
PoliPer: Policies for Mobile and Pervasive Environments

Luı́s Veiga and Paulo Ferreira
INESC-ID/IST, Distributed Systems Group, Rua Alves Redol N. 9,1000-029 Lisboa, Portugal

paulo.ferreira||luis.veiga@inesc-id.pt

ABSTRACT
The need for sharing is well known in a large number of distributed
applications. These applications are difficult to develop either for
fully wired or mobile wireless networks. Such difficulty arises not
only because of slow and unreliable connections in such networks
but also due to the great diversity of usage scenarios (even for a
single application). Currently, programmers are forced to deal with
system-level issues such as replication, consistency, security, etc.

PoliPer is a middleware platform, capable of providing the needed
flexibility for application development and runtime adaptability.
This way, applications can cope with the multiple requirements and
usage diversity found in mobile settings. PoliPer relies strongly on
the following features: i) the extensible capability to support the
specification and enforcement of runtime management policies; ii)
a plug-able set of basic mechanisms supporting object replication,
security, distributed transactions and code relocation; iii) a set of
pre-defined policies that control the mechanisms previously men-
tioned.

Previous systems are either less comprehensive (they address
fewer - or just one - aspects than PoliPer), or less flexible (they
are not adaptive). A preliminary prototype of PoliPer has been im-
plemented and evaluated with encouraging results.

Keywords
C.2.4 [Distributed Systems]: Distributed Applications; D.2.12 [In-
teroperability]: Distributed Objects

General Terms
Design, Languages

1. INTRODUCTION
Due to their intrinsic nature, execution environments, in mo-

bile and pervasive computing, suffer from great and diverse vari-
ations during application execution. These variations can either
be of qualitative (e.g., network connection or disconnection, spe-
cific devices like printers in device neighborhood, consistency and
security constrains) or quantitative nature (e.g., amount of usable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
3rd Workshop on Adaptive and Reflective MiddlewareToronto, Canada
Copyright 2004 ACM 1-58113-949-7 ...$5.00.

bandwidth, memory, power available). Applications should be able
to deal with this variability of execution environments. However,
application programmers should not be forced to account for ev-
ery possible scenario in their coding. This is unfeasible for two
main reasons: i) it is error-prone and difficult to cover all potential
situations, and ii) even if correctly performed, it is highly ineffi-
cient w.r.t. productivity. Furthermore, these changes often deal
with issues that deviate programmers from what they are supposed
to do: application-logic. Programmers should not explicitly code
non-functional concerns or aspects.

Therefore, this goal can only be achieved through automatic adap-
tation of applications and adaptation of the execution environment
itself. Reflective and adaptive middleware aims at solving these is-
sues by: i) mediating changes in the environment in a manner easily
handled by applications, and ii) reacting to changes by reconfigur-
ing itself (either its code, status, module organization) in order to
effectively respond to changes.

To address these issues, we propose an architecture fully based
on the definition, enforcement and application of declarative XML-
defined policies. The contribution of this paper is PoliPer, an ex-
tensible policy-driven architecture for mobile and pervasive envi-
ronments unifying management of several runtime aspects, compo-
nents and services. These include: transactional support, replica-
tion, application deployment, security, and resource management.

The rest of this paper is organized as follows. The next Sec-
tion presents the global architecture of PoliPer. Section 3 describes
policy usage in PoliPer. Section 4 presents a prototype implemen-
tation, test scenario and performance results. In Section 5 we com-
pare our work with others and Section 6 draws some conclusions.

2. ARCHITECTURE
PoliPer is a middleware platform capable of providing the needed

flexibility for application development and runtime adaptability, so
that applications can cope with the multiple requirements and us-
age diversity found in mobile settings. To achieve this, PoliPer
supports the specification and enforcement of a wide set of policies
that control a set of basic mechanisms. With PoliPer an application
programmer only has to worry with the so-called ”business-logic”.
The adaptability of applications to the particular running scenario
(resources available, consistency or security constraints, etc.) is
ensured automatically by PoliPer based on the policies provided.

PoliPer relies strongly on the following features: i) the extensi-
ble capability to support the specification and enforcement of run-
time management policies; ii) a plug-able set of basic mechanisms
supporting object replication, security, distributed transactions and
code relocation; iii) a set of pre-defined policies that control the
mechanisms previously mentioned.

PoliPer architecture is presented in Figure 1. Policies are stored

JVM or CLR

Operating System

Application Objects (possibly replicated)

class extension code

Object Replication

Assembly / Class Files

Extended Class Loader

Byte-code re-writer

user policies

machine
policies

application
policies

domain
policies

Policy
Engine

Transactional Support

Code Management

Event
Handling

Security

Context
Management

Figure 1: PoliPer architecture. Transactions, replication and coderelocation are policy-driven. Policies are enforced and mediated through event-
handling. Security module validates every action performed.

and categorized by nature. A policy engine receives events gener-
ated by PoliPer modules and applications, evaluates policy rules
and triggers events, handled by actions based on evaluation re-
sults. Every action is validated by a security module, itself, also
policy-driven. Code relocation uses an extended class-loader inte-
grated with byte-code modification capability. Object replication
and transaction management are performed according to specified
policies.

2.1 Policy Management
The policy engine is the main inference component that triggers

or mediates responses to events occurred in the system. Apart from
all the other existing (and possibly new) modules, security performs
a special role, since it must be enforced by auditing or inspecting
every system interaction.

The policy engine holds a variable set of policies to be enforced
in the system. Policies manage, in abstract, entities. Entities are
organized in an open, extensible, namespace-based hierarchy. The
entity set includes resources, properties, events, user data and con-
text information. Examples of entities are:
resource.network.connectivity.bluetooth,
property.transaction.optimistic,
event.replication.replicate-in.object.begin.

This hierarchy allows easy management of related entity-sets (e.g.,
resource.network.*). Furthermore, entity-groups can be referred to
with resort to regular expressions like
event.{replication,transaction}.*.begin.

A policy is a tuple:{Rules,Properties,Events,Actions}.
Rules manage property changes, event triggering and handling

with appropriate actions. The definition of a rule must include:

• a domain: a set of entities it relates to.

• a condition of applicability: a custom-predicate to further
filter rule application.

• an event to be triggered when the rule domain and condition
of applicability are met.

By decoupling the domain, the condition of applicability and the
actual action-code, the system can adapt to changes in the envi-
ronment and modify its own response accordingly. The difference
between domain and condition of applicability stems from static
versus dynamic analysis that is performed in each case.

Properties are entities with associated value (variable or not).
Events are specified by the policy and registered in the event-handling
module. Actions can be methods or code snippets, normally pre-
defined event-handlers.

2.2 Event Handling
In PoliPer, notifications to applications and to the various system

modules, are performed with resort to events. Provided the neces-
sary permissions, events can be defined either by policies (mainly)
or by applications. Events can also be triggered either by applica-
tions, by the system modules, or by policies when rules are evalu-
ated. Actions performed, when events are triggered, allow PoliPer
and applications, to adapt to changes in the execution environment.

An event is a triple:{Name,Source,UserData}.
As entities, events are organized in namespaces. As an advan-

tage, it allows event-handlers defined in policies to listen to specific
events, as well as a whole family level of related events, e.g.:
event.replication.replicate-in.object.begin,
event.replication.replicate-in.object.endor
event.replication.replicate-in.*

Thus, events are organized in a meaningful, yet open manner.
It enables regular expression definition of events to subscribe to.
This way, event names need not be fully known, or indicated ex-
haustively by the listener. Nevertheless they are intercepted and
handled by the subscribers.

Event jitter can be regarded as bumpiness in the continuous trig-
gering of events, possibly with contradictory response actions. This
phenomenon is frequent in execution environments (such as with
mobile and pervasive ones) with frequent changes in resources and
QoS available to applications. These changes can trigger possi-
bly contradictory measures and with short periods of time between
them. To react to them too soon, too often, may hinder system per-
formance and application behavior. In PoliPer, this may be avoided
with resort to properties (system, user or application defined) that
are evaluated both in the condition of applicability of the rule itself,
and possibly updated in the action handling the corresponding trig-
gered event. This process effectively filters events to the degree of
stability desired by applications, simplifying application-logic. A
straightforward example is a situation of intermittent connectivity
where an application is constantly being notified that connectiv-
ity is on, and then off. If the application needs a period of stable
connectivity, it can use a policy that monitors connectivity-related
properties. Policy actions hide these quick variations, and notify
the application only when there is minimum signal strength or, in
alternative, when some delta time has elapsed since the last time
connectivity was on.

2.3 Context Management
In PoliPer, there is a context management module. This mod-

ule performs resource abstraction and manages properties whose
values vary during execution. Abstraction enables representing
physical machine resources as sets of primitive context properties.
Examples include memory, connectivity, bandwidth available, etc.
For flexibility, resources, as entities, are also namespace-organized.

The actual mappings between basic/primitive resources and re-
source designations is performed by the context manager. Each of
these resources implies an architecture-dependent way of measur-
ing. This heterogeneity is masked, to the rest of the system, by a
low-level component in the context manager.

Situations like appearing devices, discovering remote resources
or application counterparts are also handled by the context man-
ager. The relevant properties are updated and the appropriate events
are triggered. In more general terms, any change to the properties
(resources, middleware state or user-defined properties) managed
by the context manager can potentially trigger associated events
defined by the policies loaded.

In our work we do not specifically address adapting resources
(and possibly replacing them with variants) but solely on represent-
ing them, in a flexible manner, and monitor their changing proper-
ties. Events to be triggered and actions to address them are de-
scribed in policies. Appropriate policies configure context man-
agement and its events, in order to allow applications to be notified
solely when these changes are stable or reach a certain threshold.

PoliPer does not try to manage resources centrally. This is per-
formed by the combination of security policies that monitor re-
source requests and context management that registers and notifies
resource shortage.

3. POLICY-DRIVEN MODULES
On top of the basic architecture, PoliPer specifies a set of pre-

defined policies and police-driven modules that manage specific
execution mechanisms.

3.1 Code Management
PoliPer supports the specification and enforcement of policies

concerning in which computer an application should run. In partic-
ular, based on the hardware and software characteristics available
in the neighborhood computers, it allows to decide where an appli-
cation should run or, even while it is running, to move it entirely (or
part of it) to another computer with more resources. These policies
may refer to devices explicitly, by categories (e.g. PDA, Laptop,
etc.) or, more generally, by demanding that specific capabilities
and resources be present.

PoliPer makes extensive use of code creation and modification.
This fundamental feature allows both to modify existing instruc-
tions and to create new ones; this can be done either when appli-
cations are compiled or at runtime. Consequently, on one hand,
we can run legacy code on PoliPer (in addition to new applications,
obviously) thus taking advantage of all its basic mechanisms (repli-
cation, security, etc.) even if such applications were programmed
without such in mind. On the other hand, we can modify an ap-
plication at runtime increasing its adaptability to a particular sce-
nario. In resource-constrained devices like PDA’s, this last option is
not readily available. To deal with this limitation, the programmer
must give hints, at development or compile-time, using declarative
attributes, so that special hooks may be inserted in the compiled
code. These hooks will then invoke the middleware that will re-
spond according to loaded policies and running context in the de-
vice.

3.2 Object Replication
PoliPer supports the specification and enforcement of policies

concerning the replication of objects. In PoliPer, object replication
is incremental and adaptive. Unless otherwise specified, it is per-
formed transparently to applications but can also be flexibly con-
figured by them. In particular, it allows the specification of:

• the best moment to create a replica.

• when to merge two or more replicas of the same object.

• the amount of objects to replicate at a given time (a cluster in
PoliPer).

• which branch of a graph should be further replicated.

• which objects should be swapped-out (i.e. dynamically re-
placed by a proxy and transfer the remaining objects to a
neighboring device).

This last functionality, when performed, may also trigger code
management events. This module functionality provides the nec-
essary byte-codes to the device temporary hosting the swapped ob-
jects.

The most relevant events are triggered with the replication (either
in or out) of each single object:
event.replication.replicate-in.object.begin
event.replication.replicate-in.object.end, and
event.replication.replicate-out.object.begin
event.replication.replicate-out.object.end

Additionally, there are two more sets of events with coarser gran-
ularity:
event.replication.*.cluster.*
event.replication.*.graph.*

The first set handles clusters (groups of object replicated in a sin-
gle time as a unit) and the second one addresses complete graph
branches. Different granularity of events, triggered at different
times, provide a basis for flexible management of different scenar-
ios w.r.t latency/bandwidth tradeoffs and consistency management.

3.3 Transactional Support
PoliPer also supports the definition and enforcement of trans-

action policies. They provide a flexible and adaptive model for
transactional support. This model is more suited to mobile and per-
vasive environments than the classic ACID model. It allows the
specification of transaction behavior w.r.t.:

• alternative sources to fetch objects.

• data consistency degree: whether specific objects, clusters,
or graphs, should be fetched from their home nodes, caching
nodes, or not required at all for transaction to proceed.

• whether to cache changes made to the data.

• atomicity required to complete transactions: transaction poli-
cies can allow, require or discard, at commit time, changes
made to specific objects, or to objects fetched from specific
locations.

• how failures are handled, e.g., automatically lower some of
the transaction demands in order to be able to commit some
of the work performed.

Transactional mechanisms rely on a lower-level, and coordinate,
replication mechanisms to provide objects to transactions. Exam-
ples of specific transaction support events are:
event.transaction.fetch.begin, event.transaction.commit.fail.

3.4 Security
PoliPer supports the specification and enforcement of security

policies. Security policies are used primarily for authorization pur-
poses and to monitor and limit resource utilization. This includes
hardware resources like processing power, network bandwidth, and
memory, as well as other software resources like GUI windows and
widgets.

As portrayed in PoliPer architecture, the security module also
monitors all interactions between event-handling (trusted and linked
to the policy engine) and every other module in the system. This al-
lows policies to enforce security in the execution of every aspect of
the other mechanisms provided by PoliPer. For instance, they pre-
vent policy deployment and event subscription without the required
permissions.

PoliPer also allows the specification of history-based security
policies [13] well adapted to mobile agents needs (e.g. prevent-
ing abusive resource consumption, enforcing chinese-wall or obli-
gation policies, etc.).

4. IMPLEMENTATION
A prototype implementation of PoliPer has been developed. It

runs on .Net (for desktop and laptop nodes) and .Net Compact
Framework (for SmartPhone and PocketPC). The primary program-
ming language used is C#. Policies are coded in XML. Since Re-
moting services are not available in .Net CF, web-services and SOAP
is used instead. Desktop machines have Internet Information Ser-
vices installed, and a small footprint mobile web-server is used in
PocketPC. In PoliPer prototype, we extended and integrated some
of our previous work regarding: i) security policies [4], ii) trans-
action policies [14], and iii) adaptive replication on mobile de-
vices [15]. Tests were performed with the following infrastructure:
a Pentium 4, 2.8 Ghz, 512 MB PC, an IPAQ 3360 Pocket PC con-
nected through a USB Bluetooth adapter at 700Kbps.

4.1 Evaluation
The prototype qualitative evaluation was done testing applica-

tion correct functionality w.r.t: security, code deployment, mobility,
replication, and optimistic transactional support; all in the presence
of various environment changes (connectivity, bandwidth, memory,
neighboring devices) triggering policy-defined behaviors.

A vast number of scenarios can be imagined to portray adapt-
able behavior of applications designed with adaptability in mind.
The developer is in charge of determining the situations the appli-
cation should respond and adapt to. Then, a set of policies should
be defined. They will configure the middleware to detect those sit-
uations, evaluate conditions of applicability, trigger the appropriate
events and run the corresponding actions.

Other relevant scenarios are those of dynamic adaptation, to some
extent, of applications that were designed without adaptability in
mind. With PoliPer, we can easily set up, for this purpose, the fol-
lowing example scenario.

A number of applications are running. They have already repli-
cated some data for local disconnected use. Application code sim-
ply navigates through object graphs; it is not aware of PoliPer (re-
member the applications were not designed with adaptability in
mind). The following policies are loaded and acting/reacting as
follows, with increasing priority:

• Policy P1 determines, for each application and according to
the available bandwidth, the size/depth of each replication
cluster.

• Policy P2 determines that whenever connectivity is back on,
and the application has accessed a threshold fraction of the
previously replicated objects, another cluster of objects should
be immediately pre-fetched.

• PolicyP3 determines that when there is Bluetooth connectiv-
ity, GPRS access should not be used, for economic reasons.

• PolicyP4 determines that whenever a threshold value of com-
munication cost has been reached, the user should be advised
and pre-fetching should be disabled. From then on, objects
should only be replicated on-demand by applications.

This set of policies could be installed in the system: i) by default,
ii) declaratively defined by an application programmer, iii) setup
by a system administrator, or iv) created by the user through an
interactive policy generation tool. This example clearly shows a
situation where policies can dynamically manage middleware and
application execution, without the need to write new application
code for adaptability to each scenario. In the example, application
code was simply extended in order to allow incremental replication.
More sophisticated behavior simply emerges from the concurrent
enforcement of this set of policies by PoliPer.

4.2 Performance
System performance was measured with the following micro-

benchmark addressing a specific aspect: object replication. In the
test, after an object replication policy was loaded in the system, se-
ries of iterations were executed on a list of hypothetical appoint-
ments with 300 elements with different payloads: 64 and 1024
bytes each. Therefore, as the list of appointments is iterated, in
each element object, an empty method is invoked.

When an object is not yet replicated, the respective events are
triggered by its proxy, and the replication mechanism takes over.
It replicates the object where the fault occurred. Additionally, a
policy-configurable number of other objects is also pre-fetched.
Such a set of objects is called a cluster in PoliPer. In the end of

64-byte objects

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20

40

60

80

10

0
12

0
14

0
16

0
18

0
20

0
22

0
24

0
26

0
28

0
30

0

invocations

ti
m

e
(m

s)

5

10

25

50

75

98

Figure 2: Performance results of incremental replication of objects
with 64-byte payload.

each test, 300 objects have been replicated. The replication mech-
anism was configured, by means of different policies, to replicate
objects, on-demand, with a depth of 5, 10, 25, 50, 75 and 98 objects
each time.

The graph in Figure 2 show that replication performance is mostly
latency-bound. It is more efficient when several (more than 25) ob-
jects are replicated each time. Overhead due to policy enforcing
is negligible and dominated by communication. Therefore, the in-
creased flexibility imposes very little cost w.r.t performance. Ad-
ditional results show that when object payload is raised from 64 to
1024 bytes (a sixteenfold increase), replication performance drops
only 60%.

5. RELATED WORK
Concerning the flexibility of the programming paradigm, PoliPer

can be related to several other middleware systems. With respect to
mobile transactions, most research considers networks where mo-
bile hosts connect via wireless to fixed base stations [1, 12, 16].
These solutions are typically client-server based and do not address
the adaptability needs of applications so that they can cope with the
multiple requirements and usage diversity found in mobile settings.

However, there are mobile transaction systems that use seman-
tic information to adapt the behavior of transactions. For example,
in Pro-Motion [16], data is encapsulated incompactsallowing the
definition of consistency rules to be applied to such data set as a
whole. In Clustering [11], it is possible to specify consistency de-
grees among replicated data. Moflex [8] also provides a mechanism
for describing the associated behavior while crossing wireless cells.
With Toggle [5], it is possible to specify different atomicity and
isolation degrees, by dividing a transaction in vital and non-vital
sub-transactions.

One of the most important works addressing security is Pon-
der [6]. It provides a general-purpose deployment model for se-
curity and management policies. Its declarative language is able
to express and specify some generic and complex security policies
such as role based access control (RBAC) policies. In particular,
the obligation policies provided by Ponder are used in an agent
platform [9] to specify mobility policies of agents. In this platform
application logic is completely separated from migration logic. Al-
though designed for mobile agents, this platform still does not con-
sider any type of support for history-based security (e.g. prevent-
ing abusive resource consumption, enforcing a chinese-wall policy,

etc.) which we believe to be important for mobile applications.
In PoliPer, system entities like policies, properties and events are

defined in a namespace-based hierarchy combined with regular ex-
pressions. A related approach is used for security policy files in the
Java language. In Java, permissions are defined in a class hierar-
chy. Access to system properties can be managed using wildcard
substitution when referring to property names. Java policy files are
designed solely for security purposes, i.e., granting or denying ac-
cess to resources. This approach is rather limitative for the purpose
of this work. In PoliPer, the range of policy use is broader. Further-
more, the middleware and applications can react to changes in the
system (resource management, access control, etc.) with definable
programmatic actions.

In [7], a re-configurable reflective middleware platform is de-
fined to meet varying transactional requirements from applications,
by supporting concurrently running transaction services.

QoS non-functional aspects are extracted and defined declara-
tively by contracts in [2]. Compatible contracts are combined straight-
forwardly. When conflicts among requirements from different con-
tracts arise, they are solved based on priority. Connectors effec-
tively externalize interactions and associations between objects. In
PoliPer, a contract can be regarded as a set of policies.

In [3], a publish/subscribe messaging model is presented, defin-
ing channels in a hierarchical manner. This hierarchy is reflective,
dynamic and de-coupled from publishers and subscribers. As a
consequence, there is no guarantee that a specific channel will exist.
PoliPer uses a namespace-based organization for entities (including
events), that can be accessed hierarchically and, for increased flex-
ibility, with resort to regular expression matching. In PoliPer, event
publishers and subscribers are also fully de-coupled.

In [10], resources are encapsulated and managed by an extensi-
ble framework. When necessary, resources are dynamically adapted
within the middleware to suit each requiring task. This operation is
performed through negotiation. The middleware keeps track of the
associations among resources and tasks. Resource and context rep-
resentation in PoliPer follows a related approach. Nonetheless, in
PoliPer, the focus is somewhat different. Instead of resource man-
agement and adaptation, it aims at adapting to resource variations.

In summary, previous systems are either less comprehensive (they
address fewer - or just one - aspects than PoliPer), or less flexible
(they are not adaptive). PoliPer comprehensively addresses impor-
tant aspects as object replication, transactional management, code
deployment and security, with a fully open policy-driven approach.

6. CONCLUSION
The main contribution of this work is PoliPer itself: a middle-

ware platform that helps programmers to develop distributed mo-
bile applications, by allowing them to focus on the application
logic.

With PoliPer, system-level issues such as object replication, abu-
sive resource consumption by mobile agents, transactional support,
etc. are automatically handled by the system. Most importantly, the
behavior of such basic mechanisms is policy-specified and auto-
matically enforced, making applications widely adaptable and flex-
ible to different usage scenarios.

A prototype implementation was developed and its performance
evaluated. The preliminary results are encouraging. In the future,
we intend to conclude and optimize PoliPer implementation, and to
port it to Java-based architectures.

7. REFERENCES
[1] Naser S. Barghouti and Gail E. Kaiser. Concurrency control

in advanced database applications.ACM Computing Surveys,
23(3):269–317, 1991.

[2] R. Cerqueira, S. Ansaloni, O. Loques, and A. Sztajnberg.
Deploying non-functional aspects by contract. InThe 2nd
International Workshop on Reflective and Adaptive
Middleware, Middleware 2003, Rio de Janeiro, Brazil, june
2003.

[3] E. Curry, D. Chambers, and G. Lyons. Introducing reflective
techniques to message hierarchies. InThe 2nd International
Workshop on Reflective and Adaptive Middleware,
Middleware 2003, Rio de Janeiro, Brazil, june 2003.

[4] Pedro Dias, Carlos Ribeiro, and Paulo Ferreira. Enforcing
history-based security policies in mobile agent systems. In
IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, jun 2003.

[5] R. A. Dirckze and L. Gruenwald. A toggle transaction
management technique for mobile multidatabases. In
Proceedings of the CIKM 98, pages 371–377, Bethesda, MD,
USA, 1998.

[6] N. Dulay, E. Lupu, M.Sloman, and N. Damianou. A policy
deployment model for the Ponder language. In7th
IEEE/IFIP International Symposium on Integrated Network
Management, Seattle, USA, 2001. IEEE press.

[7] Randi Karlsen and Anna-Brith Jakobsen. Transaction service
management: An approach towards a reflective transaction
service. InThe 2nd International Workshop on Reflective and
Adaptive Middleware, Middleware 2003, Rio de Janeiro,
Brazil, june 2003.

[8] Kyong-I Ku and Yoo-Sung Kim. Moflex transaction model
for mobile heterogeneous multidatabase systems. In
Proceedings of the 10th International Workshop on Research
Issues in Data Engineering, San Diego, California, 2000.

[9] Rebecca Montanari and Gianluca Tonti. A policy-based
infrastructure for the dynamic control of agent mobility. In
Proceedings of the IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, Monterrey
(USA), June 2002.

[10] N. Parlavantzas, G. Coulson, and G. Blair. A resource
adaptation framework for reflective middleware. InThe 2nd
International Workshop on Reflective and Adaptive
Middleware, Middleware 2003, Rio de Janeiro, Brazil, june
2003.

[11] Evaggelia Pitoura and Bharat K. Bhargava. Data consistency
in intermittently connected distributed systems.Knowledge
and Data Engineering, 11(6):896–915, 1999.

[12] K. Ramamritham and P. K Chrysanthis. A taxonomy of
correctness criterion in database applications.Journal of
Very Large Databases, 4(1), 1996.

[13] R. Sandhu. Separation of duties in computarized information
systems. InProceedings of the IFIP WG11.3 Workshop on
Database Security, Halifax, UK, September18–21 1990.

[14] Nunos Santos, Lúıs Veiga, and Paulo Ferreira. Transaction
policies for mobile networks. In5th IEEE International
Workshop on Policies for Dist. Systems and Networks(Policy
2004), 2004.

[15] Luı́s Veiga, Nuno Santos, Ricardo Lebre, and Paulo Ferreira.
Loosely-coupled, mobile replication of objects with
transactions. InWorkshop on Qos and Dynamic Systems.
10th IEEE International Conference On Parallel and
Distributed Systems(ICPADS 2004), 2004.

[16] Gary D. Walborn and Panos K. Chrysanthis. Supporting
semantics-based transaction processing in mobile database

applications. InSymposium on Reliable Distributed Systems,
pages 31–40, 1995.

