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Abstract

Body size is an integral functional trait that underlies pollination‐related ecological 
processes, yet it is often impractical to measure directly. Allometric scaling laws have 
been used to overcome this problem. However, most existing models rely upon small 
sample sizes, geographically restricted sampling and have limited applicability for 
non‐bee taxa. Allometric models that consider biogeography, phylogenetic related‐
ness, and intraspecific variation are urgently required to ensure greater accuracy. We 
measured body size as the dry weight and intertegular distance (ITD) of 391 bee spe‐
cies (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeo‐
graphic regions: Australia, Europe, North America, and South America. We updated 
existing models within a Bayesian mixed‐model framework to test the power of the 
ITD to predict interspecific variation in pollinator dry weight in interaction with differ‐
ent co‐variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic re‐
gion. In addition, we used ordinary least squares regression to assess intraspecific dry 
weight ~ ITD relationships for ten bees and five hoverfly species. Including co‐vari‐
ates led to more robust interspecific body size predictions for both bees and hover‐
flies relative to models with the ITD alone. In contrast, at the intraspecific level, our 
results demonstrate that the ITD is an inconsistent predictor of body size for bees and 
hoverflies. The use of allometric scaling laws to estimate body size is more suitable for 
interspecific comparative analyses than assessing intraspecific variation. Collectively, 
these models form the basis of the dynamic R package, “pollimetry,” which provides a 
comprehensive resource for allometric pollination research worldwide.
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1  | INTRODUC TION

Body size is an important functional trait that influences ecological 
patterns across all levels of biological organization. In insects, adult 
body size variation is the outcome of natural selection affecting 
physiological and biochemical processes during ontogeny (Chown 
& Gaston, 2010). Body size impacts metabolic and growth rates 
(Angilletta, Steury, & Sears, 2004; Ehnes, Rall, & Brose, 2011), life 
history (e.g., lifespan and reproductive rate; Speakman, 2005, Teder, 
Tammaru, & Esperk, 2008) and ecological attributes, such as species 
abundance, trophic interactions, geographic range size, and disper‐
sal ability (Brown, Gillooly, Allen, Savage, & West, 2004; DeLong et 
al., 2015; Stevens, Trochet, Dyck, Clobert, & Baguette, 2012; Velghe 
& Gregory‐Eaves, 2013; White, Ernest, Kerkhoff, & Enquist, 2007). 
In addition, body size can drive key ecosystem functions and ser‐
vices such as decomposition, carbon cycling, predation, primary pro‐
ductivity, and pollination (Garibaldi et al., 2015; Greenleaf, Williams, 
Winfree, & Kremen, 2007; Rudolf & Rasmussen, 2013; Schramski, 
Dell, Grady, Sibly, & Brown, 2015; Woodward & Hildrew, 2002).

Body size is most commonly measured as specimen dry weight. 
As such, obtaining direct measurements can be impractical. First, 
dehydrating and weighing pinned specimens is time‐consuming and 
involves intensive handling of the specimens, increasing the likeli‐
hood of damage. Second, the collection process may affect a spec‐
imen's final weight, especially if specimens are damaged internally 
(e.g., rotten material) or externally (e.g., loss of appendages) (Rogers, 
Buschbom, & Watson, 1977, Henschel & Seely, 1997, but see Gilbert, 
2011). Allometric scaling laws can be used to overcome these prob‐
lems. These laws refer to how traits, which can be morphological, 
physiological or chemical, co‐vary with an organism's body size, 
often with important ecological and evolutionary implications 
(Gould, 1966). Hence, these scaling laws can be utilized to estimate 
body size, using an easy to measure morphological trait and there‐
fore circumventing the use of problematic direct measurements of 
body size.

Equations which utilize allometric scaling to predict body size as 
a function of a co‐varying morphological trait have emerged across 
many biological disciplines. The most commonly used co‐varying trait 
used to predict body size is body length, having been used exten‐
sively in fish (Karachle & Stergiou, 2012), mammals (Trites & Pauly, 

1998) and both aquatic (Burgherr & Meyer, 1997) and terrestrial in‐
vertebrates (Rogers et al., 1977; Sabo, Bastow, & Power, 2002). These 
models often show considerable predictive power at the ordinal level 
(R2 > 0.9), which has led to the proliferation of multiple models for a 
wide range of taxa (e.g., there are 26 body size ~ body length mod‐
els for Diptera—See Supporting Information Appendix S1). However, 
when compared, these models show considerably different allo‐
metric scaling coefficients both within‐ and between insect orders 
(Brady & Noske, 2006; Sample, Cooper, Greer, & Whitmore, 1993; 
Schoener, 1980). Previously, these differences have been attributed 
to biogeographic factors, such as latitude (Martin, Proulx, & Magnan, 
2014) and/or methodological influences such as sampling biases (e.g., 
the range of sampled body sizes, Sage, 1982). Importantly, they have 
also notably failed to incorporate sexual size dimorphism which is 
common in invertebrates (Shreeves & Field, 2008).

The allometry of functional traits has been shown to influence 
plant–pollinator interactions, specifically in bees. For example, 
smaller body size is associated with higher activity periods in re‐
sponse to available light (Streinzer, Huber, & Spaethe, 2016), whereas 
larger body size is related to greater pollen load capacity (e.g., within 
Melipona quadrifasciata colonies, see Ramalho, Imperatriz‐Fonseca, 
& Giannini, 1998) as well as greater interspecific foraging distances 
(Greenleaf et al., 2007). Importantly, body size can influence and 
constrain plant–pollinator interactions and trait matching both 
within and between pollinator groups (Bartomeus et al., 2016; Stang, 
Klinkhamer, Waser, Stang, & Meijden, 2009). Therefore, allometric 
traits central to pollination‐related ecological processes appear and 
interact at the intra‐ and interspecific levels. Despite their ubiquity, 
few predictive models for body size exist for pollinating insects 
below the ordinal level, with one notable exception. Cane (1987) pi‐
oneered a predictive model for bee body size as a function of the 
intertegular distance (ITD) (the distance between the wing‐attach‐
ment points on either side of the thorax (see Supporting information 
Figure S1A). Cane's model identified the ITD as an important body 
size proxy which has since been used to establish other ecologically 
important allometric relationships, primarily at the interspecific level 
(e.g., foraging distances, bee proboscis length and wing loading; 
Greenleaf et al., 2007; Cariveau et al., 2016a; Bullock, 1999).

The robustness of the ITD as a body size predictor has not been 
properly tested across a wide range of taxa. First, the original model 
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is based solely on 20 North American solitary bee species. Second, 
differential allometric coefficients have been observed with other 
species (Bullock, 1999). Third, the accuracy of intraspecific body size 
estimation from the ITD has not been assessed extensively, except 
within Bombus spp. (Hagen & Dupont, 2013) and Osmia spp. (Bosch 
& Vicens, 2002; Rust, 1991). Fourth, sexual size dimorphism, present 
in 80% of Aculeata (Shreeves & Field, 2008), can lead to differen‐
tial coefficients in determining body size in male and females of the 
same species (e.g., Osmia lignaria propinqua, Bosch & Vicens, 2002), 
highlighting the need to include sex‐specific co‐variation. Fifth, body 
size variation has been repeatedly linked to phylogeny, compelling 
allometric studies to incorporate species’ evolutionary histories 
(Blomberg, Garland, & Ives, 2003; Garland & Ives, 2000). Lastly, 
other key pollinating taxa, such as hoverflies (Diptera: Syrphidae) 
lack allometric models.

These knowledge gaps are largely due to the lack of: (a) a general 
repository to house and connect all relevant allometric models; (b) 
large high resolution datasets to build more accurate models that 
can incorporate co‐variates and (c) an iterative framework, such as 
those utilized in ecological forecasting (Dietze et al., 2018; Harris, 
Taylor, & White, 2018) to continuously update existing models with 
new datasets, methodologies, and technologies. Addressing these 
key deficiencies will increase model accuracy and the applicability of 
allometric scaling to pollinating insects.

Here, we catalogue pre‐existing body size ~ trait models for key 
pollinating insect taxa (Diptera, Hymenoptera and Lepidoptera) and 
develop new models within an iterative framework for two focal 
pollinating taxa: bees and hoverflies, which incorporate species evo‐
lutionary histories, intraspecific variation and biogeography. These 
form the basis of a new R package, entitled “pollimetry.” Specifically, 
we address the following research questions:

1. Is ITD a robust predictor of interspecific body size variation 
for two dominant pollinator taxa, bees, and hoverflies?

2. Does incorporating biogeographic region, phylogenetic or taxo‐
nomic relatedness and sexual dimorphism improve interspecific 
predictions of pollinator body size measured as the ITD?

3. Is ITD reliable in predicting intraspecific variation in both bees and 
hoverflies and what sample size is required to accurately estimate 
intraspecific body size and ITD values?

2  | MATERIAL S AND METHODS

2.1 | Pre‐existing models

We collated 26 body size ~ trait models for Diptera, 38 for 
Hymenoptera and 21 for Lepidoptera groups. We also gathered nine 
equations for bee foraging distance from two sources (Greenleaf et 
al., 2007; van Nieuwstadt & Iraheta, 1996), as well as allometric mod‐
els for estimating bee tongue length (Cariveau et al., 2016a, 2016b), 
bee wing loading (Bullock, 1999) and total nectar load (Henry & 
Rodet, 2018; see Supporting Information Appendix S1).

2.2 | Specimen collection and measurements

We obtained bee and hoverfly specimens from recent field research 
projects on insect pollinator diversity. We included studies across 
four continents. In Australia, collections were made in New South 
Wales, Victoria, Queensland, South Australia, and the Northern 
Territory. In Europe, we amassed specimens from Belgium, Germany, 
Ireland, Spain, Switzerland, and the United Kingdom. In the Americas, 
we included collections from Minnesota, USA and Ceará, Brazil.

The majority of specimens were processed within three to six 
months of collection, although some, in particular, those from 
Victoria, Australia, Belgium, Switzerland were of variable ages: rang‐
ing from one to five years since collection. We excluded damaged 
specimens. Except for corbiculate bees, pollen loads were not re‐
moved prior to measurement. In addition, Cane (1987)'s original data 
from Alabama, USA was obtained using Engauge Digitizer version 
10.6 (Mitchell, Muftakhidinov, Winchen, & Jędrzejewski‐Szmek, 
2017). For every specimen, we obtained sample location (latitude 
and longitude) and taxonomic identity. Full information about spec‐
imen identification (and taxonomic resources) and deposition loca‐
tions are provided in the Supporting Information Appendix S1.

In total, we measured 391 bee species (4,035 specimens) from 
Australia, Europe, North America, and South America and measured 
103 hoverfly species (399 specimens) from Australia and Europe (see 
Supporting Information Appendix S1). Six out of seven bee families 
(all except Stenotritidae) and three out of four hoverfly subfamilies 
(all except Microdontinae) were represented. The mean specimen 
number per bee species was nine (♀) and five (♂) and ranged from 
1–201. In hoverflies, the mean specimen number per species was 
three for both sexes and ranged from 1–50.

2.3 | Body size, intertegular distance, and 
body length

Body size was measured as the dry weight in milligrams of each 
specimen. We therefore refer to body size as dry weight herein 
for continuity. Specimens were first dehydrated at 70°C for at 
least 24 hr to remove residual humidity and then weighed on an 
analytical balance to an accuracy of 0.001 g. All North American 
bees as well as small‐bodied Australian bees were dehydrated and 
weighed prior to being mounted on a pin. For all other specimens, 
pins were not removed prior to weighing. Instead, we identified 
the pin type and weighed a sample of 10–50 pins per type. The 
mean weight was then subtracted off the total weight. Pin weight 
variance was minimal (range of standard errors: 6.3*10‐4 to 2 mg). 
The Intertegular distance was measured in millimeters using a ste‐
reo‐microscope, either mounted with a calibrated scale or micro‐
scope camera. Body length (BL) was measured along the lateral 
side of each specimen with a calibrated scale or microscope cam‐
era for Australian, British, German, Irish, and Spanish specimens 
(see Supporting Information Appendix S1 for visual representation 
of trait measurements). BL was defined as the total length from 
the point of antennal insertion to the terminal abdominal tergite 
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(as in Supporting information Figure S1B) or for bent specimens, as 
the sum of the head, thorax, and abdomen.

2.4 | Data analysis: model structures

All analyses were undertaken in R (version 3.5.1) (R Core Team, 2018). 
We first assessed the Pearson's correlation coefficient between the 
ITD and BL using species’ mean values. The ITD and BL were highly 
correlated in both bees (r = 0.95), and hoverflies (r = 0.85). We then 
compared both the ITD and BL independently in predicting dry 
weight using ordinary least squares (OLS) regression to select the 
best predictor. For these analyses, we used species’ means. The ITD 
was marginally more predictive than BL in estimating dry weight in 
bees (ITD R2: 0.93; BL R2: 0.92) and considerably better than BL for 
hoverflies (ITD R2: 0.81; BL R2: 0.72). Most importantly, the ITD is 
easier to measure unambiguously than BL. Hence, we used the ITD 
in the following analyses.

As traditionally performed, we used log‐transformed values in 
the model formulation because allometric relationships are typically 
described by a power function (y = axb) which is linearized when 
log‐transformed:

where y = dry weight, α = intercept, β = allometric coefficient and 
x = ITD.

We specified Bayesian generalized linear mixed models (GLMM) 
with the brms package (version 2.5.0) (Bürkner, 2017). Dry weight 
was predicted as a function of the ITD in interaction with sex and 
taxonomic grouping: bee families following Michener (2007) and 
hoverfly subfamilies following Mengual, Ståhls, and Rojo (2015). 
Bayesian GLMMs allowed us to use all individual specimens’ mea‐
surements by including a nested random effect: species were nested 
within their biogeographic region of origin. A few specimens from 
five bee species were removed from their introduced ranges (in 
parentheses) prior to analyses: Andrena wilkella (North America), 
Halictus rubicundus (North America), Lasioglossum leucozonium 

(North America), Anthidium manicatum (North America), and Apis 

mellifera (Australia). We call these models taxonomic GLMMs. Both 
bee and hoverfly models were run for 2000 iterations with a burn‐in 
of 1,000. We set Δ to 0.99 and manipulated maximum tree depth 
between 10 and 20 for individual models to avoid divergent tran‐
sitions. We fitted each model with weakly informative priors based 
on our domain expertise; priors are explicitly provided in accompa‐
nying R code. Chain convergence was assessed using the ̂R statistic 
(See Data Availability) (Gelman & Rubin, 1992). Posterior predictive 
checks were visualized using the bayesplot package (version 1.6.0, 
Gabry & Mahr, 2017).

2.5 | Data analysis: incorporating phylogeny

We explored the influence of phylogenetic relatedness in predicting 
dry weight for bees only because a well‐resolved hoverfly phylogeny 

was not available. We constructed an applicable phylogeny for 
our dataset using a bee genera backbone tree (Hedtke, Patiny, & 
Danforth, 2013). We removed nonrepresented genera using the ape 

package (version 5.1, Paradis, Claude, & Strimmer, 2004). Species tips 
were added to genera nodes as polytomies of equal branch length 
relative to the genera branch length using the phytools package (ver‐
sion 0.6‐44, Revell, 2012). This excluded a total of three species 
whose genera weren't included in Hedtke et al. (2013)’s phylogeny: 
Flavipanurgus venustus, Protomeliturga turnerea, and Tetrapedia diver‐

sipes. As the infrageneric polytomies add an artificial element to the 
phylogeny, we made the explicit assumption that phylogenetic pat‐
terns in body size were assessed at and above the genus level.

We fitted a chronogram from our phylogeny by penalized like‐
lihood using a correlated rate model with the ape package (version 
5.1, Paradis et al., 2004). We then assessed the significance of phy‐
logenetic signal using Pagel's λ, using the mean log‐transformed 
dry weight of each species (Pagel, 1999) with the phytools package 
(version 0.6‐44, Revell, 2012). We found a highly significant signal 
in bee dry weight (λ: 0.846, p < 0.001) (Figure 1). Therefore, we im‐
plemented a nested phylogenetic generalized linear mixed model 
(PGLMM), which considered ITD in interaction with intraspecific 
sexual dimorphism while accounting for phylogenetic dependencies 
with a nested random term: species nested within region (i.e., the 
nested species term was constrained by the constructed phylogeny). 
We refer to these models as phylogenetic GLMMs.

2.6 | Data analysis: model selection: Bayesian 
R2 and K‐fold cross‐validation

We first fitted the two full models described above: a taxonomic 
GLMM and a phylogenetic GLMM. To assess their predictive preci‐
sion, we compared these models with reduced models (i.e., without 
sex or taxonomy as either intercepts/slopes, see Table 1) including 
the random term along with two ITD‐only models, with or with‐
out the random term in order to select the most suitable models 
for inclusion in the R package. We chose to rank our models based 
upon their Bayesian R2 and K‐fold cross‐validation (CV) because the 
Widely applicable information criterion (WAIC) and Leave‐one‐out 
information criterion (LOO‐IC) were inappropriate due to pWAIC es‐
timates of >0.4 and Pareto k estimates of >0.7 (Gelman, Goodrich, 
Gabry, & Ali, 2017; Vehtari, Gelman, & Gabry, 2017). To undertake 
K‐fold CV, datasets were divided into 10 equal sets containing a ran‐
dom subset of species. Each model was then evaluated iteratively 
upon each k–1 set (training set consisting of nine sets) by comparing 
the actual and predicted values within the one left out “test” set. 
This was done repeatedly so each set was both the test set and con‐
tained within the training sets from which an information criterion 
weighting was then calculated.

2.7 | Model comparisons: Root‐mean‐square error

We assessed the predictive error of all formulated models on the 
basis of the root‐mean‐square error (RMSE), as it is expressed 

ln (y)= ln (�)+�× ln (x)
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in the same units of the response variable, between observed‐
predicted dry weight values. We also compared these error es‐
timates between our models and predicted values from Cane 
(1987)’s original model. Lastly, we calculated the RMSE for ob‐
served‐predicted values from pre‐existing body length models 
for both taxa (applicable Diptera and Hymenoptera models for 
Syrphidae and Apoidea, respectively) using our body length 
measurements.

2.8 | Data analysis: intraspecific predictions

We assessed the utility of the ITD in predicting intraspecific dry 
weight variation. For the 10 most abundant bee species of a given 
sex (nine using females, one using males) and five most abundant 
hoverfly species (all using females), we tested the utility of the ITD in 
predicting intraspecific body size variation using species‐level OLS 
regression.

To estimate the adequate sample size needed for robust mean 
trait measures for each bee species, we plotted trait means inde‐
pendently by resampling from one through n where n = total sample 
size. We then inferred the adequate sample size whereby variance 
stabilized within the 95% confidence intervals of the total sample size.

3  | RESULTS

3.1 | Interspecific model selection and performance

All three tested co‐variables exhibited significant influences on 
the allometric scaling of the ITD (Figure 2, Table 1). For bees, both 
GLMM and PGLMM analyses indicated that models including fam‐
ily or phylogeny and sex in interaction or in addition with the ITD, 
along with our nested random term better predicted dry weight 
relative to the baseline model (ITD‐only fixed effect model, model 
10 (Table 1)) on the basis of K‐fold CV and Bayesian R2 (Table 1; 

F I G U R E  1   Chronogram of bee genera 
(data from Hedtke et al., 2013) with 
infrageneric species polytomies. Branch 
lengths correspond to relative time since 
divergence. Color denotes mean ln dry 
weight (mg) of each bee species

−0.383 6.634ln dry weight

length = 0.173

Melittidae

Megachilidae

Apidae

Andrenidae

Halictidae

Colletidae
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ΔR2: 0.046, ΔK‐fold CV: 2226.6). However, differences in K‐fold 
CV and Bayesian R2 between the best‐fitting taxonomic and sexual 
dimorphism models were minimal (R2 < 0.001; ΔK‐fold CV: 7.92), 
yet taxonomic models outperformed phylogenetic models in 

terms of K‐fold CV (Δ: 118.8) but not R2 (Δ: 0.002). In hoverflies, 
incorporating sex and taxonomy increased body size predictions 
relative to the baseline ITD‐only models considerably (ΔR2: 0.058, 
ΔK‐fold CV: 80).

TA B L E  1   Model selection tables for bee and hoverfly interspecific models

Model No. Taxa Model type Model formulae R2 K‐CV Δ RMSE

1 Bees

Taxo. GLMM

ln(Dry weight) ~ ln(ITD) + Family + Sex+ 
Family:ln(ITD) + Sex:ln(ITD) + (1 | Region/

Species)

0.946 2763.7 0 11.313

2 ln(Dry weight) ~ ln(ITD) + Family + Sex + 
Sex:ln(ITD) + (1 | Region/Species)

0.946 2774.3 10.7 11.216

3 ln(Dry weight) ~ ln(ITD) + Family + Sex + (1 | 
Region/Species)

0.946 2778.2 14.5 11.629

4 ln(Dry weight) ~ ln(ITD) + Family + Sex + 
Family:ln(ITD) + (1 | Region/Species)

0.946 2790.9 27.3 11.588

5 ln(Dry weight) ~ ln(ITD) + Sex 0.945 2803.7 30.9 11.339

6 ln(Dry weight) ~ ln(ITD) + Sex + Sex:ln(ITD) 0.945 2834.6 70.9 10.937

7 ln(Dry weight) ~ ln(ITD) + Family + (1 | 

Region/Species)

0.943 2945.3 181.7 12.092

8 ln(Dry weight) ~ ln(ITD) + Family + 
Family:ln(ITD) + (1 | Region/Species)

0.943 2951.5 187.9 12.462

9 ln(Dry weight) ~ ln(ITD) + (1 | Region/

Species)

0.942 2985.9 222.3 11.896

10 ln(Dry weight) ~ ln(ITD) 0.898 4990.2 2226.6 15.565

1 Bees

Phylo. GLMM

ln(Dry weight) ~ ln(ITD) + Sex +Sex:ln(ITD) 
+ (1|Region/Species)

0.944 2882.5 0 10.228

2 ln(Dry weight) ~ ln(ITD) + Sex + (1|Region/
Species)

0.944 2920.3 37.8 10.519

3 ln(Dry weight) ~ ln(ITD) + (1|Region/
Species)

0.941 3079.5 197 10.997

1 Hoverflies Taxo. GLMM ln(Dry weight) ~ ln(ITD) + Sex + Sex:ln(ITD) 
+ (1|Region/Species)

0.820 520.6 0 4.747

2 ln(Dry weight) ~ ln(ITD) + Subf + Sex + 
(1|Region/Species)

0.820 531.9 11.3 4.649

3 ln(Dry weight) ~ ln(ITD) + Subf + Sex + 
Sex:ln(ITD) + (1|Region/Species)

0.819 533.3 12.7 4.725

4 ln(Dry weight) ~ ln(ITD) + Subf + Sex + 
Subf:ln(ITD) + (1|Region/Species)

0.820 533.6 13 4.743

5 ln(Dry weight) ~ ln(ITD) + Sex + (1|Region/
Species)

0.821 537.4 16.8 4.663

6 ln(Dry weight) ~ ln(ITD) + Subf +Sex + 
Subf:ln(ITD) + Sex:ln(ITD) + (1|Region/
Species)

0.819 538.7 18.1 4.896

7 ln(Dry weight) ~ ln(ITD) + (1|Region/
Species)

0.810 544.8 24.2 4.808

8 ln(Dry weight) ~ ln(ITD) + Subf + (1|Region/
Species)

0.810 548.2 27.6 4.801

9 ln(Dry weight) ~ ln(ITD) + Subf + 
Subf:ln(ITD) + (1|Region/Species)

0.811 552.1 31.5 4.886

10 ln(Dry weight) ~ ln(ITD) 0.762 600.6 80 6.170

Notes. Models in bold are those included in the R package. Model types: (a) Taxo. GLMM: taxonomic generalized linear mixed models and (b) Phylo 
GLMM: phylogenetic generalized linear mixed model. lnITD: ln intertegular distance (mm), Subf: Subfamily, R2: Bayesian R2, K‐CV: K‐fold cross‐valida‐
tion, Δ: ΔK‐fold CV and RMSE: root‐mean‐square error. Model parameters of the best‐fitting models are shown in Supporting Information Appendix S1.
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Reductions in predictive error as a result of incorporating 
co‐variates were most pronounced in bees in terms of root‐
mean‐square error (RMSE) (Figure 3). All formulated models out‐
performed ITD‐only models in their predictive precision. The 
RMSE ranged between 10.228–12.427 (mg) for both taxonomic 

and phylogenetic GLMMs. The RMSE for the baseline ITD‐only 
model was 15.565 mg, which was near‐identical to the RMSE for 
Cane's (1987) original model: 15.553 mg. The RMSE for GLMMs for 
hoverflies ranged from 4.648 mg to 4.885 mg and all were slightly 
lower than the RMSE of the baseline ITD‐only model (6.169 mg). 

F I G U R E  2   Dry weight (mg) ~ Intertegular distance (ITD) interspecific relationships. From left to right: influence of biogeographic region, 
taxonomic grouping, and sexual dimorphism. Lines represent the posterior fits from Bayesian generalized linear mixed models. Credible 
intervals are omitted for clarity. See Supporting Information Appendix S1 for model parameters
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F I G U R E  3   Pairwise comparisons of Δ root‐mean‐square error (RMSE) in milligrams between bee and hoverfly models. Blue values denote 
marginal precision differences in models, whereas red values indicate more error in models in the rows relative to the columns. Tax + Sex: 
Full taxonomic model, Tax: Reduced taxonomic model, Sex: Sexual dimorphic model, Phy + Sex: Full phylogenetic model, Phy: Reduced 
phylogenetic model, ITD + RE: ITD mixed effect model, ITD: ITD fixed effect model. Cane 1987: Cane (1987)'s original model for bees
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The range of prediction error for the ITD was also considerably 
lower than any pre‐existing and applicable model using body 
length: 36.36 mg ± 8.29 for bees and 7.99 mg ± 0.69 for hoverflies.

3.2 | Intraspecific predictions

Across the 10 most abundant species of bees (♀ Andrena flavipes, 
♀ A. nigroaenea, ♂ Bombus impatiens, ♀ B. lapidarius, ♀ B. terrestris, 

♀ Homalictus urbanus, ♀ Lasioglossum glabriusculum, ♀ L. lanarium, ♀ 

L. pauxillum and ♀ Trigona spinipes) and five most abundant hover‐
flies (♀ Austrosyrphus sp. 1, ♀ Episyrphus balteatus, ♀ Helophilus triv‐

ittatus, ♀ Melanostoma scalare, and ♀ Sphaerophoria macrogaster), 
the strength of intraspecific predictions of body size using the ITD 
varied considerably (Table 2; Figure 4). All bee species exhibited a 

significant dry weight ~ ITD relationship, however, the adjusted‐R2 

differed considerably from 0.02 in Homalictus urbanus to 0.66 for B. 

lapidarius. Similarly, three of five hoverfly species, Austrosyrphus sp. 
1, H. parallelus, and M. scalare exhibited a significant dry weight ~ 
ITD relationship. In order to accurately determine mean ITD and dry 
weight values for bees, a sample size of 20–30 specimens is required 
for trait values to stabilize within the 95% confidence intervals of the 
total sample size (see Supporting Information Figure S2).

4  | DISCUSSION

We present the most comprehensive examination of allometric 
scaling using intertegular distances (ITD), intraspecific variation, 

F I G U R E  4   Intraspecific predictions of 
female* dry weight as a function of the 
intertegular distance (ITD). Lines denote 
line of best fit from OLS regression. 
*Except for Bombus impatiens
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phylogenetic relatedness and biogeography to predict body size for 
two focal pollinating insect taxa: bees and hoverflies. We propose an 
iterative framework to develop and test this suite of highly predic‐
tive models for estimating body size in relation to phylogenetic re‐
latedness and biogeographic differentiation. We also identified body 
size variation in the ITD due to sexual dimorphism (Bosch & Vicens, 
2002; Skandalis, Tattersall, Prager, & Richards, 2009).

Sex was retained as an integral predictor either in addition or in 
interaction with the ITD for both taxa. This is likely because sexual 
size dimorphism (SSD) is common among insects. In both Diptera 
and Hymenoptera, up to 80% of species exhibit female‐biased SSD 
(i.e., larger females than males), (Shreeves & Field, 2008). Female‐
biased SSD is hypothesized to be a result of increased fecundity as 
a result of larger female body size (Stillwell, Blanckenhorn, Teder, 
Davidowitz, & Fox, 2010). In bees, female‐biased SSD is attributed 
to the physical requirements of nest provisioning and construction 
(Shreeves & Field, 2008). In hoverflies, SSD was also notably fe‐
male‐biased and sex was retained as the most important body size 
predictor in conjunction with the ITD. In both taxa, including sex 
increased model precision, but did not drastically change the over‐
all body size prediction, highlighting the predictive accuracy of the 
ITD even when sex is not considered. Therefore, failing to incorpo‐
rate sex in predictions will only introduce a subtle error. However, 
sex is easily identifiable in both bees and hoverflies (e.g., Michener, 
2007 for bees and Stubbs & Falk 1983 for hoverflies). Therefore, we 
recommend its inclusion if body size predictions are used, as many 
ecologically relevant allometric traits are sex‐related (e.g., flight dis‐
tances; Kraus, Wolf, & Moritz, 2009).

Few previous studies have assessed the utility of predictive 
models in describing intrageneric or intraspecific allometric traits 
(e.g., Hagen & Dupont, 2013, Cariveau et al., 2016a). Intraspecific 
body size variation is difficult to predict accurately using co‐varying 
traits such as the ITD. In particular, the large variation in predictive 
power suggests that it is sensitive to environmental conditions and/
or sample sizes. Adult body size variation, including co‐varying mor‐
phological traits (i.e., the ITD), in holometabolous insects is a direct 
result of diet and environment during ontogeny and larval develop‐
ment (Davidowitz, D'Amico, & Nijhout, 2004). For example, intraspe‐
cific body size variation has been attributed to seasonal variability 
and colony population increases in Xylocopa virginica and Bombus 

spp. (Inoue, 1992; Skandalis et al., 2009). Therefore, dietary differ‐
ences, gut contents and starvation periods, for which we did not ac‐
count for, likely cause intraspecific variability in the body size ~ ITD 
relationship.

These intraspecific patterns raise the question of how many in‐
dividuals are necessary to measure to accurately capture species’ 
mean trait values. Our analyses suggest that 20–30 specimens per 
species will provide accurate estimates of intraspecific body size, the 
ITD and potentially other morphological trait values.

Incorporating phylogenetic information is a cornerstone of 
comparative biological analyses. Phylogenetic signal in body size 
variation has been inferred in a number of vertebrate and inver‐
tebrate groups (Ashton, 2004). Failing to account for dependent 

phylogenetic patterns can lead to inaccurate predictions (Garland, 
Bennett, & Rezende, 2005; Martins & Housworth, 2002). In our 
study, both PGLMM and GLMM models were comparable in terms of 
predictive power. Interestingly, taxonomic and phylogenetic GLMM 
models were near‐identical in both Bayesian R2 and RMSE demon‐
strating that differential allometric scaling is present at/or below the 
family level. These results suggest that predictive inferences of body 
size that don't account for evolutionary history lack accuracy and 
generalizability.

Where the aim is prediction, GLMMs incorporating taxonomic 
groupings without considering phylogeny are more practical. First, 
well‐resolved phylogenies are lacking for most groups and second, 
taxonomy‐based models allow us to predict allometric relationships 
for nonrepresented species, while phylogenetic models are only ap‐
plicable to species contained within the used phylogeny. A further 
advantage of using taxonomic groupings over phylogeny is that they 
provide easy‐to‐interpret regression intercepts and/or slopes as op‐
posed to a phylogenetic covariance matrix. For bees, we confirm that 
incorporating taxonomy is predictively equivalent to including phy‐
logenetic information in allometric scaling relationships where the 
latter is unavailable. This uniformity between taxonomic and phy‐
logenetic models may not exist for other taxa with either high para‐
phyly, low correspondence between taxonomy and phylogeny or for 
other nontested allometric biological traits. In hoverflies, including 
taxonomy was less informative than for bees, potentially due to the 
lower taxonomic ranking used (i.e., subfamily).

By simulating infrageneric polytomies within our phylogeny, we 
implemented a conservative approach which does not fully recognize 
the true infrageneric phylogenetic structure. Although infrageneric 
phylogenies exist for some genera (e.g., Bombus and Lasioglossum, 
Cameron, Hines, & Williams, 2007; Danforth, Conway, & Ji, 2003), 
these were not available for the majority of incorporated bee spe‐
cies. However, we posit that the effect of these would be minimal, 
relative to the total interspecific branch lengths between congeneric 
species. However, it may exhibit a stronger influence on more closely 
related species, or within those genera that have multiple subgenera 
(e.g., Lasioglossum, Michener, 2007). Future studies should attempt 
to incorporate known infrageneric branch lengths in order to more 
accurately account for these patterns.

Terrestrial invertebrates show considerable biogeographic vari‐
ation in body shape and size. While previous studies have compared 
allometric models between biogeographical regions either inde‐
pendently (Schoener, 1980) or within a meta‐analytical framework 
(Martin et al., 2014), we chose to represent biogeographical variation 
within a random effect structure. This makes these models broadly 
applicable and not biogeographically restricted in utility. Observed 
biogeographical differences within this study likely arise from differ‐
ing species diversification patterns as well as from sampling biases, 
such as variation in commonality among species. Therefore, it is 
problematic to disentangle and prove hypotheses that explain bio‐
geographic variation in the allometric scaling of the ITD. However, 
it is clear that the influence of biogeography appears alongside spe‐
cies’ evolutionary histories and intraspecific variation.



1712  |     KENDALL Et AL.

The structure of our study design had several limitations. First, 
there is a potential measurement error as a result of multiple contrib‐
utors measuring and weighing specimens. Second, specimen condi‐
tion may introduce subtle errors, for example, due to the presence of 
pollen loads in species which removal is often difficult or impossible 
(e.g., for bees which collect it internally, e.g., Hylaeus spp., Scott, 1996). 
Finally, sampling variation attributable to low specimen sample sizes 
or specimens for which we only have a single gender may have intro‐
duced some error. Greater accuracy will likely be achieved in the iter‐
ative process of updating these models as new data become available.

By incorporating sexual dimorphism, phylogeny or taxonomy, 
and biogeography we improved model predictions and reduced the 
limitations of traditional allometric models used to estimate body 
size. These three predictors represent fundamentally related causes 
of body size variation in pollinating insects. In consideration of the 
multiple metrics (i.e., Bayesian R2, K‐fold CV, and RMSE) used in 
model selection, we provide multiple predictive models. This is im‐
portant as research questions may not focus on sex‐related allome‐
tric differences and may occur outside the included biogeographic 
regions or taxonomic groups (i.e., the bee family Stenotritidae or the 
hoverfly subfamily Microdontinae). Therefore, disseminating the 
most appropriate allometric model becomes a hypothesis‐driven 
formula that should consider and then discount each examined fac‐
tor. Importantly, given the high resolution of our described models 
and the large sample size of specimens within this study, our models 
improve body size predictions relative to pre‐existing models even 
when considering only the ITD. After accounting for biogeographical 
and species‐level effects, failing to incorporate sex or phylogeny/
taxonomy will not result in considerable error (see Figure 3) although 
we endorse their use as it enables more meaningful analyses. Lastly, 
we caution the use of ordinal‐level predictive models as allometric 
constraints differ considerably at the family level (see Figure 1).

4.1 | Summary of R package functions

The developed R package, “pollimetry,” integrates models for esti‐
mating body size (i.e., dry weight) in bees and hoverflies using the 
ITD and co‐variates (Table 1). These models were collated, using 
the enclosed dataset, into a single function that returns body size 
estimates, standard error, and 90% credible intervals, based on 
the user's model choice. In addition, pollimetry includes functions 
for estimating pollinator dry weight using pre‐existing models that 
utilize the following co‐varying traits: body length, head width, and 
body length * body width; see Supporting Information Appendix S1). 
The R package also includes functions for estimating bee foraging 
distances using the ITD (Greenleaf et al., 2007) or head width (van 
Nieuwstadt & Iraheta, 1996). We reimplemented (Cariveau et al., 
2016a, 2016b) predictive models for bee tongue length using the 
ITD and taxonomic family from the available raw data. We also in‐
cluded allometric functions to calculate bee field nectar load (Henry 
& Rodet, 2018) and wing loading (Bullock, 1999). These equations 
will be updated in future package releases as models are re‐fit to 
include new data.

4.2 | Conclusions and implications

The accompanying R package, “pollimetry,” provides a user‐friendly 
interface to estimate pollinator body size (as dry weight) and co‐var‐
ying ecological traits. Practical allometric libraries require multiple 
models that will be updated when new datasets become available. 
This will enable robust investigation of other allometric traits at both 
intra‐ or interspecific levels. The consequences of body size varia‐
tion are ubiquitous within pollination research, yet few have utilized 
allometric theory in studying pollinating taxa beyond bees. Providing 
more robust estimates of body size for bees and hoverflies is an im‐
portant first step, yet this comprehensive approach to allometric 
model development should be applied to other pollinating taxa, such 
as Lepidoptera. The iterative framework developed herein, heralds 
a dynamic new direction for allometric models of body size and co‐
varying ecological traits and will provide more accurate predictions 
through hypothesis‐led model choice, testing, and investigation in 
allometric research.
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