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Abstract

In this paper, we present a method for recognising an agent's behaviour in dynamic,
noisy, uncertain domains, and across multiple levels of abstraction. We term this problem
on-line plan recognition under uncertainty and view it generally as probabilistic inference on
the stochastic process representing the execution of the agent's plan. Our contributions in
this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden
Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian
network (DBN) structure and analyse the properties of this network. We then describe
an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to
construct an eÆcient, hybrid inference method for this model. In terms of plan recognition,
we propose a novel plan recognition framework based on the AHMM as the plan execution
model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the
independence properties inherent in a model of plan execution, leading to an algorithm for
online probabilistic plan recognition that scales well with the number of levels in the plan
hierarchy. This illustrates that while stochastic models for plan execution can be complex,
they exhibit special structures which, if exploited, can lead to eÆcient plan recognition
algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour
recognition system in a complex spatial environment using distributed video surveillance
data.

1. Introduction

Plan recognition is the problem of inferring an actor's plan by watching the actor's actions
and their e�ects. Often, the actor's behaviour follows a hierarchical plan structure. Thus,
in plan recognition, the observer needs to infer about the actor's plans and sub-plans at
di�erent levels of abstraction in its plan hierarchy. The problem is complicated by the two
sources of uncertainty inherent in the actor's planning process: (1) the stochastic aspect of
plan re�nement (a plan can be non-deterministically re�ned into di�erent sub-plans), and
(2) the stochastic outcomes of actions (the same action can non-deterministically result in
di�erent outcomes). Furthermore, the observer has to deal with a third source of uncertainty
arising from the noise and inaccuracy in its own observation about the actor's plan. In
addition, we would like our observer to be able to perform the plan recognition task \on-
line" while the observations about the actor's plan are streaming in. We refer to this general
problem as on-line plan recognition under uncertainty.
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The seminal work in plan recognition (Kautz & Allen, 1986) considers a plan hierarchy,
but does not deal with the uncertainty aspects of the problem. As a result, the approach
can only postulate a set of possible plans for the actor, but is unable to determine which
plan is more probable. Since then, the important role of uncertainty reasoning in plan
recognition has been recognised (Charniak & Goldman, 1993; Bauer, 1994; van Beek, 1996),
and Bayesian probability has been argued as the appropriate model (Charniak & Goldman,
1993; van Beek, 1996). The dynamic, \on-line" aspect of plan recognition has only been
recently considered (Pynadath & Wellman, 1995, 2000; Goldman, Geib, & Miller, 1999;
Huber, Durfee, & Wellman, 1994; Albrecht, Zukerman, & Nicholson, 1998). All of this
recent work shares the view that online plan recognition is largely a problem of probabilistic
inference in a stochastic process that models the execution of the actor's plan. While this
view o�ers a general and coherent framework for modelling di�erent sources of uncertainty,
the stochastic process that we need to deal with can become quite complex, especially if we
consider a large plan hierarchy. Thus, the main issue here is the computational complexity
for dealing with this type of stochastic processes, and whether the complexity is scalable to
more complex plan hierarchies.

1.1 Aim and Signi�cance

In this paper, we demonstrate that the type of plan recognition problems described above
scales reasonably well with respect to the number of levels of abstraction in the plan hi-
erarchy. This is in contrast to the common-sense analysis that more levels in the plan
hierarchy would introduce more variables to the stochastic process, which in turn, results
in exponential complexity w.r.t the number of levels in the hierarchy.

In order to achieve this, we �rst assume a general stochastic model of plan execution
that can model the three sources of uncertainty involved. The model for planning with
a hierarchy of abstraction under uncertainty has been developed recently by the abstract
probabilistic planning community (Sutton, Precup, & Singh, 1999; Parr & Russell, 1997;
Forestier & Varaiya, 1978; Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Dean
& Lin, 1995). To our advantage, we adopt their basic model, known as the abstract Markov

policies (AMP) 1 as our model for plan execution. The AMP is an extension of a policy
in Markov Decision Processes (MDP) that enables an abstract policy to invoke other more
re�ned policies and so on down the policy hierarchy. Thus, the AMP is similar to a contin-
gent plan that prescribes which sub-plan should be invoked at each applicable state of the
world to achieve its intended goal, except that it can represent both the uncertainty in the
plan re�nement and in the outcomes of actions. Since an AMP can be described simply in
terms of a state space and a Markov policy that selects among a set of other AMP's, using
the AMP as the model for plan execution also helps us focus on the structure of the policy
hierarchy.

The execution of an AMP leads to a special stochastic process which we called the
Abstract Markov Model (AMM). The noisy observation about the environment state (e.g.,
the e�ects of action) can then be modelled by making the state \hidden", similar to the
hidden state in the Hidden Markov Models (Rabiner, 1989). The result is an interesting and
novel stochastic process which we term the Abstract Hidden Markov Model. Intuitively, the

1. Also known as options, policies of Abstract Markov Decision Processes, or supervisor's policies.
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AHMM models how an AMP causes the adoption of other policies and actions at di�erent
levels of abstraction, which in turn generate a sequence of states and observations. In the
plan recognition task, an observer is given an AHMM corresponding to the actor's plan
hierarchy, and is asked to infer about the current policy being executed by the actor at all
levels of the hierarchy, taking into account the sequence of observations currently available.
This amounts to reversing the direction of causality in the AHMM, i.e. to determine a set
of policies that can explain the sequence of observations at hand. We shall refer to this
problem as policy recognition.

Viewing the AHMM as a type of dynamic Bayesian network (Dean & Kanazawa, 1989;
Nicholson & Brady, 1992), it is known that the complexity of this kind of inferencing in the
DBN depends on the size of the representation of the so-called belief state, the conditional
joint distribution of the variables in the DBN at time t given the observation sequence up
to t (Boyen & Koller, 1998). Thus we can ask the following question: how does the policy
hierarchy a�ect the size of the belief state representation of the corresponding AHMM?

Generally, for a policy hierarchy with K levels, the belief state would have at least
K variables and thus the size of their joint distribution would be O(exp(K)). However,
the AHMM has a speci�c network structure that exhibits certain conditional independence
properties among its variables which can be exploited for eÆciency. We �rst identify these
useful independence properties in the AHMM and show that there is a compact representa-
tion of the special belief state in the case where the state sequence can be correctly observed
(full observability assumption) and the starting and ending time of each policy is known.
Consequently, policy recognition in this case can be performed very eÆciently by updating
the AHMM compact belief state. This partial result, although too restricted to be useful by
itself, leads to an important observation about the general belief state: although it cannot
be represented compactly, it can be approximated eÆciently by a collection of compact spe-
cial belief states. This makes the inference problem in the AHMM particularly amenable
to a technique called Rao-Blackwellisation (Casella & Robert, 1996) which allows us to
construct hybrid inference methods that combine both exact inference and approximate
sampling-based inference for greater eÆciency. The application of Rao-Blackwellisation to
the AHMM structure reduces the sampling space that we need to approximate to a space
with �xed dimension that does not depend on K, ensuring that the hybrid inference algo-
rithm scales well w.r.t K.

The contributions of the paper are thus twofold. In terms of stochastic processes and
dynamic Bayesian networks, we introduce the AHMM, a novel type of stochastic processes,
provide its DBN structure and analyse the properties of this network. We present an appli-
cation of the Rao-Blackwellised Particle Filter to the AHMM which results in an eÆcient
hybrid inference method for this stochastic model. In terms of plan recognition, we propose
a novel plan recognition framework based on probabilistic inference using the AHMM as the
plan execution model. The complexity of the inference problem is addressed by applying
a range of recently developed techniques in probabilistic reasoning to the plan recognition
problem. Our work illustrates that while the stochastic models for plan execution can be
complex, they exhibit certain special structures that can be exploited to construct eÆcient
plan recognition algorithms.
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1.2 Structure of the Paper

The main body of the paper is organised as follows. Section 2 introduces the background
material in dynamic Bayesian networks and probabilistic inference. Section 3 formally de-
�nes the abstract Markov policy and the policy hierarchy. Section 4 presents the AHMM,
its DBN representation and conditional independence properties. The algorithms for pol-
icy recognition are discussed in Section 5, �rst for the special tractable case and then for
the general case. Section 6 presents our experimental results with the AHMM framework,
including a real-time system for recognising people behaviour in a complex spatial environ-
ment using distributed video surveillance data. Section 7 provides a comparative review of
related work in probabilistic plan recognition. Finally, we conclude and discuss directions
for further research in Section 8.

2. Background in Probabilistic Inference

The aim of this section is to familiarise readers with some concepts in probabilistic inference
that will be used later on in the paper. In subsections 2.1 and 2.2, we discuss Bayesian
Networks (BN) and Dynamic Bayesian Networks (DBN) in general. In subsection 2.3,
we discuss the Sequential Importance Sampling (SIS) algorithm, a general approximate
sampling-based inference method for dynamic models. Subsections 2.4 and 2.5 introduce
Rao-Blackwellisation, a technique for improving sampling-basedmethods by utilising certain
special structures of the dynamic model. Later on, Rao-Blackwellisation will be used as our
key computational technique for performing policy recognition.

2.1 Bayesian Networks

The Bayesian network (BN) (Pearl, 1988; Jensen, 1996; Castillo, Gutierrez, & Hadi, 1997)
(also known as probabilistic network or belief network) is a well-established framework for
dealing with uncertainty. It provides a graphical and compact representation of the joint
probability distribution of a set of domain variables X1; : : : Xn in the form of a directed
acyclic graph (DAG) whose nodes correspond to the domain variables. For each node
Xi, the links from the parent nodes Pa(Xi) are parameterised by the conditional prob-
ability of that node given the parents Pr(Xi jPa(Xi)). The network structure together
with the parameters encode a factorisation of the joint probability distribution (JPD)
Pr(X1; : : : Xn) =

Qn
i=1 Pr(Xi jPai). Given a Bayesian network, conditional independence

statements of the form X ? Y jZ (X is independent of Y given Z, where X;Y;Z are vari-
ables or sets of variables) can be asserted if X is d-separated from Y by Z in the network
structure, where d-separation is a graph separation concept for DAGs (Pearl, 1988). The
network structure of a BN thus captures certain conditional independence properties among
the domain variables which can be exploited for eÆcient inference.

The main inference task on a Bayesian network is to calculate the conditional probability
of a set of variables given the values of another set of variables (the evidence). There are
two types of computation techniques for doing this. Exact inference algorithms (Lauritzen
& Spiegelhalter, 1988; Jensen, Lauritzen, & Olesen, 1990; D'Ambrosio, 1993) compute
the exact value of the conditional probability required based on analytical transformation
that exploits the conditional independence relationships of the variables in the network.
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Approximative inference algorithms (Pearl, 1987; York, 1992; Henrion, 1988; Fung & Chang,
1989; Shachter & Peot, 1989) compute only an approximation of the required probability,
usually obtained either through \forward" sampling (Henrion, 1988; Fung & Chang, 1989;
Shachter & Peot, 1989) (a variance of Bayesian Importance Sampling (Geweke, 1989)), or
through Gibbs (Monte-Carlo Markov-Chain) sampling (Pearl, 1987; York, 1992). These
algorithms have the advantages of simple implementation, can be applied to all types of
network, and can trade o� the accuracy in the estimates for computation resources. It is
known that exact inference in BN is NP-hard with respect to the network size (Cooper,
1990), while approximate inference, although scales well with the network size, is NP-hard
with respect to the hard-bound accuracy of the estimates (Dagum & Luby, 1993). In the
light of these theoretical results, approximate inference can be useful in large networks when
exact computation is intractable, but a certain degree of error in the probability estimate
can be tolerated by the application.

2.2 Dynamic Bayesian Networks

To model the temporal dynamics of the environment, the Dynamic Bayesian Network
(DBN) (Dean & Kanazawa, 1989; Nicholson & Brady, 1992; Dagum, Galper, & Horvitz,
1992) is a special Bayesian network architecture for representing the evolution of the do-
main variables over time. A DBN consists of a sequence of time-slices where each time-slice
contains a set of variables representing the state of the environment at the current time.
A time-slice is in itself a Bayesian network, with the same network structure replicated at
each time-slice. The temporal dynamics of the environment is encoded via the network links
from one time-slice to the next. In addition, each time-slice can contain observation nodes
which model the (possibly noisy) observation about the current state of the environment.

Given a DBN and a sequence of observations, we might want to draw predictions
about the future state variables (predicting), or about the unobserved variables in the
past (smoothing) (Kjaerul�, 1992). This problem can be solved using an inference algo-
rithm for Bayesian networks described above. However, if we want to revise the prediction
as the observations arrive over time, reapplying the inference algorithm each time the ob-
servation sequence changes could be costly, especially as the sequence grows. To avoid this,
we need to keep the joint distribution of all the variables in the current time-slice, given
the observation sequence up to date. This probability distribution is termed the belief state
(also known as the �ltering distribution) and plays an important role in inferencing in the
DBN. All existing inference schemes for the DBN involve maintaining and updating the
belief state (i.e., �ltering). When a new observation is received, the current belief state is
rolled over one time-slice ahead following the evolution model, then conditioned on the new
observation to obtain the updated belief state.

An obvious problem with this approach is the size of the belief state that we need to
maintain. It has been noted that while the interaction of the variables in the DBN is
localised, the variables in the belief state can be highly connected (Boyen & Koller, 1998).
This is because the marginalisation of the past time-slices usually destroys the conditional
independence of the current time-slice. When the size of the belief state is large, exact
inference methods like (Kj�rul�, 1995) is intractable, and it becomes necessary to maintain
only an approximation of the actual belief state, either in the form of an approximate
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distribution that can be represented compactly (Boyen & Koller, 1998), or in the form of
a set of weighted samples as in the Sequential Monte-Carlo Sampling methods (Doucet,
Godsill, & Andrieu, 2000b; Kanazawa, Koller, & Russell, 1995; Liu & Chen, 1998).

The most simple case of the DBN where, in each time-slice, there is only a single state
variable and an observation node, is the well-known Hidden Markov Model (HMM) (Ra-
biner, 1989). Filtering in this simple structure can be solved using dynamic program-
ming in the discrete HMM (Rabiner, 1989), or Kalman �ltering in the linear Gaussian
model (Kalman, 1960). More recently, extensions of the HMM with multiple hidden in-
teracting chains such as the Coupled Hidden Markov Models (CHMM) and the Factorial
Hidden Markov Models (FHMM) have been proposed (Brand, 1997; Ghahramani & Jordan,
1997; Jordan, Ghahramani, & Saul, 1997). In these models, the size of the belief state is
exponential in the number of hidden chains. Therefore, the inference and parameter estima-
tion problems become intractable if the number of hidden chains is large. For this reason,
approximate techniques are required. CHMM (Brand, 1997) employs a deterministic ap-
proximation that approximates full dynamic programming by keeping only a �xed number
of \heads" with highest probabilities. The \heads" are thus chosen deterministically rather
than randomly as in sampling-based methods. FHMM (Ghahramani & Jordan, 1997; Jor-
dan et al., 1997) uses variational approximation (Jordan, Ghahramani, Jaakkola, & Saul,
1999) which approximates the full FHMM structure by a sparsi�ed tractable structure. This
idea is similar to the structured approximation method in (Boyen & Koller, 1998).

Our AHMM can be viewed as a type of Coupled/Factorial HMM since the AHMM
also consists of a number of interacting chains. However the type of interaction in our
AHMM is di�erent from the other types of interaction that have been considered (Brand,
1997; Jordan et al., 1997; Ghahramani & Jordan, 1997). This is because the main focus
of the AHMM is the dynamics of temporal abstraction among the chains, rather than the
correlation between them at the same time interval. In addition, each node in the AHMM
has a speci�c meaning (policy, state, or policy termination status), and the links have a
clear causal interpretation based on the policy selection and persistence model. This is in
contrast to the Coupled/Factorial HMM where the nodes and links usually do not have
any clear semantic/causal interpretation. The advantage is that prior knowledge about the
temporal decomposition of an abstract process can be incorporated in the AHMM more
naturally.

2.3 Sequential Importance Sampling (SIS)

Sequential Importance Sampling (SIS) (Doucet et al., 2000b; Liu & Chen, 1998), also
known as Particle Filter (PF), is a general Monte-Carlo approximation scheme for dynamic
stochastic models. In principle, the SIS method is the same as the so-called Bayesian
Importance Sampling (BIS) estimator in the static case (Geweke, 1989). Suppose that we
want to estimate the quantity �f =

R
f(x)p(x)dx, i.e., the mean of f(x) where x is a random

variable with density p. Note that if f is taken as the identity function of an event A
then �f is simply Pr(A). Let q(x) be an arbitrary2 density function, termed the importance
distribution. Usually, the importance distribution q is chosen so that is it easy to obtain

2. For the weight to be properly de�ned, the support of q has to be a subset of the support of p.

456



Policy recognition in the Abstract Hidden Markov Model

random samples from it. The expectation under estimation can then be rewritten as:

�f =

R
[f(x)p(x)=q(x)]q(x)dxR
[p(x)=q(x)]q(x)dx

=
Eq f(x)p(x)=q(x)

Eq p(x)=q(x)

From this expression, the BIS estimator w.r.t q can be obtained:

�f � f̂BIS =
1
N

PN
i=1 f(x

(i)) _w(x(i))
1
N

PN
i=1 _w(x(i))

=

NX
i=1

f(x(i)) ~w(x(i))

where fx(i)g are the N i.i.d samples taken from q(x), _w(x) = p(x)=q(x) and ~w is the
normalised weight ~w(x(i)) = _w(x(i))=

P
i _w(x

(i)). Note that the normalised weight can be
computed from any weight function w(x) / _w(x), i.e., the weight function need only be
computed up to a normalising constant factor.

In the dynamic case, we want to estimate �f =
R
~xt
f(~xt)p(~xtj~ot) where ~xt = (x0; : : : ; xt)

and ~ot = (o0; : : : ; ot) are two sequences of random variables; ot represents the observation
available to us at time t. Often, (~xt) is a Markov sequence and ot is the observation of xt
as in a HMM. In a DBN, xt corresponds to the set of state variables and ot corresponds to
the set of observations at time-slice t. The SIS method presented here however applies to
the most general case where (~xt) can be non-Markov, and ot not only depends on xt.

We now can introduce the importance distribution q(~xtj~ot) to obtain the estimator:

�f � f̂SIS =

NX
i=1

f(~x
(i)
t ) ~w(~x

(i)
t ) (1)

To ensure that we can obtain sample from q(~xtj~ot) \online", i.e., to sample a new value
xt for the sequence ~xt when the current observation ot arrives, q must be restricted to the
form:

q(~xtj~ot) = q(~xt�1j~ot�1)q(xtj~xt�1; ~ot)
With this restriction on q, we can use the weight function w(~xt) = p(~xt; ~ot)=q(~xtj~ot) so that
the weight can also be updated \online" using:

w(~xt) = w(~xt�1)p(xt; otj~xt�1; ~ot�1)=q(xtj~xt�1; ~ot) (2)

Let wt = w(~xt)=w(~xt�1) be the weight updating factor at time t, and qt = q(xtj~xt�1; ~ot)
be the sampling distribution used at time t. From (2) we have

wtqt = p(xt; otj~xt�1; ~ot�1) (3)

which means that p(xt; otj~xt�1; ~ot�1) is factorised into two parts: wt and qt. By choos-
ing di�erent factorisations, we obtain di�erent forms for qt and thus di�erent important
distributions q. For example, when (~xt; ~ot) is a HMM, qt can be chosen as p(xtjxt�1)
with wt = p(otjxt) as in the likelihood weighting (LW) method, or qt can be chosen as
p(xtjxt�1; ot) with wt = p(otjxt�1) as in the likelihood weighting with evidence rever-
sal (LW-ER) (Kanazawa et al., 1995). In general, the \forward" qt can be chosen as
p(xtj~xt�1; ~ot�1) with the corresponding weight wt = p(otj~xt; ~ot�1). The \optimal" qt, in
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the sense discussed in (Doucet et al., 2000b), is chosen as qt = p(xtj~xt�1; ~ot) with the
associating wt = p(otj~xt�1; ~ot�1).

The general SIS approximation scheme is thus as follows. At time t� 1, we maintain N

sample sequences f~x(i)t�1g and the N corresponding weight values fw(i)g. When the current

observation ot arrives, each sequence ~x
(i)
t�1 is lengthened by a new value x

(i)
t sampled from

the distribution q(xtj~x(i)t�1; ~ot). The weight value for ~x
(i)
t is then updated using (2). Once

the new samples and the new weights are obtained, the expectation of any functional f can
be estimated using (1). This procedure can be furthered enhanced with a re-sampling step
and a Markov-chain sampling step (see Doucet et al. (2000b), Doucet, de Freitas, Murphy,
and Russell (2000a)). We do not describe these important improvements of the SIS here.3

2.4 Rao-Blackwellisation

Rao-Blackwellisation is a general technique for improving the accuracy of sampling methods
by analytically marginalising some variables and only sampling the remainder (Casella &
Robert, 1996). In its simplest form, consider the problem of estimating the expectation
E f(x), where x is a joint product of two variables r; z. Using direct Monte-Carlo sam-
pling, we obtain the estimator: f̂ = 1

N

PN
1 f(r(i); z(i)). Alternatively, a Rao-Blackwellised

estimator can be derived by sampling only the variable r, with the other variable z being
integrated out analytically:

E f(r; z) = E
r
h(r) � f̂RB =

1

N

NX
1

h(r(i))

where h(r) = Ez[f(r; z)jr]. For our convenience, r will be referred to as the Rao-Blackwellising
variable.

The Rao-Blackwellised estimator f̂RB is generally more accurate than f̂ for the same
number of samples N . This is a direct consequence of the Rao-Blackwell theorem which
gives the relationship between unconditional and conditional variance:

VARX = VAR[E[XjY ]] + E[VAR[XjY ]]

When applying to the problem of estimating E f(r; z), we have:

VAR f(r; z) = VAR[E[f(r; z)jr]] + E[VAR[f(r; z)jr]]

and thus VAR f(r; z) � VAR[E[f(r; z)jr]] = VARh(r). This suggests that for direct Monte-
Carlo sampling, the error of RB-sampling (sample only r and marginalise z) is always
smaller than the error of sampling both r and z for the same number of samples, except in
the degenerated case. For Bayesian Importance Sampling, using the variance convergence
result from (Geweke, 1989), one can also easily prove that as the number of samples tend to
in�nity, the RB-BIS would generally do better than BIS for the same number of samples.

3. Note that these improvements can be used orthogonal to the Rao-Blackwellisation procedure discussed
subsequently. Our implementation of the policy recognition algorithm in the later sections does include
a re-sampling step, which is crucial for keeping the error of SIS over time under control.

458



Policy recognition in the Abstract Hidden Markov Model

2.5 SIS with Rao-Blackwellisation (RB-SIS)

Since SIS is a form of BIS, Rao-Blackwellisation can also be used to improve its perfor-
mance (Liu & Chen, 1998; Doucet et al., 2000b). Let us consider again the problem of
estimating the expectation �f =

R
f(~xt)p(~xtj~ot), where each variable xt is the joint product

of two variables (zt; rt). We shall restrict ourselves to the case where ~xt is Markov and
ot is an observation of xt, i.e., when (~xt; ~ot) can be represented by a DBN. In addition,
we only consider f that depends only on the current variable xt, i.e., �f is an expectation
over the �ltering distribution p(xtj~ot). For example, if A is a \future" event, i.e., an event
that depends on fxt0 jt0 � tg, we can estimate p(Aj~ot) by letting f(xt) = p(Ajxt) so that
�f =
R
xt
p(Ajxt)p(xtj~ot) = p(Aj~ot).

Applying Rao-Blackwellisation to this setting, we can let h(~rt) =
R
zt
f(zt; rt)p(ztj~rt; ~ot),

so that �f = �h =
R
~rt
h(~rt)p(~rtj~ot). Thus, if we use SIS to estimate �h, we also obtain an

estimator for �f :

�f � f̂RBSIS = ĥSIS =

NX
i=1

h(~r
(i)
t ) ~w(~r

(i)
t ) (4)

The bene�t of doing this is the increase in the accuracy of the estimator, as we now
only need to sample the variables ~rt. The down side is that for each sample ~rt, we need
to compute h(~rt) using some exact inference method. Furthermore, the SIS procedure to
estimate �h might require some additional complexity since the sequence ~rt is generally non-
Markov, and ot no longer depends only on rt. Overall, in comparison with the normal SIS
estimator f̂SIS (Eq. 1), for the same number of samples N , f̂RBSIS is more accurate but is
also more computationally demanding to compute.

To see more clearly what is involved in implementing the RB-SIS method, let us look
at the Rao-Blackwellised belief state, i.e., the belief state of the dynamic process when the
Rao-Blackwellising variables can be observed: Rt = p(zt; rt; otj~rt�1; ~ot�1) and its posterior
Rt+ = p(ztj~rt; ~ot). All the entities needed in the RB-SIS procedure can be computed from
these two distributions. Indeed, the functional h can be rewritten in terms of Rt+ as:

h(~rt) =

Z
zt

f(zt; rt)p(ztj~rt; ~ot) =
Z
zt

f(zt; rt)Rt+(zt) (5)

In addition, while performing SIS to estimate �h, from Eq. (3), the weight wt and the
sampling distribution qt can be computed from Rt:

wtqt = p(rt; otj~rt�1; ~ot�1) = Rt(rt; ot) =

Z
zt

Rt(zt; rt; ot) (6)

Thus, computing the RB belief state Rt and its posterior Rt+ is an essential step in
the RB-SIS method. Since we have to maintain an RB belief state for each sample of
the RB variables ~rt, it is crucial that this can be done eÆciently using an exact inference
method. If xt is composed of many variables, as in the case of a DBN, our choice of the
Rao-Blackwellising variables should be so that the Rao-Blackwellised belief state can be
maintained in a tractable way. Hence, Rao-Blackwellisation is especially useful when the
set of variables in a DBN can be split into two parts such that conditioning on the �rst part
makes the structure of the second part tractable and amenable to exact inference.
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Begin
For t = 0; 1; : : :

For each sample i = 1; : : : ; N

Sample r
(i)
t from R

(i)
t (rtjot)

Update weight w(i) = w(i)R
(i)
t
(ot)

Compute the posterior RB bel state R
(i)
t+ = R

(i)
t (ztjr

(i)
t ; ot)

Compute the new RB belief state R
(i)
t+1 from R

(i)
t+

Compute h(i) from R
(i)
t+

Compute the estimator f̂RBSIS =
P

N

i=1 h
(i) ~w(i)

End

Figure 1: RB-SIS for general DBN

The general RB-SIS algorithm is given in Fig. 1. For illustrating purpose, we assume
that the \optimal" qt and the corresponding wt are being used (qt = Rt(rtjot) and wt =

Rt(ot)). At each time point, we need to maintain N samples ~r
(i)
t , i = 1; : : : ; N . For each

sample, in addition to the sample weight w(i), we also need to store a representation of the

RB belief state corresponding to that sample sequence: R(i)
t = p(rt; zt; otj~r(i)t�1; ~ot�1) and

R(i)
t+ = p(ztj~r(i)t ; ~ot).

A number of applications of the RB-SIS method (also known as the Rao-Blackwellised
Particle Filter (RBPF)) have been discussed in the literature. A general framework for
using RB-SIS to do inference on DBNs has been presented by Doucet et al. (2000a), Murphy
(2000), Murphy and Russell (2001). However, these authors have mainly focused on the
case where the sequence of the Rao-Blackwellising variables (~rt) is Markov (for example,
when the RB variables are the root nodes at each time slice). This assumption simpli�es
the sampling step in the RB procedure since obtaining the sample for the RB variable
at time t + 1 is straightforward. In our previous work (Bui, Venkatesh, & West, 2000),
we introduced a hybrid-inference method for the AHMM in the special case of the state-
space decomposition policy hierarchy, which is essentially an RB-SIS method. Note that
when applied to AHMMs, the sequence of Rao-Blackwellising variables that we use does not
satisfy the Markov property. In this case, care must be taken to design an eÆcient sampling
step, especially when the sampling distribution for the next RB variable does not have a
tractable form. The use of non-Markov RB variables also appears in other special models
such as the Bayesian missing data model (Liu & Chen, 1998), and the partially observed
Gaussian state space model (Andrieu & Doucet, 2000) where the RB belief state can be
maintained by a Kalman �lter.

Since we have to make the Rao-Blackwellised belief state tractable, the context vari-
ables in the framework of context-speci�c independence (Boutilier, Friedman, Goldszmidt,
& Koller, 1996) can be used conveniently as Rao-Blackwellising variables (Murphy, 2000).
Indeed, since the context variable acts as a mixing gate for di�erent Bayesian network struc-
tures, conditioning on these variables would simplify the structure of the remaining vari-

460



Policy recognition in the Abstract Hidden Markov Model

ables. Because of this property of the context variables, Boutilier et al. (1996) have suggested
to use them as the cut-set variables in the cut-set conditioning inference method (Pearl,
1988). The cut-set variables play a similar role to the Rao-Blackwellising variables in which
they help to simplify the structure of the remaining network. In Rao-Blackwellised sam-
pling, instead of summing over all the possible values of the cut-set variables which can be
intractable, only a number of representative sampled values are used.

The idea of combining both exact and approximate inference in RB sampling is also
similar to the hybrid inference scheme described by Dawid, Kj�rul�, and Lauritzen (1995),
however it's unclear if RB sampling can be described using their model of communicating
belief universe. Also, Dawid et al. use hybrid inference mainly to do inference on networks
with a mixture of continuous and discrete variables, as opposed to RB whose goal is to
improve the sampling performance.

3. Abstract Markov Policies

In this section, we formally introduce the AMP concept as originating from the literature
of abstract probabilistic planning with MDPs (Sutton et al., 1999; Parr & Russell, 1997;
Forestier & Varaiya, 1978; Hauskrecht et al., 1998; Dean & Lin, 1995). The main motivation
in abstract probabilistic planning is to scale up MDP-based planning to problems with large
state space. It has been noted that a hierarchical organisation of policies can help reduce
the complexity of MDP-based planning, similar to the role played by the plan hierarchy
in classical planning (Sacerdoti, 1974). In comparison with a classical plan hierarchy, a
policy hierarchy can model di�erent sources of uncertainty in the planning process such as
stochastic actions, uncertain action outcomes, and stochastic environment dynamics.

While the work in planning is concerned with �nding the optimal policy given some
reward function, our work focuses on policy recognition which is the inverse problem, i.e., to
infer the agent's policies from watching the e�ects of the agent's actions. The two problems
however share a common element which is the model of a stochastic plan hierarchy. In policy
recognition, although it is possible to derive some information about the reward function
by observing the agent's behaviour, we choose not to do this, thus omitting from our model
the reward function and also the optimality notion. This leaves the model open to tracking
arbitrary agent's behaviours, regardless of whether they are optimal or not.

3.1 The General Model

3.1.1 Actions and Policies

In an MDP, the world is modelled as a set of possible states S, termed the state space. At
each state s, an agent has a set of actions A available, where each action a, if employed, will
cause the world to evolve to the next state s0 via a transition probability �a(s; s

0). An agent's
plan of actions is modelled as a policy that prescribes how the agent would choose its action
at each state. For a policy �, this is modelled by a selection function �� : S � A ! [0; 1]
where at each state s, ��(s; a) is the probability that the agent will choose the action a. It
is easy to see that, given a �xed policy �, the resulting state sequence is a Markov chain
with transition probabilities Pr(s0 j s) = Pa ��(s; a)�a(s; s

0). Thus, a policy can also be
viewed as a Markov chain through the state space.
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3.1.2 Local Policies

In the original MDP, behaviours are modelled at only two levels: the primitive action
level, and the plan level (policy). We would like to consider policies that select other
more re�ned policies and so on, down a number of abstraction levels. The idea is to form
intermediate-level abstract policies as policies de�ned over a local region of the state space,
having a certain terminating condition, and can be invoked and executed just like primitive
actions (Forestier & Varaiya, 1978; Sutton et al., 1999).

De�nition 1 (Local policy). A local policy is a tuple � = hS;D; �; �i where:
� S is the set of applicable states.

� D is the set of destination states. � : D ! (0; 1] is the stopping probabilities such
that �(d) = 1;8 d 2 D n S.

� � : S � A ! [0; 1] is the selection function. Given the current state s, �(s; a) is the
probability that the action a is selected by the policy � at state s.

The set S models the local region over which the policy is applicable. S will be called the
set of applicable states, since the policy can start from any state in S. We shall assume here
that S is discrete, and thus shall not be concerned with the technical details in generalising
the AHMM formulation to the continuous state space case. The stopping condition of the
policy is modelled by a set of possible destination states D and a set of positive stopping
probabilities �(d); d 2 D where �(d) is the probability that the policy will terminate when
the current state is d. It is possible to allow the policy to stop at some state outside of
S, however, for all d 2 D n S we enforce the condition that �(d) = 1, i.e., d is a terminal
destination state. Sometimes, we might only want to consider policies with deterministic
stopping condition. In that case, every destination is a terminal destination: 8d 2 D,
�(d) = 1. Thus, for a deterministically terminating policy, we can ignore the redundant
parameter �, and need only specify the set of destinations D.

Given a starting state s 2 S, a local policy as de�ned above generates a Markov se-
quence of states according to its transition model. Each time a destination state d 2 D is
reached, the process stops with probability �(d). Since the process starts from within S,
but terminates only in one of the states in D, the destination states play the role of the
possible exits out of the local region S of the state space.

When we want to make clear which policy is currently being referred to, we shall use
the subscripted notations S�, D�, ��, �� to denote the elements of the policy �.

Fig. 2 illustrates how a local policy � can be visualised. Fig. 2(a) shows the set of
applicable states S, the set of destinations D, and a chain starting within S and terminating
in D. The Bayesian network in Fig. 2(b) provides the detailed view of the chain from start
to �nish. The Bayesian network in Fig. 2(c) is the abstract view of the chain where we are
only interested in its starting and stopping states.

3.1.3 Abstract Policies

The local policy as de�ned above selects among the set of primitive actions. Similarly, but
more generally, we can de�ne higher level policies that select among a set of other policies.
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Figure 2: Visualisation of a policy

De�nition 2 (Abstract Policy). Let � be a set of abstract policies. An abstract
policy �� over the policies in � is a tuple hS��;D�� ; ��� ; ���i where:

� S�� � [�2�S� is the set of applicable states.

� D�� � [�2�D� is the set of destination states. ��� : D�� ! (0; 1] is the set of stopping
probabilities.

� ��� : S�� ��! [0; 1] is the selection function where ���(s; �) is the probability that
�� selects the policy � at the state s.

Note the recursiveness in de�nition 2 that allows an abstract policy to select among a set
of other abstract policies. At the base level, primitive actions are viewed as abstract policies
themselves. Since primitive actions always stop after one time-step, Da � Sa and �(d) =
18d 2 Da (Sutton et al., 1999). The idea that policies with suitable stopping condition
can be viewed just as primitive actions is �rst made explicit in (Sutton, 1995), which
also introduces the � model for representing the stopping probabilities. Their subsequent
work (Sutton et al., 1999) introduces the abstract policy concept under the name options.

The execution of an abstract policy �� is as follows. Starting from some state s, ��

selects a policy � 2 � according to the distribution ���(s; :). The selected policy � is then
executed until it is terminated in some state d 2 D�. If d is also a destination state of ��

(d 2 D��), the policy �� stops with probability ���(d). If �� still continues, a new policy
�0 2 � is selected by �� at d, which will be executed until its termination and so on (Fig. 3).

Some remarks about the representation of an abstract policy are needed here. Let
s 2 [�2�S�, we denote the subset of policies in � which are applicable at s by �(s) =
f� 2 � j s 2 S�g. For an abstract policy �� to be well-de�ned, we have to make sure that
at each state s, �� only selects among the policies that are applicable at s. Thus, the
selection function has to be such that ���(s; �) > 0 only if � 2 �(s). This helps to keep
the speci�cation of the selection function to a manageable size, even when the set of all
policies � to be chosen from can be large. In addition, the speci�cation of the selection
function and the stopping probabilities can make use of factored representations (Boutilier,
Dearden, & Goldszmidt, 2000) in the case where the state space is the composite of a set
of relatively independent variables. This ensures that we still have a compact speci�cation
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Figure 3: A chain generated by an abstract policy

of the probabilities conditioned on the state variable, even though the state space can be
of high dimension.

3.1.4 Policy Hierarchy

Using abstract policies as the building blocks, we can construct a hierarchy of abstract
policies as follows:

De�nition 3 (Policy hierarchy). A policy hierarchy is a sequence H = (�0;�1; : : : ;�K)
where K is the number of levels in the hierarchy, �0 is a set of primitive actions, and for
k = 1; : : : ;K, �k is a set of abstract policies over the policies in �k�1.

When a top-level policy �K is executed, it invokes a sequence of level-(K-1) policies, each
of which invokes a sequence of level-(K-2) policies and so on. A level-1 policy will invoke
a sequence of primitive actions which leads to a sequence of states. Thus, the execution
of �K generates an overall state sequence (s0; s1; : : : ; st; : : :) that terminates in one of the
destination states in D�K . When K = 1 this sequence is simply a Markov chain (with
suitable stopping conditions). However, for K � 2, it will generally be non-Markovian,
despite the fact that all the policies are Markov, i.e., they select the lower level policies
based solely on the current state (Sutton et al., 1999). This is because knowing the current
state st alone does not provide information about the current intermediate-level policies,
which can a�ect the selection of the next state st+1. Intuitively, this means that an agent's
behaviour to achieve a given goal is usually non-Markovian, since its choice of actions
depends not only on the current state, but also on the current intermediate intentions of
the agent.

We term the dynamical process in executing a top-level abstract policy �K the Abstract
Markov Model (AMM). When the states are only partially observable, the observation can
be modelled by the usual observation model Pr(ot j st) = !(st; ot). The resulting process is
termed the Abstract Hidden Markov Model (AHMM) since the states are hidden as in the
Hidden Markov Model (Rabiner, 1989).

The idea of having a higher level policy controlling the lower level ones in an MDP
can be traced back to the work by Forestier and Varaiya (1978), who investigated a two
layer structure similar to our 2-level policy hierarchy with deterministic stopping condition.
Forestier and Varaiya showed that that the sub-process, obtained by sub-sampling the state

464



Policy recognition in the Abstract Hidden Markov Model

(a)

(b)

Figure 4: The environment and its partition

sequence at the time when the level-1 policy terminates, is also Markov, thus the policies
at level 1 simply play the role of an \extended" action. In our framework, given a policy
hierarchy, one can consider a \lifted" model where only the policies from level k up and the
observations at the time points when a policy at level k ends are considered. The level-k
policies can then be considered as primitive actions, and the lifted model can be treated
like a normal model.

3.2 State-Space Region-Based Decomposition

In some cases, the state space or some of its dimensions already exhibit a natural hierarchical
structure. For example, in the spatial domain, the set of ground positions can be divided
into small local spaces such as rooms, corridors, etc. A set of these local spaces can be
grouped together to form a larger space at the higher level (oors, buildings, etc). An
intuitive and often-used method for constructing the policy hierarchy in this case is via
the so-called region-based decomposition of the state space (Dean & Lin, 1995; Hauskrecht
et al., 1998). Here, the state space S is successively partitioned into a sequence of partitions
PK ;PK�1; :::P1 corresponding to theK levels of abstraction, where PK = fSg is the coarsest
partition, and P1 is the �nest. For each region Ri of Pi, the periphery of Ri, Per(Ri) is
de�ned as the set of states not in Ri, but connected to some state in Ri. Let Peri be the
set of all peripheral states at level i: Peri = [Ri2PiPer(Ri). Fig. 4(b) shows an example
where the state space representing a building is partitioned into 4 regions corresponding to
the 4 rooms. The peripheral states for a region is shown in Fig 4(a), and Fig 4(b) shows all
such peripheral states.

To construct the policy hierarchy, we �rst de�ne for each region R1 2 P1 a set of abstract
policies applicable on R1, and having Per(R1) as the destination states. For example, for
each room in Fig 4, we can de�ne a set of policies that model the agent's di�erent behaviours
while it is inside the room, e.g., getting out through a particular door. These policies can
be initiated from inside the room, and terminate when the agent steps out of the room
(not necessarily through the target door since the policy might fail to achieve its intended
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target). Note that since Per(R1) \ R1 = ;, all the policies de�ned in this manner have
deterministic stopping conditions.

Let the set of all policies de�ned be �1. At the higher level P2, for each region R2,
we can de�ne a set of policies that model the agent's behaviours inside that region with
applicable state space R2, destination set Per(R2), and the constraint that these policies
must use the policies previously de�ned at level-1 to achieve their goals. An example is a
policy to navigate between the room-doors to get from one building gate to another. Let
the set of all policies de�ned at this level be �2. Continuing doing this at the higher levels,
we obtain the policy hierarchy H = (�0;�1;�2; : : : ;�K). A policy hierarchy constructed
through State-space Region-based Decomposition is termed an SRD policy hierarchy.

An SRD policy hierarchy has the property that the set of applicable states of all the
policies at a given abstraction level forms a partition of the state space. Thus, from the state
sequence (s0; : : : ; st; : : :) resulting from the execution of the top level policy, we can infer
the exact starting and terminating times of all intermediate-level policies. For example, at
level k, the starting/stopping times of the policies in this level are the time indices t's at
which the state sequence crosses over a region boundary: st�1 2 Rk and st 62 Rk for some
region Rk of the partition Pk. Later in section 5.1, we will show that this property helps to
simplify some of the complexity of the policy recognition problem.

3.3 A Policy Hierarchy Example

As an example, consider the task to monitor and predict the movement of an agent through
a building shown in Fig. 5(a). Each room is represented by a 5� 5 grid, and two adjacent
rooms are connected via a door in the center of their common edge. The four entrances to
the building are labeled north (N), west (W), south (S) and east (E). In addition, the door
in the center of the building (C) acts like an entrance between the building's north wing
and south wing. At each state (cell), the agent can move in 4 possible directions except
when it is blocked by a wall.

The policy hierarchy to model the agent's behaviour in this environment can be con-
structed based on region-based decomposition at three levels of abstraction. Firstly, a region
hierarchy is constructed. The partition of the environment consists of the 8 rooms at level 1,
the two wings (north and south) at level 2, and the entire building at level 3. The behaviours
of the agent at level 1 (within each room) is represented by a set of level 1 policies. For
example, in each room, we use 4 level-1 policies to model the agent's behaviours of exiting
the room via the 4 di�erent doors. These are essentially four Markov chains within the room
which terminate outside of the room. One way to represent these policies is to specify which
movement action the agent should take given the current position and the current heading.
At the higher level, the agent's behaviours within each wing are speci�ed. For example,
we use 3 level-2 policies in each wing to model the agent's behaviours of exiting the wing
via the 3 wing exits. These policies are built on top of the set of level-1 policies already
de�ned. They specify which level-1 policies the agent should take to leave the wing at the
intended exit. Finally, at the top level, the agent's behaviours within the entire building
can be speci�ed. For example, we use 4 top-level policies to model the agent's behaviours
of leaving the building via the four building exits N, W, S, E. A sample of these policies
and their parameters is given in Fig. 5(b).
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Figure 5: An example policy hierarchy

3.4 AMM as a Plan Execution Model

Up to now, we have presented the AMM as a formal plan execution model to be used later
in the plan recognition process. In this subsection, we discuss the expressiveness of the
AMM as a formal plan speci�cation language, and also the suitability of using the AMM
to encode plans in the context of plan recognition. Note that the discussion here focuses on
the representational aspect of the AMM alone. A discussion of the computational aspects
of the AMM/AHMM in comparison with other works in probabilistic plan recognition will
be presented in Section 7.

The AMM is particularly well-suited for representing goal-directed behaviours at dif-
ferent levels of abstraction. Each policy in the AMM can be viewed as a plan trying to
achieve a particular goal. However, unlike a classical plan, a policy speci�es the course of
actions at all applicable states, and is more similar to a contingent plan. The ending of a
policy could either means that the goal has been achieved, or the attempt to achieve the
goal using the current policy has failed. This interpretation of the persistence of a policy
�ts into the persistence model of intentions (Cohen & Levesque, 1990): when an intention
ends, there is no guarantee that the intended goal has been achieved. Thus, conceptually,
there are two types of destination states: one corresponds to the intended goal states, and
the other corresponds to unintended failure states resulting from the stochastic nature in
the execution of the plan. Due to its generality, the AMM does not need to distinguish be-
tween these two types; both the successful termination states and the unsuccessful ones are
treated the same as possible destination states, albeit with di�erent reaching probabilities.4

4. One would expect that an agent would more likely to reach the intended destination state rather a
random failure state.
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Using the AMM as a model of plan execution thus allows us to blur the di�erence
between planning and re-planning. At the same time, it moves from the recognition of
a classical plan towards the recognition of the agent's intention. Most of the existing
framework for probabilistic plan recognition does not explicitly represent the current state,
and thus, the relationship between states and the adoption and termination of current plans
is ignored (Goldman et al., 1999).5 Thus, it would be impossible to tell if the current plan
has failed and the new plan is an attempt to recover from this failure, or the current plan
has succeeded and the new plan is part of a new higher level goal.

A more expressive language for describing abstract probabilistic plan is the Hierarchical
Abstract Machines (HAM) proposed in (Parr & Russell, 1997; Parr, 1998). In a HAM, the
abstract policy is replaced by a stochastic �nite automaton, which can call other machines
at the lower level. Our abstract policies can be written down as machines of this type. Such
a machine would choose one of the machines correspond to the policies at the lower level
and then go back to the start state after the called machines have terminated. The HAM
framework allows for machines with arbitrary �nite number of machine states and transition
probabilities,6 thus can readily represent more complex plans such as concatenation of
policies, alternative policy paths, etc. It is possible to represent each machine in HAM
as a policy in our AMM, however with the cost of augmenting the state space to include
the machine states of all the machines in the current call stack. Thus, the size of the
AMM's new state space would be exponential with respect to the number of nested levels
in the HAM's call stack. While this shows in theory the expressiveness of HAM and our
policy hierarchy is the same, performing policy recognition on the HAM-equivalent policy
hierarchy is probably unwise since the state space becomes exponentially large after the
conversion. A better idea would be to represent the internal state of each machine as a
variable in a DBN and perform inference on this DBN structure directly.

The AMM is also closely related to a model for probabilistic plan recognition called the
Probabilistic State-Dependent Grammar (PSDG), independently proposed in (Pynadath,
1999; Pynadath & Wellman, 2000). The PSDG can be described as the Probabilistic
Context Free Grammar (PCFG) (Jelinek, La�erty, & Mercer, 1992), augmented with a
state space, and a state transition probability table for each terminal symbol of the PCFG.
In addition, the probability of each production rule is made state dependent. As a result,
the terminal symbol now acts like primitive actions and the non-terminal symbol chooses its
expansion depending on the current state. Interestingly, the PSDG is directly related to the
HAM language described above, similar to the way production-rule grammars are related
to �nite automata. Given a PSDG, we can convert it to an equivalent HAM by constructing
a machine for each non-terminating symbol, and modelling the production rules for each
non-terminating symbol by the automaton.

Our policy hierarchy is equivalent to a special class of PSDG where only production
rules of the form X ! Y X and X ! ; are allowed. The former rule models the adoption
of a lower level policy Y by a higher level policy X, while the latter models the termination
of a policy X. The PSDG model considered in (Pynadath, 1999; Pynadath & Wellman,
2000) allows for more general rules of the form X ! Y1 : : : YmX, i.e., the recursion symbol

5. with the exceptions of (Goldman et al., 1999; Pynadath & Wellman, 2000) which will be discussed in
detail in Section 7.

6. with the constraint that there is no recursion in the calling stack to keep the stack �nite.
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must be located at the end of the expansion. Thus in a PSDG, a policy might be expanded
into a sequence of policies at the lower level which will be executed one after another before
control is returned to the higher level policy. The implicit assumption here is that when a
policy in the sequence terminates, it always does so at a state where the next policy in the
sequence is applicable. Given this assumption, in the language of the AHMM we can de�ne
a compound policy �k as a policy that simply and orderly executes a sequence of policies at
the lower level �k�1(1) ; : : : ; �

k�1
(m) , independent of the current state. A PSDG is then equivalent

to an AHMM if compound policies of this form are allowed.
Since the AMM closely follows the models used in abstract probabilistic planning, it can

be used to model and recognise the behaviours of any autonomous agent whose decision
making process is equivalent to an abstract MDP. It is also useful as a formal language
for specifying contingent plans whose execution can then be monitored using the policy
recognition algorithm. The language is also rich enough to specify a range of useful human
behaviours, especially in domains where there is a natural hierarchical decomposition of
the state space. Section 6 presents an application of the AHMM framework to the problem
of recognising people behaviours in a complex spatial environment. Here, each policy of
the AHMM represents the evolution of possible trajectories of people movement while the
person performs a certain task in the environment such as heading towards a door, using
the computer at a certain location, etc. The policies at di�erent levels would represent the
evolution of trajectories at di�erent levels of abstraction. Due to the existing hierarchy in
the domain, the policies can be constructed using the region-based decomposition of the
state space. The environment is populated with multiple cameras divided into di�erent
zones that can provide the current location of the tracking target, albeit a noisy one. The
noisy observations can be readily handled by the observation model in the AHMM. The
policy recognition algorithm can then be applied to infer the person's current policy at
di�erent levels in the hierarchy.

One main restriction of the current AHMM model is that we consider only one top-
level policy at a time, thus are unable to model the inter-leaving of concurrent plans.
Another more subtle restriction is the assumption that a high level policy selects the lower
level policies depending only on the current state. If the state space is interpreted as the
states of the external environment, this assumption implies that the actor either has full
observation about the current state, or at least re�nes its intentions based on the actor's
observation about the current state only (and not the entire observation history). Note that
these restrictions of the AHMM also apply in the case of the PSDG model.

4. Dynamic Bayesian Network Representation

In this section, we describe the Dynamic Bayesian Network (DBN) representation of the
AHMM. The network serves two purposes: (1) as the tool to derive the probabilistic in-
dependence property of this stochastic model, and (2) as the computational framework for
the policy recognition algorithms in Section 5.

4.1 Network Construction

At time t, let st represent the current state, �kt represent the current policy at level k
(k = 0; : : : ;K), ekt represent the ending status of �kt , i.e., a boolean variable indicating

469



Bui, Venkatesh & West

π

e

e

s

π

e

e

s

=F

=F

(a) (b) (c)

k

k

k-1

π

e

e

s

=T

k

k

k-1

k

k-1

k

Figure 6: Sub-network for policy termination

whether the policy �kt terminates at the current time. These variables would make up the
current time-slice of the full DBN. For our convenience, the notation �allt refers to the set of
all the current policies f�Kt ; : : : ; �0t g. Before presenting the full network, we �rst describe
the two sub-structures that model how policies are terminated and selected. The full DBN
can then be easily constructed from these sub-structures.

4.1.1 Policy Termination

From the de�nition of abstract policies, a level-k policy �kt terminates only if the lower level
policy �k�1t terminates, and if so, �kt terminates with probability ��k

t

(st). In the Bayesian

network representation, the terminating status ekt therefore has three parent nodes: �kt , st,
and ek�1t (Fig. 6(a)).

The parent variable ek�1t however plays a special role. If ek�1t = T , meaning the lower
level policy terminates at the current time, Pr(ekt = T j�kt ; st) = ��k

t

(st) which gives the

conditional probability of ekt given the other two parent variables (Fig. 6(b)). However, if
ek�1t = F , �kt should not terminate and so ekt = F . Therefore, given that ek�1t = F , ekt is
deterministically determined and is independent of the other two parent variables �kt and
st. Using the notion of context-speci�c independence (CSI) (Boutilier et al., 1996), we can
then safely remove the links from the other two parents to ekt in the context that ek�1t is
false (Fig. 6(c)).

At the bottom level, since the primitive action always terminates immediately, e0t = T
for all t. Since we are modelling the execution of a single top-level policy �K , we can assume
that the top-level policy does not terminate and remains unchanged: eKt = F and �Kt = �K

for all t. Also, note that elt = T ) ekt = T for all k � l, and elt = F ) ekt = F for all k � l.
Thus, at each time t, there exists 0 � lt < K such that ekt = T for all k � lt, and ekt = F
for all k > lt. The variable lt is termed the highest level of termination at time t. Knowing
the value of lt is equivalent to knowing the terminating status of all the current policies.

4.1.2 Policy Selection

The current policy �kt in general is dependent on the higher level policy �k+1t , the previous
state st�1, the previous policy at the same level �kt�1 and its ending status ekt�1. In the
Bayesian network, �kt thus has these four variables as its parents (Fig. 7(a)). This depen-
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Figure 7: Sub-network for policy selection

dency can be further broken down into two cases, depending on the value of the parent
node ekt�1.

If the previous policy has not terminated (ekt�1 = F ), the current policy is the same as

the previous one: �kt = �kt�1, and the variable �kt is thus independent of �k+1t and st�1.

Therefore, in the context ekt�1 = F , the two links from �k+1t and st�1 to the current policy
can be removed, and the two nodes �kt and �kt�1 can be merged together (Fig. 7(b)).

If the previous policy has terminated (ekt�1 = T ), the current policy is selected by the

higher level policy with probability Pr(�kt j�k+1t ; st�1) = �
�k+1
t

(st�1; �
k
t ). In this context, �

k
t

is independent of �kt�1 and the corresponding link in the Bayesian network can be removed
(Fig. 7(c)).

4.1.3 The Full DBN

The full dynamic Bayesian network can be constructed for all the policy, ending status, and
state variables by putting the sub-networks for policy termination and selection together
(Fig. 8). At the top level, since eKt = F , we can remove the ending status nodes and merge
all the �Kt into a single node �K . At the base level, since e0t = T , we can remove the ending
status nodes and also the links from �0t to �0t+1. To model the observation of the hidden
states, an observation layer can be attached to the state layer as shown in Fig. 8.

Suppose that we are given a context where each of the variable ekt is known. We can
then modify the full DBN using the corresponding link removal and node merging rules.
The result is a more intuitive tree-shaped network in Fig. 9, where all the policy nodes
corresponding to the same policy for its entire duration are grouped into one. The grouping
can be done since knowing the value of each ekt is equivalent to knowing the exact duration
of each policy in the hierarchy. One would expect that performing probabilistic inference
on this structure is more simple than that of the full DBN in Fig. 8. In particular, if the
state sequence is known, the remainder of the network in Fig. 9 becomes singly-connected,
i.e., a directed graph with no undirected cycles, allowing inference to be performed with
complexity linear to the size of the network (Pearl, 1988). The policy recognition algorithms
that follow later exploit extensively this particular tractable case of the AHMM.
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4.2 Conditional Independence in the Current Time-Slice

The above discussion identi�es a tractable case for the AHMM, but it requires the knowledge
of the entire history of the state and the policy ending status variables. In this subsection,
we focus on the conditional independence property of the nodes in the current time-slice:
st; �

0
t ; : : : ; �

K
t . Since these nodes will make up the belief state of any future inference

algorithm for our AHMM, any independence properties among these variables, if exploited,
can provide a more compact representation of the belief state and reduce the inference
complexity.

Due to the way policies are invoked in the AMM, we can make an intuitive remark
that the higher level policies can only inuence what happens at the lower level through the
current level. More precisely, for a level k policy �kt , if we know its starting state, the course
of its execution is fully determined, where being determined here means without inuence
from what is happening at the higher levels. Furthermore, if we also know how long the
policy has been executed, or equivalently its starting time, the current state of its execution
is also determined. Thus, the higher level policies can only inuence the current state of
execution of �kt either through its starting state or starting time. In other words, if we know
�kt together with its starting time and starting state, then the current higher level policies
are completely independent of the current lower level policies and the current state. The
theorem 1 below formally states this in a precise form. Note that the condition obtained
is the strictest: if one of the three conditional variables is unknown, there are examples of
AMMs in which the higher level policies can inuence the lower level ones.

Theorem 1. Let �kt and bkt be two random variables representing the starting time and the

starting state, respectively, of the current level-k policy �kt : �
k
t = maxft0 < t j ekt0 = Tg and

bkt = s�k
t

. Let �>kt = f�k+1t ; : : : ; �Kt g denote the set of current policies from level k + 1 up

to K, and �<kt = fst; �0t ; : : : ; �k�1t g denote the set of current policies from level k � 1 down

to 0 together with the current state. We have:

�>kt ? �<kt j�kt ; bkt ; �kt (7)

Proof. We sketch here an intuitive proof of this theorem through the use of the Bayesian
network manipulation rules for context-speci�c independence which have been discussed in
4.1.1 and 4.1.2. An alternative proof that does not use CSI can be found in (Bui et al.,
2000).

We �rst note that the theorem is not obvious by looking at the full DBN in Fig. 8.
Therefore, we shall proceed by modifying the network structure in the context that we
know �kt .

At time �kt , all the policies at level k and below must terminate: el
�k
t

= T for all l � k.

Thus we can remove all the links from these policies to the new policies at time �kt + 1.

On the other hand, from time �kt + 1 until the current time t, all the policies at level k
and above must not terminate: elt0 = F for all l � k, �kt +1 � t0 < t. Thus we can group all
the policies at level l � k between time �kt +1 and t into one node representing the current
policy at level l.

These two network manipulation steps result in a network with the structure shown in
Fig. 10. Once the modi�ed network structure is obtained, we can observe that �>kt and
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�<kt are d-separated by �kt and b
k
t in the new structure. Thus �>kt and �<kt are independent

given �kt , b
k
t and �kt .

5. Policy Recognition

In this section we begin to address the problem of policy recognition in the framework of
the AHMM. We assume that a policy hierarchy is given and is modelled by an AHMM,
however the top level policy and the details of its execution are unknown. The problem is
then to determine the top level policy and other current policies at the lower levels given
the current sequence of observations. In more concrete terms, we are interested in the
conditional probability:

Pr(�Kt ; : : : ; �
0
t j ~ot�1)

and especially, the marginals:

Pr(�kt j ~ot�1); for all levels k

Computing these probabilities gives us the information about the current policies at all
levels of abstraction, from the current action (k = 0), to the top-level policy (k = K),
taking into account all the observations that we have up to date.

In typical monitoring situations, these probabilities need to be computed \online", as
each new observation becomes available. To do this, it is required to update the belief
state (�ltering distribution) of the AHMM at each time point t. This problem is generally
intractable unless the belief state has an eÆcient representation that a�ords a closed form
update procedure. In our case, the belief state is a joint distribution of K + 3 discrete
variables: Pr(�Kt ; : : : ; �

0
t ; st; lt j ~ot). Without any further structure imposed on the belief

state, the complexity for updating it is exponential in K.
To cope with this complexity, one generally has to resort to some form of approximation

to trade o� accuracy for computational resources. On the other hand, the analysis of the
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AHMM network in the previous section suggests that the problem of inference in the AHMM
can be tractable in the special case when the history of the state and terminating status
variables is known. Motivated by this property of the AHMM, our main aim in this section
is to derive a hybrid inference scheme that combines both approximation and tractable
exact inference for eÆciency. We �rst treat the special case of policy recognition where
the belief state of the AHMM has a tractable structure in 5.1. We then present a hybrid
inference scheme for the general case using the Rao-Blackwellised Sequential Importance
Sampling (RB-SIS) method in 5.2.

5.1 Policy Recognition: the Tractable Case

Here, we address the policy recognition problem under two assumptions: (1) the state
sequence can be observed with certainty, and (2) the exact time when each policy starts
and ends is known. More precisely, our observation at time t includes the state history
~st = (s0; : : : ; st) and the policy termination history ~lt = (l0; : : : ; lt). The belief state that
we need to compute in this case is Bt = Pr(�allt ; st; lt j ~st�1; ~lt�1) and its posterior after
absorbing the observation at time t: Bt+ = Pr(�allt j ~st; ~lt).

The �rst assumption means that the observer always knows the true current state and is
often referred to as \full observability". When the states are fully observable, we can ignore
the observation layer fotg in the AHMM and thus only have to deal with the AMM instead.
The second assumption means that the observer is fully aware when the current policy
ends and a new policy begins. If the policy hierarchy is constructed from the region-based
decomposition of the state space (subsection 3.2), the termination status can be inferred
directly from the state sequence. Thus for SRD policy hierarchies, only the full observability
condition is needed since the second assumption is subsumed by the �rst and can be left
out. Except for SRD policy hierarchies, these two assumptions are usually too restrictive
for the policy recognition algorithm presented here to be useful by itself. However, the
algorithm for this special case will form the exact step in the hybrid algorithm presented in
subsection 5.2 for the general case.

5.1.1 Representation of the belief state

We �rst look at the conditional joint distribution Pr(�allt ; st j ~st�1; ~lt�1). From the termina-
tion history ~lt�1, we can derive precisely the starting time of the current level-k policy:

�kt = maxf0g [ ft0 < tj ekt0 = Tg = maxf0g [ ft0 < tj lt0 � kg

On the other hand, knowing the starting time together with the state history also gives
us the starting state bkt . Thus, both the starting time and the starting state of �kt can be
derived from ~st�1 and ~lt�1. From Theorem 1, we obtain for all level k:

�>kt ? �<kt j�kt ; ~st�1; ~lt�1
In other words, given ~st�1 and ~lt�1, the conditional joint distribution of f�Kt ; : : : ; �0t ; stg
can be represented by a Bayesian network with a simple chain structure. We denote this
chain network by Ct � Pr(�allt ; st j ~st�1; ~lt�1) and term it the belief chain for the role it plays
in the representation of the belief state (Fig. 11(a)). If a chain is drawn so that all links
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Figure 11: Representation of the belief state

point away from the level-k node, we say that the chain has root at level k. The root of the
chain can be moved from k to another level k0 simply by reversing the links lying between
k and k0 using the standard link-reversal operation for Bayesian networks (Shachter, 1986).

Each node in the belief chain also has a manageable size. In principle, the domain of
�kt is �k, the set of all policies at level k, and the domain of st is S, the set of all possible
states. When K is large, we basically want to model a larger state space, and the set
of policies to cover this state space is also large. The sizes of these domains would most
likely grow exponential w.r.t. K. However, given a particular state, the number of policies
applicable at that state would remain relatively constant and independent of K. For each
policy �kt , we know its starting state bkt , which implies that �kt 2 �k(bkt ), the set of all
level-k policies applicable at bkt . Thus �k(bkt ) can be used as the \local" domain for �kt
to avoid the exponential dependency on K. Similarly, the domain for st can be taken as
the set of neighbouring states of st�1 (reachable from st�1 by performing one primitive
action). For a given state, we term the maximum number of relevant objects (applicable
policies/actions, neighbouring states) at a single level the degree of connectivity N of the
domain being modelled. The size of the conditional probability table for each link of the
belief chain is then O(N 2), and the overall size of the belief chain is O(KN 2).

We now can construct the belief state Bt from Ct. Since the current terminating status
is solely determined by the current policies and the current state, the belief state Bt can be
factorised into:

Pr(�allt ; st; lt j ~st�1; ~lt�1) = Pr(lt j�allt ; st) Pr(�
all
t ; st j ~st�1; ~lt�1) = Pr(lt j�allt ; st)Ct

Note that the variable lt is equivalent to the set of variables feKt ; : : : ; e1t g. Thus, the full
belief state Bt can be realised by adding to Ct the links from the current policies and the
current state to the terminating status variables ekt (Fig. 11(b)). The size of the belief state

476



Policy recognition in the Abstract Hidden Markov Model

0

1

k-1

k

k+1

K

e

e

e

e

eK

k+1

k

k-1

1

k-1

k

k+1

K

e

e

eK

k+1

k

(a) (b)

π

π

π

π

π

π

π

π

π

π

Figure 12: Belief state updating: from Bt to Bt+

would still be O(KN 2). If the state is a composite of many orthogonal variables, a factored
representation can be used so that the size of the belief state representation does not depend
exponentially on the dimensionality of the state space. We discuss factored representations
further under subsection 5.2.2.

5.1.2 Updating the belief state

Since the belief state Bt can be represented by a simple belief network in Fig. 11(b), we can
expect that a general exact inference method for updating the belief state such as (Kj�rul�,
1995) will work eÆciently. However, this general method works with undirected network
representation of the belief state distribution which can be inconvenient for us later on when
we want to sample from such a distribution. Here, we describe an algorithm that updates
the belief state in the closed form given by the directed network in Fig. 11(b).

Assuming that we have a complete speci�cation of the belief state Bt, i.e., all the pa-
rameters for its Bayesian network representation, we need to compute the parameters for
the new network Bt+1. This is done in two steps, as in the standard \roll-over" of the belief
state of a DBN: (1) absorbing the new evidence st, lt and (2) projecting the belief state
into the next time step.

The �rst step corresponds to the instantiation of the variables st, e
1
t ; : : : ; e

K
t in the

Bayesian network Bt to obtain Bt+ which is the conditional joint distribution of �Kt ; : : : ; �
0
t .

By checking the conditional independence relationships in Fig. 11(b), it is easy to see that
Bt+ again has a simple chain network structure. Thus, conceptually, the problem here is
to update the parameters of the chain Ct so as to absorb the given evidence to form a new
chain Bt+. This can be done by a number of link-reversal steps as follows.

To instantiate st, we �rst move the root of the chain Ct to st. The variable st then has
no parents and can be instantiated and deleted from the network (Fig. 12(a)).

To instantiate lt which is equivalent to the value assignment (eKt = F; : : : ; elt+1t = F; eltt =
T; : : : e1t = T ), starting from k = 1, we iteratively reverse the links from �k�1t to �kt and
from �kt to ekt (Fig. 12(b)). In algebraic forms, the �rst link reversal operation corresponds
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to computing the following probabilities:

Pr(�kt j st; e1t ; : : : ; ek�1t ) =
X
�
k�1
t

Pr(�kt j�k�1t ) Pr(�k�1t j st; e1t ; : : : ; ek�1t ) (8)

Pr(�k�1t j�kt ; st; e1t ; : : : ; ek�1t ) / Pr(�kt j�k�1t ) Pr(�k�1t j st; e1t ; : : : ; ek�1t ) (9)

and the second link reversal corresponds to:

Pr(�kt j st; e1t ; : : : ; ekt ) / Pr(ekt j�kt ; st; ek�1t ) Pr(�kt j st; e1t ; : : : ; ek�1t ) (10)

E�ectively, the k-th link reversal step positions the root of the chain Ct at �kt and absorbs
the evidence ekt . By repeating this link reversal operations with k = 1; : : : ; lt+1, we obtain
a new chain for Bt+ which has root at level lt+1. Note that there is no need to incorporate
the instantiations ekt = F for k > lt + 1 since they are the direct consequences of the
instantiation elt+1t = F . The parameters of the chain Bt+ are given below. The upward
links remain the same as those of Ct, while the marginal at level lt + 1 and the downward
links are obtained as the results of the link reversal operations above:

Pr(�k+1t j�kt ; st; lt) = Pr(�k+1t j�kt ); k � lt + 1

Pr(�kt j st; lt) = Pr(�kt j st; e1t ; : : : ; ekt ); k = lt + 1

Pr(�k�1t j�kt ; st; lt) = Pr(�k�1t j�kt ; st; e1t ; : : : ; ek�1t ); k � lt

In the second step, we continue to compute Ct+1 from Bt+. Since all the policies at
levels higher than lt do not terminate, �>ltt+1 = �>ltt , and we can retain this upper sub-chain
from Bt+ to Ct+1. In the lower part, for k � lt, a new policy �kt+1 is created by the policy

�k+1t+1 at the state st, and thus a new sub-chain can be formed among the variables �<ltt+1 with

parameters Pr(�kt+1 j�k+1t+1 ; st) = �
�
k+1

t+1

(st; �
k
t+1). Note that the domain of the newly-created

node �kt+1 is �k(st). The new chain Ct+1 is then the combination of these two sub-chains,
which will be a chain with root at level lt + 1 (see Fig. 13). Once we have the chain Ct+1,
the new belief state Bt+1 can be obtained by simply adding the terminating status variables
fekt+1g to Ct+1.

This completes the procedure for updating the belief state from Bt to Bt+1, thus allowing
us to compute the belief state Bt at each time step. Although the belief state is the joint
distribution of all the current variables, due to its simple structure, the marginal distribution
of a single variable can be computed easily. For example, if we are only interested in the
current level-k policy �kt , the marginal probability Pr(�kt j ~st�1; ~lt�1) is simply the marginal
at the level-k node in the chain Ct, and can be readily obtained from the chain parameters.

The complexity of the belief state updating procedure at time t is proportional to lt
since it only needs to modify the bottom lt levels of the belief state. On the other hand, the
probability that the current policy at level l terminates can be assumed to be exponentially
small w.r.t. l. Thus, the average updating complexity at each time-step is O(

P
l l=exp(l))

which is constant-bounded, and thus does not depend on the number of levels in the policy
hierarchy. In terms of the number of policies and states, the updating complexity is linear
to the size of a policy node in the belief chain, thus is linear to the degree of connectivity
of the domain.
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5.2 Policy Recognition: The General Case

We now return to the general case of policy recognition, i.e., without the two assumptions of
the previous subsection. This makes the inference tasks in the AHMM much more diÆcult.
Since neither the starting times nor the starting states of the current policies are known
with certainty, theorem 1 cannot be used. Thus, the set of current policies no longer forms
a chain structure as it did in Ct since the conditional independence properties of the current
time-slice no longer hold. We therefore cannot hope to represent the belief state by a simple
structure as we did previously. An exact method for updating the belief state will thus have
to operate on a structure with size exponential in K, and is bound to be intractable when
K is large.

To cope with this complexity, an approximation scheme such as sequential importance
sampling (SIS) (Doucet et al., 2000b; Liu & Chen, 1998; Kanazawa et al., 1995) can be
employed. In our previous work (Bui, Venkatesh, & West, 1999), we have applied an SIS
method known as the likelihoodweighting with evidence reversal (LW-ER) (Kanazawa et al.,
1995) to an AHMM-like network structure. However the SIS method needs to sample in the
product space of all the layers of the AHMM and thus becomes less accurate and ineÆcient
with large K. The key to get around this ineÆciency is to utilise the special structure of
the AHMM, particularly, its special tractable case, to keep the set of variables that need to
be sampled to a minimum.

The improvement of the SIS method to achieve this is has been presented in subsec-
tion 2.5 in the name of the Rao-Blackwellised SIS (RB-SIS) method. Rao-Blackwellisation
speci�cally allows the marginalisation of some variables analytically and only samples the
remaining variables. As a result, this reduces the averaged error, measured as the variance
of the estimator (Casella & Robert, 1996).
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In order to apply RB-SIS to the AHMM, the main problem is to identify which vari-
ables should be used as the Rao-Blackwellising variables and should still be sampled, with
the remaining variables being marginalised analytically. The key to choosing the Rao-
Blackwellising variables, as we have shown in 2.5, is so that if those variables can be observed,
the Rao-Blackwellised belief state becomes tractable. In subsection 5.1, we have demon-
strated that if the state history ~st and the terminating status history ~lt can be observed
then the belief state has a simple network structure and can be updated with constant av-
erage complexity. Thus, (st; lt) can be used conveniently as the Rao-Blackwellising variable
rt. Note that the variables ~lt are the context variables which help to simplify the network
structure of the AHMM, while the state variables ~st help to make the remaining network
singly-connected so that exact inference can operate eÆciently (see subsection 4.1.3).

5.2.1 RB-SIS for AHMM

We now discuss the speci�c application of RB-SIS to the problem of belief state updating
and policy recognition in the AHMM. Our main objective is to use RB-SIS to estimate the
conditional probability of the policy currently being executed at level-k given the current
sequence of observations Pr(�kt+1 j ~ot).

Mapping the RB-SIS general framework in subsection 2.5 to the AHMM structure, the
set of all current variables xt is now the set of current policies, terminating status nodes,
and the current state: xt = (�allt ; st; lt). The probability under estimation Pr(�kt+1 j ~ot) can
be viewed as an expectation by letting f(�allt ; st; lt) = Pr(�kt+1j�allt ; st; lt) so that:

�f =
X

�all
t
;st;lt

Pr(�kt+1j�allt ; st; lt) Pr(�
all
t ; st; ltj~ot) = Pr(�kt+1 j ~ot)

Using RB-SIS to estimate this expectation, we shall split xt into two sets of variables:
the set of RB variables rt = (st; lt), and the set of remaining variables zt = �allt which is the
set of all the current policies. The functional h, which depends only on the RB variables
and is obtained from f by integrating out the remaining variables (Eq. (5)), now has the
form:

h(~rt) = h(~st; ~lt) =
X
�all
t

Pr(�kt+1 j�allt ; st; lt) Pr(�
all
t j ~st; ~lt; ~ot) = Pr(�kt+1 j ~st; ~lt) (11)

which is the marginal Ct+1(�kt+1) from the belief chain at time t+ 1.
The RB belief state, which is the belief state of the AHMM when the RB variables are

known, becomes:

Rt = Pr(�allt ; st; lt; ot j ~st�1; ~lt�1; ~ot�1) = Pr(�allt ; st; lt; ot j ~st�1; ~lt�1) (12)

and is identical to the special belief state Bt discussed in subsection 5.1, except a minor
modi�cation to attach the observation variable ot.

From (11) and (12), both the h function and the RB belief state can be computed
very eÆciently using the exact inference techniques described in 5.1. Thus RB-SIS can be
implemented eÆciently with minimal overhead in exact inference.

The main RB-SIS algorithm for the AHMM is given in Fig. 14. Note that we only need
to sample the RB variables ~st and ~lt. For each sample i, in addition to the weights w(i),
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Begin
For t = 0; 1; : : :

For each sample i = 1; : : : ; N

Sample s
(i)
t ; l

(i)
t from B

(i)
t (st; ltj ot)

Update weight w(i) = w(i)B
(i)
t
(ot)

Compute the posterior RB bel state B
(i)
t+ = B

(i)
t (�allt js

(i)
t ; l

(i)
t ; ot)

Compute the belief chain C
(i)
t+1 from B

(i)
t+

Compute the new belief state B
(i)
t+1 from C

(i)
t+1

Compute h(i) = C
(i)
t+1(�

k
t+1)

Compute the estimator Pr(�kt+1 j ~ot) � f̂RBSIS =
PN

i=1 h
(i) ~w(i)

End

Figure 14: RB-SIS for policy recognition
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we also maintain a parametric representation of the Rao-Blackwellised belief state B(i)
t , and

the value of the h function for that sample h(i). The weights of the samples, together with
the values of the h function can then be combined to yield an approximation for �f .

Some details on how we can obtain the new samples at each time step are worth noting
here. Since we are using the optimal sampling distribution qt = Bt(st; ltj ot) to sample the
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RB variables st and lt, we need to perform the evidence reversal step.7 This can be done
by positioning the root of the belief chain Ct at st and reverse the link from st to ot. This
gives us the network structure for Bert = Bt(st; lt; �allt j ot) which is exactly the same as Bt
(see Fig. 15), except that the evidence ot has been absorbed into the marginal distribution
of st. The weight wt = Bt(ot) can also be obtained as a by-product of this evidence reversal
step. In order to sample st and lt from Bert without the need to compute the marginal
distribution for these two variables, we can use forward sampling to sample every variable
of Bert , starting from the root node st and proceeding upward. Since lt by de�nition is the
highest level of policy termination, the sampling can stop at the �rst level k where ekt = F .
We can then assign lt the value k � 1. Any unnecessary samples for the policy nodes along
the way are discarded. Once we have the new samples for st and lt, the updating of the
RB belief state from Bt to Bt+1 is identical to the belief state updating procedure described
in 5.1. The h function can then be obtained by computing the corresponding marginal of
the new belief chain Ct+1.

At each time step, the complexity of maintaining a sample (sampling the new RB
variables and updating the RB belief state) is again O(lt), and thus, on average, bounded
by a constant. The overall complexity of maintaining every sample is thus O(N) on average.
If a prediction is needed, for each sample, we have to compute h by manipulating the chain
Ct+1 with the complexity O(K). Thus the complexity at the time step when a prediction
needs to be made is O(NK).

In comparison with the use of an SIS method such as LW-ER, the RB-SIS has the
same order of computational complexity (the SIS also has complexity O(NK)). However,
while the SIS method needs to sample every layers of the AHMM, the RB-SIS method only
needs to sample two sequences of variables ~st, ~lt, and avoids having to sample the K policy
sequences f~�kt g. After Rao-Blackwellisation, the dimension of the sample space becomes
much smaller, and more importantly, does not grow with K. As a result, the accuracy of
the approximation by the RB-SIS method does not depend on the height of the hierarchy
K. In contrast, due to the problems of sampling in high dimensional space, the accuracy of
SIS methods tends to degrade, especially when K is large.

5.2.2 Performing Evidence Reversal with a Factored State Space

In many cases, the state space S is the Cartesian product of many state variables repre-
senting relatively independent properties of a state: st = (s1t ; s

2
t ; : : : ; s

M
t ). Since the overall

state space is very large, specifying an action by the usual transition probability matrix is
problematic. It is advantageous in this case to represent the state information in a factored
form, i.e., representing each state variable smt in a separate node rather than lumping them
into a single node st. It has been shown that using factored representations, we can specify
the transition probability of each action in a compact form since an action is likely to a�ect
only a small number of state variables and the speci�cation of the e�ects of actions has
many regularities (Boutilier et al., 2000).

7. The term evidence reversal is used in this paper to refer to a general procedure in which the link to
the observation node is reversed prior to sampling (Kanazawa et al., 1995), thus allowing us to sample
according to the optimal sampling distribution qt.
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The representation of the belief chain Ct and also the RB belief state Bt can take direct
advantage of this factored representation of actions. Indeed, the chain parameter Ct(stj�0t )
of the link from �0t to st is precisely the transition probability for the action �0t at the
previous state st�1 (note that st�1 is known due to Rao-Blackwellisation). This conditional
distribution can be extracted from the compact factored representation of �0t in the general
form of a Bayesian network of the variables fs1t ; s2t ; : : : ; sMt g. For our convenience, let us
denote this Bayesian network by F(:j�0t ). This network is usually sparse enough so that ex-
act inference can operate eÆciently. For example, in the special case where fs1t ; s2t ; : : : ; sMt g
are independent given �0t and st�1, F will be factored completely into the product of M
marginals of smt .

Although factored representations can be used as part of the RB belief state, care must
be taken when performing evidence reversal, i.e. to reverse the link from the state variable
to the observation node. In the procedure for evidence reversal discussed previously (see
Fig. 15), we �rst position the root of Ct at the node st, thus need to compute and represent
the distribution Pr(st). In the factored state space case, this becomes a joint distribution
of all the state variables fs1t ; s2t ; : : : ; sMt g. Without conditioning on the current action �0t ,
the factored representation of the state variables fsmt g cannot be utilised, thus resulting in
complexity exponential in M .

The key to get around this diÆculty is to always keep the speci�cation of the distribution
of the current state conditioned on the current action, not vice versa. Thus, when computing
Bert = Bt(:jot), we �rst position the root of the chain Ct at �0t , and then reverse the evidence
from ot to both �0t and st. In algebraic form, we use the following factorisation of the joint
distribution of the current action and state given the current observation:

Pr(�0t ; stjot) = Pr(stj�0t ; ot) Pr(�0t jot) (13)

Fig. 16 illustrates this evidence reversal procedure. In the model depicted here, F can
be an arbitrary Bayesian network. The observation model can be speci�ed by attaching the
observation nodes fo1t ; o2t ; : : :g to the state variables. The overall network representing the
distribution Pr(st; ot j�0t ) will be denoted by Fobs(:j�0t ).

We �rst look at the �rst term in the RHS of (13). Let Fer(:j�0t ; ot) represent the
distribution Pr(st j�0t ; ot). Note that Fer can be obtained by conditioning Fobs(:j�0t ) on the
observation ot. This can be achieved by applying an exact inference method such as the
clustering algorithm (Lauritzen & Spiegelhalter, 1988) on the network Fobs(:j�0t ).

For the second term in the RHS of (13), we note that:

Pr(ot j�0t ) =
X
st

Pr(st; ot j�0t ) =
X
st

Fobs(st; otj�0t )

This integration can be readily obtained as a by-product when performing the above clus-
tering algorithm on Fobs(:j�0t ). Once Pr(ot j�0t ) is known, we can compute Pr(�0t j ot) by:

Pr(�0t j ot) / Pr(ot j�0t ) Pr(�0t )

This shows that the belief state after evidence reversal Bert = Bt(:j ot) still has a simple
structure that exploits the independence relationships between the state variables fsmt g
given the current action �0t . Sampling the RB variables from this structure can proceed as
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Figure 16: Evidence reversal with factored state space

follows: Pr(�0t j ot) is �rst used to sample �0t ; Fer(stj�0t ; ot) is then used to sample st. Once
we have obtained the sample for �0t and st, we can proceed to sample the remaining nodes
in the network Bert to obtain a sample for lt as usual. Finally, we note that the weight
wt = Pr(ot) can also be computed eÆciently by:

Pr(ot) =
X
�0
t

Pr(ot j�0t ) Pr(�0t )

In this evidence reversal procedure, for each value of �0t , we need to perform exact
inference on the structure of Fobs(st; otj�0t ). Thus the complexity of this procedure heavily
depends on the complexity of the network structure of F . However, as we have noted,
due to the nature of the factored representation, F usually has a sparse structure so that
exact inference can be performed eÆciently. For example, in the special case where F
is completely factored into the product of M independent state variables which are then
independently observed, the complexity becomes linear w.r.t. M .

6. Experimental Results

In this section, we present our experimental results with the policy recognition algorithm. In
subsection 6.1, we demonstrate the e�ectiveness of the Rao-Blackwellised sampling method
for policy recognition by comparing the performance of our Rao-Blackwellised procedure
against likelihood weighting sampling in a synthetic tracking task. In subsection 6.2, we
present an application of the AHMM framework to the problem of tracking human be-
haviours in a complex spatial environment using distributed video surveillance data.
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6.1 E�ectiveness of Rao-Blackwellisation

To demonstrate the e�ectiveness of the Rao-Blackwellised inference method for AHMM, we
again consider the synthetic tracking task in which it is required to monitor and predict
the movement of an agent through the building environment previously discussed in sub-
section 3.3. The structure of the AHMM used is the same as the one shown in Fig. 5. The
parameters of the policies are chosen manually, and then used to simulate the movement of
the agent in the building. To simulate the observation noise, we assume that the observa-
tion of the agent's true position can be anywhere among its 8 neighbouring cells with the
probabilities given by a prede�ned observation model.
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Figure 20: EÆciency coeÆcients of SIS and RB-SIS

We implement the RB-SIS method (with re-sampling) and use the policy hierarchy
speci�cation and the simulated observation sequence as input to the algorithm. In a typical
run, the algorithm can return the probability of the main building exit, the next wing exit,
and the next room-door that the agent is currently heading to. An example track is shown
in Fig. 17. As the observations about the track arrive over time, the prediction probability
distribution of which main building exit the track is heading to is shown in Fig. 18.

To illustrate the advantage of RB-SIS, we also implement an SIS method without Rao-
Blackwellisation (LW with ER and re-sampling (Kanazawa et al., 1995)) and compare the
performance of the two algorithms. We run the two algorithms using di�erent sample pop-
ulation sizes to obtain their performance pro�les. For a given sample size N , the standard
deviation (�(N)) over 50 runs in the estimated probabilities of the top-level policies is used
as the measure of expected error in the probability estimates. We also record the average
time taken in each update iteration.

Fig. 19(a) plots the standard deviation of the two algorithms for di�erent sample sizes.
The behaviour of the error follows closely the theoretical curve �(N) = c=

p
N , or �2(N) =

c2=N , with cSIS � 0:26 and cRB�SIS � 0:055. As expected, for the same number of samples,
the RB-SIS algorithm delivers much better accuracy.

Fig. 19(b) plots the average CPU time (T ) taken in each iteration versus the sample
size. As expected, T (N) is linear to N , with the RB-SIS taking about twice longer due to
the overhead in updating the RB belief state while processing each sample.

Fig. 19(c) plots the actual CPU time taken versus the expected error for the two algo-
rithms. It shows that for the same CPU time spent, the RB-SIS method still signi�cantly
reduces the error in the probability estimates.

Note that for each algorithm, the quantity � = �2(N)T (N) is approximately constant
since the dependency on N cancels one another out. Thus, this constant can be used as an
eÆciency coeÆcient to measure the performance of the sampling algorithm independent of
the number of samples. For example, if an algorithm has a twice smaller coeÆcient, it can
deliver the same accuracy with half CPU time, or half the variance for the same CPU time.
Fig. 20 plots the eÆciency coeÆcients for both SIS and RB-SIS, with �SIS � 0:0018 and
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�RB�SIS � 0:000235. This indicates a performance gain of almost an order of magnitude
(8 folds) for RB-SIS.

6.2 Application to Tracking Human Behaviours

Using the policy recognition algorithm, we have implemented a real-time surveillance system
that tracks the behaviour of people in a complex indoor environment using surveillance video
data. The environment consists of a corridor, the Vision lab and two oÆces (see Fig. 21).
People enter/exit the scene via the left or the right entrance of the corridor. The system
has six static cameras with overlapping �eld of views which cover most of the ground plane
in the scene.

The entire environment is divided into a grid of cells, and the current cell position of
the tracked object acts like the current state in our AHMM. The cameras are calibrated so
that they can return the current position of the tracked object on the ground, however the
returned coordinates are unreliable as the cameras have to deal with noisy video frames and
occlusion of objects in the scene. For more information on how low-level tracking is done
with multiple cameras, readers are referred to (Nguyen, Venkatesh, West, & Bui, 2002).
We assume that the observation of a state can only be in the area surrounding it, thus the
observation model is a matrix specifying the observation likelihood for each cell within a
neighbourhood of the current state.

The policy hierarchy for behaviours in this environment is constructed as follows. First,
we construct the region hierarchy with three levels. At the bottom level, we identify 7
regions of special interest: the corridor, the two oÆces, the areas surrounding the Linux
server, NT server, printer, and the remaining free space in the Vision lab (Fig. 21). At the
higher level, all regions in the Vision lab are grouped together. The top level consists of the
entire environment. The policy hierarchy representing people's behaviors has three levels
corresponding to the three levels of the region hierarchy (see Fig. 23). At the bottom level,
we are interested in the behaviours that take place within each of the 7 regions of interest.
For example, near the Linux server, the person might be using the Linux machine, or simply
passing through that region, leading to two di�erent policies. Similar policies are de�ned
for the NT server region, the printer region, and the two small oÆces. In the corridor
and inside the Vision lab (region 1 and 5), we construct di�erent policies corresponding to
the di�erent destinations that the person is heading to. Region 5 also has a special policy
representing the \walk-around" behaviour. At the middle level, three policies are de�ned
for the corridor and oÆce space representing a person's plan of exiting this space by the
left/right entrance or by the door of the Vision lab. We de�ne only one policy for the Vision
lab to represent the typical behaviour of a lab user (e.g., go to Linux server, followed by
go to printer).8 Finally, for the top level region (the whole environment), we de�ne two
policies representing a person's leaving the scene via the left/right entrance.

Fig. 21 and 22 show two concurrent trajectories of two di�erent people in this environ-
ment. Some sample video frames captured by the di�erent cameras in the system are shown
in Fig. 24.

With the AHMM model de�ned above, and a sequence of observations returned by
the cameras, we �rst determine the performance pro�les of RB-SIS and SIS in this real

8. If we consider di�erent groups of lab users, each group might give rise to a di�erent policy at this level.
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(a) (b)
Figure 24: (a) Person 1 enters the scene and (b) Person 2 enters the scene.
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Figure 25: Performance of RB-SIS and SIS with real tracking data
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Figure 26: The probabilities that person 1 is leaving the scene via the entrances (top level
policies)

environment. The two algorithms behave in a similar way as in the previous experiment
with simulated data. Fig. 25 shows the error curve against the CPU time for the two
algorithms. The eÆciency co-eÆcient for RB-SIS in this case is �RB�SIS � 0:011, and for
SIS is �SIS � 0:06. This shows that the RB-SIS still performs about 5 times better than
SIS in this domain.

In the surveillance system, the low level tracking module returns the observations at
the rate of approximately two per second. The observation is then passed to the RB-SIS
algorithm which produces the probability estimate of the current policy at di�erent levels
in the hierarchy. At the moment, our surveillance system can run in real time using two
AMD 1G machines. Examples of the output returned by the system for the two trajectories
in Fig. 21 and Fig. 22 are given below.

Fig. 26 shows the probabilities that person 1 is exiting the environment by the left
or right entrance (denoted by pleft e and pright e respectively). At the beginning, pleft e
increases when person 1 is heading to the left entrance (see the trajectory in Fig. 21). Then,
pleft e is approximately constant from time slice 50 when person 1 is inside the Vision lab.
This is because only one middle level policy is de�ned for the Vision lab and his movement
inside the lab is independent of his �nal exit/entrance. At time slice 310, pleft e decreases
when person 1 is leaving the lab, turning right, and entering oÆce 2. Then, it increases and
approaches 1 when he is leaving oÆce 2, turning left, and going towards the left entrance.
In contrast, pright e falls quickly to zero during this time.

We now look at the results of querying of the bottom level policies. Fig. 27 shows the
distribution of the possible destinations of person 2 from time slice 180 to time slice 260,
when he is in region 5 (see the trajectory in Fig 22). The probabilities obtained show that
the system is able to correctly detect the \walk-around" behaviour.

The �nal result (Fig. 28) shows the inferred behaviours of person 1 when he is at the
Linux server region. Initially, the probabilities for \using Linux server" and for \passing
through" are the same. As the person stays in the same position for an extended period of
time, the system is able to identify the correct behaviour of person 1 as \using the Linux
server".
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Figure 27: Behaviours of person 2 inside the Vision lab
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Figure 28: Behaviour of person 1 inside the Linux server region
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7. Related Work in Probabilistic Plan Recognition

The case for using probabilistic inference for plan recognition has been argued convincingly
by Charniak and Goldman (1993). However, the plan recognition Bayesian network used
by Charniak and Goldman is a static network. Thus their approach would run into prob-
lems when they have to process on-line a stream of evidence about the plan. More recent
approaches (Pynadath & Wellman, 1995, 2000; Goldman et al., 1999; Huber et al., 1994;
Albrecht et al., 1998) have used dynamic stochastic models for plan recognition and thus
are more suitable for doing on-line plan recognition under uncertainty.

Among these, the most closely related model to the AHMM is the Probabilistic State-
Dependent Grammar (PSDG) (Pynadath, 1999; Pynadath & Wellman, 2000). A compari-
son of the representational aspect of the two models has been discussed under subsection 3.4.
In terms of algorithms for plan recognition, Pynadath and Wellman only o�er an exact
method to deal with the case where the states are fully observable. When the states are
partially observable, a brute-force approach is suggested which amounts to summing over all
possible states. We note that even for the fully observable case, the belief state that we need
to deal with can still be large since the policy starting/ending times are unknown.9 Since
an exact method is used by Pynadath and Wellman, the complexity for maintaining the
belief state would most likely be exponential to the number of levels in the PSDG expansion
hierarchy (i.e., the height of our policy hierarchy). On the other hand, our RB-SIS policy
recognition algorithm can handle partially observable states and the Rao-Blackwellisation
procedure ensures that the sampling algorithm scales well with the number of levels in the
policy hierarchy. Furthermore, as we have noted in subsection 3.4, if we consider compound
policies, the PSDG can be converted to an AHMM. In our framework, a compound policy
�k = �k�1(1) ; : : : ; �

k�1
(m) can be represented just as a normal policy, with a slight modi�cation

to let the variable ek take on values between 1 and m+ 1, where the value m+ 1 indicates
that the compound policy has terminated. The policy recognition algorithm can then be
modi�ed to also work with this model.

Similar to our AHMM and the PSDG, the recent work by Goldman et al. (1999) also
makes use of a detailed model of the plan execution process. Using the rich language of
probabilistic Horn abduction, they are able to model more sophisticated plan structures
such as interleaved/concurrent plans, partially-ordered plans. However the work serves
mainly as a representational framework, and provides no analysis on the complexity of plan
recognition in this setting.

Other work in probabilistic plan recognition up to date has employed much coarser
models for plan execution. Most have ignored the important inuence of the state of the
world to the agent's planning decision (Goldman et al., 1999). To the best of our knowledge,
none of the work up to date has addressed the problem of partial and noisy observation
of the state. Most, except the PSDG, do not look at the observation of the outcomes of
actions, and assume that the action can be observed directly and accurately. We note that
this kind of simplifying assumptions is needed in previous work so that the computational
complexity of performing probabilistic plan recognition remains manageable. In contrary,
our work here illustrates that although the plan recognition dynamic stochastic model can

9. Of course, if an SRD policy hierarchy is considered then full observability alone is enough.
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be complex, they exhibit special types of conditional independence which, if exploited, can
lead to eÆcient plan recognition algorithms.

8. Conclusion and Future Work

In summary, we have presented an approach for on-line plan recognition under uncertainty
using the AHMM as the model for the execution of a stochastic plan hierarchy and its noisy
observation. The AHMM is a novel type of stochastic processes, capable of representing
a rich class of plans and the associating uncertainty in the planning and plan observation
process. We �rst analyse the AHMM structure and its conditional independence proper-
ties. This leads to the proposed hybrid Rao-Blackwellised Sequential Importance Sampling
(RB-SIS) algorithm for performing belief state updating (�ltering) for the AHMM which
exploits the structure of the AHMM for greater eÆciency and scalability. We show that the
complexity of RB-SIS when applied to the AHMM only depends linearly on the number of
levels K in the policy hierarchy, while the sampling error does not depend on K.

In terms of plan recognition, these results show that while the stochastic process for
representing the execution of a plan hierarchy can be complex, they exhibit certain condi-
tional independence properties that are inherent in the dynamics of the planning and acting
process. These independence properties, if exploited, can help to reduce the complexity of
performing inference on the plan execution stochastic model, leading to feasible and scalable
algorithms for on-line plan recognition in noisy and uncertain domains. The scalability of
the algorithm for policy recognition provides the possibility to consider more complex plan
hierarchies and more detailed models of the plan execution process. The key to achieve this
eÆciency, as we have shown in the paper, is a combination of recently developed techniques
in probabilistic inference: compact representations for Bayesian networks (context-sensitive
independence, factored representations), and hybrid DBN inference which can take advan-
tage of these compact representations (Rao-Blackwellisation).

Several future research directions are possible. To further investigate the AHMM, we
would like to consider the problem of learning the parameters of an AHMM from a database
of observation sequences, e.g., to learn the plan execution model by observing multiple
episodes of an agent executing the same plan. The structure of the AHMM suggests that
we can try to learn the model of each abstract policy separately. Indeed, if we can observe
the execution of each abstract policy separately, the learning problem is reduced to HMM
parameter re-estimation for level-1 policies, and simple frequency counting for higher-level
policies. If the observation sequence is a long episode with no clear cut temporal boundary
between the policies, the problem becomes a type of parameter estimation for DBN with
hidden variables, and techniques for dealing with hidden variables such as EM (Dempster,
Laird, & Rubin, 1977) can be applied.

Extensions can be made to the AHMM to make the model more expressive and suitable
for representing more complex agents' plans. For example, a more expressive plan execution
model such as the HAM model (Parr, 1998) can be considered so that state-independent
sequences of policies can be represented. The current model can also be enriched to consider
a set of top-level policies which can be interleaved during their execution. We expect that
these new models would exhibit context-speci�c independence properties similar to the

495



Bui, Venkatesh & West

AHMM, and Rao-Blackwellised sampling methods for policy recognition in these models
can be derived.
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