
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Policy Resolution for Workflow Management Systems

Christoph BujUer* Stefun Jablonskit

Digital Equipment GmbH, AIT

Vincenz-PrieBnitz-Str. 1

D-76131 Karlsruhe, Germany

Abstract

In this paper we Introduce Policy Resolution (PR) for

Workflow Management Systems (WFMS) as service to
assign work to agents. Policy Resolution is a frame-

swork for defining arbitrary role and organization mod-

els together with operations suiting the needs of Work-
flow Management Systems.

1 Introduction

Cooperative Information Systems (US) are character-
ized by cooperating agents, whereby agents are human
or non-human users. They have to fulfill simple tasks,
which can be accomplished by one agent, but mostly
will have to fulfill complex tasks, which require contri-
butions from multiple agents. If these complex tasks
are executed in a more or less predefined manner, they
are called business processes. Examples are order en-
try processes or travel expense claims [4]. Business
processes describe what has to be done at what point
in time (when).

In agreement with many other approaches to
process modeling (e.g. [S]), we want clearly distinguish
between the aspects what and when and the aspect
who. The latter specifies the agents, responsible and
eligible to execute (pieces of) processes. The separa-
tion a.llows to focus on the aspect, in the first, place
and to deal with the integration of the others at a
later time. This is a benefit since the attention of
a modeler is not distracted from other modeling as-
pects. But, most, implementations do not separate be-
tween process descriptions (what and when) and agent
assignment specifications (who) and only support pre-
sumed and static agent assignment strategies like sim-
ple role models which is not sufficient as we will see
later on. In this paper we present a general approach
to agent assignment, that supports the definition of
arbitrary, problem oriented agent assignment strate-

*Current Address: Technical University of Darmstadt, De-
partment of Computer Science, Institute of System Architec-
ture, Alexanderstr. 10, D-64283 Darmstadt, Germany, E-Mail:
busslarPisa.informatik.th-darmstadt.de

+Current Address: University of Erlangen-Ntinberg, Lnsti-

tute of Database Systems, Martensstr. 3, D-91058 Erlangen,
Germany, E-Mail: j ablonskieinf ormat ik. uni-erlangan de

gies, either in the context of processes or in any other
context of CIS (e.g. groupware) which is much more
powerful than the role models known. Therefore our
approach is a generic approach to respond to the gen-
eral question of who has to execute a task in CIS.

The benefit of a general approach is that it can
be applied to a large variety of problems in the task
assignment space. It also allows to tailor it to the spe-
cific requirements avoiding to “adjust the problem to
what the system allows to do”. So the main contri-
bution of this paper is to introduce generality to task
assignment design problems.

This paper concentrates on the discussion of agent
assignment in the context of processes. Since workflow
management systems (WFMS) are regarded as decent
execution platform for processes, we will discuss the
specific problem of who should execute a certain work-
pow.

A workflow comprises either a set of steps, each
step can in turn be a workflow again, a so-called sub-

workflow (what), and a precedence structure (when)

between the steps to define their execution order. At
runtime a workflow management system determines
the steps ready for execution for an initiated work-
flow. After a step is executed (by a person or more
general an agent, which also encompasses machinery
or software processes) the workflow system determines
the next steps of the workflow which are ready for ex-
ecution. Since we deal with complex workflows they
have to be assigned to multiple agents (e.g. people,
mechanical machines, software processes) in order to
be executed.

A workflow description traditionally references a
role to specify agents eligible to perform a task. In
most WFMS a role encompasses a set of agents. When
a task is ready for execution it is assigned to each
agent identified by the specified role. Real applica-
tions of WFMS in enterprises however show that the
concept of roles is not sufficient to cope with the over-
all requirements. Other kinds of task assignments to
agents are necessary like the direct assignment of a
task to an agent, the assignment of a task to a group
of agents (this is independent of the role concept), or
the assignment to a person relative to another one (e.g.

831
1060-3425/95 $4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Table 1: Principle concepts of task assignment

Concept Example Action of Policy Resolution

Agent Igor Check if agent Igor exists. In case it. does PR returns ok.

Role manager Search for all agents able to play the role manager. Policy Resolu-
tion returns all managers.

Classified manager(agent) Compute the manager of a given agent. Policy Resolution returns
Role the selected manager.

Conditional if amount > 1000 Compare if amount is greater than 1000. If this is true the manager
Expression then manager(agent) of a given agent is computed, otherwise the manager of the man-

else manager(manager(agent)) ager of a given agent is determined. Policy Resolution returns the
endif; manager or the manager of the manager.

manager of a clerk) or to the same person who already
executed a previous task. Examples for principle con-
cepts of task assignment are shown in the first two
columns of Table 1.

In order to support different problem specific kinds
of task/agent assignments (like the shown above)
we propose a framework called Policy Resolution

(PR). PR provides modeling elements to model the
organizational aspect (who). This comprises an or-
ganization structure to formally define the organiza-
tion’s struct#ure and population, to define agent pro-
files (called concepts in Table 1) as a way to select el-
ements from an organization structure as well as poli-
cies which define for each workflow the agents profiles
to be applied.

As said above, steps are assigned to agents. Be-
fore a step is assigned, a WFMS calls a system imple-
menting PR, the so-called Policy Resolution En-
gine (PRE), to find out the agents the step should
be assigned to. This is done for each workflow or step
to be executed. If a WFMS calls a PRE, the PRE finds
out, the appropriate policies, evaluates the agent pro-
files contained within these policies and returns the
result to the WFMS. The result is a set of agents.
The WFMS takes this set and assigns the step to each
agent within the set.

Column three of Table 1 shows the work PR is doing
for the different types of assignment.

As can be seen later on in more detail (Sections 3.5
and 4), PR is not only good for building a conceptual
schema but also has a certain semantics in terms of
execution of what is modeled. So it is a framework
which allows conceptual modeling as well as provides
an execution semantics.

If it turns out that workflows are assigned wrongly
or should be assigned differently due to changes in the
organization, t,he appropriate task assignments have
to be changed in order to adjust the assignment. So
PR is the place to look at if the assignment of steps
to agents are not as expected.

The paper is structured as follows. Section 2 intro-
duces a comprehensive example of a workflow. In this
context sample task assignment strategies are dis-

cussed. Section 3 introduces the Policy Resolution

Model (PRM) f ormally and models some of the sam-
ple tasks assignments of the example in Section 2. Sec-
tion 4 shows the architectural embedding of PRE into
a WFMS. Section 5 lists related work.

2 Travel expense claim workflow

In this section the sample workflow travel expense

claim is introduced. Figure 1 depicts its graphical rep-
resentation. The goal of this process is to reimburse a
member of a company who traveled and spent money.

Before the task assignment specifications (italic
text) are explained, we introduce how to read the
workflow specification of the travel expense claim.
In Figure 1 two kinds of workflows can be distin-
guished: composite and elementary workflows. Com-
posite workflows (Travel Claim TC, Preliminary Work
PW) are composed of further workflows, so-called sub-

workflows (fill, check, sign, reimburse, PW). Work-
flows which do not consist, of further subworkflows
are called elementary (fill, check, sign, reimburse)
and are referred to as steps. Elementary workflows
are linked to applications. In case of the travel claim
process it is a spreadsheet application. In general how-
ever, every elementary workflow can be linked to a
different application. The control flow between work-
flows (denoted by solid arcs) determines the order
of workflow execution that implements the expense
voucher. Data are exchanged between workflows indi-
cated by dotted arcs (for details see [7]). In our case it
is the file the spreadsheet application works on (SF).

Each workflow is associated with a task assignment
specification (dashed boxes) to describe the agents
which are eligible to execute it. In our example we
attach this specification as plain text; it will be for-
malized later on. Two kinds of task assignment spec-
ifications can be distinguished: local assignments (L)
with a scope limited to the workflow they are associ-
ated with (e.g. anyone for TC); global assignments (G)
with a scope of all the subworkflows of the workflow
they are associated with (e.g. members of company
for TC). These two types are introduced to reduce the
design specification code as well as to ease the control
of correctness.

832

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

TravelClaim TC \
:---~~anyone -.‘- d~~~~~~~~-~~i~-~~~ny _-_-:

r-----.------l-.-L-------------------------,

f

PreliminaryWork PW
: - - ~~auiomei;;-.- ~~~~~~~~~ ‘ok ;ame ~T~~~ -;;-~~;Isi~~-~*~ ‘ai i;i;‘:

L.-.-.---------?--,

r=manage; responsible
I

y=administration clerk
fog initiator of TC if responsible for OTOtiP

of ktiatormof TC .
/

- -- - L.-----J

Figure 1: Example: Travel Expense Claim Workflow

A travel claim (TC) can be started by anyone
(anyone). Agents working on a travel claim work-
flow (in subworkflows) have to belong to the com-
pany this travel claim is started in (members of
company). The preliminary work workflow (PW) is
started automatically (automatic). Automatic rep-
resents a system daemon that can also be regarded
as an agent. The subworkflows of PU have to be as-
signed to agents of t)he same group as the initiator
of the whole workflow (members of same group as
initiator of TC). The fill step has to be done
by the initiator (initiator of TC). The check step
has to be done by an agent able to play the role
secretary. The sign step has to be performed by
a manager responsible for the initiator if the amount
claimed is less than 1000 (manager responsible
for initiator of TC if amount < 1000); other-
wise the VP of the group has to be assigned (else
VP). The reimburse step has to be done by an ad-
ministration clerk responsible for the group of the
initiator of the travel claim (administration clerk
responsible for group of initiator of TC). Be-
cause the latter four workflows are elementary, no
global task assignment, specification must be provided.

The example shows that further concepts than roles
are used to bind agents to workflows:

l roles (e.g. manager, secretary, administration clerk)

l groups (e.g. administration, company)

l history dependencies (e.g. reference to initiator of a
process)

l organizational dependencies (e.g. member of com-
pany, member of same group, group of initiator)

l data dependencies (e.g. amount of reimbursement)

l competence/responsibility (e.g. responsible for)

The next section introduces the policy resolution
model which allows to define these concepts. To illus-
trate how the model is used to define task assignments
some aspects of the example in Figure 1 are modeled.

3 Policy resolution model for

workflow management systems

The software life cycle distinguishes an analysis and a
design phase. The analysis phase aims at understand-
ing the problem space whereas the design phase aims
at describing the implementation of the findings of the
analysis phase. To describe an implementation, con-
cepts have to be available, expressed in a specification
language. In this paper we deal with the design phase
of the organizational aspect of workflow management
and provide concepts as well as an language.

This section presents the Policy Resolution

ModeI (PRM) for WFMS. [2] shows a preliminary
form of PR. PR is an independent service that can
be used by arbitrary clients. In this paper, PR is ex-
plained in the context of workflow management sys-
tems to show a typical usage of it.

Together with the model a language is intro-
duced, the Policy Resolution Language (PRL).

Throughout the discussion of the PRM we formalize
the task assignment specifications of the travel claim
example shown in Figure 1 using PRL. PRL is tailored
to the specific needs of PR which are not reflected in
other languages. This can be observed looking at the
definition of Policies (Section 3.4), where specific key-
words are introduced. The language is not defined
completely here, since our emphasis is on demonstrat-
ing how it is used to fulfill the requirements from the
travel claim example of Section 2.

The PRM is introduced in several stages: First,
a way of defining arbitrary organization structures

333

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

is shown to be able to describe objects like roles or
groups, dependencies between those as well as com-
petence or responsibility. Next, we introduce agent
profiles which are like functions selecting subsets of
agents out of an organization database. These are
used to select appropriate agents for steps to be exe-
cuted. Sample role models and complex agent profiles
are presented in stage 3 to show how the modeling el-
ements of PR can be deployed. Stage 4 introduces the
concepts of policies. Policies are objects describing,
which agent selection has to be applied for a particular
workflow to find out. the appropriate agents. Stage 5
discusses t,he evaluation process of policy resolution
i.e. how all the elements work together. Finally, the
dynamics aspect of PR is discussed.

3.1 Organization structure

The example of Section 2 shows that task assignment
depends upon the organization structure to certain ex-
tend. Data describing who plays a certain role, which
group a person belongs to and what are the managers
of a person are captured in the organization structure
of a company. Since these definitions vary from en-
terprise to enterprise, PRM allows to model different
kinds of organization structures through certain basic
model elements.

A general framework like PRM has to enable the de-
finition of arbitrary organization structures. Because
we want to use an object oriented model to specify
organization structures we have to provide object and
relationship types to allow the definition of these struc-
tures. The object oriented model is easy to use in
context of organization modeling (it naturally maps
organization elements and their interrelationships), it
is familiar to most designers and handsome if a model
becomes complex. Furthermore, it allows to model
arbitrary structures. Object types describe the ele-
ments of an organization structure and relationship
types describe possible dependencies between the ele-
ments. Examples of object types are Agent or Group,

examples for relationship types are Manager-of or Re-
sponsible-for.

Enterprises using PRM can implement their own
organization structure and role model (e.g. [6, 11, 131)
according to their needs without being limited to a
presumed set of model elements. This is guaranteed
because arbitrary object and relationship types can be
defined and connected arbitrarily. Section 3.3 shows
how a particular role model as described in [6] can be
modeled that, way. It is chosen as an example and the
modeling elements of PRM described in the following
are used to model it. The following two definitions
introduce how object types and relationship types are
defined. Each object type has a name (typename) and
a list of properties (property-list). Each property
has a name (propertynarae) and is of a certain type
(property-type).

DEF 1: Policy Resolution Language - Specification
of Organization Structure: Object Types

OBJECT-TYPE type-name
PROPERTY property-list

property-list ::=
{property-name: property-type;>+

As examples we define the types Manager, Secretary,
Group’, and Agent. We only declare properties which
are relevant for the example in Figure 1.

OBJECT-TYPE Manager
PROPERTY name: String;

amount-to-sign: Integer;

/* amount a manager is allowed to

sign */

OBJECT-TYPE Secretary
PROPERTY name: String;

duty: Set(String);

/* set of duties a secretary has to

accomplish */

OBJECT-TYPE Group
PROPERTY name: String;

OBJECT-TYPE Agent
PROPERTY name: String:

tel#: Integer;

/* telephone number of an agent */
kind: {human, mechanical, program>;

Each relationship type is characterized by a name
(relationship-typename) a list of objects defining
which objects can be related (typename-list) and a
property list (property-list).

DEF 2: Policy Resolution Language - Specification
of Organization Structure: Relationship Types

RELATIONSHIP-TYPE

relationship-type-name(from-id, to-id)

OBJECTS type-name-list
PROPERTY property-list

type-name-list ::=
[object-type-name {from-id I to-id)

I relationship-type-name {from-id I to-id)]

C, type-name-list)

As examples we define the relationship t#ypes Mem-
ber-of, Plays, and Responsible-for.

'In our example we model a group as a set of agents. This
does not mean that this is the only possibility. h group could
also be modeledas a set ofroles.

834

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 199s

RELATIONSHIP-TYPE Member-of(a, g)
/* this relationship declares membership of

an agent to a group */

OBJECTS Agent a, Group g
PROPERTY part-time: Boolean;

/* defines if the membership to a
group is part time only */

RELATIONSHIP,TYPE Playsca, ms)

/* this relationship defines that an agent

can play the role manager or secretary */
OBJECTS Agent a, Manager ma, Secretary ma
PROPERTY {1

RELATIONSHIP-TYPE Responsible-forta, ag)
/* this relationship declares an agent respon-

sible for another agent or for a group */
OBJECTS Agent a, Agent ag, Group ag

PROPERTY I)

We refer to properties of object types or relation-
ship types by the notations object-typename.pro-
perty.name or relationship-type-name .proper-
tyname respectively. The object and relationship
types belong to a conceptual schema of an organiza-
tion structure. This has to be implemented and pop-
ulated in a system implementing PR (see Section 4)
to capture all instances of an real organization in the
system.

3.2 Agent profiles

For a workflow it has to be determined, who should
execute it. We have to specify which agents out of
the organization population are eligible. This is intro-
duced in the following through agent profiles. Each
workflow is associated (through a policy, see 3.4) with
an agent profile. In the example in Figure 1 we attach
this profiles as plain text (e.g. members of compa-
ny in ‘IX). Agent profiles should be formalized and
specified in a formal language to later on be eval-
uated by software. Agent profiles define a subset
of all available agents through propositions. For in-
stance, the profile members of same group as ini-
tiator of TC describes all agents which are in the
group the initiator belongs to. Agents as well as or-
ganization information like Groups and relationships
between agents are defined and stored in the organiza-
tion database. Agent profiles are therefore translated
into functions selecting agents according to some cri-
teria from an organization database. Often, criteria
refer to values of properties (of object or relationship
types). For example, human agents (agent. kind =
human) or members of group CAD (member-of (CAD))
should be selected.

Agent profiles should be reusable since they proba-
bly can be reused in different workflows. This means
that agent profiles must be parameterized. The sam-
ple profile members of same group as could be pa-
rameterized with an actual parameter John of type

Agent This would select members of John’s group.
In the example of Figure 1 this profile is parameter-
ized by the initiator of the travel claim workflow.

Agent profiles should be independent of objects
they are used by (e.g. a workflow). We call these
objects the environment of the use, shortly environ-

ment. Therefore, agent, profiles are defined indepen-
dently from the environment. However, sometimes an
agent profile depends on values of the environment
like in the travel claim example on the amount of re-
imbursement. This value has to be propagated to the
agent profile. How this is achieved is introduced in
Section 3.4.

Agent profiles should be described independently
from the way they are implemented. This means
that we have to provide an abstract language that de-
scribes agent profiles and a compiler which translates
the statements into executable code of some under-
lying system. Such an underlying system might be
a relational database. In this case an agent profile
gets translated into SQL statements. In another case
this might be a logic programming system. Then an
agent profile is translated into statements of a logic
programming language.

DEF 3: Policy Resolution Language - Specification
of Agent Profile

PROFILE profile-name (interface-description)
RETURNS variable-name: type-name

WITH requirement-list

interface-description ::=

/*empty*/
I name: type i, name: type)+

requirement-list ::=

<propositions about interface
variables and return variables>

As an example, we will define an agent profile that
describes managers that are responsible for an agent:

PROFILE Manager-responsible-for (an-agent: Agent)

RETURNS agent: Agent
WITH agent:

agent responsible-for an-agent

and agent plays manager

and agent .kind = human;
/* this specifies all agents such that

each of them is responsible for an-agent,

plays the role manager and is human. */

This could be implemented using SQL as follows (the
definition of tables is omitted for simplicity here):

select res-a.id

from agent res-a, plays p, responsible-for rf,
role ro

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

where res-a.kind = "human"
and p.agent-plays = res-a.id
and p.role = ro.id
and ro.name = "manager"
and rf.responsible-agent = res-a.id
and rf.responsible-for = an-agent;
/* an-agent regarded as parameter */

In case the organizational database would be an IMS
database system an implementation would look very
different. The same is true if a logic programming
system would be used for implementation. The orga-
nization structure would be facts and the agent profile
statements of a logic programming language.

3.3 Examples: role models and
complex agent profiles

The insufficiency of the role model to deal with more
complex situations is already shown in Sections 1
and 2. The next subsections show that agent pro-
files encompass the role concepts found in approaches
throughout the literature but also can express very
complex agent specifications that are much more pow-
erful than roles and are absolutely required.

3.3.1 Sample role model; Usually a role model
definition is threefold:

l it defines an object type Role

l it defines objects types available as role players, e.g.
users

l it defines role resolution, i.e. the way to find objects
able to play a certain role (role players).

There are several role models defined in the litera-
ture [2, 6, 11, 131. To show the power of agent pro-
file specifications one role model which is developed in
context of process modeling is defined here.

Curtis [6] defines the type role as <‘a coherent set of
process elements to be assigned to an agent as a unit
of functional responsibility”. Therefore the role object
type looks like

OBJECT-TYPE Role
PROPERTY name: String;

process-elements: Set(Process);

Role players are called agents in [6]. Curtis as-
sumes that agents are hunaan or non-human (ma-
chine). However, no other role player types like Group

are possible. Therefore the object type agent looks like

OBJECT-TYPE Agent
PROPERTY name: String;

kind: {human, machine);

Role resolution is described in [6] as “a single agent
can perform multiple roles and a single role may be
performed by multiple agents”. In order to describe
a profile for role resolution we have to define the re-
lationship Plays which associates roles with agents as
role players.

RELATIONSHIP-TYPE Plays(a, x-1
/* this relationship defines that an agent

can play a role */
OBJECTS Agent a, Role r

PROPERTY {I

Next, we have to define an agent profile which
implements role resolution. This profile is called
Role-players.

PROFILE Role-players (a-role: Role)
RETURNS agent: Agent
WITH agent:

agent plays a-role;
/* this specifies all agents that play
the named role */

So the definition of the sample role model is complete.
As shown the agent profile concept enables to define
that role model. If these elements are all we had to
model the example of Section 2 we had to give up. E.g.
the requirement to model manager of applicant or
the conditional statement of step sign could not be
expressed using the elements proposed by Curtis. Also
the role modelsin [ll, 131 can be defined with agent
profiles. This is however not demonst,rated here.

3.3.2 Complex agent profiles; To show how com-
plex agent profiles (which we need for our example)
are modeled we want to model the profiles Mem-
hers-of-same-group-as0 and Administration-clerk-res-

ponsible-for0 from Figure 1. As we will see later,
both specifications reuse the profile Group-oft). Since
the object types Agent, Group and the relationship
type Member-of and Responsible-for are a,lready de-
fined we only have to define the object type Adminis-

tration-clerk here.

OBJECT-TYPE Administration-clerk
PROPERTY name: String;

duty: Set(String);
/* set of duties of admin. clerk */

We have to define the profile Group-of(‘):

PROFILE Group-of (an-agent: Agent)
RETURNS group: Group
WITH group:

an-agent member-of group;
/* this specifies all groups an agent is
member of. */

The two complex profiles can be defined now:

PROFILE Members-of-same-group_as(an-agent: Agent)
RETURNS agent: Agent
YITH agent:

agent member-of Group-ofcan-agent);
/* this specifies agents which are member
of the same groups than an-agent */

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

PROFILE Administration-clerk-respon-

object; agent0 d enotes the corresponding method).
sign. amount0 is another example.

sible-for-group-of (an-agent: Agent)
RETURIiS agent: Agent

WITH agent:
agent responsible-for Group-of(an-agent)

and agent plays administration-clerk;

/* this specifies all agents which are respon-
sible for the groups an-agent is member of */

DEF 4: Policy Resolution Language - Specification
of Policy

POLICY policy-name

The examples show that agent profiles support
reusability. For instance, the profile Group-oft] could
be reused in both complex specifications.

3.4 Policies

ENVIRONMENT object-name /* workflow names */
SCOPE scope-definition
ASSIGNMENT rules
INTEGRITY expression

scope-definition ::= {LOCAL I GLOBAL)

Having on the one hand side workflow specifications
and on the other hand side agent profiles, a way
has to be provided to relate these in order to know,
which profile has to be evaluated for a given work-
flow. Therefore the concept of policy is introduced
t,o bind a version of an agent profile to an object of
t,he environment it is used, in our example to work-
flows. For instance, the agent profile Administra-
lion-clerk-responsible-for0 is bound to the reimburse
workflow through a policy. Since a policy is an object
by itself, a new version of it can be introduced with-
out changing a workflow or a profile, if the situation
requires it (the same applies for workflows and profiles
also, allowing to ease change management). Further-
more, a policy enables to reference data values of the
environment in agent specifications

rules ::= {if condition : profile ;I+

expression ::=

same-as object-name
1 different-from object-name

As an example the policy for the sign step is modeled:

POLICY signing-of-travel-claim

ENVIRONMENT TC.PY.sign
/* this policies applies for the sign

aorkfloa within PY vithin TC. */

SCOPE LOCAL
ASSIGNMENT

if sign.amountO < 1000:

A policy also enables to define additional integrity

rules that restrict further the selection of agents. For
example, the agent for the fill step (Figure 1) has to
be the same as the agent who started the travel claim
workflow. Another rule which is not applied in the
example is the rule different-from: agents assigned to
different workflows have to be different (separation of
duty).

manager-responsible-for(TC.agentO);
if sign.amount() >= 1000: VPO;

INTEGRITY Cl

A policy has a name (policyname). The object of
the environment (here: workflow) for which the pol-
icy applies to has to be declared (ENVIRONMENT). Be-
sides, it must be specified if the policy applies to the
workflow itself or to its subworkflows (SCOPE). A set of
assignment rules defines which profile an agent has to
fulfill for this workflow; more than one rule is possible,
to allow conditional task assignment (ASSIGNMENT).
Integrity expresszons are specified (INTEGRITY). Since
policies (as well as agent profiles) are independent
of WFMS the terms workflow, history and so on do
not appear in a policy specification. A workflow or
workflow history, more precisely variables or parame-
ters belonging to them, are only referenced in the
ASSIGNMENT clause, to tailor the policy for a specific
use.

In Section 2, we introduced the concept of scoping.
Local and global scopes are distinguished. In the ex-
ample of Figure 1, three task assignments have to be
considered for the workflow sign: the global policy
defined in TC saying that only members of the com-
pany get the subworkflows of TC assigned, the global
policy defined in PW saying that members of the same
group as the initiator of the travel claim get the sub-
workflows of PW assigned, and the local policy attached
to the sign step itself. The scope of policies is de-
clared within the SCOPE section of a policy definition.
Figure 2 represents graphically the scope of the poli-
cies defined within the travel claim expense workflow.
The rectangular areas denote the scope of the poli-
cies: uorkf louname-L denotes the locally scoped pol-
icy of the workflow aorkf louname, aorkf lowname-G
denotes the globally scoped policy of the workflow.

3.5 The evaluation process of
policy resolution

If values of the environment are needed, methods
of the environment objects are called. In the exam-
ple in Figure 1 the method TC.agent() returns the
agent who initiated TC(TCdescribes the environment

When policies are resolved for a workflow, the nested
scoping structures of policies have to be considered.
Therefore Policy Resolution (PR) works as follows.
The policy for a workflow currently worked on is eval-
uated first. If there are global policies applicable from
enclosing workflows, they are evaluated starting from

837

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii international Conference on System Sciences - 1995

TC-G

Figure 2: Scope of the Policies for the Travel Claim
Expense Workflow

the next outer to the outmost workflow (ancestors).
Optimization is possible by evaluating policies apply-
ing for subworkflows only once and storing the results
for the lifetime of the respective workflow. This avoids
re-evaluation whenever a subworkflow is assigned.

In the example of the subworkflow sign the policy
attached to the sign step itself is evaluated firstly.
Given the case that the amount is larger than 1000,
all VPs of the company are eligible. Secondly, the
global policy applying for the subworkflows of PW is
evaluated. This reduces the eligible VPs to the VPs of
the group the initiator belongs to. Thirdly, the global
policy for the subworkflows of TC is evaluated. This
does not influence the result of PR if we assume that
the organization structure contains only members of
the company and no external agents.

The following algorithm shows how policies for a
workflow vf are evaluated. It is the optimized version
since it stores the results of the evaluation of global
policies. The stored results of a workflow are deleted
as soon as its topmost ancestor workflow is finished.

resolvepolicy(IN of: Workflov,

OUT res: set-of(Agent))

begin

P-l := get~localpolicies(vf);

res := evaluate(uf,pl);
for each ancestor a of vf do:

res := res n get-globalpolicyresult(a)

endfor;
if not elementary(vf)
then p-g := getglobalpolicies(vf);

g := evaluatecvf ,pg);
storeglobal-policyresult(vf,g);

end-if;

end:

Since more than one policy can be specified for one
workflow they can potentially conflict (policy con-
flict). This is the case when for at least two poli-
cies the environment specification as well as the scopes
overlap. The easiest resolution is to compute the inter-
section of all policies applying for one workflow. This
is a default policy conflict resolution rule. More
sophisticated ones are possible, but not discussed here.

3.6 The dynamic aspect of
policy resolution

Organizations are dynamic systems. This dynamics of
organizations has to be considered in policy resolution.
In the following several aspects are discussed briefly:

l Changes of Organization Structure. The organiza-
tion changes from time to time because of its reor-
ganization or people leaving or joining it. Whenever
a change takes place, the representation of the orga-
nization, which is the organization structure and its
population has to be updated accordingly to reflect
reality as close as possible. A system implementing
PR has to provide therefore a management inter-
face which enables a user to adjust the organization
structure and/or its population.

l Status of Agents. In general, there might, be several
agents eligible for executing a step of a workflow.
However, choosing different agents might have an
influence on e.g. the execution time. One agent
might have a high workload and it therefore takes
time until the agent starts working on it. Another
agent might be idle and could start working immedi-
ately. Whenever a certain property of agents might
influence their selection (e.g. to speed up the work-
flow execution), this property has to be used appro-
priately in an agent profile (e.g. workload 5 50).

l Evaluation Time of Policies. In general, all the poli-
cies of a workflow could be evaluated at the time of
their instantiation. However, there are at least three
reasons why this might not be a good approach.
First of all, not all the data upon which evaluation
is based might be available (like history data). If
a policy relies on the information which agent exe-
cuted a certain step in a workflow, this step has to
be executed first before the policy can be evaluated
at all. Second, changes in the organization structure
after the workflow is started are not taken into con-
sideration following this approach. Third, changes
of policies or agent profiles after the start of a work-
flow are not considered in this approach either. To
take the latest changes into consideration, policies
are evaluated at the latest possible time, i.e. short
before a workflow is assigned.

l Exceptions. A system can behave intended or not
intended. If it behaves intended, everything is ok.
The not intended case (e.g. through a wrong spec-
ification) can be subdivided into expected and not

expected. The not expected case (e.g. system break)

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

is not considered here. However the not intended,
but expected case can be covered through policies
allowing a controlled exception handling. Imagine,
that no agent fits a profile. In this case a workflow
can be assigned to some supervisor. This can be
achieved by applying a if-then statement in a pol-
icy (if no agent fits then supervisor). Other expected
problems can be handled analogously.

Agent Synchronization. In general policies return
for a given workflow a set of agents. All these agents
are eligible to execute the workflow (otherwise the
policy would have been specified differently). How-
ever, in general not all of them should execute the
workflow but only a subset of them, in many cases
only one. A role can serve as example here. In case
a workflow is assigned to a role only one role player
should execute it, not all of them. To synchronize
the access, agent synchronization rules have been in-
troduced (see [3]) as a general way to describe, how
many agents out of a set are allowed to access a
commonly assigned workflow. Policies are extended
with these agent synchronization rules to not only
specify to whom a workflow is assigned but also how
the agents are synchronized.

Synchronous Work. WFM belongs to the class
of asynchronous agent coordination. This is be-
cause agents work in some sequence determined by
a WFMS and not (as in synchronous coordination
systems like conference systems or multi user edi-
tors) all at the same time. Despite the asynchro-
nous character of WFM, synchronous applications
can be embedded as applications (see Section 2).
In this case PR determines the initial set of agents
which participate in e.g. a conference session (or the
initial roles if the systems requires it) and provides
it at the time the application is called. If the con-
ference system allows to add or remove agents from
the session, this can be done independently of PR
of course, since PR is not concerned about matters
within applications but only within workflows.

Embedding of policy resolution

in workflow management

Having explained how the evaluation process of policy
resolution works itself, its embedding in a WFMS is
shown in the following.

Before going into the details of the embedding, our
proposed general architecture of WFMS is introduced
in terms of a collection of software servers ([4]). In
general, for each functionality required we introduce a
software server . E.g. there is one to deal with data
(Data Server), one to deal with the history (History

Server) and so on. The one of our concern here is the
Policy Resolution Engine (PRE). PRE contains
the organization structure as well as its population, all
agent profiles and all policies. In the center of all the
kernel orchestrates the software services, i.e. it calls

them whenever the provided functionality is required.
Figure 3 is a graphical representation of the proposed
architecture.

History Data
Server Server

k f

Application
Server

Notication ‘Synchronization
Server Server

Figure 3: Components of a WFMS

The next algorithm shows, how a kernel makes use
of PRE how its results influences the processing of
workflows. We concentrated on the parts using PRE.

vhile kernel not stopped do
if request to start vorkflov of type t

then add-to-running-vf(create(t));
end-if;

vf : = select-f ram-running-vf 0 ;

if some subvorkf lou finished in vf
or nevly-createdcvf)

then s := subvorkflovs of vf to be started

next ;
for each svf in a do

resolve-policy(svf, res) ;

for each agent a in res do

assigncsvf, a) ;
end-for;

end-for;
end-if;

end,vhile;

From the algorithm above it can be seen that PRM
is called shortly before the workflow is to be assigned
to agents. It is assigned to those agents PRE returns
as a result. This ensures that the latest update of the
information PRE makes use of is taken (e.g. organi-
zation structure or policies).

5 Related work

Exemplary we want to discuss the related approach de-
veloped in the office system Domino (see [9, lo]). The
Domino system is one of very few approaches which
factored out the organizational aspect to deal with it
separately.

The Domino system allows the specification of an
organization structure. Provided are four fixed ob-
ject types with fixed attributes: organizational-unit,
projects, jobs and employees. The Domino system does
not allow to add or modify the predefined types. There
is a set of predefined relationship types like parent-unit
or supervisor. These are, however, not explicit rela-
tionships but hidden in attributes of the types (im-
plicit relationships). Other relationships are derived

839

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

only like the member-of relationship. Access to his-
tory is not generally possible but only the initiator of
an office procedure can be referenced using a prede-
fined keyword initiator. Since in Domino the objects
and relationships are limited to describe the organi-
zational aspect the language to bind agents to office
procedures is limited also. Generally spoken, the ap-
proach within the Domino system is very initial and
therefore limited.

We also want to relate to some work done much
earlier than the Domino system. An early formal
model to specify office procedures can be found in [5],
called Office Procedure Model (OPM). This model is
mainly concerned about data and information flow,
based on an APN (augmented Petri-nets), an ICN
(information control net) and a form flow model. It
describes relationships among messages (forms), data-
bases, alerters and activities based on the idea that
an activity is trigger!, by an alert causing database
operations and message passing. OPM is intended to
represent office procedures and to coordinate office ac-
tivities. Chang et. al however go beyond describing
modeling concepts and provide an execution mecha-
nism for modeled office procedures with OPM. The
execution mechanism is based on three components, a
AMS (activity management system), an DBMS (data-
base management system) and a XMS (message ex-
change system). Interesting in the context of PR is a
component of their system, called IC (intelligent cou-
pler). This module of the system interfaces with the
outside world e.g. user interaction. So Chang et. al
realized that user interaction is necessary in an office
environment. However, in OPM there is no model-
ing concept which allows to model users at all. Their
model does not even talk about users. So the execu-
t,ion mechanism provides the notion of user interaction
despite the fact that the model does not know about
this. Consequently there is no notion of task or activ-
ity assignment either.

More recent related work (see [l, 8, 12, 131) is not
discussed here due to space limitations.

6 Summary

In this paper we have introduced Policy Resolution.
PRM provides a user-friendly framework for specify-
ing and executing policies as well as agent selections
and organization structures. Using an elaborated ex-
ample we explained how policy resolution can be used
to model arbitrary role models and how it can be ap-

plied to WFMS. Finally we gave a brief overview on
the implementat8ion of the PRE prototype.

A first prototype is implemented. The organiza-
tion structure as well as the agent profiles and policies
are stored in a relational database. The policy resolu-
tion algorithm is implemented in C++ on top of the
relational database. This algorithm allows a client to
evaluate policies for a given object of the environment.

References

PI

PI

[31

[41

151

1’31

[‘I

PI

PI

Agha, G.: The Structure and Semantics of Actor

Languages. In: Foundations of Object-Oriented Lan-
guages, Springer-Verlag, LNCS 489, 1990.

Bussler, C.: Capability Based Modeling. In: Proceed-
ings of the First International Conference on En-
terprise Integration Modeling Technology (ICEIMT),
Hilton Head, SC, USA, June 1992.

Bussler, C., Jablonski, S.: lmplementiny Agent Co-

ordination for Workflow Management Systems using

Active Database Systems. In: Proceedings of the 4th

International Workshop on Research Issues in Data

Engineering: Active Database Systems (RIDE-

ADS’94), Houston, Texas, USA, February 1994.

Bussler, C., Jablonski, S.: An Approach to Inte-

grate Workj7ow Modeling and Organization Model-

ing in an Enterprise. In: Proceedings of the Third

IEEE International Workshop on Enabling Tech-

nologies: Infrastructure for Collaborative Enterprises

(WET ICE), Morgantown, West Virginia, USA, April

1994.

Chang, S. K., Chart, W. L.: Transformation and Ver-

ification of Ofice Produres. In: IEEE Transactions of

Software Engineering, Vol. SEll, No. 8, Aug. 1985.

Curtis, B., Kellner, M., Over, J.: Process Modeling.

In: Communications of the ACM, September 1992,

Volume 35, Number 9.

Jablonski S.: Data Flow Management in Distributed

CZM Systems. In: Proceedings of the 3rd Interna-

tional Conference on Data and Knowledge Systems

for Manufacturing and Engineering, Lyon, France,

March 17-20, 1992.

Karbe, B., Ramsperger, N.: Concepts and Implemen-

tation of Migrating Ofice Processes. In: Informatik

Fachberichte 291, Springer-Verlag, Berlin, 1991.

Kreifelts, T.: Coordination of Distributed Work:

From Office Procedures to Customizable Activities. In:

Informatik Fachberichte 29 1, Springer-Verlag, Berlin,

1991.

[lo] Kreifelts, T., Seuffert, P.: Addressing in an Office

Procedunz System. In: R. Speth (Hrsg.) Message Han-

dling Systems, State of the Art and Future Directions,

Proc. IFIP WG 6.5 Work Conference on Message Han-

dling Systems, North-Holland, Amsterdam, 1988.

[ll] Lawrence, L.: The Role of Roles. In: Computers and

Security, Volume 12, Number 1, 1993.

[12] Medina-Mora, R., Winograd, T., Flores, R., Fle

res, F.: The Action Workj7ow Approach to Work-

flow Management Technology. In: Proceedings of the

ACM 1992 Conference on Computer-Supported Co-

operative Work, Toronto, Canada, 1992.

[13] Singh, B., Rein, G.: Role Interaction Nets (RIN): A

Process Description Formalism. MCC Technical Re-

port Number CT-083-92, MCC, Austin, Texas, USA.

840

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
1060-3425/95 $10.00 © 1995 IEEE

