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This paper provides a method for testing for regime differences when regimes are long-lasting. Standard
testing procedures are generally inappropriate because regime persistence causes a spurious regression
problem – a problem that has led to incorrect inference in a broad range of studies involving regimes rep-
resenting political, business, and seasonal cycles. The paper outlines analytically how standard estimators
can be adjusted for regime dummy variable persistence. While the adjustments are helpful asymptoti-
cally, spurious regression remains a problem in small samples and must be addressed using simulation
or bootstrap procedures. We provide a simulation procedure for testing hypotheses in situations where
an independent variable in a time-series regression is a persistent regime dummy variable. We also
develop a procedure for testing hypotheses in situations where the dependent variable has similar
properties.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction The use of regime indicators (i.e., dichotomous or ‘‘dummy”
A growing body of empirical literature indicates that long-last-
ing regimes such as political cycles, business cycles, or seasons of
the year produce significant market return and return volatility dif-
ferentials. This paper revisits the question of whether political, sea-
sonal or business regimes display significant differentials and
demonstrates that once account is taken of regression variable per-
sistence the significance of most of the differentials disappears.
When long-lasting regimes are represented in a time-series regres-
sion model using indicator variables, the regression variables are
extremely persistent and undermine the use of standard OLS tests
of significance. After documenting the persistence properties of re-
gimes representing presidential party affiliation, business cycles,
and seasonalities, we outline how standard estimators can be ad-
justed for regime persistence, and demonstrate that, even after
adjustment, spurious regression remains a problem in small sam-
ples. We then provide a simulation procedure that allows research-
ers to properly test for regime differences in small samples and
show that many documented regime market return and return vol-
atility differentials are, in fact, illusory.
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variables) is commonplace in the economics literature. Usually,
they are used in a regression model to test a significant difference
in the intercept and/or slope where the data are observed under
different environments (e.g., a time-series regression model that
includes war-time and peace-time observations). What is often
overlooked, however, is that this test methodology carries with it
the implicit assumption that the regime dummy variables are
well-behaved. Despite the general presumption that the use of
dummy variables is innocuous in time-series regression, a dichot-
omous explanatory variable, like any other regressor, may be ex-
tremely persistent through time, thereby causing spurious
regression results to arise.

This particular spurious regression problem is rooted in the
work of Yule (1926) and Granger and Newbold (1974). They dem-
onstrate that pairs of independent random walks (i.e., independent
unit root processes) will be related according to standard inference
in an OLS regression not because the series are, in fact, related, but
because the series move together through time. The result is not
specific to random walks, however. Granger et al. (2001) show that
spurious regression results arise when two stationary series are
positively autocorrelated (and, hence, also move together through
time). Their simulation results indicate that the use of HAC stan-
dard errors helps with the problem, but spurious results still occur
for sample sizes commonly used in the literature. In independent
work, Ferson et al. (2003) focus on stock returns and show that a
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spurious regression problem arises when stock return time-series
(which have been shown to be positively autocorrelated over long
periods of time) are regressed on continuous explanatory variables
that are persistent (i.e., highly positively autocorrelated). They also
show that the problem is exacerbated by data mining for explana-
tory variables since highly persistent variables are more likely to
display apparent significance. Deng (2005) argues that a small
net autocorrelation in returns is caused by the opposing forces of
strongly autocorrelated expected returns and a negative moving
average error term. He suggests that the Newey-West lag length
be set as a fixed function of sample size to ameliorate the spurious
regression problem (see also Richardson and Stock (1989)). Kiefer
and Vogelsang (2005) provide analytical asymptotic distribution
results for fixed lag length HAC adjustments when errors are seri-
ally correlated.

This paper contributes to the literature by analyzing the prob-
lem of statistical inference in time-series regressions employing
persistent regime dummy variables. The problem and its solution
are critically important in economics, finance, and political science,
where dummy variables are often used in a time-series context. In
particular, we show that hypotheses of significant return and re-
turn volatility differences related to political, seasonal and busi-
ness cycle regimes can be rejected when the persistent dummy
variable problem is rectified. Our solution to the persistent dummy
spurious regression problem rests in simulation analysis, and we
address the cases in which the independent variable and the
dependent variable are dichotomous.

The paper is organized as follows. The first section demon-
strates that dichotomous independent variables can be highly per-
sistent in financial time-series and describes a simulation
procedure used to assess the influence of dummy variable persis-
tence and data mining on financial time-series regression results.
The second section uses the simulation procedure to reassess sta-
tistical inference concerning political, seasonal and business cycle
return and return volatility differences and shows many conclu-
sions reached using standard statistical inference1 are incorrect.
The third section examines spurious regression in probit models.
The dependent variable is assumed to be persistent and the indepen-
dent variable positively autocorrelated. Again, simulation analysis is
used to quantify the problem, and the simulation results are used to
gauge the significance of the results in past work. The fourth section
offers researchers some advice on how to avoid potentially incorrect
inference when a dichotomous independent variable in used within
a time-series regression framework. The final section provides a brief
summary.

2. The persistent regime indicator
dummy simulation procedure

Past research has acknowledged the potentially spurious role
dichotomous variables can play in time-series analysis.2 Enders
(1995, p. 275), for example, warns that econometric specification
problems can exist with dichotomous variable time-series regression
models due to autocorrelation of the error term: ‘‘the residuals
should approximate white noise. If the residuals are serially corre-
lated, the estimated model does not mimic the actual data-generat-
ing process.” Roll (1984, p. 877, fn. 25) also points out that dummy
variable regression models can be mis-specified due to regression er-
ror autocorrelation. In spite of the warnings, however, until recently,
1 Standard statistical inference is defined as OLS estimation with Newey and West
(1987) standard errors.

2 It is well-known that the ordinary least squares error independence assumption
can be violated in cross-sectional dummy variable regressions due to the self-
selection problem in treatment effect regression analysis (see, e.g., Greene (2003), p.
788).
no systematic analysis of the effects of persistent dummies on statis-
tical inference has appeared.

Recognizing this problem, Powell et al. (2007) take account of
the influence of a persistent dummy variable when examining
whether monthly stock market returns are significantly higher un-
der Democratic versus Republican presidencies. When testing for
presidential regime return differentials, they use simulation analy-
sis to adjust t-statistics and �R2’s for persistence-induced spurious
regression bias as well as for spurious regression bias in combina-
tion with data mining. Once adjusted for regression variable persis-
tence, the presidential regime dummy variable coefficient
estimates obtained in an important study by Santa-Clara and Val-
kanov (2003) are inside the corresponding confidence bounds for
spurious regression bias in three out of four stock index return ser-
ies analyzed; they are inside the corresponding confidence bounds
for all four series when both the effects of spurious regression bias
and data mining are considered. The results of Powell et al. (2007)
suggest that any difference in stock market performance under dif-
ferent political regimes is less than would be expected by chance.
While they demonstrate the importance of dummy variable persis-
tence, they do not provide a systematic analysis, nor do they indi-
cate the widespread importance of the problem.

In independent work, Harding and Pagan (2006) explain why
macroeconomic and financial researchers are likely to frequently
encounter binary random variables that are highly persistent.
Examples cited include economic cyclical states (e.g., recessions
and expansions), bull and bear markets, financial market crises,
hot and cold IPO markets, and booms and slumps in commodity
or real estate markets. They emphasize that employing binary vari-
ables is a very popular strategy because of the roles of these vari-
ables in decision-making (e.g., avoiding downturns), explanatory
relationships (e.g., estimating output gaps), and the understanding
of cyclical features or inter-relationships (e.g., growth cycle fea-
tures, or the relationship between bull markets and economic up-
turns). Nevertheless, the process of classifying these binary
variables often creates, by construction, non-independent, highly
persistent series because the cyclical states are defined to be sus-
tained so that they are economically meaningful (e.g., the classifica-
tion rules tend to ignore month by month noise and instead focus
on lower frequency cyclical movements). They recommend using
appropriate binary variable lags in non-parametric estimation
when persistent dummy variables are used in time-series regres-
sion, and illustrate their estimation approach using term structure
prediction of recession turning points. A similar recommendation,
not specific to dummy variables, is made by Granger et al. (2001)
who state that the problem of persistent OLS regression variables
can be addressed by improving regression model specification
using lags of the dependent and possibly the independent variable.

In related work, Pesaran and Timmerman (2006) emphasize the
importance of serially correlated discrete data in economic and fi-
nance time-series analysis applied to problems such as the study of
economic cyclical states as well as prediction of the direction of
change of GDP growth, inflation, interest rates, or the stock market.
They develop a trace canonical correlation test using dynamically
augmented reduced rank regressions to account for serial correla-
tion when one discrete random variable is used to predict another.
Their approach is applicable to tests of market timing skills or busi-
ness cycle analysis, and they illustrate their test with an applica-
tion to forecasting GDP growth using survey data.

Our paper directly accounts for binary variable persistence in
standard OLS regression using simulation analysis, as introduced
and outlined below.3 Beforehand, however, it is, perhaps, useful to
3 The approach accounts for persistence without altering regression model
specification.



4 Naturally, different simulation results will be obtained depending on the nature
of the assumed process. We choose an AR(1) since it is frequently used to model the
infrequent trading effect in stock market returns. See, for example, Lo and MacKinlay
(1990a) and Stoll and Whaley (1990).
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demonstrate how prevalent the use of dichotomous explanatory
variables is in the time-series regression analysis literature. Table
1 lists a number of recent studies that use regime return and return
volatility differences. Panel A of Table 1 summarizes the properties
of the variables used. The regime dummy variables are diverse, rang-
ing from business cycle or state-of-the-market indicators to mone-
tary or political regime variables. Even a seasonal dummy variable
is included. As the table shows, the dummy variables – marked by
an asterisk (�) – are highly persistent. The first order autocorrelation
of the daily presidential dummy used in Leblang and Mukherjee
(2005), for example, is a whopping .999! While not reported or dis-
cussed in their study, the level of autocorrelation comes hardly as a
matter of surprise. Since daily data are used, the runs of zeros or ones
in the dummy variable time-series must be at least four years long
with each successive administration. Similar style arguments can
be made for persistence in the other dummies reported in Table 1.
Regardless, the empirical results are clear. All of the dummy variable
regressors reported in Panel A of Table 1 are highly persistent.

With persistence in the regressors, the potential for spurious
regression results looms large. The remaining symptom is autocor-
relation in the dependent variable. Panel A of Table 1 shows that all
of the dependent variables have positive autocorrelation to varying
degrees. The estimated first-order autocorrelation coefficient of the
Dow Jones Industrial Average daily return volatility obtained in
Leblang and Mukherjee (2005) is an extreme .99, for instance.
The seasonally-adjusted money supply variable, M1SL, in Jensen
et al. (1996) is 0.97.

The results reported in Panel A of Table 1 contain obvious symp-
toms of spurious regression – both the dependent and independent
variables are autocorrelated. This means that standard OLS tests of
significance are inappropriate. To assess the effect of the autocor-
relation on statistical inference, we generalize the simulation anal-
ysis in Powell et al. (2007). We simulate critical cut-off values of
the coefficient estimates, the Newey and West (1987) t-statistics,
and adjusted R-squared (hereafter, �R2) for testing whether the
coefficients and significance levels estimated in time-series dum-
my variable regressions are less than would be expected by chance.
In this section, we conduct simulations to generate a matrix of crit-
ical t-statistics for different pairings of autocorrelation in the
dependent variable and transition probability of the dichotomous
explanatory variable. Underlying each simulation run is a standard
dummy variable regression model,

rtþ1 ¼ aþ bpt þ utþ1: ð1Þ

The dependent variable is denoted rt+1 and represents, say,
stock market return over the interval the end of month t to month
t + 1. The dummy independent variable, pt, is equal to 1 if a partic-
ular regime, say, a recession, is present at the beginning of the
month and is 0 otherwise. The null hypothesis that there is no ef-
fect implies b = 0, whereas, if the coefficient on the dummy is sig-
nificantly positive (negative), the null hypothesis is rejected in
favour of the alternative, that is, monthly stock market returns
are higher (lower) during recessions. Each simulation run is con-
ducted under the assumption that the dependent and independent
variables are uncorrelated, however, the autocorrelation properties
of the variables are set in order to match those present in actual
data. In the remainder of this section, we describe the simulation
procedure and apply it using a range of levels of autocorrelation
in the dependent variable in combination with a range of transition
probabilities of the independent dummy variable. In the next sec-
tion, we revisit the question of whether political, seasonal or busi-
ness regimes display significant return or return volatility
differentials and match exactly the observed autocorrelation, dum-
my variable transition probabilities, and sample sizes in prior tests
in the literature that use dummy variables in a time-series regres-
sion context.
2.1. The simulation procedure

Table 1 demonstrates that the dependent variables used in
many dummy variable regression tests are positively autocorrelat-
ed. A natural way to model such behavior is as an AR(1) process.4

We follow Powell et al. (2007) and generate observations for the
dependent variable rt+1 using

rtþ1 ¼ ar þ qrrt þ etþ1 for t ¼ 1;2;3; . . . ;n� 1; ð2Þ

where n is the number of time intervals in the sample period, ar

is the intercept and qr is the first-order autocorrelation coefficient.
The unconditional mean and variance of the dependent variable
are

lr ¼
ar

1� qr

and

r2
r ¼

r2
e

1� q2
r
:

In the general simulations that follow, we generalize the simu-
lation procedure by assuming that the unconditional mean and
variance are set equal to zero and one, respectively. The dependent
variable simulation is started at the unconditional mean lr and the
error term for process (2) is generated from a normal distribution
with a mean of zero and a variance of 1� q2

r . The length of each
series is set equal to n, and below we choose n to be 250, 500,
and 1000 – typical numbers of time-series observations used in
stock return studies.

The dummy variable in the regression model (1) underlying the
simulation is generated using a transition matrix that represents
the conditional probability of remaining in or exiting a particular
dummy variable state or regime. In our general simulations, the
independent dummy variable series pt (t = 2,3, . . . ,n � 1) is gener-
ated as a first-order Markov Chain such that the transition proba-
bilities for potential dummy variable regime changes are

Prðpt ¼ 0jpt�1 ¼ 0Þ ¼ q;

Prðpt ¼ 1jpt�1 ¼ 0Þ ¼ 1� q;

Prðpt ¼ 1jpt�1 ¼ 1Þ ¼ q;

Prðpt ¼ 0jpt�1 ¼ 1Þ ¼ 1� q:

The simulated dummy variable starting value pt=0 is determined by
the regime dummy variable unconditional probability. The dummy
variable series is generated independently of the dependent vari-
able series, and has a first-order autocorrelation coefficient,
qp � 2q � 1 (Hamilton, 1994, p. 684). The process is more likely
than not to persist in its current state when 2q > 1 or q > .5. The
first-order autocorrelation is zero where q = .5, and is negative
where q < .5.

In the sample-specific tests in the next section (see also Powell
et al. (2007)), the conditional probabilities are calibrated from the
actual time-series data used in the time-series tests listed in Panel
A of Table 1. Panel B of Table 1 summarizes the information from
which the transition probabilities are computed. The independent
dummy variable series pt (t = 2,3, . . . ,n � 1) in the specific simula-
tions is once again generated from a first-order Markov Chain, but
now with transition probabilities



Table 1
Summary statistics for variables used in various studies and transition probabilities of dummy variables.

Panel A: Summary statistics

Study/sample period Variable N Mean Standard deviation Auto-correlation

A. Political regimes
Leblang and Mukherjee (2005) DJIA volatility 28,987 0.92 0.57 0.990
June 1896–December 2001 D* 28,987 0.46 0.50 0.999

B. Seasonalities
Bouman and Jacobsen (2002) US Return 344 0.96 4.42 0.012
January 1970–August 1998 HLW* 344 0.50 0.50 0.663

C. Business cycle and momentum profits
Chordia and Shivakumar (2002) UMD6M 811 3.64 13.03 0.845
July 1926–December 1994 BC* 822 0.79 0.41 0.904

Cooper et al. (2004) UMD6M 804 3.55 13.04 0.844
January 1929–December 1995 SOM* 804 0.85 0.36 0.923

Jensen et al. (1996) M1SL 408 385.29 244.88 0.974
February 1954–December 1992 AMBSL 467 117.62 89.01 0.974

EXRESERVE 467 0.50 0.30 0.938
FFPREM 462 0.58 0.84 0.872
DIR* 467 0.54 0.50 0.900

Resnick and Shoesmith (2002) SPREAD 480 1.37 1.22 0.948
January 1960–December 1999 BEAR* 480 0.24 0.43 0.899

Panel B: Frequency and transition probability of dummy variables

Study/subsample Frequency Transition probability Frequency Transition probability Frequency

A. Political regimes
Leblang and Mukherjee (2005)
Republican 15,876 99.97% 5 0.03% 15,881
Democrat 5 0.04% 13,101 99.96% 13,106
Total 15,881 54.79% 13,106 45.21% 28,987

B. Seasonalities
Bouman and Jacobsen (2002) Months in November–April Months in May–October Total

Months in November–April 144 83.24% 29 16.76% 173
Months in May–October 28 16.37% 143 83.63% 171
Total 172 50.00% 172 50.00% 344

C. Business cycle and momentum profits
Chordia and Shivakumar (2002) Expansionary period Contractionary period Total

Expansionary period 636 98.00% 13 2.00% 649
Contractionary period 13 7.51% 160 92.49% 173
Total 649 78.95% 173 21.05% 822

Cooper et al (2004) UP state DOWN state Total

UP state 666 98.81% 8 1.19% 674
DOWN state 8 6.45% 116 93.55% 124
Total 674 84.46% 124 15.54% 798

Jensen et al. (1996) Expansive period Restrictive period Total

Expansive period 205 94.91% 11 5.09% 216
Restrictive period 11 4.40% 239 95.60% 250
Total 216 46.35% 250 53.65% 466

Resnick and Shoesmith (2002) Bear market Bull market Total

Bear market 108 92.31% 9 7.69% 117
Bull market 8 2.20% 355 97.80% 363
Total 116 24.17% 364 75.83% 480

Panel A reports summary statistics. The notation is as follows:
DJIA volatility is the 20-day moving standard deviation of the daily return on the Dow Jones Industrial Average index.
UMD6M is cumulative six-month return to the monthly momentum strategy (estimated for this paper using the Fama–French monthly momentum factor).
M1SL is seasonally adjusted money supply.
Dt

* is 1 if a democratic president is in power and 0 otherwise.
HLW* takes the value 1 if month t falls during the period November through April and 0 otherwise.
BC* is 1 if month t falls into expansionary periods as determined by the NBER and 0 otherwise.
SOM* is 1 if the lagged three-year market return is non-negative and 0 otherwise.
AMBSL is seasonally adjusted adjusted-monetary-base.
EXCRESNS is excess reserves.
FFPREM is the federal funds premium and is calculated as the difference between the federal funds rate and the three-month T-bill rate.
DIR* is 1 if the previous change in the discount rate was an increase and 0 otherwise.
SPREAD is the difference between average quarterly ten-year government bond rate and average quarterly three-month T-Bill rate.
BEAR* is 1 if the six-month trend in monthly returns is negative and 0 otherwise.
All variables marked by an asterisk (�) are dummy variables, and all returns are expressed in %. Data for Leblang and Mukherjee (2005) are obtained from Global Financial
Data. Data for Chordia and Shivakumar (2002) and Cooper et al. (2004) are obtained from Kenneth R. French’s data library. Data for Bouman and Jacobsen (2002) are obtained
from MSCI, and data for Jensen et al. (1996) and Resnick and Shoesmith (2002) are obtained from the Federal Reserve Bank St. Louis. Note that, while the sample period for
Chordia and Shivakumar (2002) is between July 1926 and December 1994, the Fama and French momentum factor starts in January 1927. Also note that, because the six-
month cumulative log return is calculated, the number of observations for UMD6M is different from that of BC.
Panel B presents frequencies and transition probabilities for the dummy variables. Expansionary and contractionary periods are classified based on the NBER published
business cycle dates (see Table 2 of Chordia and Shivakumar (2002)), UP is when the lagged three-year CRSP value-weighted index return is non-negative, DOWN is when the
lagged three-year CRSP value-weighted index return is negative, expansive (restrictive) periods are those occurring during series of discount rate decreases (increases), and a
bear market is when the six-month trend in monthly returns is negative.

J.G. Powell et al. / Journal of Banking & Finance 33 (2009) 1112–1128 1115



7 The state transition probabilities in many applications are asymmetric, as
illustrated in Panel B of Table 1, and this asymmetry can be important, especially
when states are highly persistent. The simulation procedure dichotomous variable
transition probability process is therefore customized for each study when assessing
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Prðpt ¼ 0jpt�1 ¼ 0Þ ¼ q;

Prðpt ¼ 1jpt�1 ¼ 0Þ ¼ 1� q;

Prðpt ¼ 1jpt�1 ¼ 1Þ ¼ p;

Prðpt ¼ 0jpt�1 ¼ 1Þ ¼ 1� p:

The dummy variable series has a first-order autocorrelation coeffi-
cient equal to q + p � 1 (see Hamilton, 1994, p. 684).

2.2. Critical value table for spurious regression bias

To develop 95% confidence bands for the coefficient estimates
and Newey and West (1987) t-statistics as well as the �R2’s,
10,000 simulation runs are performed. The estimates are recorded
for each simulated run and the five vectors of estimates (i.e., one
each for the values of a; b; ta; tb; and �R2) are ranked from lowest
to highest. The 95% confidence interval (i.e., the lower and upper
critical levels) of the coefficient estimates and the t-statistics are
defined as the observations corresponding to 2.5th and 97.5th per-
centiles. The 95% confidence interval of the �R2 falls at the 95th per-
centile. The �R2 and other regression estimates obtained using the
actual data are compared to the critical �R2 level, critical coefficient
estimates, and critical t-statistics to assess statistical significance.

Panel A of Table 2 contains the critical Newey-West t-statistics5

for different combinations of autocorrelation in the dependent vari-
able (i.e., the rows in the table) and transition probability of the dum-
my variable explanatory variable (i.e., the columns). The first-order
autocorrelation of the explanatory variable is 2q � 1. Lower and upper
values of the critical t-statistics for a given sample size are reported. As
noted earlier, the sample sizes of 250, 500, and 1000 observations in
Table 2 are chosen to correspond to the various sample sizes in the
studies reported in Table 1. The mean and standard deviation of the
dependent variable series are set equal to 0 and 1, respectively.

Table 2 reveals that even with adjustments of the Newey-West
estimator to minimize the potential for spurious regression, spuri-
ous regression is a significant problem in sample sizes that are
common in the literature. The first set of results in Panel A of Table
2 are for a sample size of 250 observations. Where the dependent
variable autocorrelation is modest, say, 0.1, and the dummy vari-
able has a transition probability of q = .99 (i.e., autocorrelation of
0.98), the critical 95% confidence interval t-statistic values are
(�2.32, 2.39) compared with the standard large sample 95% confi-
dence interval t-statistic values of (�1.96, 1.96). As the sample size
increases, the critical 95% confidence interval t-statistic values nar-
row to (�2.09, 2.11) for sample size 500 and (�2.04, 2.06) for sam-
ple size 1000, still above conventional levels, showing that the
potential for spurious regression exists for the typical sample sizes
used in monthly return studies. The critical 95% confidence interval
t-statistic values obtained are quite general across a number of dif-
ferent choices of Newey West estimator lag length (including a
plug in AR lag suggested by Andrews (1991) and a lag equal to a
fixed function of the sample size, bT, where b = 0.05) and kernels
(including the Bartlett and quadratic spectral kernels).6

Interestingly, autocorrelation of the dependent variable has a
‘‘one-off” effect on the critical t-statistics even when there is no
autocorrelation of the dichotomous explanatory variable. Consider
the case where dependent variable autocorrelation is 0.1, q is 0.5
(i.e., zero autocorrelation in the dichotomous explanatory variable),
and the sample size is 250. The 95% confidence interval is (�2.03,
5 The lag length choice follows Granger et al. (2001) who use a Newey-West lag
length equal to integer (4(T � 100)1/4) in their simulations to deal with the effects of
serial correlation.

6 In unreported results, Table 2 is re-estimated using the Bartlett method with lag
length set by AR fit as well as the quadratic spectral method with lag length set by AR
fit, and the results are substantially the same as those reported in Table 2. See also the
discussion of Table 4 in subsection 2.4 below.
2.04), still wider than the conventional values (�1.96, 1.96). In addi-
tion, the size of the interval remains approximately the same as the
dependent variable autocorrelation increases. This finding can be ex-
plained by noting that the 95% confidence t-statistic interval does
not converge asymptotically to (�1.96, 1.96) when autocorrelation
is present, as shown in the analytical HAC asymptotic sub-section
2.4 below (see also Kiefer and Vogelsang (2005)). Further widening
of the critical t-statistic intervals occurs only when dependent and
independent variable autocorrelation increase together, and is
especially apparent when autocorrelation of both variables is high.
As Panel A of Table 2 shows, the autocorrelation adjustment more
than doubles the critical t-statistics relative to conventional levels
when autocorrelation of the dependent variable exceeds 0.9 and
the transition probability exceeds 0.99, that is (�4.49, 4.61).

Also of interest is the Table 2 finding that simulated confidence
intervals actually tighten (all else being equal) relative to conven-
tional confidence intervals when the explanatory variable autocor-
relation is negative, thus further enriching the simulation analysis
results and their implications. With positive dependent variable
autocorrelation but negative independent variable autocorrelation,
conventional standard error estimates are upward (not downward)
biased, thus causing standard confidence intervals to over-reject
rather than under-reject as happens when autocorrelation is exclu-
sively positive.

An important point to note is that the critical t-statistics re-
ported in Panel A of Table 2 can be directly used in any time-series
regression analysis study whenever a dichotomous explanatory
variable is likely to be persistent.7 This point is illustrated in the fol-
lowing section when the parameters of the simulation procedure are
adapted to match the parameters used in six studies referenced in
Table 1, since the Table 2 critical t-statistic values are reasonably
close to the values obtained in the customized simulations. For
now, it is sufficient to recognize that the simulation procedure t-sta-
tistics are easy to implement. They simply replace conventional t-
statistics when it is important to take account of the influence of
autocorrelation in testing whether regression coefficient estimates
are less than would be expected by chance.8

2.3. Critical values for spurious regression bias and more than one
variable being examined

Panel B of Table 2 reports a second set of critical t-statistics that
use Bonferonni correction intervals to take account of the number
of series potentially examined by researchers in the search for sta-
tistical significance. While this issue has been addressed in asset
pricing theory tests by Foster et al. (1997),9 Sullivan et al. (2001)
discuss why data mining considerations are especially relevant in
seasonal dummy variable studies. Their point can be illustrated in
relation to Bouman and Jacobsen’s (2002) ‘‘Halloween Indicator”
study. The starting point for the Halloween Indicator is based on a
popular press expression ‘‘Sell in May and go away”, but there are
many potential ending points for the indicator, with there being
no strong reason to support a Halloween ending date. There are also
statistical inference, but the simulation procedure t-statistics provided by Table 2 are
usually quite close to those provided by the customized simulations, so Table 2 can be
used as a first step in assessing statistical inference.

8 The values of the simulated confidence intervals and critical t-statistics do not
depend upon unobserved latent variables, so our procedure is simple to implement
and provides a conservative determination as to whether a coefficient estimate is less
than would be expected by chance. See Ferson et al. (2003).

9 See, also, Lo and MacKinlay (1990b), Sullivan et al. (1999, 2001), Ferson et al.
(2003), and Santa-Clara and Valkanov (2003).



Table 2
Cut-off dummy variable t-statistics for dependent and dummy variable autocorrelation combinations.

Sample size
(n)

Auto-correlation of dependent
variable

Transition probability of dummy variable (q)

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Panel A: Cut-offs for spurious regression bias
250 0.1 �1.95/1.97 �1.99/1.99 �2.00/1.96 �2.01/1.99 �2.03/2.04 �2.04/2.02 �2.07/2.05 �2.11/2.09 �2.32/2.39
250 0.2 �1.94/2.01 �1.97/1.92 �1.97/1.96 �2.00/2.01 �2.02/2.03 �2.07/2.08 �2.10/2.14 �2.14/2.15 �2.36/2.41
250 0.3 �1.89/1.90 �1.93/1.90 �1.94/1.91 �1.95/1.94 �2.00/2.05 �2.09/2.10 �2.13/2.15 �2.23/2.18 �2.52/2.44
250 0.4 �1.85/1.86 �1.84/1.88 �1.93/1.88 �1.96/1.91 �2.03/1.99 �2.10/2.11 �2.18/2.16 �2.25/2.23 �2.60/2.55
250 0.5 �1.82/1.84 �1.84/1.86 �1.84/1.90 �1.93/1.92 �2.02/2.02 �2.10/2.17 �2.22/2.16 �2.33/2.32 �2.74/2.69
250 0.6 �1.77/1.78 �1.81/1.80 �1.80/1.80 �1.95/1.91 �1.98/2.06 �2.15/2.13 �2.29/2.39 �2.46/2.37 �2.87/2.87
250 0.7 �1.72/1.68 �1.76/1.74 �1.78/1.78 �1.86/1.93 �2.04/1.99 –2.22/2.24 �2.47/2.42 �2.57/2.57 �3.22/3.12
250 0.8 �1.61/1.64 �1.72/1.69 �1.75/1.71 �1.86/1.88 �2.02/2.00 �2.22/2.27 �2.58/2.58 �2.84/2.84 �3.48/3.62
250 0.9 �1.56/1.55 �1.58/1.56 �1.62/1.63 �1.87/1.81 �2.07/2.00 �2.26/2.22 �2.75/2.76 �3.20/3.23 �4.49/4.61

500 0.1 �1.94/1.96 �1.96/1.98 �1.96/1.92 �1.96/2.00 �1.96/1.99 �2.02/2.00 �2.02/1.98 �2.03/2.08 �2.09/2.11
500 0.2 �1.93/1.89 �1.93/1.95 �1.93/1.90 �1.95/1.96 �2.01/1.97 �2.02/2.01 �2.09/2.02 �2.06/2.11 �2.16/2.17
500 0.3 �1.90/1.89 �1.93/1.91 �1.91/1.93 �1.96/2.00 �2.00/1.96 �2.02/2.08 �2.11/2.10 �2.12/2.18 �2.22/2.18
500 0.4 �1.82/1.85 �1.89/1.92 �1.92/1.87 �1.97/1.93 �1.96/2.00 �2.05/2.08 �2.15/2.13 �2.17/2.16 �2.25/2.22
500 0.5 �1.82/1.83 �1.83/1.82 �1.88/1.82 �1.93/1.88 �1.98/2.06 �2.06/2.08 �2.22/2.19 �2.23/2.24 �2.34/2.37
500 0.6 �1.76/1.73 �1.80/1.76 �1.80/1.80 �1.86/1.90 �2.01/2.00 �2.15/2.08 �2.27/2.26 �2.37/2.37 �2.40/2.49
500 0.7 �1.67/1.64 �1.75/1.72 �1.76/1.75 �1.85/1.90 �2.00/2.01 �2.18/2.15 �2.28/2.29 �2.48/2.47 �2.74/2.71
500 0.8 �1.60/1.62 �1.65/1.69 �1.75/1.74 �1.86/1.86 �1.97/1.99 �2.18/2.22 �2.46/2.51 �2.63/2.64 �3.09/3.03
500 0.9 �1.53/1.51 �1.59/1.55 �1.66/1.67 �1.79/1.79 �1.99/1.98 �2.20/2.25 �2.70/2.65 �3.05/3.10 �3.89/3.99

1000 0.1 �1.92/1.98 �1.93/1.93 �1.96/1.97 �1.99/2.02 �2.00/1.96 �1.96/1.98 �2.03/2.04 �2.01/2.02 �2.04/2.06
1000 0.2 �1.88/1.96 �1.92/1.96 �1.95/1.93 �1.94/2.01 �2.00/2.01 �2.00/2.04 �2.04/1.99 �2.03/2.04 �2.05/2.05
1000 0.3 �1.88/1.90 �1.95/1.90 �1.93/1.93 �1.96/1.92 �1.98/2.01 �1.98/2.05 �2.06/2.06 �2.07/2.08 �2.09/2.09
1000 0.4 �1.87/1.91 �1.88/1.86 �1.87/1.89 �1.91/1.92 �2.02/1.91 �2.03/2.01 �2.11/2.09 �2.12/2.11 �2.17/2.12
1000 0.5 �1.82/1.83 �1.85/1.83 �1.83/1.91 �1.90/1.93 �1.98/1.98 �2.05/2.08 �2.13/2.20 �2.16/2.21 �2.25/2.23
1000 0.6 �1.81/1.78 �1.84/1.79 �1.88/1.79 �1.96/1.90 �1.99/1.94 �2.08/2.09 �2.14/2.14 �2.19/2.17 �2.28/2.29
1000 0.7 �1.69/1.72 �1.77/1.76 �1.81/1.83 �1.95/1.90 �2.00/1.98 �2.09/2.12 �2.19/2.22 �2.35/2.31 �2.37/2.41
1000 0.8 �1.65/1.65 �1.74/1.71 �1.80/1.75 �1.91/1.86 �2.00/1.93 �2.10/2.08 �2.31/2.31 �2.50/2.48 �2.74/2.69
1000 0.9 �1.56/1.55 �1.64/1.64 �1.71/1.67 �1.84/1.88 �1.99/1.96 �2.18/2.13 �2.52/2.49 �2.75/2.74 �3.31/3.37>

Panel B: Cut–offs for spurious regression bias and data mining
250 0.1 �2.61/2.54 �2.61/2.62 �2.60/2.58 �2.67/2.68 �2.73/2.71 �2.78/2.71 �2.72/2.82 �2.82/2.72 �3.63/3.59
250 0.2 �2.60/2.61 �2.61/2.55 �2.68/2.57 �2.61/2.62 �2.76/2.73 �2.79/2.72 �2.76/2.80 �2.87/2.85 �3.65/3.69
250 0.3 �2.53/2.61 �2.58/2.60 �2.55/2.59 �2.57/2.63 �2.70/2.72 �2.81/2.83 �2.83/2.85 �2.87/2.86 �3.69/3.99
250 0.4 �2.43/2.49 �2.47/2.46 �2.58/2.50 �2.61/2.52 �2.74/2.68 �2.79/2.88 �2.85/2.82 �3.00/2.93 �4.20/4.16
250 0.5 �2.41/2.49 �2.47/2.43 �2.47/2.54 �2.60/2.52 �2.80/2.67 �2.79/2.91 �2.89/2.88 �3.23/3.06 �4.38/4.13
250 0.6 �2.30/2.28 �2.40/2.40 �2.48/2.33 �2.58/2.47 �2.63/2.73 �2.89/2.79 �2.94/3.22 �3.30/3.25 �4.59/4.37
250 0.7 �2.26/2.22 �2.35/2.36 �2.37/2.34 �2.48/2.53 �2.67/2.58 �2.93/2.88 �3.31/3.15 �3.53/3.41 �5.06/4.65
250 0.8 �2.10/2.10 �2.21/2.17 �2.33/2.27 �2.45/2.45 �2.64/2.57 �2.96/3.01 �3.48/3.41 �3.70/3.76 �5.78/6.26
250 0.9 �1.99/2.06 �2.06/2.04 �2.14/2.15 �2.37/2.36 �2.70/2.64 �2.91/2.87 �3.62/3.65 �4.24/4.33 �7.05/6.90

500 0.1 �2.59/2.51 �2.64/2.64 �2.59/.51 �2.62/2.60 �2.61/2.58 �2.62/2.72 �2.70/2.73 �2.74/2.79 �2.76/2.91
500 0.2 �2.52/2.52 �2.51/2.54 �2.53/2.53 �2.54/2.56 �2.66/2.71 �2.67/2.72 �2.78/2.72 �2.72/2.70 �2.88/2.84
500 0.3 �2.49/2.45 �2.51/2.53 �2.51/2.50 �2.65/2.65 �2.64/2.67 �2.73/2.69 �2.81/2.77 �2.78/2.89 �2.99/2.89
500 0.4 �2.38/2.50 �2.41/2.50 �2.47/2.41 �2.61/2.51 �2.64/2.56 �2.75/2.76 �2.87/2.79 �2.92/2.83 �2.97/3.06
500 0.5 �2.35/2.36 �2.37/2.45 �2.49/2.40 �2.56/2.55 �2.68/2.62 �2.79/2.82 �2.90/2.87 �3.03/3.08 �3.23/3.20
500 0.6 �2.25/2.30 �2.30/2.37 �2.42/2.41 �2.52/2.49 �2.62/2.53 �2.79/2.71 �2.95/2.96 �3.03/3.13 �3.47/3.44
500 0.7 �2.19/2.15 �2.27/2.19 �2.30/2.27 �2.39/2.50 �2.58/2.56 �2.84/2.82 �3.03/3.08 �3.29/3.19 �3.85/3.74
500 0.8 �2.07/2.15 �2.21/2.21 �2.27/2.23 �2.40/2.44 �2.57/2.52 �2.84/2.92 �3.26/3.29 �3.47/3.50 �4.37/4.21
500 0.9 �2.04/2.02 �2.07/2.09 �2.15/2.18 �2.39/2.40 �2.67/2.57 �2.88/3.03 �3.47/3.45 �4.20/4.15 �5.35/5.56

1000 0.1 �2.59/2.60 �2.56/2.59 �2.53/2.66 �2.59/2.59 �2.65/2.62 �2.58/2.71 �2.66/2.56 �2.61/2.63 �2.70/2.63
1000 0.2 �2.49/2.55 �2.54/2.55 �2.55/2.59 �2.62/2.61 �2.55/2.56 �2.60/2.66 �2.69/2.72 �2.68/2.67 �2.71/2.75
1000 0.3 �2.48/2.45 �2.53/2.51 �2.59/2.47 �2.50/2.58 �2.62/2.68 �2.70/2.63 �2.75/2.63 �2.71/2.70 �2.72/2.87
1000 0.4 �2.46/2.49 �2.45/2.46 �2.58/2.52 �2.59/2.57 �2.57/2.57 �2.71/2.73 �2.78/2.67 �2.78/2.79 �2.82/2.88
1000 0.5 �2.37/2.43 �2.46/2.40 �2.50/2.50 �2.45/2.45 �2.53/2.68 �2.74/2.79 �2.79/2.90 �2.85/2.77 �2.87/2.98
1000 0.6 �2.40/2.28 �2.36/2.36 �2.48/2.46 �2.59/2.49 �2.61/2.65 �2.73/2.71 �2.95/2.88 �2.91/2.85 �3.07/3.05
1000 0.7 �2.27/2.31 �2.41/2.30 �2.44/2.39 �2.55/2.44 �2.65/2.62 �2.72/2.79 �2.97/2.89 �3.12/3.08 �3.16/3.29
1000 0.8 �2.17/2.17 �2.24/2.25 �2.36/2.30 �2.56/2.52 �2.61/2.53 �2.81/2.83 �3.00/3.03 �3.31/3.27 �3.60/3.48
1000 0.9 �2.08/2.02 �2.17/2.08 �2.28/2.20 �2.47/2.43 �2.61/2.61 �2.83/2.75 �3.15/3.31 �3.57/3.65 �4.33/4.48

This table reports dummy variable coefficient critical cut-off t-statistic values for dummy variable regression model, rt = a + bpt + ut, under different combinations of
autocorrelation of the dependent variable and transition probability of the dummy variable. Autocorrelation of the dummy variable is equal to two times the dummy variable
transition probability minus one (2q � 1). Panel A reports lower and upper bounds (i.e., critical cut-off values) of the 95% confidence interval of t-statistics adjusted for
spurious regression bias. Panel B reports lower and upper bounds (i.e., critical cut-off values) of the 95% confidence interval of t-statistics adjusted for spurious regression bias
and data mining with five variables examined. The t-statistics are adjusted for autocorrelation and heteroskedasticity using Newey and West (1987) with the lag length
choice following Granger et al. (2001) who use a Newey West lag length equal to integer (4(T/100)1/4) in their simulations to deal with the effects of serial correlation. The
monthly mean return of the simulated dependent variable series is zero and the monthly standard deviation is one.
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popular press expressions that support alternative seasonal invest-
ment strategies. A recent Wall Street Journal article by Browning
(2005), for example, instead argues that September (not May) is
the month to sell since more bull markets ‘‘die” in September than
any other month. On the other hand, investors are also told in the
press to anticipate a ‘‘summer rally” each year, which implies sum-
mer buying (not selling) opportunities. In reality, there are a poten-
tially infinite number of seasonal dummies that could be tested for
superior investment performance, so data mining should be an
important consideration when evaluating the statistical significance
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of the investment performance of the Halloween indicator or any
other seasonal strategy.

An adjustment factor of five is used to estimate a set of ‘‘modi-
fied” critical t-statistics. This adjustment implicitly assumes that in
situations where data mining is a potential concern, at least five
combinations of dependent and independent variable series are
examined in the search for statistically significant relationships.10

This modification is equivalent to requiring a 1% rather than a 5% le-
vel of significance due to the number of series being searched. Panel
B of Table 2 contains the results. At 250 observations, for example,
the modified critical t-statistics are (�3.63, 3.59) at autocorrelation
of 0.1 in the dependent variable and transition probability of 0.99
in the independent variable, compared with (�2.32, 2.39) using no
data mining consideration and (�1.96, 1.96) using conventional
methods. In general, the differences introduced by data mining con-
siderations are profound.

2.4. Simulation findings vis-à-vis analytical HAC asymptotic results

Kiefer and Vogelsang (2005) (hereafter, KV) provide analytical
asymptotic distribution results that help explain this paper’s sim-
ulation findings. More specifically, they develop asymptotic theory
for the situation where the regression error structure follows an
ARMA process due to heteroskedastic–autocorrelation, and provide
analytical asymptotic results for fixed lag length HAC adjustments.
Their analysis applies to this paper’s simulation framework be-
cause of the presence of autocorrelated errors in both the depen-
dent and independent regression variables. (See Eqs. (1) and (2)
and section 2.1. See also Deng (2005), Ferson et al. (2003); and Na-
beya and Perron (1994)).

KV derive the entire asymptotic distribution of the HAC estima-
tor under the assumption that M = bT, where M is the lag length, T
is the sample size, and b is a fixed constant in the interval (0,1).11

The variance matrix is a random variable rather than a constant un-
der this assumption, so asymptotic variance estimators converge to
limiting random matrices that depend upon the kernel (through its
second derivative) and the fixed constant b. In contrast, under the
standard approach, asymptotic distributions are derived under the
assumption that M/T goes to zero as the sample size tends to infinity,
in which case the asymptotic distribution does not depend upon b
and the kernel. But, this assumption is unrealistic in finite samples
where M/T cannot be zero. KV are therefore able to analyze the
trade-off in band-width and kernel choice in size and power for
the sampling variability of the HAC estimate of the asymptotic var-
iance. They find that wider bandwidth provides fewer size distor-
tions, especially when there is strong positive serial correlation,
but smaller bandwidth provides greater power. At the same time,
the Bartlett kernel is the most powerful, however, the quadratic
spectral (QS) kernel leads to tests with the least size distortions.
Thus, there is an important trade-off in band-width and kernel
choice in size and power.

Asymptotic 95% confidence t-statistic interval critical values
(cv) for fixed lag length HAC estimators are estimated using the cu-
bic equation provided in KV,

cvðbÞ ¼ a0 þ a1bþ a2b2 þ a3b3
;

where b is a fixed constant and a0 = 1.96. Table 3 reports the asymp-
totic critical values (cv) for various values of the fixed constant b
using Bartlett method estimation (with a1 = 2.8986, a2 = 0.6970,
and a3 = �0.7771) and QS method estimation (with a1 = 2.9880,
10 Since this adjustment factor is arbitrary, we choose conservatively.
11 Earlier work by Richardson and Stock (1989) derives fixed lag length asymptotic

distribution theory for tests of mean reversion with multi-year returns that provides
superior approximations to the relevant finite sample distributions.
a2 = 10.6359, and a3 = �3.3974). These coefficient values are ob-
tained using the analytical cut-offs derived by KV.12

The Table 3 confidence intervals are smaller for all values of the
fixed lag length coefficient b when estimated using the Bartlett
procedure. The Table 3 confidence intervals can be compared to
the Table 2 simulation results by relating the analytical versus sim-
ulated t-statistic cut-offs to the value of b used in each simulation
(recall M = bT). With 250 observations, b = .04 and the Bartlett/QS
cut-offs are 2.08/ 2.10. With 500 observations, b = .02 and the Bart-
lett/QS cut-offs are both 2.02, and, with 1000 observations, b = .01
and the Bartlett/QS cut-offs are both 1.99.13 It is important to note
that the simulation cut-offs in Table 2 are much closer to the analyt-
ical cut-offs than they are to 1.96.

Deng (2005) recommends lag length fixed constants b in the
interval [.05, .10] to minimize the potential for spurious regression
in financial time-series regressions involving persistent explana-
tory variables. Consequently, we repeat the dichotomous depen-
dent variable simulation procedure regression results table (Table
2) using the fixed lag length constant b = .05. The results are re-
ported in Table 4 and indicate that this provides an improvement
when autocorrelation of the dependent variable is high (e.g., .8 or
.9) but widens confidence intervals for lower autocorrelation levels
when compared to Table 2. This finding can be explained using the
Table 3 results by noting that that the Bartlett/QS 95% confidence t-
statistic interval converge asymptotically to (�2.11, 2.11)/(�2.14,
2.14) when the fixed lag length coefficient b is set equal to .05.
The simulation cut-offs in Table 2 are, therefore, a lot closer to
the analytical cut-offs than they are to (�1.96, 1.96). Table 4 indi-
cates that there is still considerable potential for spurious regres-
sion in small samples that must be analyzed using the simulation
procedure, but it also reveals a clear improvement relative to Table
2, so we recommend fixed lag length HAC estimation with a fixed
lag length constant b = .05 and consequently a cutoff of 2.11 for
Bartlett weights and 2.14 for QS weights rather than the 1.96 table
value.

3. Tests for regime return and return volatility differences using
the simulation procedure

In the previous section, we illustrated how to perform statistical
inference when the dependent variable has autocorrelation and the
dummy variable regressor is persistent using arbitrary values for
the level of autocorrelation in the dependent variable and the level
of persistence in the regressor. We now turn to specific
applications.

3.1. Presidential regimes and the stock market

Leblang and Mukherjee (2005) (hereafter LM) examine the
question of whether political regimes affect the volatility of daily
stock returns using a rational expectation model of inflation under
left-wing governments.14 They hypothesize that traders anticipate
the results of elections, thus leading to reduced stock market trading
when Democrats are expected to win presidential elections as inves-
tors anticipate lower returns due to higher inflation. The LM volatil-
ity hypothesis is tested using daily capital returns for the Dow Jones
Industrial Average for the time period May 1896 through December
2001. Various variables that control for interest rates (the 10-year
government bond yield), divided governments between the presi-
12 Note that there appears to be a coefficient transcription error in Kiefer and
Vogelsang (2005) that has been corrected to obtain these values.

13 Note that the lag length used in the simulations is integer 4(T/100)1/4, so, with
T = 250, M = 9 and, therefore, b = 0.04.

14 More recently, Kanas (2008) examines whether real interest rate regime changes
are related to presidential regime changes.



Table 3
Two-sided asymptotic critical values at 95% significance level using the Bartlett and
Quadratic spectral methods.

b Bartlett Quadratic spectral

0.01 (�1.99, 1.99) (�1.99, 1.99)
0.02 (�2.02, 2.02) (�2.02, 2.02)
0.03 (�2.05, 2.05) (�2.06, 2.06)
0.04 (�2.08, 2.08) (�2.10, 2.10)
0.05 (�2.11, 2.11) (�2.14, 2.14)
0.06 (�2.14, 2.14) (�2.18, 2.18)
0.07 (�2.17, 2.17) (�2.22, 2.22)
0.08 (�2.20, 2.20) (�2.27, 2.27)
0.09 (�2.23, 2.23) (�2.31, 2.31)
0.1 (�2.26, 2.26) (�2.36, 2.36)
0.2 (�2.56, 2.56) (�2.96, 2.96)
0.3 (�2.87, 2.87) (�3.72, 3.72)
0.4 (�3.18, 3.18) (�4.64, 4.64)
0.5 (�3.49, 3.49) (�5.69, 5.69)
0.6 (�3.78, 3.78) (�6.85, 6.85)
0.7 (�4.06, 4.06) (�8.10, 8.10)
0.8 (�4.33, 4.33) (�9.42, 9.42)
0.9 (�4.57, 4.57) (�10.79, 10.79)
1.0 (�4.78, 4.78) (�12.19, 12.19)

Asymptotic 95% confidence t-statistic interval critical values (cv) for fixed lag length
HAC estimators are estimated using the cubic equation provided in Kiefer and
Vogelsang (2005) cvðbÞ ¼ a0 þ a1bþ a2b2 þ a3b3, where b is a fixed constant and
a0 = 1.96. Asymptotic critical values (cv) are reported for various values of the fixed
constant b using Bartlett method estimation (with a1 = 2.8986, a2 = 0.6970, and
a3 = �0.7771) and QS method estimation (with a1 = 2.9880, a2 = 10.6359, and
a3 = �3.3974). These coefficient values are obtained using the analytical cut-offs
derived by Kiefer and Vogelsang (2005).
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dent and Congress, and major events such as war are included as
explanatory variables, together with presidential party affiliation.

Table 5 provides test results for presidential regime volatility
differences using the LM Dow Jones Industrial Average sample. In
the row below the coefficient estimates in Table 5 are the lower
and upper confidence bounds for the coefficient estimates, t-statis-
tics, and �R2’s adjusting for spurious regression bias. The row below
that contains the coefficient estimates, t-statistics, and �R2 ’s adjust-
ing for spurious regression bias as well as the number of regression
variable series potentially examined. The 95% confidence bounds
for the t-statistic reported in Table 5 are wide ((�6.27, 6.21), and
(�8.21, 8.33) when adjusted for data mining) due to the extreme
persistence properties of the daily presidential regime dummy var-
iable (see Table 1). The presidential regime coefficient t-statistic,
�4.59, falls within the 95% t-statistic confidence bounds, demon-
strating that correctly accounting for regime dummy persistence
fails to reject the hypothesis that volatility is no different across
presidential regimes.15 Interestingly, the same conclusion that
apparent presidential regime return volatility differences are due
to serial correlation can be obtained using the analytical t-statistics
provided by a Bartlett kernel fixed lag length HAC estimator with
the fixed lag length constant b set equal to .05. The volatility differ-
ence t-statistic falls in absolute value from �4.19 (non-parenthe-
sized) to �1.19 (parenthesized) in Table 5 when the HAC lag
length constant b is set equal to .05!

3.2. Seasonalities and return differences

The use of seasonal dummies in market anomaly time-series
studies has a history that is virtually as long as the study of market
efficiency itself. Whenever seasonal dummies are employed in sit-
uations where the season lasts longer than the observation fre-
quency (e.g., daily observations are used in a study of monthly
15 As a robustness check, we repeated the test using a bootstrap procedure and
reached the same conclusion. The bootstrap procedure uses a block sampler to retain
the data’s autocorrelation properties.
seasonalities), the dichotomous variable is, by construction, persis-
tent. An interesting example of this phenomenon and its conse-
quences is the ‘‘Halloween Indicator” study of Bouman and
Jacobsen (2002) (hereafter, BJ).16 The Halloween Indicator invest-
ment strategy is based upon the Wall Street adage ‘‘Sell in May
and go away”. A selling strategy needs a point in time where the sell-
ing is reversed, with this being deemed to happen six months later
(hence the ‘‘Halloween Indicator”). As noted earlier, there are a
potentially infinite number of beginning and ending points of sea-
sonal dummies that could be tested for superior investment perfor-
mance.17 The issue of data mining raised in BJ is, therefore, an
important consideration when evaluating the statistical significance
of the Halloween indicator investment strategy. Consequently, this
study is of particular importance in showing how data mining can
combine with dichotomous variable autocorrelation to affect statis-
tical inference.

BJ test their investment strategy of selling stocks in summer
and buying them back six months later using dummy variable
regression model (1), with the minor modification that monthly re-
turns are regressed against the concurrent value of the seasonal
dummy variable. The dependent variable in the study is the
monthly value-weighted local currency stock market rates of re-
turn for 19 developed countries over the time period January
1970 to August 1998 and 18 developing countries over shorter
time intervals. The independent variable is a dummy variable that
is 1 if month t is November through April and is 0 otherwise. The
data set is obtained from Morgan Stanley Capital International
(MSCI). BJ report that the investment strategy of selling (buying)
stocks in May (Halloween) leads to statistically significant superior
performance in 20 of the 37 countries examined.

The BJ study test for seasonal return differences is reproduced
in Table 6. The regression coefficient estimates obtained are very
close to those in BJ, with the only noticeable difference being for
the Philippines and Malaysia (presumably due to changes in con-
struction of the MSCI indexes). Table 6 also reports simulated con-
fidence intervals for the BJ study results in the same format as used
in Table 5. In this case, the simulation procedure must be modified
to account for the fact that the dummy variable is deterministic – a
seasonal determined by the calendar. To do so, we use the same pt

in each simulated sample. The inferences using the different stock
market indexes change from those of the BJ study. For the United
States, for example, the 95% confidence bounds are (�1.97, 2.03)
when spurious regress bias is considered alone and (�2.64, 2.77)
when both spurious regression bias and data mining are consid-
ered. The reported t-statistic is 1.95 and is contained within both
sets of confidence bounds. Again, similar conclusions can be drawn
from the general results reported in Table 2. The BJ sample size,
344, is closest to the 250 observation panels of Table 2. If the
dependent variable has autocorrelation of 0.1 and the dummy var-
iable transition probability is 0.9, the cut-off t-statistic values are
(�2.07, 2.05) when spurious regress bias is considered alone and
(�2.72, 2.82) when both spurious regression bias and data mining
are considered. These are essentially the same as those obtained
for the United States results with the customized simulation proce-
dure. A bootstrap procedure provides (unreported) results that are
essentially the same as those obtained using the simulation
procedure.

These results are another good example of how taking account
of autocorrelation can affect statistical inference since they go from
being reported as significant in BJ to being insignificant when the
cut-off t-statistic is adjusted for autocorrelation. Indeed, the differ-
16 More recently, Jacobsen and Marquering (2008) re-examine competing explana-
tions for temporal variation in stock returns. Among other things, they confirm the
Bouman and Jacobsen (2002) findings.

17 See, in particular, Sullivan et al. (2001).



Table 5
Political regime volatility differential regression results.

Variable Sample size (n) Parameter estimates and lower/upper cut-off levels

a t(a) b t(b) �R2

DJIA volatility 28,987 0.97 52.68 (10.62) �0.11 �4.59 (�1.19) 0.96%
Spurious regression bias 0.80/1.03 56.77/81.75 �0.12/0.12 �6.27/6.21 1.07%
Spurious regression bias and data mining 0.76/1.07 53.82/86.32 �0.15/0.16 �8.21/8.33 1.89%

This reports OLS regression of daily return volatility on Democratic partisanship in Leblang and Mukherjee (2005), Yt ¼ aþ bDt þ lt; where yt denotes DJIA volatility at day t,
DJIA volatility is the twenty-day moving standard deviation of daily return on the DJIA. Dt is 1 if a democratic president is in power and 0 otherwise. The sample period begins
in May 26, 1896 and extends through December 31, 2001. The data are obtained from Global Financial Data.
�R2 denotes adjusted R2. Regressions are estimated by OLS and t-statistics are adjusted for autocorrelation and heteroskedasticity using Newey and West (1987). t-statistics in
parentheses are adjusted using fixed lag length HAC standard error estimation by setting the lag length (M) as a fixed function of the sample size T (M = bT), where b is a
constant set at 0.05.

Table 4
Cut-off dummy variable t-statistics for dependent and dummy variable autocorrelation combinations using Bartlett and Quadratic spectral methods.

Method/sample
size (n)

Auto-correlation of
dependent variable

Transition probability of dummy variable (q)

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Bartlett
250 0.1 �2.04/2.05 �2.09/2.10 �2.12/2.13 �2.12/2.11 �2.12/2.13 �2.12/2.12 �2.14/2.18 �2.22/2.25 �2.61/2.74
250 0.2 �2.04/2.10 �2.07/2.10 �2.09/2.10 �2.11/2.06 �2.13/2.13 �2.11/2.13 �2.16/2.18 �2.26/2.17 �2.62/2.67
250 0.8 �1.82/1.82 �1.86/1.84 �1.89/1.92 �2.01/2.05 �2.15/2.09 �2.20/2.18 �2.40/2.41 �2.57/2.58 �3.59/3.49
250 0.9 �1.57/1.59 �1.75/1.78 �1.84/1.86 �2.00/2.02 �2.08/2.11 �2.23/2.17 �2.46/2.44 �2.74/2.78 �4.05/3.93
Quadratic spectral
250 0.1 �2.20/2.18 �2.19/2.18 �2.14/2.16 �2.17/2.18 �2.16/2.17 �2.21/2.17 �2.17/2.22 �2.18/2.30 �3.08/3.18
250 0.2 �2.14/2.20 �2.15/2.13 �2.21/2.15 �2.15/2.15 �2.13/2.20 �2.25/2.19 �2.19/2.22 �2.28/2.23 �2.97/3.05
250 0.8 �2.16/2.19 �2.13/2.14 �2.14/2.18 �2.20/2.14 �2.18/2.15 �2.18/2.21 �2.28/2.31 �2.51/2.45 �3.41/3.44
250 0.9 �2.16/2.15 �2.18/2.15 �2.17/2.14 �2.12/2.16 �2.14/2.17 �2.23/2.18 �2.38/2.34 �2.57/2.60 �3.91/3.73
Bartlett
500 0.1 �2.12/2.10 �2.10/2.13 �2.06/2.10 �2.08/2.08 �2.10/2.09 �2.09/2.11 �2.08/2.10 �2.14/2.20 �2.34/2.39
500 0.2 �2.05/2.07 �2.09/2.15 �2.16/2.08 �2.14/2.13 �2.13/2.05 �2.07/2.10 �2.15/2.08 �2.13/2.15 �2.28/2.48
500 0.8 �1.93/1.91 �1.96/1.97 �2.02/1.99 �2.08/2.14 �2.12/2.10 �2.17/2.10 �2.24/2.25 �2.34/2.36 �2.68/2.69
500 0.9 �1.78/1.81 �1.86/1.89 �2.01/1.96 �2.00/2.06 �2.11/2.04 �2.22/2.17 �2.31/2.26 �2.38/2.48 �2.95/2.97
Quadratic spectral
500 0.1 �2.13/2.13 �2.11/2.16 �2.16/2.17 �2.24/2.14 �2.18/2.14 �2.20/2.13 �2.21/2.18 �2.17/2.17 �2.56/2.52
500 0.2 �2.15/2.13 �2.19/2.19 �2.18/2.14 �2.17/2.14 �2.16/2.22 �2.19/2.19 �2.16/2.19 �2.18/2.22 �2.62/2.56
500 0.8 �2.14/2.21 �2.15/2.20 �2.15/2.16 �2.23/2.14 �2.21/2.15 �2.22/2.21 �2.19/2.25 �2.27/2.24 �2.68/2.64
500 0.9 �2.17/2.13 �2.12/2.08 �2.19/2.19 �2.20/2.21 �2.12/2.17 �2.18/2.17 �2.24/2.23 �2.31/2.31 �2.84/2.85
Bartlett
1000 0.1 �2.13/2.11 �2.10/2.01 �2.09/2.06 �2.10/2.10 �2.12/2.10 �2.09/2.08 �2.10/2.11 �2.14/2.17 �2.22/2.23
1000 0.2 �2.07/2.07 �2.10/2.15 �2.14/2.05 �2.12/2.05 �2.10/2.11 �2.11/2.14 �2.11/2.11 �2.03/2.12 �2.23/2.18
1000 0.8 �2.02/2.01 �2.00/2.01 �2.03/2.05 �2.04/2.04 �2.18/2.08 �2.20/2.11 �2.19/2.15 �2.20/2.23 �2.31/2.31
1000 0.9 �1.94/1.97 �2.04/2.01 �2.00/2.03 �2.11/2.00 �2.09/2.08 �2.15/2.14 �2.21/2.21 �2.28/2.27 �2.44/2.44
Quadratic spectral
1000 0.1 �2.17/2.12 �2.14/2.18 �2.16/2.17 �2.14/2.13 �2.13/2.11 �2.08/2.13 �2.18/2.19 �2.15/2.17 �2.31/2.27
1000 0.2 �2.15/2.12 �2.18/2.14 �2.14/2.12 �2.17/2.15 �2.17/2.23 �2.19/2.15 �2.18/2.12 ��2.18/2.19 �2.34/2.34
1000 0.8 �2.19/2.14 �2.11/2.17 �2.11/2.19 �2.18/2.15 �2.20/2.13 �2.11/2.12 �2.17/2.15 �2.22/2.28 �2.34/2.31
1000 0.9 �2.21/2.16 �2.18/2.12 �2.19/2.12 �2.17/2.21 �2.23/2.23 �2.19/2.20 �2.21/2.19 �2.27/2.22 �2.34/2.38

Using the Bartlett and Quadratic spectral methods, this table reports dummy variable coefficient critical cut-off t-statistic values for dummy variable regression model,
rt = a + bpt + ut under different combinations of autocorrelation of the dependent variable and transition probability of the dummy variable. Autocorrelation of the dummy
variable is equal to two times the dummy variable transition probability minus one (2q � 1). Lower and upper bounds (i.e., critical cut-off values) of the 95% confidence
interval of t-statistics adjusted for spurious regression bias are reported. The monthly mean return of the simulated dependent variable series is zero and the monthly
standard deviation is one. For the Bartlett method, the fixed lag length HAC standard error estimation sets the lag length (M) as a fixed function of the sample size T (M = bT),
where b is a constant and is set at 0.05.
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ence in seasonal returns is found to be significant in only 6 (in con-
trast to 20) of the 37 countries examined by BJ once spurious
regression and data mining are taken into account.

3.3. Business cycle regimes and momentum profits

Two recent studies by Chordia and Shivakumar (2002) and Coo-
per et al. (2004) examine how momentum profits are affected by
business cycle regimes. On face appearance, we have the necessary
ingredients for a spurious regression bias problem. Business cycles
(i.e., the dichotomous independent variable) are known to be
highly persistent, and measured momentum returns are positively
autocorrelated due to the use of overlapping observations.
Chordia and Shivakumar (2002) (hereafter, CS) explore whether
momentum profits can be explained by macroeconomic variables
in an attempt to provide a ‘‘risk-based” explanation of momentum
profits in contrast to the prevailing ‘‘investor irrationality” expla-
nation. The CS explanation of momentum profits builds upon their
finding that momentum profits are only positive during periods of
economic expansion. To reach this conclusion, they (implicitly) use
dummy variable regression model (1). The dependent variable in
their study is cumulative abnormal returns to the past winner
minus past loser momentum strategy for all CRSP stocks during
the sample period July 1926 to December 1994, where cumulative
abnormal returns are measured over the six-month period subse-
quent to each month t and are, therefore, overlapping. The dichot-



Table 6
Halloween indicator regression results for countries with significant t-statistics reported by Bouman and Jacobsen (2002).

Country n Mean Standard deviation Auto-correlation Parameter estimates and lower/upper cut-off levels

a t(a) b t(b) �R2

Austria 344 0.66 5.41 0.153 –0.13 –0.30 1.57 2.71 1.82%
Spurious regression bias �0.26/1.58 �0.07/3.94 �1.25/1.27 �2.17/2.18 1.07%
Spurious regression bias and data mining �0.51/1.86 �1.26/4.68 �1.66/1.64 �2.86/2.86 2.04%

Belgium 344 1.18 4.73 0.157 0.02 0.06 2.31 4.67 5.72%
Spurious regression bias 0.38/1.99 1.07/5.69 �1.09/1.12 �2.18/2.21 1.09%
Spurious regression bias and data mining 0.12/2.23 0.33/6.45 �1.45/1.51 �2.87/2.99 2.17%

Brazil 128 15.38 21.9 0.172 11.61 4.73 7.53 1.97 2.21%
Spurious regression bias 9.23/21.41 3.39/8.37 �8.12/8.22 �2.14/2.17 2.73%
Spurious regression bias and data mining 7.29/23.22 2.64/9.25 �10.81/10.75 �2.89/2.87 5.30%

Canada 344 0.83 4.99 0.015 0.26 0.67 1.14 2.12 1.01%
Spurious regression bias 0.08/1.58 0.22/4.25 �1.05/1.04 �1.98/1.98 0.84%
Spurious regression bias and data mining �0.15/1.8 �0.40/4.93 �1.36/1.43 �2.53/2.68 1.63%

France 344 1.03 6.02 0.078 �0.13 �0.27 2.31 3.62 3.41%
Spurious regression bias 0.08/2 0.17/4.48 �1.32/1.36 �2.07/2.12 0.96%
Spurious regression bias and data mining �0.24/2.29 �0.52/5.17 �1.75/1.84 �2.78/2.85 1.98%

Germany 344 0.78 5.3 0.06 0.08 0.19 1.38 2.44 1.42%
Spurious regression bias �0.04/1.58 �0.10/4.02 �1.15/1.15 �2.04/2.03 0.90%
Spurious regression bias and data mining �0.29/1.85 �0.75/4.75 �1.49/1.55 �2.63/2.71 1.77%

Greece 128 2.12 10.8 0.114 0.45 0.32 3.34 1.77 1.64%
Spurious regression bias �0.57/4.85 �0.46/4.01 �3.72/3.75 �2.14/2.15 2.70%
Spurious regression bias and data mining �1.51/5.68 �1.21/4.83 �4.89/4.92 �2.80/2.86 5.21%

Ireland 128 1.25 5.83 0.111 �0.05 �0.06 2.6 2.57 4.24%
Spurious regression bias �0.28/2.77 �0.39/3.98 �2.18/2.14 �2.16/2.13 2.71%
Spurious regression bias and data mining �0.75/3.25 �1.08/4.71 �2.89/2.83 �2.88/2.85 5.25%

Italy 344 0.91 7.13 0.074 �0.44 �0.75 2.7 3.56 3.30%
Spurious regression bias �0.22/2.06 �0.41/3.88 �1.57/1.61 �2.06/2.11 0.95%
Spurious regression bias and data mining �0.59/2.4 �1.11/4.56 –2.07/2.18 �2.77/2.84 1.96%

Japan 344 0.7 5.42 0.057 �0.06 �0.14 1.52 2.62 1.69%
Spurious regression bias �0.13/1.52 �0.33/3.78 �1.17/1.18 �2.03/2.03 0.89%
Spurious regression bias and data mining �0.40/1.79 �0.98/4.5 �1.52/1.58 �2.62/2.71 1.76%

Malaysia 128 0.17 8.67 0.033 �1.12 �1.01 2.59 1.70 1.47%
Spurious regression bias �1.95/2.33 �1.90/2.29 �3.06/3.16 �2.05/2.09 2.46%
Spurious regression bias and data mining �2.63/3.06 �2.52/3.05 �4.08/4.16 �2.73/2.76 4.82%

Netherlands 344 1.12 4.95 0.071 0.18 0.45 1.88 3.58 3.33%
Spurious regression bias 0.34/1.92 0.91/5.21 �1.08/1.12 �2.05/2.11 0.95%
Spurious regression bias and data mining 0.08/2.15 0.24/5.92 �1.44/1.51 �2.76/2.83 1.96%

Philippines 128 0.98 9.23 0.146 �0.05 �0.04 2.07 1.27 0.48%
Spurious regression bias �1.44/3.46 �1.29/3.21 �3.47/3.42 ��2.18/2.18 2.81%
Spurious regression bias and data mining �2.27/4.24 �2.06/4 �4.55/4.51 �2.87/2.93 5.34%

Singapore 344 0.67 8.39 0.123 �0.25 �0.40 1.84 2.05 0.92%
Spurious regression bias �0.71/2.07 �1.14/3.32 �1.90/1.95 �2.13/2.17 1.04%
Spurious regression bias and data mining �1.16/2.49 �1.88/4.02 �2.52/2.63 �2.84/2.92 2.08%

Spain 344 1.06 6.04 0.115 0.12 0.26 1.88 2.92 2.15%
Spurious regression bias 0.08/2.05 0.18/4.58 �1.37/1.36 �2.13/2.11 0.99%
Spurious regression bias and data mining �0.22/2.36 �0.47/5.28 �1.80/1.8 �2.78/2.83 1.93%

Sweden 344 1.39 6.15 0.116 0.31 0.66 2.17 3.32 2.84%
Spurious regression bias 0.38/2.41 0.83/5.29 �1.39/1.42 �2.11/2.16 1.03%
Spurious regression bias and data mining 0.06/2.72 0.12/6.01 �1.84/1.93 �2.83/2.91 2.07%

(continued on next page)
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omous variable used in their study is 1 for months of economic
expansion as defined by the National Bureau of Economic Research
(and reproduced in Table 2 of CS) and 0 for months of economic
retraction.18 Chordia and Shivakumar (2002, p. 992, Table II) provide
a summary.

CS report that the 1.25% difference in momentum return be-
tween business cycle upturns and downturns is economically
and statistically significant. For purposes of comparison, their re-
sults are reported in Panel A of Table 7. Panel B provides the cut-
off t-statistics adjusted for spurious regression bias and spurious
regression bias and data mining. The transition probabilities for
the simulated dummy variable series are determined from the
monthly NBER expansionary/retractionary definitions. The simu-
lated dependent variable series has the same mean, standard devi-
ation and autocorrelation as the momentum profit cumulative
abnormal return series, UMD6M, reported in Panel B of Table 7.19

Panel B also contains the lower/upper 95% confidence bounds for
the t-statistic. As the results show, the reported t-statistic of 2.10
for the test of differences in momentum return across the business
cycle falls comfortably within the bounds of (�2.45, 2.48) and
(–3.35, 3.41) for the spurious regression bias and the spurious
regression bias and data mining simulations, respectively. The return
difference between business cycle upturns and downturns is there-
fore insignificant from a statistical standpoint. Again, it is worth-
while to note that the matrix of critical t-statistics reported in
Table 2 confirms this conclusion. Using a dependent variable auto-
correlation of 0.8, a dummy variable transition probability of 0.95,
and a sample size of 1000, the cut-off t-statistic values in Panels A
and B are (�2.50, 2.48) and (�3.31, 3.27), respectively. A bootstrap
procedure also provides (unreported) results that are essentially
the same as those obtained using the simulation procedure.

Cooper et al. (2004) (hereafter, CGH) examine whether momen-
tum profits are affected by the state of the market. Like CS, the
dependent variable in the CGH study includes cumulative abnor-
mal returns to the past winner minus past loser momentum strat-
egy for all CRSP stocks over the six-month period subsequent to
each month t. CGH use the sample period January 1929 through
December 1995. Again, since monthly data are used in the time-
series tests, the dependent variable will be autocorrelated due to
overlapping observations. The independent variable is a state-of-
the-market dummy variable whose value is 1 in month t if the total
return to the CRSP value-weighted index is positive during the pre-
ceding three years and 0 otherwise. Cooper et al. (2004, p. 1352)
report that momentum profits following UP markets are statisti-
cally greater than DOWN markets. For the six-month cumulative
return, for example, the reported t-statistic is 2.26, well above
the critical level in conventional tests. The monthly returns and
t-statistic are reported in Panel A of Table 8.

To determine whether spurious regression bias has affected sta-
tistical inference in the CGH study, we again develop 95% confi-
dence bounds that explicitly account for the autocorrelation in
the dependent variable and the transition probabilities of the
state-of-the-market dummy. The transition probabilities for the
simulated state-of-the-market dummy variable series are com-
puted using the CRSP value-weighted index. The simulated depen-
dent variable series has the same mean, standard deviation and
18 In a recent, related study, Basintha and Kurov (2008) examine cyclical variation in
the effect of Fed policy on the stock market.

19 We use the monthly Fama and French momentum factor to calculate the
overlapping six-month momentum return properties. The data are available at http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The Fama and
French momentum portfolio is not identical to the decile past winner minus past loser
momentum portfolio, so we also convert the daily autocorrelation of the decile
momentum factor reported in Yan (2005) to monthly autocorrelation and get an
autocorrelation estimate of 0.7 which is quite close to the estimate we obtained using
the Fama and French momentum factor.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table 7
Results for Chordia and Shivakumar (2002).

Panel A: Chordia and Shivakumar (2002) result

Expansionary Contractionary Difference t-statistic

Average monthly profit 0.53 �0.72 1.25 2.10

Panel B: Simulation results

Variable n Mean Standard deviation Auto-correlation Lower/upper cut-off t-statistics

UMD6M 811 3.64 13.03 0.845
Spurious regression bias �2.45/2.48
Spurious regression bias and data mining �3.35/3.41

Panel A contains results reported in Chordia and Shivakumar (2002) that correspond to an OLS regression of six-month momentum profits on a business cycle dummy
variable, UMD6Mt ¼ aþ btBCt þ ut , where UMD6Mt denotes cumulative six-month return, expressed in percentage form, of the winner minus loser momentum strategy for
all CRSP stocks. Panel B contains simulation results for the OLS regression of six-month momentum profits where UMD6Mt is the cumulative six-month return of the Fama–
French monthly momentum factor at time t and is expressed in percentage. BCt in both panels is 1 if month t falls into expansionary periods and 0 otherwise, and
expansionary and contractionary periods are classified based on the NBER published business cycle dates. While the Chordia and Shivakumar (2002) sample period is July
1926 to December 1994, the Fama and French monthly momentum factor is available only from January 1927. Cut-off t-statistics are adjusted for autocorrelation and
heteroskedasticity using Newey and West (1987).

Table 8
Results for Cooper et al. (2004).

Part A: Cooper et al. (2004)

UP DOWN Difference t-statistic

Average monthly profit 0.93 �0.37 1.30 2.26

Panel B: Simulation results

Variable n Mean Standard deviation Auto-correlation Lower/upper cut-off t-statistics

UMD6M 804 3.55 13.04 0.844
Spurious regression bias �2.70/2.58
Spurious regression bias and data mining �3.68/3.58

Panel A contains results reported in Cooper et al. (2004) that correspond to an OLS regression of six-month momentum profits on a state-of-the-market dummy variable,
UMD6Mt ¼ aþ btSOMt þ ut , where UMD6Mt denotes cumulative six-month return, expressed in percentage form, of the winner minus loser momentum strategy for all CRSP
stocks. Panel B contains simulation results for the OLS regression of six-month momentum profits where UMD6Mt is the cumulative six-month return of Fama–French
monthly momentum factor at time and is expressed in percentage form, SOM in both panels is 1 if the lagged three-year market return is non-negative and 0 otherwise, UP is
when the lagged three-year CRSP value-weighted index return is non-negative, and DOWN is when the lagged three-year CRSP value-weighted index return is negative. The
sample period is January 1929 and December 1995. Cut-off t-statistics are adjusted for autocorrelation and heteroskedasticity using Newey and West (1987).
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autocorrelation as the momentum profit cumulative abnormal re-
turn series, UMD6M, reported in Panel B of Table 8. The simulated
confidence bounds reported in Panel B of Table 8 indicate that the
t-statistics obtained by CGH are less than would be expected by
chance. The reported t-statistic for the CGH test for equality be-
tween cumulative abnormal returns in up and down market states,
2.26 for the six-month momentum strategy, is well within the sim-
ulated bounds (�2.70, 2.58) for spurious regression bias for depen-
dent variable autocorrelation of .8, a dummy variable transition
probability of .95, and a sample size of 750. Once again, the statis-
tical inference is reversed. Contrary to CGH, the observed return
difference between up and down markets is less than would be ex-
pected by chance. The critical confidence bounds reported in Table
2 provide a convenient means of confirming this conclusion. For
dependent variable autocorrelation of 0.8, a dummy variable tran-
sition probability of 0.95, and a sample size of 1000, the bounds are
(�2.50, 2.48) and (�3.31, 3.27) for spurious regression bias and
spurious regression bias and data mining, respectively. Once again,
a bootstrap procedure also provides (unreported) results that are
essentially the same as those obtained using the simulation
procedure.

3.4. Monetary aggregates and interest rate regimes

Another interesting issue to consider in exploring the influence
of regression variable autocorrelation on tests for regime differ-
ences is raised by Jensen et al. (1996) (hereafter, JMJ) when they
examine differences in the behavior of monetary aggregates across
interest rate regimes. The interest rate regime dummy variable
used in the study equals 1 if the last change in the discount rate
is positive and 0 otherwise. Since the number of changes in the
discount rate each year is generally few, a dummy variable based
on monthly intervals is persistent by construction. Indeed, as Table
I shows, the autocorrelation of the dummy variable used in the JMJ
study is .900. At the same time, monetary aggregates are also
strongly persistent. None of the four JMJ dependent variables con-
sidered in Table 1 has autocorrelation below .872.

JMJ test the difference between the median levels of each mon-
etary aggregate under expansive (discount rate decrease) and
restrictive (discount rate increase) monetary policy regimes during
the period 1954 through 1992 and conclude that each difference is
statistically significant using conventional test methodologies. To
examine the effect of autocorrelation on their test, we regress
the monthly levels of monetary aggregates on a dummy variable
whose value is 1 if the most recent interest rate change was an in-
crease and 0 otherwise. We use only four of the five economic ser-
ies examined by JMJ – seasonally-adjusted money supply (M1SL),
seasonally-adjusted monetary base (AMBSL), excess reserves
(EXCRESNS), and the federal funds premium (FFPREM). We do not
include the seasonally-adjusted Fed credit variable since the series
has been discontinued and is no longer available in its entirety. All
data are from the Federal Reserve Bank of Saint Louis. The results
are reported in Table 9.

The results in Table 9 are interesting in a number of respects.
First, two of the four series, seasonally-adjusted money supply
(M1SL) and seasonally-adjusted monetary base (AMBSL), are not dif-
ferent in a statistical sense under expansive (discount rate de-
crease) and restrictive (discount rate increase) monetary policy
regimes. Both of the reported t-statistics are within the conven-
tional bands (�1.96, 1.96). Apparently the fact that we test the dif-
ference between the means in the two regimes while JMJ test the
difference between medians produces different results. Second,



Table 9
Simulation results for Jensen et al. (1996).

Variable Sample size (n) Mean Standard deviation Auto-correlation Parameter estimates and lower/upper cut-off levels

a t(a) b t(b) �R2

M1SL 408 385.29 244.88 0.974 423.40 9.79 (5.90) �72.65 �1.32 (�0.87) 1.96%
Spurious regression bias 174.78/579.45 4.05/21.72 �168.99/172.52 �3.49/3.6 13.23%
Spurious regression bias and data mining 101.97/668.96 2.27/25.9 �231.64/241.25 �4.69/4.78 21.79%

AMBSL 467 117.62 89.01 0.974 132.33 8.72 (5.10) �27.48 �1.47 (�0.97) 2.17%
Spurious regression bias 45.03/192.42 3.19/19.57 �58.73/60.45 �3.51/3.6 11.80%
Spurious regression bias and data mining 19.92/215.91 1.32/23.48 �78.79/81.47 �4.70/4.62 18.76%

EXCRESNS 467 0.5 0.3 0.938 0.57 11.57 (6.92) �0.12 �2.01 (�1.38) 3.74%
Spurious regression bias 0.32/0.68 6.09/19.29 �0.19/0.19 �3.23/3.2 9.20%
Spurious regression bias and data mining 0.26/0.74 4.73/22.28 �0.24/0.25 �4.26/4.23 15.10%

FFPREM 462 0.58 0.84 0.872 0.37 4.46 (2.93) 0.39 2.66 (�1.90) 5.22%
Spurious regression bias 0.21/0.96 1.57/9.1 �0.45/0.45 �2.88/2.84 6.56%
Spurious regression bias and data mining 0.07/1.09 0.57/10.58 �0.59/0.6 �3.86/3.79 11.39%

OLS regression of economic variables on a discount rate change dummy variable, EVt ¼ aþ bDIRt þ ut , where EVt denotes monthly economic variables (M1SL, AMBSL,
EXCRESNS and FFPREM) at time t, M1SL is seasonally-adjusted money supply, AMBSL is seasonally-adjusted, monetary-base, EXCRESNS is excess reserves, FFPREM is the federal
funds premium and is calculated as the difference between the federal funds rate and the three-month T-bill rate, and DIRt is 1 if the previous change in the discount rate is an
increase and 0 otherwise. The sample period is February 1954 through December 1992, except M1SL and FFPREM which begin January 1959 and August 1954, respectively. �R2

denotes adjusted R2. All data are obtained from the Federal Reserve Bank at St. Louis. Regressions are estimated by OLS and t-statistics are adjusted for autocorrelation and
heteroskedasticity using Newey and West (1987). t-statistics in parentheses are adjusted using fixed lag length HAC standard error estimation by setting the lag length (M) as
a fixed function of the sample size T (M = bT), where b is a constant set at 0.05. Note that we do not include the seasonally-adjusted Fed-credit (ACFS) variable used in Jensen
et al. (1996). This series has been discontinued and is no longer available in its entirety.

1124 J.G. Powell et al. / Journal of Banking & Finance 33 (2009) 1112–1128
two of the four series, excess reserves (EXCRESNS) and the federal
funds premium (FFPREM), are significantly different under expan-
sive and restrictive monetary policy regimes using standard OLS
inference. Once we account for spurious regression bias, however,
the difference becomes insignificant. The 95% confidence bounds
are (�3.23, 3.20) and (�4.26, 4.23) for the spurious regression bias
and the spurious regression bias and data mining simulations,
respectively, for EXCRESNS, and (�2.88, 2.84) and (�3.86, 3.79) for
the spurious regression bias and the spurious regression bias and
data mining simulations, respectively, for FFPREM. The final column
of Table 9 provides, perhaps, the sharpest perspective, since it indi-
cates that an �R2 of close to 10% or higher would be expected to be
obtained by chance when regressing uncorrelated dependent and
independent series that have the same extreme persistence as the
data, yet the actual �R2’s obtained are 5% or less. Again, the critical
t-statistics reported in Table 2 further reinforce this conclusion.
The Federal funds premium series (FFPREM) has autocorrelation
of 0.9, the interest rate transition dummy variable transition prob-
ability of 0.95, and the sample size of nearly 500. The 95% confi-
dence bounds are (�3.05, 3.10) and (�4.20, 4.15) for spurious
regression bias and spurious regression bias and data mining,
respectively. The fixed lag length HAC t-statistics reported in paren-
theses in Table 9 strongly reinforce the conclusion that the reported
differences are due to serial correlation, since the reported t-statis-
tics fall by at least a third and clearly become insignificant when the
HAC estimator lag length constant is set equal to .05.

Again, the critical t-statistics generated by our simulation pro-
cedure reverse the statistical inferences that monetary aggregates
behave differently across interest rate regimes, thus undermining
the premise upon which JMJ’s subsequent analysis of return pre-
dictability across monetary regimes is based. This provides the
sharpest illustration so far of the need to take into account regres-
sion variable autocorrelation in dichotomous variable regression
analysis, since doing so apparently reverses the study’s conclusions
even though the results appear to be highly significant under con-
ventional tests of significance.
4. Binary regime dependent variables

The last two sections focus on testing for regime differences
when regimes are persistent. While the most common use of re-
gime dummy variables is as regressors, a natural question to ask
at this point is whether problems can exist when testing hypothe-
ses in situations in which the dependent variable in a time-series
regression is a regime dummy. Dichotomous dependent variables
require regression analysis within the binary dependent variable
(i.e., probit or logit) framework. In this section, we alter the simu-
lation procedure to answer the question.

The binary dependent variable Probit regression model is

Pðpt ¼ 1jrtÞ ¼ Nðaþ brtÞ; ð3Þ

where P denotes probability, pt is a binary dependent variable
equal to 1 if a particular event or regime is occurring and 0 other-
wise, N is the cumulative normal distribution, and rt is a contin-
uous explanatory variable. The binary variable and explanatory
variable are independently simulated following the procedure
outlined in Sections 2.1 and 2.2. The only difference is that the
simulated binary variable series now plays the role of the depen-
dent variable in the simulation procedure and the simulated con-
tinuous variable is the explanatory variable. The mean and
standard deviation of the explanatory variable series are 0 and
1, respectively.

Again, 10,000 simulation runs are used to create 95% critical
values. Table 10 contains the critical z-statistic values. The transi-
tion probability of the binary dependent variable is represented
on the x-axis of the table. Recall the autocorrelation of this binary
variable may be computed as 2q � 1. The autocorrelation of the
continuous explanatory variable is represented on the y-axis of
the table. The critical z-statistics are reported for three sample
sizes – 250, 500, and 1000. Panel A of Table 10 contains the critical
z-statistic interval adjusting for spurious regression, and Panel B
contains the critical z-statistic interval adjusted for data mining
as well as spurious regression.

To illustrate the use of the table, assume a binary depen-
dent variable has a transition probability of 0.99 (i.e., autocor-
relation of 0.98), the explanatory variable has autocorrelation
of 0.1, and the sample size is 250. The 95% confidence bounds
are (�2.13, 2.11) and (�2.75, 2.75) for spurious regression bias
and spurious regression bias and data mining, respectively,
substantially wider than the conventional level. Further in-
creases in explanatory variable autocorrelation have a huge
influence on critical z-statistics when the binary dependent
variable is also positively autocorrelated. An increase in inde-



Table 10
Cut-off coefficient estimate z-statistics for binary variable and independent variable serial correlation combinations.

Sample
size (n)

Auto-correlation of
independent variable

Transition probability of binary variable (q)

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Panel A: Cut-offs for spurious regression bias
250 0.1 �1.76/1.77 �1.78/1.77 �1.82/1.83 �1.81/1.87 �1.96/1.99 �2.05/2.00 �2.08/2.12 �2.11/2.11 �2.13/2.11
250 0.2 �1.62/1.60 �1.63/1.63 �1.67/1.70 �1.74/1.75 �1.91/1.93 �2.13/2.11 �2.33/2.35 �2.30/2.32 �2.39/2.35
250 0.3 �1.45/1.44 �1.49/1.48 �1.54/1.52 �1.70/1.69 �1.97/1.95 �2.28/2.33 �2.53/2.52 �2.55/2.56 �2.61/2.65
250 0.4 �1.32/1.31 �1.33/1.34 �1.43/1.42 �1.58/1.61 �1.97/1.99 �2.34/2.42 �2.69/2.74 �2.80/2.81 �2.93/2.84
250 0.5 �1.15/1.14 �1.21/1.19 �1.29/1.30 �1.57/1.54 �1.97/1.97 �2.50/2.52 �2.94/2.92 �3.07/3.08 �3.19/3.17
250 0.6 �1.04/1.01 �1.07/1.12 �1.18/1.17 �1.44/1.48 �1.93/1.95 �2.75/2.61 �3.31/3.28 �3.45/3.44 �3.70/3.60
250 0.7 �0.86/0.85 �0.96/0.94 �1.07/1.07 �1.34/1.39 �1.98/1.92 �2.73/2.81 �3.62/3.55 �3.97/3.94 �4.25/4.22
250 0.8 �0.71/0.71 �0.81/0.82 �0.94/0.91 �1.31/1.32 �1.99/1.97 �3.04/2.93 �4.04/4.01 �4.70/4.73 �5.09/5.12
250 0.9 �0.54/0.54 �0.67/0.68 �0.82/0.81 �1.24/1.23 �1.96/1.91 �3.19/3.17 �4.62/4.60 �5.63/5.61 �6.59/6.58

500 0.1 �1.79/1.74 �1.76/1.82 �1.81/1.83 �1.86/1.83 �2.01/1.95 �2.06/2.06 �2.15/2.11 �2.15/2.12 �2.08/2.17
500 0.2 �1.58/1.56 �1.62/1.64 �1.65/1.68 �1.73/1.80 �1.97/1.95 �2.27/2.15 �2.31/2.33 �2.36/2.35 �2.41/2.36
500 0.3 �1.48/1.42 �1.47/1.47 �1.53/1.55 �1.71/1.67 �1.91/1.95 �2.31/2.25 �2.54/2.44 �2.55/2.59 �2.61/2.69
500 0.4 �1.35/1.36 �1.35/1.35 �1.41/1.40 �1.61/1.57 �1.99/2.00 �2.35/2.40 �2.70/2.65 �2.86/2.81 �2.93/3.01
500 0.5 �1.14/1.16 �1.20/1.23 �1.29/1.31 �1.55/1.54 �2.00/1.95 �2.53/2.57 �2.99/3.02 �3.12/3.18 �3.27/3.36
500 0.6 �1.00/1.00 �1.09/1.07 �1.19/1.16 �1.44/1.45 �1.97/1.96 �2.66/2.64 �3.26/3.25 �3.59/3.54 �3.73/3.81
500 0.7 �0.85/0.85 �0.93/0.94 �1.03/1.04 �1.35/1.37 �1.92/1.96 �2.84/2.80 �3.70/3.63 �4.07/4.08 �4.39/4.48
500 0.8 �0.70/0.71 �0.78/0.82 �0.94/0.94 �1.31/1.28 �1.93/1.90 �3.03/2.95 �4.02/4.16 �4.78/4.72 �5.47/5.31
500 0.9 �0.51/0.52 �0.64/0.65 �0.81/0.80 �1.20/1.25 �1.98/1.97 �3.15/3.16 �4.69/4.77 �5.79/5.82 �7.32/7.43

1000 0.1 �1.79/1.78 �1.81/1.77 �1.80/1.84 �1.87/1.86 �2.00/1.94 �2.10/2.10 �2.15/2.09 �2.16/2.14 �2.16/2.19
1000 0.2 �1.62/1.58 �1.64/1.65 �1.67/1.67 �1.82/1.77 �1.91/1.96 �2.18/2.16 �2.27/2.28 �2.38/2.33 �2.36/2.36
1000 0.3 �1.46/1.43 �1.46/1.50 �1.51/1.54 �1.71/1.68 �1.98/1.97 �2.35/2.23 �2.49/2.49 �2.61/2.56 �2.55/2.69
1000 0.4 �1.30/1.29 �1.34/1.36 �1.42/1.41 �1.62/1.60 �1.96/1.95 �2.45/2.43 �2.72/2.77 �2.84/2.89 �2.91/3.00
1000 0.5 �1.14/1.17 �1.19/1.23 �1.29/1.30 �1.56/1.50 �1.98/1.94 �2.53/2.55 �3.04/2.99 �3.17/3.19 �3.35/3.29
1000 0.6 �0.99/0.98 �1.08/1.06 �1.15/1.20 �1.43/1.43 �1.99/1.98 �2.67/2.65 �3.35/3.21 �3.58/3.53 �3.83/3.88
1000 0.7 �0.85/0.86 �0.92/0.93 �1.03/1.03 �1.38/1.37 �1.95/1.99 �2.72/2.85 �3.73/3.71 �4.09/4.14 �4.49/4.59
1000 0.8 �0.69/0.68 �0.81/0.79 �0.93/0.94 �1.25/1.28 �1.98/1.99 �2.96/2.94 �4.15/4.17 �4.72/4.89 �5.71/5.55
1000 0.9 �0.50/0.50 �0.65/0.64 �0.80/0.78 �1.21/1.23 �1.93/1.97 �3.11/3.22 �4.69/4.78 �5.99/5.98 �7.60/7.72

Panel B: Cut�offs for spurious regression bias and data mining

250 0.1 �2.23/2.33 �2.33/2.32 �2.42/2.38 �2.42/2.38 �2.65/2.57 �2.70/2.64 �2.74/2.83 �2.80/2.74 �2.75/2.75
250 0.2 �2.07/2.09 �2.13/2.17 �2.12/2.29 �2.31/2.26 �2.55/2.57 �2.80/2.87 �3.03/3.12 �2.99/2.97 �3.14/3.07
250 0.3 �1.91/1.92 �1.94/2.03 �2.00/2.00 �2.21/2.22 �2.55/2.59 �2.99/3.04 �3.20/3.24 �3.27/3.30 �3.49/3.46
250 0.4 �1.73/1.75 �1.80/1.76 �1.86/1.84 �2.11/2.09 �2.57/2.57 �3.06/3.21 �3.39/3.55 �3.62/3.61 �3.83/3.70
250 0.5 �1.49/1.50 �1.60/1.58 �1.68/1.73 �2.09/1.99 �2.50/2.48 �3.29/3.31 �3.75/3.76 �3.95/4.08 �4.23/4.06
250 0.6 �1.35/1.35 �1.44/1.46 �1.56/1.54 �1.91/1.87 �2.51/2.54 �3.51/3.42 �4.33/4.32 �4.48/4.38 �4.66/4.61
250 0.7 �1.18/1.13 �1.25/1.27 �1.42/1.37 �1.77/1.84 �2.69/2.56 �3.56/3.66 �4.65/4.77 �5.13/5.09 �5.39/5.46
250 0.8 �0.92/0.94 �1.07/1.11 �1.24/1.23 �1.71/1.71 �2.63/2.57 �3.95/3.82 5.15/5.20 �6.02/6.00 �6.54/6.52
250 0.9 �0.73/0.71 �0.88/0.88 �1.10/1.11 �1.68/1.58 �2.52/2.45 �4.18/4.03 �5.97/5.91 �7.12/6.94 �7.96/7.90

500 0.1 �2.26/2.26 �2.37/2.38 �2.45/2.38 �2.47/2.42 �2.65/2.55 �2.77/2.72 �2.85/2.73 �2.78/2.82 �2.74/2.79
500 0.2 �2.11/2.02 �2.13/2.19 �2.21/2.20 �2.34/2.36 �2.54/2.55 -2.92/2.80 �2.97/2.95 �3.03/3.02 –3.15/3.09
500 0.3 �1.93/1.93 �1.88/1.95 �1.98/2.02 �2.22/2.15 �2.54/2.51 �3.02/2.82 �3.37/3.27 �3.34/3.35 �3.39/3.49
500 0.4 �1.75/1.75 �1.78/1.76 �1.82/1.84 �2.10/2.06 �2.62/2.62 �3.12/3.14 �3.44/3.51 �3.89/3.81 �3.85/3.81
500 0.5 �1.48/1.50 �1.55/1.64 �1.72/1.72 �1.99/1.98 �2.69/2.49 �3.50/3.23 �4.00/3.94 �4.10/4.05 �4.36/4.34
500 0.6 �1.33/1.34 �1.41/1.41 �1.53/1.49 �1.89/1.90 �2.62/2.62 �3.39/3.53 �4.33/4.26 �4.53/4.69 �4.84/4.90
500 0.7 �1.11/1.13 �1.23/1.22 �1.38/1.35 �1.82/1.79 ��2.52/2.64 �3.77/3.71 �4.84/4.69 �5.41/5.28 �5.72/5.67
500 0.8 �0.93/0.89 �1.03/1.08 �1.24/1.22 �1.68/1.72 �2.50/2.54 �4.02/3.84 �5.25/5.25 �6.16/6.22 �6.99/6.86
500 0.9 �0.67/0.67 �0.89/0.84 �1.07/1.06 �1.57/1.66 �2.62/2.60 �4.13/4.11 �6.15/6.20 �7.37/7.27 �9.06/ 9.40

1000 0.1 �2.40/2.28 �2.42/2.41 �2.41/2.35 �2.45/2.44 �2.63/2.52 �2.68/2.74 �2.83/2.76 �2.85/2.78 �2.77/2.78
1000 0.2 �2.14/2.09 �2.15/2.14 �2.16/2.19 �2.34/2.40 �2.46/2.52 �2.84/2.83 �3.03/2.97 �3.13/3.04 �3.03/3.06
1000 0.3 �1.87/1.84 �1.88/1.98 �1.93/2.02 �2.17/2.22 �2.47/2.49 �3.08/2.97 �3.25/3.28 �3.34/3.37 �3.44/3.45
1000 0.4 �1.72/1.70 �1.70/1.79 �1.92/1.84 �2.11/2.08 �2.59/2.55 �3.18/3.10 �3.60/3.60 �3.76/3.73 �3.82/3.96
1000 0.5 �1.49/1.54 �1.61/1.59 �1.68/1.73 �1.94/1.99 �2.57/2.56 �3.31/3.41 �3.90/3.96 �4.15/4.17 �4.21/4.41
1000 0.6 �1.27/1.31 �1.38/1.40 �1.53/1.59 �1.82/1.85 �2.60/2.57 �3.41/3.47 �4.39/4.20 �4.64/4.60 �5.03/5.18
1000 0.7 �1.11/1.12 �1.19/1.22 �1.33/1.39 �1.78/1.83 �2.53/2.64 �3.72/3.77 �4.78/4.73 �5.33/5.18 �5.79/5.79
1000 0.8 �0.91/0.89 �1.04/1.07 �1.23/1.23 �1.68/1.64 �2.65/2.62 �4.04/3.91 �5.48/5.48 �6.33/6.26 �7.28/7.31
1000 0.9 �0.68/0.67 �0.87/0.83 �1.04/1.00 �1.63/1.58 �2.62/2.55 �4.11/4.15 �6.16/6.24 �7.76/7.70 �9.93/9.82

This table reports coefficient estimate critical cut-off t-statistic values for the binary dependent variable regression model (Probit model) Pðpt ¼ 1jrtÞ ¼ Nðaþ brtÞ, where P
indicates probability and N is the cumulative normal distribution. Critical cut-off t-statistic values are reported under different combinations of transition probability of the
binary variable (pt) and autocorrelation of the independent variable (rt). Autocorrelation of the binary variable is equal to two times the binary variable transition probability
minus one (2q � 1). Panel A reports lower and upper bounds (i.e., critical cut-off values) of the 95% confidence interval of z-statistics adjusted for spurious regression bias.
Panel B reports lower and upper bounds (i.e., critical cut-off values) of the 95% confidence interval of z-statistics adjusted for spurious regression bias and data mining with
five variables examined. The monthly mean return of the simulated independent variable series is zero and the monthly standard deviation is one.
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pendent variable autocorrelation to 0.5 corresponds to critical
z-statistic values of (�3.19, 3.17) in Panel A and (�4.23,
4.06) in Panel B. Explanatory variables used in probit models
such as the dividend yield or the term structure, however,
are often highly autocorrelated (0.8 or 0.9), and an indepen-
dent variable autocorrelation of 0.9 combined with a binary
variable transition probability of 0.99 corresponds to critical
z-statistic values of (�6.59, 6.58) in Panel A and (�7.96,
7.90) in Panel B. In other words, the potential for spurious
regression appears to be extremely strong in probit regression
models relative to all other time-series regression models ana-
lyzed thus far.



Table 11
Simulation results for Resnick and Shoesmith (2002).

Independent variable, SPREADt�k

k

Parameter estimates

a Z(a) b t(b)

1 �0.33 �3.69 �0.31 �5.58
2 �0.34 �3.81 �0.30 �5.49
3 �0.36 �4.00 �0.29 �5.31
4 �0.39 �4.27 �0.27 �5.00
5 �0.42 �4.65 0.24 �4.55
8 �0.48 �5.21 �0.21 �3.96

Lower/upper cut-off levels

Spurious regression bias �1.83/�0.08 �13.30/�0.77 �0.44/0.42 �6.50/6.30
Spurious regression bias and data mining �2.28/0.20 �14.27/1.76 �0.61/0.61 �8.10/8.13

Probit analysis of predictive power of lagged term structure spread on bear market binary variable, PðBEARt ¼ 1jSPREADt�kÞ ¼ Nðaþ bSPREADt�kÞ, where P indicates prob-
ability, BEARt is a binary dependent variable at month t and is 1 if the six month trend in monthly returns is negative and 0 otherwise, N is the standard normal distribution,
and SPREADt�k is the slope of the yield curve t�k months earlier (k = 1, 2, 3, 4, 5, and 8) and is calculated as the difference between the monthly 10-year government bond rate
and the monthly three-month T-Bill rate (expressed in % form). Data are obtained from the Federal Reserve Bank St. Louis.
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The differences in sample size indicate that high cut-off inter-
vals do not diminish as the sample size increases when the depen-
dent variable is persistent, a finding that is consistent with Ferson
et al. (2003) and illustrates the difference between autocorrelation
in the dependent variable versus the independent variable (as indi-
cated by a comparison of Table 10 with Table 2). Interestingly, the
simulated confidence intervals actually tighten sharply when the
binary variable autocorrelation becomes increasingly negative
(i.e., transition probabilities less than 0.5), thus implying that con-
ventional confidence intervals are considerably overstated. Finally,
the simulated critical values almost exactly match conventional
cut-offs when the dependent variable is not autocorrelated (the
transition probability equals 0.5).

To illustrate the effect of regression variable autocorrelation for
binary dependent variables, the simulation procedure is used to
test the hypothesis that the term structure can be used to forecast
bear markets. Clearly, data mining is a concern, since the goal of
predicting bear markets has been an important and potentially
lucrative area of endeavor.

Resnick and Shoesmith (2002) use the difference between the
ten-year government bond yield and the three-month treasury bill
yield, lagged by various time intervals from one month to eight
months, to predict bear markets (where the bear market binary
variable is defined as being equal to 1 if the six month trend in
monthly returns is negative, and 0 otherwise.20 They find that a
sharp reduction in the yield spread foreshadows bear markets in
their sample period January 1960 through December 1999, with
the yield curve lagged by either one month or two months having
the best predictive ability out of sample.21 Table 11 provides results
for the performance of their model within sample. Table 11 reveals
that z-scores for the independent yield spread variable coefficient
range from �3.96 for an eight-month lag of the yield spread to
�5.58 for the shortest lag (one month), all of which imply a highly
significant relation between the yield spread and subsequent reces-
sions by conventional standards. Table 11 indicates, however, that
the z-scores for the independent yield spread variable coefficient
sit well within the critical z-statistic intervals of (�6.50, 6.30) and
(�8.10, 8.13). The simulation procedure z-statistic critical values
provided in Table 10 (n = 500) also lead to a conclusion of no signif-
icant predictability, since explanatory variable autocorrelation of 0.9
and a dependent variable transition probability of 0.95 correspond to
critical cut-off z-statistic intervals of (�5.79, 5.82) and (�7.37, 7.27)
for spurious regression bias and spurious regression bias and data
20 Candelon et al. (2008) examine bull and bear markets and co-movements in
market returns in five Asian stock markets.

21 In a related paper, Chen (2009) investigates whether macroeconomic announce-
ments can predict recessions in the stock market.
mining, respectively. Regression variable autocorrelation, therefore,
has an important influence on statistical inference in this probit
model and raises serious doubts about whether changes in the yield
curve predict bull and bear markets.

5. Advice to researchers

The results of this study show the dramatic effects that persistent
dummy variables can have on standard OLS tests of significance. This
section offers researchers some guidance on how to avoid the trap
when using dichotomous random variables in a time-series regres-
sion framework. The first, and most obvious, suggestion is to report
summary statistics for the dichotomous regression variables in the
same manner as continuous regression variables. In this way, readers
will be alerted to the prospect of a spurious regression problem. With
the levels of autocorrelation and persistence known (or estimated),
the critical t-statistics provided in Tables 2 and 10 can be used to cor-
rectly assess statistical inference.

A second suggestion is to use fixed lag length HAC standard esti-
mation (with a fixed lag length constant b = .05) since it provides
an improvement relative to other HAC standard error adjustment
procedures recommended in the literature. Whenever HAC estima-
tors are employed to estimate t-statistics, statistical significance
should be assessed analytically using the asymptotic cut-off values
obtained from Table 3 (e.g., for a lag equal to a fixed function of the
sample size, bT, where b = 0.05 and a Bartlett kernel, the cut-off is
2.11 rather than 1.96), thus analytically taking into account the lag
length that is employed.

A third suggestion for situations where the dependent variable
is, itself, highly autocorrelated is to include the lagged value of the
dependant variable as a regressor.22 Table 12 shows that this pro-
vides a close approximation to the asymptotic cutoffs from Table 3
(2.11 in the case of the Bartlett kernel and sample size = .05T) even
in cases where the dichotomous random variable is negatively
correlated.

A fourth suggestion is to try to avoid situations where the
dichotomous variable is, by construction, autocorrelated. In presi-
dential regime studies, for example, only one value of the presiden-
tial dummy variable is observed each four years. Consequently,
only the total return over the presidential term is relevant. A sim-
pler, more intuitive, approach is to run the regression model using
one observation every four years, thus greatly reducing the depen-
dent variable autocorrelation. Similarly, the use of overlapping
dependent variable observations should be avoided whenever pos-
sible. Finally, where data mining concerns are potentially relevant,
22 We thank the referee for offering this alternative approach.



Table 12
Cut-off dummy variable t-statistics for dependent and dummy variable autocorrelation combinations with lagged dependent variable as a regressor using the Bartlett Method.

Sample size (n) Auto-correlation of
dependent variable

Transition probability of dummy variable (q)

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Panel A: Cut-offs for spurious regression bias
250 0.1 �2.10/2.01 �2.06/2.06 �2.03/2.07 �2.11/2.12 �2.13/2.11 �2.14/2.07 �2.11/2.16 �2.20/2.18 �2.59/2.58
250 0.2 �2.11/2.08 �2.04/2.12 �2.04/2.06 �2.13/2.09 �2.09/2.08 �2.14/2.13 �2.11/2.17 �2.13/2.18 �2.66/2.56
250 0.3 �2.11/2.11 �2.07/2.05 �2.09/2.11 �2.14/2.08 �2.14/2.07 �2.17/2.10 �2.12/2.10 �2.18/2.22 �2.53/2.66
250 0.4 �2.11/2.09 �2.09/2.09 �2.11/2.13 �2.12/2.10 �2.17/2.09 �2.13/2.04 �2.12/2.14 �2.17/2.17 �2.55/2.61
250 0.5 �2.09/2.10 �2.12/2.07 �2.11/2.14 �2.08/2.08 �2.13/2.12 �2.17/2.10 �2.13/2.17 �2.17/2.09 �2.65/2.58
250 0.6 �2.07/2.09 �2.14/2.08 �2.10/2.14 �2.13/2.09 �2.16/2.10 �2.17/2.06 �2.14/2.09 �2.18/2.16 �2.58/2.59
250 0.7 �2.11/2.08 �2.12/2.14 �2.13/2.13 �2.08/2.16 �2.15/2.09 �2.15/2.14 �2.15/2.19 �2.15/2.17 �2.54/2.67
250 0.8 �2.13/2.11 �2.06/2.12 �2.08/2.10 �2.03/2.12 �2.13/2.11 �2.11/2.13 �2.22/2.15 �2.22/2.14 �2.67/2.58
250 0.9 �2.09/2.07 �2.09/2.14 �2.06/2.14 �2.11/2.07 �2.13/2.05 �2.12/2.16 �2.19/2.17 �2.24/2.18 �2.70/2.74

500 0.1 �2.08/2.09 �2.14/2.05 �2.07/2.07 �2.11/2.16 �2.10/2.09 �2.08/2.05 �2.04/2.11 �2.11/2.12 �2.26/2.28
500 0.2 �2.12/2.13 �2.10/2.05 �2.13/2.10 �2.10/2.11 �2.07/2.06 �2.08/2.08 �2.12/2.13 �2.16/2.13 �2.30/2.33
500 0.3 �2.12/2.11 �2.08/2.07 �2.11/2.10 �2.03/20 �2.03/2.06 �2.11/2.09 �2.10/2.10 �2.11/2.10 �2.34/2.31
500 0.4 �2.12/2.07 �2.10/2.06 �2.05/2.11 �2.14/2.11 �2.03/2.12 �2.12/2.11 �2.07/2.13 �2.14/2.11 �2.33/2.33
500 0.5 �2.12/2.10 �2.10/2.10 �2.04/2.09 �2.06/2.11 �2.04/2.13 �2.08/2.05 �2.11/2.18 �2.16/2.14 �2.27/2.29
500 0.6 �2.12/2.05 �2.12/2.11 �2.13/2.13 �2.07/2.11 �2.07/2.09 �2.08/2.09 �2.12/2.12 �2.15/2.20 �2.33/2.24
500 0.7 �2.12/2.10 �2.10/2.08 �2.11/2.15 �2.03/2.08 �2.06/2.08 �2.09/2.16 �2.11/2.12 �2.14/2.18 �2.21/2.28
500 0.8 �2.07/2.12 �2.12/2.08 �2.12/2.06 �2.10/2.05 �2.12/2.11 �2.10/2.09 �2.12/2.09 �2.12/2.07 �2.33/2.33
500 0.9 �2.08/2.08 �2.09/2.06 �2.09/2.13 �2.06/2.09 �2.02/2.11 �2.11/2.15 �2.14/2.12 �2.12/2.15 �2.30/2.33

1000 0.1 �2.20/2.16 �2.09/2.09 �2.08/2.06 �2.1/2.08 �2.06/2.10 �2.12/2.07 �2.08/2.14 �2.02/2.06 �2.17/2.22
1000 0.2 �2.12/2.10 �2.12/2.13 �2.10/2.08 �2.05/2.03 �2.1/2.08 �2.15/2.09 �2.09/2.11 �2.10/2.12 �2.15/2.21
1000 0.3 �2.10/2.09 �2.11/2.11 �2.09/2.05 �2.10/2.10 �2.09/2.07 �2.11/2.09 �2.10/2.13 �2.02/2.09 �2.15/2.18
1000 0.4 �2.13/2.12 �2.06/2.16 �2.09/2.09 �2.10/2.10 �2.07/2.08 �2.06/2.10 �2.07/2.09 �2.12/2.09 �2.13/2.15
1000 0.5 �2.06/2.09 �2.13/2.10 �2.10/2.05 �2.06/2.07 �2.14/2.10 �2.10/2.08 �2.11/2.06 �2.12/2.10 �2.11/2.19
1000 0.6 �2.13/2.07 �2.04/2.09 �2.09/2.13 �2.05/2.12 �2.09/2.06 �2.12/2.08 �2.13/2.10 �2.12/2.05 �2.12/2.19
1000 0.7 �2.07/2.13 �2.13/2.05 �2.09/2.06 �2.07/2.06 �2.14/2.10 �2.13/2.07 �2.05/2.06 �2.06/2.14 �2.17/2.23
1000 0.8 �2.12/2.10 �2.15/2.13 �2.08/2.09 �2.09/2.05 �2.08/2.11 �2.08/2.05 �2.05/2.09 �2.09/2.08 �2.17/2.17
1000 0.9 �2.08/2.09 �2.11/2.07 �2.10/2.08 �2.09/2.08 �2.13/2.11 �2.11/2.08 �2.08/2.07 �2.12/2.08 �2.18/2.21

Panel B: Cut-offs for spurious regression bias and data mining
250 0.1 �2.81/2.75 �2.78/2.72 �2.77/2.72 �2.92/2.87 �2.87/2.79 �2.87/2.76 �2.81/2.81 �2.90/2.88 �4.24/4.39
250 0.2 �2.87/2.84 �2.75/2.86 �2.08/2.78 �2.84/2.92 �2.85/2.84 �2.85/2.87 �2.92/2.86 �2.91/2.89 �4.21/4.29
250 0.3 �2.88/2.85 �2.74/2.83 �2.92/2.76 �2.82/2.88 �2.85/2.81 �2.93/2.77 �2.97/2.85 �2.93/2.95 �4.31/4.60
250 0.4 �2.82/2.80 �2.76/2.82 �2.82/2.77 �2.93/2.76 �2.86/2.76 �2.98/2.75 �2.94/2.88 �2.94/2.98 �4.13/4.42
250 0.5 �2.78/2.79 �2.87/2.85 �2.86/2.77 �2.81/2.75 �2.82/2.81 �2.92/2.79 �2.96/2.87 �2.90/2.85 �4.49/4.31
250 0.6 �2.82/2.76 �2.86/2.81 �2.91/2.83 �2.91/2.85 �2.79/2.84 �2.86/2.68 �2.89/2.81 �2.89/2.91 �4.23/4.03
250 0.7 �2.71/2.87 �2.79/2.86 �2.82/2.77 �2.95/2.86 �2.92/2.71 �2.98/2.87 �2.91/2.97 �3.01/2.89 �3.89/4.29
250 0.8 �2.81/2.83 �2.77/2.81 �2.71/2.76 �2.83/2.83 �2.93/2.90 �2.95/2.87 �3.02/2.89 �3.00/2.85 �4.42/4.15
250 0.9 �2.82/2.83 �2.82/2.90 �2.76/2.84 �2.84/2.89 �2.75/2.79 �2.89/2.85 �2.92/2.99 �2.92/3.06 �4.06/4.12

500 0.1 �2.81/2.78 �2.81/2.76 �2.82/2.89 �2.90/2.86 �2.82/2.76 �2.82/2.87 �2.73/2.85 �2.90/2.84 �3.17/3.22
500 0.2 �2.91/2.74 �2.80/2.73 �2.83/2.84 �2.72/2.94 �2.76/2.93 �2.80/2.85 �2.72/2.79 �3.06/2.76 �3.31/3.20
500 0.3 �2.85/2.82 �2.72/2.76 �2.82/2.87 �2.74/2.71 �2.79/2.78 �2.87/2.77 �2.77/2.80 �2.84/2.83 �3.44/3.39
500 0.4 �2.91/2.69 �2.78/2.77 �2.77/2.77 �2.89/2.83 �2.69/2.76 �2.85/2.82 �2.66/2.87 �2.85/2.83 �3.38/3.30
500 0.5 �2.86/2.79 �2.76/2.91 �2.68/2.74 �2.77/2.87 �2.76/2.88 �2.75/2.79 �2.94/2.86 �2.90/2.80 �3.34/3.13
500 0.6 �2.70/2.90 �2.88/2.86 �2.88/2.86 �2.77/2.83 �2.76/2.75 �2.81/2.79 �2.81/2.86 �2.86/2.89 �3.39/3.19
500 0.7 �2.88/2.85 �2.85/2.79 �2.81/2.92 �2.79/2.80 �2.79/2.89 �2.79/2.88 �2.85/2.94 �2.83/2.86 �3.25/3.21
500 0.8 �2.74/2.75 �2.87/2.85 �2.72/2.81 �2.79/2.80 �2.85/2.80 �2.79/2.73 �2.80/2.86 �2.87/2.76 �3.28/3.33
500 0.9 �2.88/2.90 �2.81/2.75 �2.81/2.89 �2.92/2.81 �2.72/2.84 �2.90/2.86 �2.83/2.78 �2.90/2.86 �3.37/3.36

1000 0.1 �2.88/2.91 �2.81/2.80 �2.74/2.79 �2.80/2.78 �2.80/2.82 �2.96/2.69 �2.78/2.87 �2.70/2.74 �2.97/2.90
1000 0.2 �2.84/2.86 �2.90/2.92 �2.80/2.80 �2.81/2.77 �2.88/2.82 �2.82/2.77 �2.75/2.85 �2.75/2.79 �3.05/2.98
1000 0.3 �2.74/2.74 �2.85/2.80 �2.87/2.82 �2.77/2.98 �2.78/2.73 �2.84/2.91 �2.79/2.85 �2.75/2.69 �2.92/2.99
1000 0.4 �2.92/2.80 �2.71/2.88 �2.74/2.82 �2.76/2.81 �2.81/2.79 �2.86/2.77 �2.81/2.96 �2.85/2.76 �2.9/2.94
1000 0.5 �2.79/2.86 �2.90/2.81 �2.77/2.68 �2.76/2.89 �2.81/2.72 �2.91/2.79 �2.74/2.70 �2.83/2.94 �2.97/3.00
1000 0.6 �2.73/2.92 �2.72/2.73 �2.84/2.87 �2.74/2.79 �2.91/2.66 �2.82/2.87 �2.90/2.78 �2.84/2.83 �2.85/2.96
1000 0.7 �2.79/2.89 �2.83/2.84 �2.73/2.78 �2.82/2.70 �2.84/2.83 �2.85/2.76 �2.84/2.79 �2.81/2.93 �2.96/2.92
1000 0.8 �2.81/2.83 �2.88/2.90 �2.82/2.80 �2.81/2.84 �2.82/2.84 �2.76/2.68 �2.85/2.91 �2.85/2.88 �2.92/2.91
1000 0.9 �2.77/2.79 �2.89/2.82 �2.82/2.71 �2.82/2.77 �2.77/2.86 �2.95/2.86 �2.84/2.75 �2.90/2.79 �2.99/3.04

Using the Bartlett method, this table reports dummy variable coefficient critical cut-off t-statistic values for dummy variable regression model, rt ¼ aþ b0rt�1 þ b1pt þ ut under
different combinations of autocorrelation of the dependent variable and transition probability of the dummy variable. Autocorrelation of the dummy variable is equal to two times
the dummy variable transition probability minus one (2q� 1). Lower and upper bounds (i.e., critical cut-off values) of the 95% confidence interval of t-statistics adjusted for
spurious regression bias are reported. The monthly mean return of the simulated dependent variable series is zero and the monthly standard deviation is one. For the Bartlett
method, the fixed lag length HAC standard error estimation sets the lag length (M) as a fixed function of the sample size T (M = bT), where b is a constant and is set at 0.05.
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they can be greatly ameliorated if regression model choices and the
choice of regression variables are theory-driven.

6. Conclusion

A growing body of empirical literature indicates that long-last-
ing regimes such as political cycles, business cycles, and/or seasons
of the year produce significant market return or return volatility
differentials. This paper argues that the lack of variability in an
indicator variable representing a long-lasting regime in a time-ser-
ies regression makes it hard for a test to distinguish the null from
the alternative. While the severity of the problem becomes small
as sample size grows large, the sample sizes in typical political-,
seasonal-, and/or business-cycle studies are small enough that
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the use of standard Newey and West (1987) significance tests is
inappropriate. To remedy the problem, the paper provides a simu-
lation procedure that allows researchers to properly test for regime
differences in small samples. Among other things, the simulation
procedure shows that the adjusted R2s and the coefficient esti-
mates obtained in a number of financial time-series tests of polit-
ical, seasonal, and business cycle return or return volatility
differences are less than would be expected by chance. In other
words, many documented regime market return or return volatil-
ity differentials are, in fact, illusory.

Based on the results of this study, researchers are encouraged to
examine and report the properties of the dichotomous random
variables, together with the continuous random variables, before
performing hypothesis tests within a time-series regression frame-
work. This study shows, for example, that the level of autocorrela-
tion in the dichotomous variable contains key information about
the level of persistence. Had these levels been reported in past
work, the researcher and the reader would have been alerted to
the fact that alternative testing procedures were warranted.
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