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Abstract The discrimination and classification of allergy-
relevant pollen was studied for the first time by mid-infrared
Fourier transform infrared (FT-IR) microspectroscopy to-
gether with unsupervised and supervised multivariate statis-
tical methods. Pollen samples of 11 different taxa were
collected, whose outdoor air concentration during the
flowering time is typically measured by aerobiological
monitoring networks. Unsupervised hierarchical cluster
analysis provided valuable information about the reproduc-
ibility of FT-IR spectra of the same taxon acquired either
from one pollen grain in a 25×25 μm2 area or from a group
of grains inside a 100×100 μm2 area. As regards the
supervised learning method, best results were achieved
using a K nearest neighbors classifier and the leave-one-out
cross-validation procedure on the dataset composed of single
pollen grain spectra (overall accuracy 84%). FT-IR micro-
spectroscopy is therefore a reliable method for discrimina-

tion and classification of allergenic pollen. The limits of its
practical application to the monitoring performed in the
aerobiological stations were also discussed.
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Introduction

Identification of airborne pollen grains is of great impor-
tance for allergy studies. Pollen from grasses and trees can
cause symptoms of rhino-conjunctivitis and asthma [1, 2].
Pollen seasons can last for several months, and outdoor
exposure is difficult to avoid. Aerobiological monitoring
networks provide information about airborne pollen con-
centrations to allergists and allergic sufferers, therefore
triggering timely prophylaxis and therapies to prevent or
reduce allergic symptoms [3].

For conventional analysis [4, 5], the Hirst spore trap is
used: a known outdoor air volume is drawn through an
orifice by suction from a vacuum pump, and the airborne
particles are collected by impaction on an adhesive surface
[6]. The sampling surface is subsequently examined with an
optical microscope for the identification and count of
captured pollen. The procedure relies on the analysis of
morphological information such as grain sizes, shapes,
apertures, and surface structures. Because of different
flowering times, in a single analysis session some hundreds
to some thousands of pollen grains and several different
pollen taxa can be considered. The monitoring requires
qualified operators and is an extremely time-consuming
task. In some cases, this last aspect limits the geographic
extension of the aerobiological monitoring network. As a
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consequence, especially in regions where local climatic and
vegetation conditions are highly variable, detailed informa-
tion about the exposure of population to allergenic pollen is
not possible. Therefore, alternative methods, possibly
highly automated, for the rapid identification of airborne
pollen grains are extremely desirable.

Fourier transform infrared (FT-IR) and Raman spectra
provide chemical rather than morphological information
because they enable the investigation of the vibrational
dynamics of biochemical components, such as lipids,
peptides, proteins, nucleic acids, and sugars. Naumann
and coworkers [7] first applied FT-IR and Raman spectros-
copies together with multivariate statistical analyses and
pattern recognition methodologies to the rapid differentia-
tion, identification, and classification of microorganisms.
FT-IR spectroscopy has been shown to be a very useful
technique for the analysis of different types of biological
samples [8, 9]. It has been successfully used in the past in
particular for the characterization of microorganisms [10–
14]. FT-IR microspectroscopy has emerged as a key
technique for the study of plant growth and development
at a cellular level ([15] and references therein). In conjunction
with supervised multivariate statistical methods, it has been
shown to be a very promising technique for the character-
ization of cell wall changes in Arabidopsis mutants, used as
a model for studying plant mutants biology ([16] and
references therein).

Both FT-IR and Raman techniques have been employed
to discriminate among different allergenic pollens. The first
Raman spectroscopy studies [17, 18] demonstrated the
possibilities of pollen characterization; however, the spectra
presented a strong fluorescence background, limiting the
analysis. Pappas et al. [19] obtained FT-IR spectra by
sampling macroscopic quantities of pollen of the same
taxon. They demonstrated the existence of peculiar spectral
features able to discriminate among different species.
Aerobiological samples, however, are composed by grains
of different taxa, which could be available only in limited
quantities. Gottardini et al. [20] confirmed results of [19]
and also assessed the potential of FT-IR spectroscopy to
discriminate two different pollen taxa in a very unbalanced
binary mixture. Ivleva et al. [21] used Raman microscopy,
therefore obtaining spectra from single grains, and applied
unsupervised multivariate analysis to cluster four different
pollen taxa. In [22], the results of the in situ chemical
characterization of pollen grains by Raman microspectro-
scopy were discussed. In addition, unsupervised hierarchi-
cal cluster analysis (HCA) was carried out on spectra from
pollen samples of 15 different species to investigate
taxonomic groups.

In this paper, we applied mid-infrared FT-IR micro-
spectroscopy together with unsupervised (HCA) and super-
vised (K nearest neighbors, K-NN classifier) learning

methods to discriminate and automatically classify pollen
grains from 11 different allergy-relevant species, by only
considering the acquired pollen grain spectra. To our
knowledge, FT-IR microspectroscopy together with multi-
variate statistical analyses has not yet been applied to pollen
characterization and discrimination.

Our spectroscopic work was part of a more extended
project (also including a biomolecular approach), aiming at
assessing different innovative methodologies for the rapid
identification of airborne allergenic pollen. Besides the
interest for the pure spectroscopic and biomolecular chal-
lenges, particular attention was devoted in this project to the
practical aspect of the real applicability of these alternative
techniques to the monitoring currently performed in dedicated
aerobiological stations. In this context, FT-IR microspectro-
scopy appeared particularly promising, since it allowed the
acquisition of a spectrum from a single pollen grain in a 25×
25 μm2 sampling area. Consequently, in our study the
automatic classification could be applied to separately identify
each single grain from its FT-IR spectrum. This means that, if
the grains were collected in an aerobiological station, the
identified grains could be straightaway counted (just as the
morphological identification of each single grain allows to
count them in the conventional analysis), and the concentra-
tion in air of the pollen grains of each analyzed taxon could be
therefore easily calculated. From this point of view, this paper
also discussed the potentialities of FT-IR microspectroscopy
as a practical method that could enable the geographic
extension of existing aerobiological monitoring networks.

Experimental

Pollen samples

Samples of allergy-relevant pollen were collected at flower-
ing time from each of the following 11 plants: Alnus
glutinosa L. Gaertner (alder) (AL in the figures), Artemisia
vulgaris L. (mugwort) (AR), Betula pendula Roth (silver
birch) (B), Castanea sativa Miller (sweet chestnut) (CA),
Corylus avellana L. (hazel) (CO), Cupressus arizonica
Greene (Arizona cypress) (A), Cupressus sempervirens L.
(Italian cypress) (S), Dactylis glomerata L. (cocksfoot) (D),
Fraxinus ornus L. (manna ash) (F), Olea europaea L.
(olive) (OL), and Ostrya carpinifolia Scop. (hop hornbeam)
(OS). All samples were dried at 4°C in a desiccator and
kept at this temperature until use. The pollen grains of each
vegetal species were collected from three different plants
located in three different geographical sites of Trentino
region. The selected 11 species are typically monitored in
the aerobiological stations of this territory. They are
reported in Table 1 together with their respective plant
family.
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FT-IR measurements

Mid-infrared spectra were acquired for each taxon in
transmission mode on a CaF2 support in the 4,000–
850 cm−1 range using a Bruker Optics Vertex 70 spectrom-
eter coupled to a Hyperion 3000 vis/IR microscope
equipped with a standard photoconductive MCT detector
and a ×15 objective. Species by species, five spectra, each
one obtained from a different single pollen grain inside a
25×25 μm2 area, were collected at 4 cm−1 resolution by
coadding 512 scans (corresponding to an acquisition time
of about 220 s for each spectrum). Moreover, three spectra,
each one obtained from a group of pollen grains of the
same taxon inside a 100×100 μm2 area, were also acquired,
by coadding 64 scans (corresponding to about 27 s of
acquisition time) at the same spectral resolution. Figure 1
shows how the microscope allowed to view the sample and
to choose the desired aperture. A FT-IR spectrum could be
acquired from the selected measuring area. Two data
matrices were built by separately collecting the single grain
spectra (dataset A) and the multigrain spectra (dataset B).

Data analysis

All spectra were treated working in the R 2.3.0 software
environment [23]. Data analysis focused on three distinct
phases: (1) development and application of in-house
numerical software for a rapid and automatic preprocessing
(baseline correction, normalization, smoothing, and first
derivative) of all spectra; (2) application of agglomerative
HCA to explore both the relationships between spectra and
the existence of spectra groups useful in terms of pollen
grain discrimination; (3) application of a classifier based on
the K-NN rule to identify the species membership of
unknown single grain spectra. Methods in (2) and (3) were
applied using the stats, amap, and class statistical packages

of R, after mean-centering and scaling to unit variance the
feature vectors corresponding to each spectral channel. For
all performed multivariate analyses, we tested the whole
spectral range and different spectral windows and verified
that the maximum information and discrimination power
was achieved by only considering the spectral range
between 1,800 and 850 cm−1, which provides very specific
spectral contributions to distinguish different taxa [19, 20].
Therefore, all presented results were obtained in that range.
The preprocessing operations described hereinafter were
also carried out in the 1,800–850 cm−1 range.

Automatic preprocessing

We investigated FT-IR microspectroscopy as a method that
could substitute the current approach of morphological
recognition of different pollen taxa. In this context, the
automation of the spectral analysis process is crucial to
speed-up the FT-IR approach, in order to contribute to the
attempt of extension of the aerobiological monitoring
network. In particular, manual interventions in the prepro-
cessing step are time-consuming. Therefore, we developed
a software program for performing in a completely
automatic way baseline shift correction, unit area normal-
ization, and spectra smoothing based on the Savitsky-Golay
algorithm (11-point moving fourth degree polynomial) [24].
The program only requires as input all the spectra to be
treated. It takes approximately 20 s to preprocess 100
spectra (495 spectral channels). The subsequent calculation
of the first derivative of each spectrum is also possible. For
100 spectra, this last operation requires less than 1 s.

Hierarchical cluster analysis

Cluster analysis [25] is the process of grouping objects into
clusters that have meaning in the context of a particular

Table 1 The plant species considered in this study and their
corresponding plant family

Family Species

Betulaceae Alnus glutinosa L. Gaertner

Betulaceae Betula pendula Roth

Compositae Artemisia vulgaris L.

Fagaceae Castanea sativa Miller

Corylaceae Corylus avellana L.

Corylaceae Ostrya carpinifolia Scop.

Cupressaeae Cupressus arizonica Greene

Cupressaeae Cupressus sempervirens L.

Graminaceae Dactylis glomerata L.

Oleaceae Fraxinus ornus L.

Oleaceae Olea europaea L.

Fig. 1 The photo shows how the microscope allows to view the
sample and to choose the desired aperture. A FT-IR spectrum can then
be acquired from the selected measuring area. In this image, a single
Fraxinus ornus pollen grain is centered inside a 25×25 μm2 aperture

Pollen classification by FT-IR microspectroscopy and machine learning



problem. Clustering techniques are unsupervised learning
methods because no a priori examples of cluster member-
ship are provided. By repeatedly linking pairs of most
similar clusters until every data object is included in the
hierarchy, agglomerative hierarchical clustering produces
bottom–up a dendrogram. Such an approach allows
exploring data on different levels of granularity. A measure
of similarity between objects (metric) and one of similarity
between clusters (linkage method) must be defined. In this
work, we verified that the best results were obtained using a
metric based on Pearson's correlation coefficient and the
average linkage method. In addition, HCA used the first
derivatives of the spectra, as we verified that this allows to
maximize information extraction.

K nearest neighbor classifier

The K-NN classifier [26] is based on the assumption that
the classification of an instance (i.e., a spectrum) is most
similar to the classification of other instances that are
nearby in the feature space. Therefore, given a new case, its
K nearest cases in the vector space are found, and the class
that appears most frequently among the K neighbors is
chosen. The classifier performances crucially depend on the
choice of K and of the distance measure. In this work, the
best results were obtained using a metric based on Pearson's
correlation coefficient and choosing K=1. We also verified
that the best classifier performances were achieved using
the first derivatives of the spectra.

It is worth noting that this classification procedure is
completely automatic. Neither human intervention nor
expert evaluation of the classification results as well as of
the different computational steps are required. A spectrum
is acquired, and in a completely automatic way, it is first
preprocessed, and its class membership is subsequently
provided. In fact, one goal of our project was the usage of
this automatic classification in the aerobiological monitor-
ing stations, where people not expert in the area of IR
microspectroscopy and statistical analysis are present.

Results and discussion

As an example, Fig. 2 shows the FT-IR transmission spectra
as acquired before preprocessing in the 4,000–850 cm−1

range on five different single pollen grains (a) and on three
different multigrain samples (b) of A. vulgaris (mugwort).
Differences are clearly visible. In particular, spectra from
single grains are more variable than multigrain spectra. As a
matter of fact, single grains of the same taxon present
different dimensions and a certain degree of chemical
variability. Also, pollen immaturity can produce spectral
variations. Spectra from a group of grains, reported in

Fig. 2b, on the contrary, are intrinsically averaged and
therefore less variable. Similar observations were made
when considering the spectra recorded from the other ten
pollen taxa of this study.

A detailed interpretation of absorption bands and of
the biochemical meaning of their diversity among the
various species is beyond the scope of our work. As a
matter of fact, an advantage of the data mining analyses
(HCA and K-NN classifier) performed in this study on the
acquired FT-IR spectra is that they do not require a priori
knowledge or assumptions about the spectral features. In
addition, indeed because no spectral interpretation is
needed, the discussed classifier could be particularly well
suited to be used in aerobiological monitoring stations,
where people not expert in the analysis of FT-IR spectra
absorption bands work. According to reference [19], where
molecular vibrations probed by FT-IR spectroscopy were
carefully analyzed, we verified that the 1,800–850 cm−1

region allowed to obtain the most significant results as
regards supervised and unsupervised analyses. Main ab-
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Fig. 2 Comparison among the acquired FT-IR transmission spectra
(before preprocessing) of A. vulgaris in the whole 4,000-850 cm−1

range obtained a from five different single pollen grains and b on
three different multigrain samples. In both panels, the scale on the
vertical axis shows the transmittance values for the central spectrum.
The others are vertically shifted for an easy view
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sorption bands in this spectral range are around 1,660 cm−1

(Amide I) and 1,550 cm−1 (Amide II and lignin), around
1,460 and 1,410 cm−1 (mainly from lipids and proteins,
respectively), and around 1,200 cm−1 where a broad and
structured absorption band mainly related to carbohydrates
appears. As an example, Fig. 3a–c shows one spectrum for
each taxon taken from dataset B, i.e. obtained from a group
of pollen grains of the same vegetal species inside a 100×
100 μm2 window after baseline subtraction and area
normalization in the 1,800–850 cm−1 region.

To further examine the variability of FT-IR spectra, HCA
was separately applied to datasets A and B. Obtained
results are reported in Fig. 4a, b. In Fig. 4b, the investigated
taxa cluster in distinct groups, with the only exception of O.
europaea. Differently, in Fig. 4a, all C. sativa, C. arizonica,
and C. sempervirens spectra form three separate clusters.
The results are also satisfying for A. vulgaris, F. ornus, and
O. carpinifolia (four out of five spectra are correctly
clustered), A. glutinosa and C. avellana (three out of five
spectra), while for the other taxa (B. pendula, D. glomerata,
and O. europaea), spectra are spread across the dendrogram
as doublets or single spectra. Therefore, we confirmed that
spectra from single grains (dataset A) were more variable
than multigrain spectra (dataset B), but even more
important for the classification results hereinafter presented,
we concluded that the degree of variability was different for
different plant species.

HCA is an unsupervised method for discovering
natural groups of data objects without giving predefined
classes but simply identifying potential classes. However
in this study, we were particularly interested in building
a supervised classification system, which is in general
able to extract a decision rule [27] from correctly
identified taxon spectra (training set) that will be applica-
ble to classify unknown single-grain pollen spectra
(testing set). In fact, this approach could then be used for
the classification of collected airborne pollen grains. The
supervised method could in principle improve the results
of HCA. We therefore completed our study by applying a
K-NN classifier, with the aim of building a correctly
validated, though simple, classifier and to explore the
possibility of obtaining an automated procedure for
airborne pollen monitoring. The K-NN classifier was
chosen since it is an uncomplicated yet powerful classi-
fication method. In addition, differently from other
classifiers, it works even though the data dimensionality
is greater than the number of samples, as it was the case of
the present study. In this way, it was not necessary to
apply a dimension reduction or a feature selection step,
but the whole spectral range 1,800–850 cm−1 could be
used, following in this sense references [19, 20]. There-
fore, similarly to [22], we aimed at testing whether the full
spectral patterns in the 1,800–850 cm−1 region could be

successfully used like fingerprint for an overall chemical
supervised classification.

We investigated two different classification approaches:
the first one used a training set (i.e., a reference library of
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Fig. 3 Eleven FT-IR spectra, each one obtained in the 1,800–850 cm−1

spectral region from a group of pollen grains of the same taxon inside a
100×100 μm2 area. All spectra are baseline corrected and normalized as
described in the data analysis subsection. For readability reasons, the
spectra are reported in three distinct panels (a–c) and vertically shifted.
AL, Alnus glutinosa; AR, Artemisia vulgaris; B, Betula pendula; CA,
Castanea sativa; CO, Corylus avellana; A, Cupressus arizonica; S,
Cupressus sempervirens; D, Dactylis glomerata; F, Fraxinus ornus; OL,
Olea europaea; OS, Ostrya carpinifolia
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identified taxon spectra) of single pollen grain spectra
(classifier A), while the training set of the second one was
obtained from the multigrain spectra (classifier B).

Classifier A

Classifier A was built using exclusively dataset A. To
measure the classifier performance, we estimated its true
error rate (or alternatively its overall accuracy) by the
leaving-one-out cross-validation method [26]. Therefore,
given the n=55 spectra of dataset A, the library was
generated using 54 cases, and the single remaining case was
considered as unknown and identified by applying the K-
NN classifier. This approach was repeated n times. The true
error rate is the number of errors on the single test cases
divided by n. The overall accuracy of classifier A was 84%
(true error rate 16%). This is clearly much better than a
random classifier, whose expected accuracy for 11 classes
is 9.1%, and as such, FT-IR microspectroscopy is effective
for the identification of pollen grains. In addition, this
accuracy is greater than that (~80%) currently estimated for

the morphological recognition approach used in our
aerobiological monitoring network. Nevertheless, we in-
vestigated whether these results were precise enough to
build an automated classification system alternative to the
morphological approach. Therefore, we calculated the
confusion matrix of classifier A, reported in Table 2, which
gives a more detailed picture of the errors made by the
classifier, because instead of simply analyzing the number
of correct and incorrect predictions, it shows the type of
errors being made. In Table 2, each row of the matrix
represents the spectra of an actual taxon (class), while each
column represents the spectra in a predicted class. Entries
on the diagonal are correct predictions. The last column and
last row of Table 2 give respectively the true positive (TP)
values for each actual class, i.e., the percentage of spectra
of each taxon correctly classified, and the classifier
precision (PREC) for each predicted class, i.e., the
proportion of correct prediction for each predicted class.

Examining Table 2 and column TP in particular, we
concluded that A. vulgaris, C. sativa, C. sempervirens, C.
arizonica, and F. ornus spectra were correctly classified.
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Also, for A. glutinosa, D. glomerata, B. pendula, and O.
carpinifolia, classification results were good (TP=0.8),
while for C. avellana and O. europaea, the TP values were
unsatisfying (TP<0.8). These results in part resembled
those of HCA, even if an improvement was clearly visible.
However, the spectra variability, already discussed while
analyzing the clustering results, clearly affected the classi-
fier behavior, and the different degree of spectrum
variability for different plant species caused the failure in
classifying two out of 11 taxa. The variability effects were
also confirmed by considering the PREC row of Table 2: A.
glutinosa, C. avellana, and O. carpinifolia values were
particularly low, and this indicated that at least some of the
not repeatable measurements resulted distributed across the
entire feature space.

In the study reported in [22], Raman microspectroscopy
was carried out to acquire 91 spectra from individual pollen
grains of 15 different plant species related at the genus level
and family level. Unsupervised HCA allowed to discrim-
inate between spectra of different pollen species using the
complete Raman spectral signature, and particular attention
was focused on the discussion of HCA results in the
context of phylogenetic groups. Unfortunately, no super-
vised classification methods were applied. However, by
comparing our results with those discussed in [22], a
correspondence between the possibility of classifying
pollen of a high number of plant species by FT-IR
microspectroscopy and Raman microspectroscopy came
out. This was not particularly surprising, as the two
techniques provide complementary vibrational information
on functional groups or bonds in the biochemical compo-

nents of the analyzed samples. In the present work, the FT-
IR spectra of different species belonged in some cases to
the same plant family (but to different genera, except for C.
arizonica Greene and C. sempervirens L.). In fact, as
illustrated in Table 1, we considered 11 plant species that
were members of seven different families. Therefore, this
study allowed to demonstrate that a supervised classifica-
tion distinguishing FT-IR spectra down to the species level
(in different genera) was possible. This result is attested by
the confusion matrix of Table 2, where the listed mis-
classifications were in most of the cases not ascribable to
exchanges between species of the same family. In addition,
all spectra of two species of Cupressus were correctly
classified. On the other hand, by comparing the HCA in
Fig. 4a with the corresponding result presented in [22], we
concluded that, using the whole 1,800–850 cm−1 spectral
range, the intraspecies variability for FT-IR spectra is more
pronounced than for Raman spectra considered in the
1,700–380 cm−1 range.

Classifier B

In this case, the training set, which the K-NN classifier used
to identify the single pollen grain spectra of dataset A, is
given by dataset B, and a cross-validation approach is
therefore not possible. The overall accuracy of classifier B
was 69%, definitely lower than that of classifier A. Table 3
outlines the classifier performances by reporting the
obtained true positive and precision values for each class.
Examining Table 3, the unsatisfactory performances of
classifier B were confirmed. To understand these results,

Table 2 Confusion matrix for classifier A

AL AR B CA CO A S D F OL OS TP

AL 4 1 0.8

AR 5 1.0

B 1 4 0.8

CA 5 1.0

CO 1 3 1 0.6

A 5 1.0

S 5 1.0

D 1 4 0.8

F 5 1.0

OL 1 1 2 1 0.4

OS 1 4 0.8

PREC 0.67 0.83 1.0 1.0 0.6 1.0 1.0 1.0 0.83 1.0 0.57

Each row represents the spectra of an actual taxon (class), while each column represents the spectra in a predicted class. The last column gives the
percentage of spectra of each taxon correctly classified (TP true positive values). The last row gives the proportion of correct prediction for each
predicted class (PREC precision)

AL, Alnus glutinosa; AR, Artemisia vulgaris; B, Betula pendula; CA, Castanea sativa; CO, Corylus avellana; A, Cupressus arizonica; S,
Cupressus sempervirens; D, Dactylis glomerata; F, Fraxinus ornus; OL, Olea europaea; OS, Ostrya carpinifolia
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AL AR B CA CO A S D F OL OS

TP 0.8 1.0 0.6 1.0 0.0 1.0 1.0 0.0 1.0 0.2 1.0

PREC 0.67 0.83 1.0 1.0 0.0 1.0 0.83 0.0 0.45 1.0 0.71

Table 3 True positive values
and precision values (see
Table 2) obtained for each plant
species using classifier B
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Fig. 5 Agglomerative
hierarchical clustering obtained
considering both single and
multigrain FT-IR spectra of the
11 plant species studied. For
readability reasons, a illustrates
the complete dendrogram; b, c
illustrate the two tree branches
highlighted in a and obtained
from cutting the dendrogram at
height =1.1. Legend: see Fig. 3.
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Fig. 5a–c illustrates the hierarchical clustering simulta-
neously calculated on datasets A and B. It clearly appears
that, for some of the plant species, the single and multigrain
spectra are not necessarily close to each other in the feature
space. As the K-NN classifier chose for each unknown
spectrum the class of the single nearest neighbor spectrum
(K=1), misclassification often occurred. Hence, even
though the multigrain spectra, being intrinsically averaged,
are probably more representative of the plant species, in
order to face single-grain spectrum variability for classifi-
cation purposes in monitoring stations, a spectrum library
accounting for this variability (like dataset A) is surely
better. On the other side, in this work, we did not
contemplate the classification of multigrain spectra of every
plant species, like those collected in dataset B, because we
worked as if grains were collected in aerobiological
monitoring stations.

Conclusions

This study was meant to verify both (1) the possibility of
classifying pollen by FT-IR microspectroscopy and (2) the
practical spin-off from this spectroscopic research. The K-
NN classifier we built got an overall accuracy of 84%, and
for nine out of the 11 considered plant species, the obtained
accuracy was greater than or equal to 80%. In addition, the
overall accuracy was greater than that (~80%) currently
estimated for the morphological recognition approach used
in our aerobiological monitoring network. Performance of
the classifier was then at an adequate level. These results
showed, to our knowledge for the first time, that spectra
from single pollen grains obtained by FT-IR microspectro-
scopy can be successfully used to distinguish and classify
different allergenic pollen taxa when compared with a
library also composed by single grain spectra. Aim (1) of
our study was therefore met. As regards aim (2), we were
interested in verifying whether an automated classification
system, alternative to the current morphological approach,
could be really applied to the weekly monitoring performed
in the aerobiological stations. The automation of the data
analysis procedure (preprocessing and classification) that
we obtained in this study was surely good (less of 1 min for
obtaining the final results working with 100 spectra). On
the other hand, this study showed that the performances of
the K-NN classifier were not the same for all plant species
because the spectra variability was different for different
taxa. In particular, the classification results were unsatisfy-
ing (accuracy <80%) for two out of 11 taxa: C. avellana
and O. europaea. This result was highlighted because we
considered, for the first time in pollen discrimination
studies, the combination of a high number of plant species,
similar to that considered in the seasonal monitoring, with a

cross-validation procedure, which allowed to obtain a
more reliable estimation of the true error rate of the
classifier. Even though a further assessment of classifica-
tion accuracy on a larger, independent dataset should be
considered, we can conclude that the obtained unbal-
anced performances of the classifier for two pollen taxa
currently discourage the application of FT-IR micro-
spectroscopy to airborne pollen monitoring. In fact, for
these plant species, a punctual and correct identification
could be compromised, hence preventing an effective risk
communication to allergic sufferers.

In addition, although FT-IR measurements do not require
prior complex sample preparation, we verified that the
acquisition of a typical large number of FT-IR spectra, as
required to redact the pollen bulletin, using standard
laboratory equipment was a time-consuming step, which
did not considerably shorten the time currently necessary
for the morphological identification. In our opinion, this
actually is the principal obstacle to the practical application
of FT-IR microspectroscopy. To speed up the acquisition of
FT-IR spectra from a high number of different pollen
grains, we intend to explore the possibility of utilizing a
64×64 elements MCT photovoltaic Focal Plane Array
detector in the 8×8 pixel binning configuration that would
allow the parallel acquisition of 8×8 spectra, each one from
a 25×25 μm2 area.

On the other hand, the automatic identification of pollen
grains via FT-IR microspectroscopy can give a significant
contribution to other scientific fields, where the simulta-
neous identification of a large number of plant species is
not necessary, such as for example in forensic science or in
paleopalinology, or in any other application in which an
objective approach for resolving doubts in pollen taxa
identification is necessary.
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