column. In a soft aggregation of state-action pairs both restrictions are removed.

Also, a single application of the trick leads to a (soft) homomorphism, while successive applications

lead to an aggregation/disaggregation scheme similar to Bertsekas and Castañon’s (1989) approach.

Perhaps more important, as with conservative approximators, the stochastic factorization turns the

aggregation problem into a well defined optimization problem. This can provide a unifying frame-

work for the analysis, comparison, and solution of the different versions of the aggregation problem.

7. Conclusion

The approach presented in this paper builds on a simple idea, called here the stochastic-factorization

trick: given a stochastic factorization of a transition probability matrix, one can swap the factors of

the multiplication to obtain another transition matrix, possibly much smaller than the original. This

property can be exploited to reduce the number of states of a Markov process. Intuitively, the

stochastic-factorization trick corresponds to creating a small number of representative states (or

state-action pairs) and redirecting the transitions of the original model according to some similarity

measure. Formally, this process can be posed as a well defined optimization problem.

The stochastic-factorization trick can be extended to an MDP in at least two ways: one can

factor each Markov process that comes up in the search for a decision policy or factor the Markov

processes associated with the actions of the problem before the search begins. If a single matrix K

and a single vector r̄ are used in the latter, the PISF algorithm can be used to compute a decision

policy for the problem at hand. PISF reduces the computational complexity of standard policy

iteration from a cubic dependence on |S| to a function that grows only linearly with the size of

795

BARRETO, PINEAU, & PRECUP

the MDP. PISF also enjoys nice theoretical guarantees, since it always converges to a decision

policy whose performance improves with the quality of the MDP’s factorization. As in general the

factorization improves with its order, m, one can use this parameter to control the trade-off between

the use of computational resources and the performance of the resulting policy.

In order to apply PISF to a decision-making problem, one must find an approximate factorization

of the corresponding MDP, M ≈ DW. One way to compute such a factorization is to see the rows

of W as prototypical vectors that represent the dynamics of M and interpret the elements of D

as a similarity measure between these vectors and the rows of M. This way, D and W can be

computed based on a dissimilarity measure defined in the problem’s state-action space S×A. Such

a technique allows the approximation M≈DW to be computed in time linear in |S|. Therefore, the
entire process of computing a decision policy with PISF will depend only linearly on the number of

states of the MDP. Exploiting this fact, PISF was able to find approximate solutions for instances

of an important decision task with more than 5 billion state-action pairs. The solutions found were

considerably better than those found by a heuristic commonly adopted in practice.

Evidently, this paper does not exhaust the discussion on the stochastic-factorization trick and

PISF. One subject that calls for further investigation is the development of alternative methods to

efficiently compute matrices D and W (or the identification of scenarios where a factorization is

available or easy to compute). Another promising research topic is the application of the stochastic-

factorization trick to factored MDPs or other types of structured models. Finally, PISF may also

be useful in the context of model-based reinforcement learning. In this case, instead of collecting

sample transitions in order to estimate all parameters of an MDPM, one can leverage the use of data

by focusing on the prototypical state-action pairs represented in W. After W has been determined,

the elements of D can be computed based on some measure of similarity defined in S×A, as done

in the experiment presented in this paper. These topics constitute interesting directions for future

research.

Appendix A. Modified Policy Iteration and Modified PISF

Throughout the paper, it is assumed that the value function vπ is computed exactly at each step

of policy iteration. This facilitates the analysis of the theoretical properties and computational

complexity of the algorithms. However, most of the ideas discussed extend naturally to the case in

which vπ is only approximated.

A.1 Modified Policy Iteration

In Puterman and Shin’s (1978) modified policy iteration, vπ is estimated through t applications of

T π . Thus, in this case each value function computation involves O(|S|2t) operations. Decreasing t

reduces the computational cost of evaluating a decision policy, but in general it also increases the

number of policies that must be evaluated until convergence (Puterman, 1994). Note that when

t = 1 one recovers the value iteration algorithm. Similarly, for t ≥ |S| one can simply compute vπ

exactly by solving the associated linear system, which comes down to conventional policy iteration.

Therefore, both value iteration and policy iteration can be seen as special cases of modified policy

iteration.

The amount of memory used by modified policy iteration depends on the specific implementa-

tion adopted. In general, the memory usage is inversely proportional to the algorithm’s effective run

time. One extreme implementation strategy is to only store one vector corresponding to the current

796

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

estimate of the value function, ṽπ . Note though that in this case each multiplication Pπ ṽπ requires

loading the rows of Pπ from secondary memory (or computing them on demand), thus significantly

increasing the algorithm’s run time. One can speed up the algorithm by keeping the entire MDP

loaded in memory at all times, therefore increasing the use of memory from O(|S|) to O(|S|2|A|).
An intermediate solution between these two extremes is to load (or compute) Pπ before each value

function computation, which leads to O(|S|2) memory usage.

A.2 Modified PISF

The definition of modified PISF is straightforward: the only change needed is to replace the exact

computation of v̄π in line 6 of Algorithm 2 with t applications of T̄ π v̄= r̄+γP̄π v̄. In this case, using

PISF instead of modified policy iteration reduces the computational cost of each value function

computation from O(|S|2t) to O(m2t). The reduction on memory usage depends on the strategy

used to represent the models, as discussed in Appendix A.1.

It should be clear that using modified PISF with t = 1 corresponds to combining the stochastic-

factorization trick with value iteration. Note though that, in terms of computational cost, this may

not be the best alternative. As discussed in Appendix A.1, decreasing t tends to increase the number

of iterations performed by PISF. Each iteration of PISF involves building matrix Dπ and computing

the multiplication KDπ (lines 4 and 5 of Algorithm 2, respectively), which can be seen as “con-

structing” the operator T̄ π for the current π . Since the construction of T̄ π takes O(|S|2m) operations
and its application is only O(m2), one may be wasting computational effort by only applying this

operator once.

A.3 Implementation Details

The experiments of Section 5 were performed using modified policy iteration and modified PISF

(Appendices A.1 and A.2, respectively). Instead of fixing a value for t, the iterative value function

computation was interrupted according to the stop criterion described in Puterman’s (1994) Propo-

sition 6.6.5, with ε = 10−6. Policy iteration and PISF were run until two successive policies were

identical, as shown in Algorithms 1 and 2. The matrices Pπ of modified policy iteration were loaded

before each value function computation, since this represents a compromise between memory usage

and computational cost (see Appendix A.1). In the case of PISF only matrix K was kept in memory

at all times; the matrices Dπ were computed on demand at each iteration of the algorithm. All the

statements in Section 5 regarding the algorithms’ computational requirements refer to this specific

implementation.

Acknowledgements

Part of this work was done while André Barreto was a postdoctoral fellow in the School of Computer

Science at McGill University. The authors would like to thank Amir-massoud Farahmand for valid

discussions, and also the anonymous reviewers for their suggestions to improve the paper. The

experiments were run using computational resources made available by Compute Canada and Calcul

Québec. Funding for this research was provided by Coordenação de Aperfeiçoamento de Pessoal

de Nı́vel Superior (CAPES), the National Institutes of Health (grant R21 DA019800), the NSERC

Discovery Grant program, and Projets de Recherche en Équipe (FQRNT).

797

BARRETO, PINEAU, & PRECUP

References

Arruda, E., & Fragoso, M. D. (2011). Time aggregated Markov decision processes via standard

dynamic programming. Operations Research Letters, 39(3), 2576–2580.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

problem. Machine Learning, 47(2-3), 235–256.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approximation. In

Proceedings of the International Conference on Machine Learning (ICML), pp. 30–37.

Barlow, R. E., & Proschan, F. (1965). Mathematical Theory of Reliability. Wiley.

Barreto, A. M. S. (2014). Tree-based on-line reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence.

Barreto, A.M. S., & Fragoso, M. D. (2011). Computing the stationary distribution of a finite Markov

chain through stochastic factorization. SIAM Journal on Matrix Analysis and Applications,

32, 1513–1523.

Barreto, A. M. S., Precup, D., & Pineau, J. (2011). Reinforcement learning using kernel-based

stochastic factorization. In Advances in Neural Information Processing Systems (NIPS), pp.

720–728.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press.

Bellman, R. E., &Dreyfus, S. (1959). Functional approximations and dynamic programming. Math-

ematical Tables and Other Aids to Computation, 13(68), 247–251.

Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms

and applications for approximate nonnegative matrix factorization. Computational Statistics

and Data Analysis, 52(1), 155–173.

Bertsekas, D. P. (1987). Dynamic programming: deterministic and stochastic models. Prentice-Hall.

Bertsekas, D. P. (1999). Nonlinear Programming (2nd edition). Athena Scientific.

Bertsekas, D. P., & Castañon, D. A. (1989). Adaptive aggregation methods for infinite horizon

dynamic programming. IEEE Transactions on Automatic Control, 34(6), 589–598.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Bittorf, V., Recht, B., Re, C., & Tropp, J. A. (2012). Factoring nonnegative matrices with linear

programs. In Advances in Neural Information Processing Systems (NIPS), pp. 1214–1222.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy construction.

In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), pp.

1104–1113.

Boutsidis, C., Zouzias, A., & Drineas, P. (2010). Random projections for k-means clustering. In

Advances in Neural Information Processing Systems (NIPS), pp. 298–306.

Bouzy, B., & Helmstetter, B. (2003). Monte-Carlo Go developments. In Advances in Computer

Games, pp. 159–174.

798

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning: Safely approxi-

mating the value function. In Advances in Neural Information Processing Systems (NIPS),

pp. 369–376.

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algorithms for temporal difference

learning. Machine Learning, 22(1/2/3), 33–57.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P. I., Rohlfshagen, P., Tavener, S.,

Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of Monte Carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in Games, 4, 1–43.

Chang, C.-I., Wu, C.-C., Liu,W., &Ouyang, Y. C. (2006). A new growing method for simplex-based

endmember extraction algorithm. IEEE Transactions on Geoscience and Remote Sensing,

44(10), 2804–2819.

Chaslot, G. M. J.-B., Winands, M. H. M., van den Herik, H. J., Uiterwijk, J. W. H. M., & Bouzy, B.

(2008). Progressive strategies for Monte-Carlo tree search. New Mathematics and Natural

Computation, 4, 343–357.

Cho, D. I., & Parlar, M. (1991). A survey of maintenance models for multi-unit systems. European

Journal of Operational Research, 51(1), 1–23.

Cohen, J. E., & Rothblum, U. G. (1991). Nonnegative ranks, decompositions and factorizations of

nonnegative matrices. Linear Algebra and its Applications, 190, 149–168.

Cutler, A. (1993). A branch and bound algorithm for constrained least squares. Communications in

Statistics—Simulation and Computation, 22(2), 395–321.

Cutler, A., & Breiman, L. (1994). Archetypal analysis. Technometrics, 36(4), 338–347.

Dean, T., Givan, R., & Leach, S. (1997). Model reduction techniques for computing approximately

optimal solutions for Markov decision processes. In Proceedings of the Conference on Un-

certainty in Artificial Intelligence (UAI), pp. 124–131.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Compu-

tational Intelligence, 5(2), 142–150.

Dekker, R., Wildeman, R. E., & van Egmond, R. (1996). Joint replacement in an operational plan-

ning phase. European Journal of Operational Research, 91(1), 74–88.

Dekker, R., Wildeman, R. E., & van der Duyn Schouten, F. A. (1997). A review of multi-component

maintenance models with economic dependence. Mathematical Methods of Operations Re-

search, 45, 411–435.

Denardo, E. V. (1967). Contraction mappings in the theory underlying dynamic programming.

SIAM Review, 9(2), 165–177.

Ding, C. H. Q., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix factorizations.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.

Esser, E., Mller, M., Osher, S., Sapiro, G., & Xin, J. (2012). A convex model for nonnegative matrix

factorization and dimensionality reduction on physical space. IEEE Transactions on Image

Processing, 21(7), 3239–3252.

Ferns, N., Castro, P. S., Precup, D., & Panangaden, P. (2006). Methods for computing state similarity

in Markov decision processes. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence (UAI), pp. 174–181.

799

BARRETO, PINEAU, & PRECUP

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in

logarithmic expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. ASA-

SIAM Series on Statistics and Applied Probability. SIAM.

Geffner, H., & Bonet, B. (2013). A Concise Introduction to Models and Methods for Automated

Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &

Claypool Publishers.

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., & Teytaud, O. (2012).

The grand challenge of computer Go: Monte Carlo tree search and extensions. Communica-

tions of the ACM, 55(3), 106–113.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory & Practice. Morgan

Kaufmann Publishers Inc.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in Markov

decision processes. Artificial Intelligence, 147(1-2), 163–223.

Golub, G. H., & Loan, C. F. V. (1996). Matrix Computations (3rd edition). The Johns Hopkins

University Press.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In Proceedings of

the International Conference on Machine Learning (ICML), pp. 261–268.

Grippo, L., & Sciandrone, M. (2000). On the convergence of the block nonlinear Gauss-Seidel

method under convex constraints. Operations Research Letters, 26, 127–136.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms for

factored MDPs. Journal of Artificial Intelligence Research, 19, 399–468.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley and Sons.

Hastie, T., Tibshirani, R., & Friedman, J. (2002). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer.

Haurie, A., & L’Ecuyer, P. (1982). A stochastic control approach to group preventive replacement

in a multicomponent system. IEEE Transactions on Automatic Control, 27, 387–393.

Ho, N.-D., & van Dooren, P. (2007). Non-negative matrix factorization with fixed row and column

sums. Linear Algebra and Its Applications, 429(5–6), 1020–1025.

Hoey, J., St-Aubin, R., Hu, A. J., & Boutilier, C. (1999). SPUDD: Stochastic planning using decision

diagrams. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),

pp. 279–288.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: an Introduction to Cluster

Analysis. John Wiley and Sons.

Keller, T., & Eyerich, P. (2012). PROST: Probabilistic planning based on UCT. In Proceedings of

the International Conference on Automated Planning and Scheduling.

Keshava, N. (2003). A Survey of Spectral Unmixing Algorithms. Lincoln Laboratory Journal,

14(1), 55–78.

800

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

Keshava, N., & Mustard, J. (2002). Spectral unmixing. Signal Processing Magazine, 19, 44–57.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the

European Conference on Machine Learning (ECML), pp. 282–293.

Koller, D., & Parr, R. (1999). Computing factored value functions for policies in structured MDPs.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp.

1332–1339.

Kolobov, A., Mausam, &Weld, D. S. (2012). LRTDP versus UCT for online probabilistic planning.

In Proceedings of the AAAI Conference on Artificial Intelligence.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning

Research, 4, 1107–1149.

Lee, D. D., & Seung, H. S. (1997). Unsupervised learning by convex and conic coding. In Advances

in Neural Information Processing Systems (NIPS), pp. 515–521.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factoriza-

tion. Nature, 401, 788–791.

Lee, D. D., & Seung, H. S. (2000). Algorithms for nonnegative matrix factorization. In Advances

in Neural Information Processing Systems (NIPS), pp. 556–562.

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for MDPs.

In Proceedings of the International Symposium on Artificial Intelligence and Mathematics,

pp. 531–539.

Lin, C.-J. (2007a). On the convergence of multiplicative update algorithms for nonnegative matrix

factorization. IEEE Transactions on Neural Networks, 18, 1589 – 1596.

Lin, C.-J. (2007b). Projected gradient methods for nonnegative matrix factorization. Neural Com-

putation, 19(10), 2756–2779.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solving Markov

decision problems. In Proceedings of the Conference on Uncertainty in Artificial Intelligence

(UAI), pp. 394–402.

Liu, T., Moore, A. W., Gray, A., & Yang, K. (2005). An investigation of practical approximate

nearest neighbor algorithms. In Advances in Neural Information Processing Systems (NIPS),

pp. 825–832.

Mahoney, M. W. (2011). Randomized algorithms for matrices and data. Foundations and Trends in

Machine Learning, 3(2), 123–224.

McCall, J. J. (1965). Maintenance policies for stochastically failing equipment: A survey. Manage-

ment Science, 11, 493–524.

Munos, R., & Moore, A. (1999). Barycentric interpolators for continuous space & time reinforce-

ment learning. In Advances in Neural Information Processing Systems (NIPS), pp. 1024–

1030.

Nascimento, J. M. P., & Dias, J. M. B. (2004). Vertex component analysis: A fast algorithm to unmix

hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 898–910.

Ormoneit, D., & Sen, S. (2002). Kernel-based reinforcement learning. Machine Learning, 49 (2–3),

161–178.

801

BARRETO, PINEAU, & PRECUP

Özekici, S. (1988). Optimal periodic replacement of multicomponent reliability systems. Opera-

tions Research, 36, 542–552.

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with

optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.

Perkins, T. J., & Precup, D. (2003). A convergent form of approximate policy iteration. In Advances

in Neural Information Processing Systems (NIPS), pp. 1595–1602.

Pierskalla, W. P., & Voelker, J. A. (1976). A survey of maintenance models: The control and surveil-

lance of deteriorating systems. Naval Research Logistics Quarterly, 23(3), 353–388.

Powell, W. B. (2007). Approximate Dynamic Programming—Solving the Curses of Dimensionality.

John Wiley & Sons, Inc.

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc.

Puterman, M. L., & Shin, M. (1978). Modified policy iteration algorithms for discounted Markov

decision problems. Management Science, 24(11), 1127–1137.

Ravindran, B. (2004). An Algebraic Approach to Abstraction in Reinforcement Learning. Ph.D.

thesis, University of Massachusetts, Amherst, MA.

Ravindran, B., & Barto, A. G. (2004). Approximate homomorphisms: A framework for non-exact

minimization in Markov decision processes. In Proceedings of the International Conference

on Knowledge Based Computer Systems.

Rust, J. (1997). Using randomization to break the curse of dimensionality. Econometrica, 65(3),

487–516.

Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language description.

Schoknecht, R., & Merke, A. (2003). Convergent combinations of reinforcement learning with lin-

ear function approximation. In Advances in Neural Information Processing Systems (NIPS),

pp. 1579–1586.

Schölkopf, B., & Smola, A. (2002). Learning with Kernels. MIT Press.

Sherif, Y. S., & Smith, M. L. (1981). Optimal maintenance models for systems subject to failure—a

review. Naval Research Logistics Quarterly, 28(1), 47–74.

Shindler, M., Wong, A., & Meyerson, A. W. (2011). Fast and accurate k-means for large datasets.

In Advances in Neural Information Processing Systems (NIPS), pp. 2375–2383.

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggrega-

tion. In Advances in Neural Information Processing Systems (NIPS), pp. 361–368.

Sorg, J., & Singh, S. (2009). Transfer via soft homomorphisms. In Autonomous Agents &Multiagent

Systems/Agent Theories, Architectures, and Languages, pp. 741–748.

Sun, T., Zhao, Q., & Luh, P. (2007). Incremental value iteration for time-aggregated Markov-

decision processes. IEEE Transactions on Automatic Control, 52, 2177–2182.

Sutton, R. S., Szepesvári, C., & Maei, H. R. (2008). A convergent O(n) algorithm for off-policy

temporal-difference learning with linear function approximation. In Advances in Neural In-

formation Processing Systems (NIPS), pp. 1609–1616.

802

POLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: a framework for

temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.

Szepesvári, C., & Smart, W. D. (2004). Interpolation-based Q-learning. In Proceedings of the

International Conference on Machine Learning (ICML), pp. 791–798.

Tadić, V. (2001). On the convergence of temporal-difference learning with linear function approxi-

mation. Machine Learning, 42(3), 241–267.

Thrun, S., & Schwartz, A. (1993). Issues in using function approximation for reinforcement learn-

ing. In Proceedings of the Fourth Connectionist Models Summer School, pp. 255–263.

Thurau, C., Kersting, K., Wahabzada, M., & Bauckhage, C. (2011). Convex non-negative matrix

factorization for massive datasets. Knowledge and Information Systems, 29, 457–478.

Thurau, C., Kersting, K., Wahabzada, M., & Bauckhage, C. (2012). Descriptive matrix factorization

for sustainability adopting the principle of opposites. Data Mining and Knowledge Discovery,

24(2), 325–354.

Tsitsiklis, J. N., & Roy, B. V. (1996). Feature-based methods for large scale dynamic programming.

Machine Learning, 22, 59–94.

Tsitsiklis, J. N., & Roy, B. V. (1997). An analysis of temporal-difference learning with function

approximation. IEEE Transactions on Automatic Control, 42, 674–690.

van der Duyn Schouten, F. A., & Vanneste, S. G. (1990). Analysis and computation of (n,n)-
strategies for maintenance of a two-component system. European Journal of Operational

Research, 48(2), 260–274.

Vavasis, S. A. (2009). On the complexity of nonnegative matrix factorization. SIAM Journal on

Optimization, 20, 1364–1377.

Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European Journal of

Operational Research, 139(3), 469 – 489.

White, D. J. (1985). Real applications of Markov decision processes. Interfaces, 15, 73–83.

White, D. J. (1988). Further real applications of Markov decision processes. Interfaces, 18, 55–61.

White, D. J. (1993). A survey of applications of Markov decision processes. The Journal of the

Operational Research Society, 44(11), 1073–1096.

Whitt, W. (1978). Approximations of dynamic programs, I. Mathematics of Operations Research,

3(3), 231–243.

Xia, L., Zhao, Q., & Jia, Q.-S. (2008). A structure property of optimal policies for maintenance

problems with safety-critical components. IEEE Transactions Automation Science and Engi-

neering, 5(3), 519–531.

803

