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Abstract
This study used two different approaches to demonstrate the relationship between pollution emissions,
economic growth and COVID-19 deaths in India. Using a time series method and annual data for the
years from 1980 to 2018, stationarity and Toda-Yamamoto tests were completed. The results from our
analysis highlight unidirectional causality between economic growth and pollution variables. We then
used a D2C algorithm on proportion-based causality, implementing the Oryx 2.0.8 protocol in Apache. The
underlying hypothesis was that a predetermined pollution concentration, caused by economic growth,
could foster COVID-19, by making the respiratory system more susceptible to infection. We used data
(29th January to 18th May 2020) on confirmed deaths (total and daily) and air pollution concentration
levels for 25 major Indian cities. We verified an ML causal link between PM2.5, CO2, NO2 and COVID-19
deaths. The implications require careful policy design. 

Introduction
In recent years, India’s economic growth has increased very quickly; India has one of the highest growth
rates for a developing country. Numerous production sectors have grown and in addition to the steel and
metallurgical sectors, the textile and oil refining industries have also expanded. This economic growth
has increased the number of jobs in cities and the populations of large urban areas, such as Delhi and
Mumbai. However, the growth of towns and the consequent need for more supplies have damaged the
delicate environment of India, where there are high levels of smog, fine dust and water pollution. Air
contamination in India has expanded quickly with the increasing population, increasing number of
vehicles, increasing energy utilization, poor transportation frameworks, poor land use, industrialization
and especially with the inadequate environmental guidelines. According to Conibear et al. (2018), Sulphur
Dioxide, Nitrogen Dioxide (NO2) and Particulate Matter (PM) contribute in part to the toxins causing
environmental contamination. Many Indian urban communities including Mumbai, Kolkata and Pune are
at risk of air contamination. India’s air contamination emergency is generally due to the toxic, winter air
quality in Delhi and in a few urban areas in the north and central India (Awasthi et al., 2016). 

According to Gurjar et al. (2016), the air quality due to pollution is so poor in India that about 1.2 million
deaths can be directly attributed to it. Gurjar et al. (2016) claim that one out of eight (about 12.5%) deaths
in 2017 were attributable to high rates of respiratory disease, stroke, heart disease, diabetes and lung
cancer, all conditions for which a certain percentage of cases result from severe air pollution. Apparently,
out of the 1.2 million deaths about 51.4% were people below 70 years of age (Solgi and Keramaty, 2016).
More than three-quarters of the population in India are exposed to air pollution far higher than the
minimum standard set by the Indian government, which is four times higher than the limit set by the
World Health Organization (WHO).
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Since March 2020, India has been affected, like much of the world, by the COVID-19 pandemic. In no time,
India has experienced an unprecedented increase in infections. The toll of the coronavirus emergency in
India has exceeded the threshold of 100 thousand cases. According to reports from Johns Hopkins
University, the number of cases in India has reached 101,139, while the deaths caused to date by the virus
total 3,164. The country’s Ministry of Health has confirmed the accuracy of these data. The Indian
Medical Research Council has announced that 2,404,267 tests have been performed nationwide. The
rapid spread of the virus despite the lockdown measures imposed raises many questions. In particular,
many scholars are looking for a relationship between pollution and the spread of COVID-19. The literature
on this topic is very scarce and the few existing studies are very recent. However, relevant scientific
literature highlights that exposure to air pollution may be relevant to virus infection spread (Chen et al.,
2010; Ye et al., 2016; Chen et al., 2017; Peng et al., 2020); and more recent literature focuses on COVID-19
diffusion (Consticini et al., 2020; Setti et al., 2020; Wu et al., 2020). These latter studies concluded that air
pollution is an effective determinant of COVID-19 infection spread. However, the feedback channel
remains less investigated. Mitra et al. (2020) studied the atmospheric Carbon Dioxide (CO2) levels for the
city of Kolkata (India) comparing the April 2019 and April 2020 periods. Focusing on Chinese provinces,
Huang et al. (2020) analysed the variations in primary and secondary pollution emissions during the
COVID-19 lockdown. Using a different method, Wang et al. (2020) explored the influences of emission
reductions due to reduced human activities during the COVID-19 outbreak in China on air pollution.
Becchetti et al. (2020) analysed the data of all the municipalities and all the Italian provinces, both in
terms of deaths and daily infections, in relation to pollution levels. In their study, significant causal
variables for contagion and death with COVID-19 are represented by the combined provision of three
factors: the lockdown measures, the level of local pollution – especially fine dust but also NO2 – and the
types of local production structures, in particular non-digitizable activities, which therefore in the most
acute period of the epidemic crisis had greater resistance to closure. The study estimated the difference
between provinces most exposed to fine dust (Lombardy) and least exposed (Sardinia) to be around
1,200 cases and 600 deaths per month, a figure that implies a doubling in mortality for the most exposed
province. Basically, according to the research, coronavirus infections were higher where the air pollution
was higher, although the authors specify that a causal link was not established. Becchetti et al. (2020)
discuss statistical relevance, however, which suggests a strong correlation between pollution and
infection/mortality. Studies on the relationship between COVID-19 and pollution present statistical
analyses but fail to take into account the relationship with economic growth. Further, these studies do not
adopt the most modern techniques, which are based on machine learning approaches.

This paper, starting from the underlying assumption that economic growth in developing countries
generates pollution, first verifies the causal link through an econometric approach. It estimates the
presence of causality in the Toda-Yamamoto test between economic growth and PM2.5, NO2, CO2.
Subsequently, the (short term) causal link is verified between PM2.5, NO2, CO2 (resulting from
unsustainable economy growth) and COVID-19 deaths, through a complex causality algorithm (D2C).
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The rest of this paper is organized as follows: section 2 shows the time series and machine learning
method; section 3 analyses in detail the results obtained by our algorithm; section 4 presents a
discussion of the results and section 5 reports our conclusions.

 

Methods
2.1 Data Source and Strategy: Time Series Analysis

The econometric analysis aims to analyse the presence of a causal relationship among pollution (CO2

emissions, PM2.5 and NO2) per capita Gross Domestic Product (GDP). In our study, we use annual data
from 1980 to 2018. Table 1 shows the sources of data used in our empirical analyses: CO2 is CO2

emissions (metric tons per capita); PM2.5 is primary particulate matter (PM); NO2 is NO2 concentrations
levels; PCGDP is GDP per capita in 2000 US$. The R is the software we used for time series data
processing.

Table 1. List of Variables

Variable Explanation Source
PCGDP GDP per capita in 2000 US$ (converted at Geary Khamis PPPs) FRED Data

CO2
NO2   

PM 2.5  

CO2 emissions (metric tons per capita) 
NO2 emissions (metric tons per capita) 

Primary particulate matter (metric tons per capita)

OGD
World Bank Data

OGD

For this work, to avoid distortions in the analysis, values for the variables used were calculated in
logarithmic terms. Table 2 presents an exploratory data analysis.

Table 2 Exploratory data analysis

Variable Mean SD Minimum Maximum Ex.Kurtosis 10‑Trim  IQR
PCGDP 3.1942 1.9372 2.1931 8.1946 0.8745 3.95 1.6910
CO2 0.9164 0.1911 0.1975 1.9782 0.1794 0.86 0.4937
NO2 5.1946 0.1943 5.1416 6.5946 -0.9634 5.10 0.5795
PM2.5 0.8512 0.1845 0.1867 1.9245 0.1864 0.84 0.4765

As we can see in Table 2, means are positive values for all variables; 10-Trim values are near the means;
the interquartile range shows the absence of outliers.

The correlation analysis shows that in our dataset, the variables are strongly correlated: corr (CO2,
PCGDP) = 0.9745; corr (CO2, NO2) = 0.9875; corr (PCGDP, NO2) = 0.9754; corr (CO2, PM2.5) = 0.9912; corr
(PCGDP, PM2.5) = 0.9245; corr (NO2, PM2.5) = 0.9675 with all significant variables (0.000).

Subsequently, stationarity tests (ADF, ERS, PP and KPSS) were performed for each time series of each
variable, first on levels and then on the first differences (Table 3).
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Table 3 Results for unit roots and stationarity tests

  ADF ERS PP KPSS
Level        
PCGDP  -2.765 (-3.124)  -1.008 (-3.120)  -2.120 (-3.040)  0.450***(0.145)
CO2 -2.790 (-3.005)  -1.142 (-3.150)  -2.150 (-3.680)  0.375***(0.145)
NO2  -1.195 (-3.086)  -1.790 (-3.710)  -3.746 (-3.785)  0.150***(0.145)
PM2.5 -2.456 (-3.142) -1.158 (-3.145) -2.125 (-1.580) 0.350***(0.145)
First Differences 
 
 
  
PCGDP  -6.350*** (-2.008)  -5.522***(-2.950) -6.488***(-2.960)  0.314*(0.460)
CO2  -3.052*** (-2.378)  -1.792 (-2.622)  -8.350***(-2.644)  0.240 (0.460)
NO2  -3.480**(-1.900)  -2.378*** (-2.005)  -8.005***(-2.916)  0.110 (0.460)
PM2.5  -3.050** (-2.250)  -1.850 (-2.422)  -8. 125** (-2.486)  0.250 (0.460)

*p < 0.1; **p < 0.05; ***p < 0.01. In our analysis 5% Critical Values are given in parentheses

 

As proved by the data presented in Table 3, the tests failed to reject the null hypothesis for all the
variables relative to the 5% significance level, except for the KPSS test. However, this last test, using a
different approach, rejected the I (0) value at the 95% confidence level, indirectly confirming the previous
tests.

To verify the causal relationship between each of PM2.5, CO2, NO2 and the per capita economic, we used
the Toda-Yamamoto test. This is necessary to test the non-Granger causality allowing, however, for the
causal inferential analysis on a VAR which contains or does not present co-integration processes. Table 4
presents the result of the test carried out on our historical data series.

Table 4 Toda-Yamamoto causality results

Dep.Variable PCGDP CO2 NO2

 
PM2.5

PCGDP - 2,125 (0,250) 2,265 (0,300)
 
2,150 (0,450)

CO2 1,450*** (0,000) - 0,607 (0,450)
 
0,845 (0,350)

NO2 11,159*** (0,000) 2,305 (0,380) - 3,402 (0,450)
PM2.5 1,260*** (0,000) 3,120 (0,280) 0,848 (0,500) -

      *p < 0.10; **p < 0.05 ; ***p < 0.01.

 

The peculiarity of our result is that India registers a direction of causality. In particular, there is a
unidirectional causality from economic growth to PM2.5, CO2 and NO2. The results obtained confirm the
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hypothesis that the economic growth of a developing country behaves like a bell curve. The relationship
between economic development and environmental sustainability is best represented by the so-called
Environmental Kuznets Curve (CKA). At the basis of this theory is the idea that the curve represents a
mechanism according to which developing countries tend to pollute more; the achievement of a mature
and stable phase of economic growth is an essential tool for reducing environmental damage. However,
for India, the downward phase of the curve has not yet been observed. Polluting emissions, therefore, still
derive from unsustainable economic growth. Polluting emissions may have influenced the spread of
COVID-19 in Indian territory, also causing the death of many people.This statement requires an empirical
verification through the most current methodologies in machine learning. Therefore, as reported in the
following section, we next estimated the D2C algorithm, aiming to verify the causal link between polluting
emissions and COVID-19 deaths.

 

2.2 Machine Learning Evidence

 

According to Sundararajan et al. (2017), we determined an algorithm capable of generating causal
effects between inputs concerning one or more targets. We used an algorithm in machine learning that
could identify causal effects between the variables. Hu et. al. (2012) recommend a D2C algorithm on
proportion-based causality using the Oryx 2.0.8 protocol in Apache. However, since an algorithm in
machine learning needs many variables (remembering that the data are not interpreted as a time series),
we completed mathematical transformations. So, in addition to the general logarithmic transformation,
we generated the square of the considered values, the first difference and the first difference calculated in
logarithmic terms. In this way, our model computes a combination of 37040-1 variables with an artificial
intelligence approach. We used a dataset with daily cumulative variables in time series (not considered as
such by our neural networks) from 29th January to 18th May 2020 (Table 5)

Table 5. List of Variables

Deaths Data on confirmed deaths STATISTA
[1]

PM2.5

NO2

CO2

PM2.5 concentrations levels (expressed in µg/m3)

NO2 concentrations levels (expressed in µg/m3)

CO2 emissions (metric tons per capita)

 CPCB
[2]

CPCB

CPCB

[1]
 https://www.statista.com/statistics/1104054/india-coronavirus-covid-19-daily-confirmed-recovered-death-

cases/

[2]
https://data.gov.in/catalog/historical-daily-ambient-air-quality-data

https://www.statista.com/statistics/1104054/india-coronavirus-covid-19-daily-confirmed-recovered-death-cases/
https://data.gov.in/catalog/historical-daily-ambient-air-quality-data
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We performed the analysis in machine learning following the process shown in Figure 1. This figure
shows that starting from our dataset, we increased the variables through mathematical transformations
to obtain a large dataset necessary for our D2C algorithm. Subsequently, the causality model was
processed and we analysed those variables deemed significant. Once the D2C commands were imported
into the Oryx software, the analysis generated the causalities mentioned above typical of a machine
learning process. Finally, we completed the Predictive Linear Regression test and Perform Training test to
verify the accuracy of the algorithm.

 

Results
Table 6 presents the results of causality and significance tests to determine the relationship between the
variables of interest in the study. In the model, n filtered factors were used (which do not appear in the
table), which performed the task of training the classification of our model. The self-learning machine
worked as explained here. It started from a set of commands with functionality still to be preset.
Subsequently, as shown in the Appendix, we sequentially imported various features and parameterized
our variables from letter a to letter m. Hence, ten classifiers were trained and tested to achieve the
predictive causal link between our variables. These ten classifiers worked through a binary calculation
sequence, alternating the values [0] with those of [1].

Table 6 Rank of predictor and significant causality results

Rank of Predictor Number of repetitions Percentage (%) AC AUPRC
PM2.5 → Deaths 17945 0.87 4.948 True
NO2→ Deaths 17168 0.86 4.795 False
CO2→ Deaths 18191 0.92 4.741 False
lnPM2.5 →lnDeaths 18178 0.91 4.124 False
dPM2.5 →dDeaths 18197 0.74 4.172 False
dNO2→dDeaths 18189 0.74 4.124 False
d.lnPM2.5→d.lnDeaths 21419 0.73 4.189 False
d.lnNO2→d.lnDeaths 21444 0.70 4.144 False
PM2.5(s)→Deaths(s) 16973 0.70 4.277 False
NO2s→Deaths(s) 16211 0.74 4.211 False

AC: Average Causality value

AUPRC: Area Under the Precision Recall Curve. True p-val. < 0.05. False p-val. ≥ 0.05

Note: ln is the logarithmic transformation; (s) is the square of the considered values; there are 7 unused
variables.
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As we can see from the results in Table 6, the algorithm we used worked by performing on average over
19000 repetitions for each combination of causality between our variables. The closing percentage of the
calculation, within the average of the repeats, was always higher than 70%. Hence, our algorithm has ever
completed each cycle for each pair of variables. The value of the Average Causality was uniform for all
pairs of values analysed. As regards the significance of the results of predictive causality, we
parameterized the AUPRC. It was divided into true or false with respect to a p-value lower or higher than
5%. We thus ascertained that only a causal relationship was significant within the AUPRC analysis. This
was attributable to a unidirectional causality ranging from PM2.5 value to Deaths value. Finally, we tested
the accuracy of the whole process and algorithm. We applied the “Importance test” to the hyperbolic
equations of the D2C to verify which input sent the most signals to the target (Deaths) (see Figure 2).

As evident from Figure 2, the PM2.5 emissions appear to be those that most influence the target variable
(Deaths). This result confirms the findings from the D2C causality model. A standard method to test the
loss of our model is to perform a predictive linear regression analysis (Figure 3).

As shown in Figure 3, the prediction line (with respect to the target, Deaths) confirms the goodness-of-fit
of the elaboration with the algorithm in the final architecture. The second phase of the model algorithm’s
goodness-of-fit begins with the analysis of Perform Training. The Quasi-Newton method was used for
training (Figure 4). This is based on Newton’s method, but does not require calculation of second
derivatives. Instead, the Quasi-Newton method computes an approximation of the inverse Hessian at
each iteration of the algorithm, by only using gradient information.

Figure 4 shows the training and selection errors in each iteration. The blue line represents the training
error, while the orange line is the selection error. The initial value of the training error is 6.78169 and its
final value after 29 epochs is 0.0781. The initial value of the selection error is 5.44918 and its final value
after 108 epochs is 0.0008.

Discussion
The results obtained from our D2C model show that there is a one-way causal link from PM2.5

concentrations to COVID-19 deaths. This result is significant. It points out that high levels of fine
particulates are related to the increase in pandemic deaths, which we elaborate on here. Atmospheric PM
is composed of solid and liquid particles of microscopic dimensions, suspended in the air.

In particular, the term “PM2.5” includes all powders with an aerodynamic diameter less than or equal to
2.5µm. It is fine particulate matter sourced from all types of combustion, including that of engines in cars
and motorcycles, in plants for production of electricity and from wood burning for domestic heating.
Forest fires and many other industrial processes also contribute. These tiny particles can be inhaled,
reaching into the deepest part of the human respiratory system and lungs. A few days inhaling at high
concentrations can cause inflammation of the respiratory tract, asthma crisis, or malfunction of the
cardiovascular system. Prolonged exposure can, however, generate chronic effects with symptoms such
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as a cough, a decrease in the lung or cardiac capacity, asthma and other inflammatory conditions, some
even with fatal consequences. According to Wu et al. (2020), a 1μg/m3 increase in air PM2.5 corresponds
to a 15% increase in the mortality rate from COVID-19. Therefore, patients who have been exposed to
polluted air for a prolonged period of time are at higher risk of death from complications related to
Coronavirus than others who have lived in areas with cleaner air. PM2.5, therefore, can greatly aggravate
the symptoms of COVID-19 infection, significantly increasing the risk of mortality in patients affected by
the virus.

The correlation between concentrations of PM2.5 and COVID-19 deaths is closely connected with India’s
economic growth process. As mentioned above, India has one of the highest economic growth rates for a
developing country, with rapid development in the steel, metallurgical, textile and oil refining industries.
This growth has lead to an increased number of jobs in cities, increasing populations of large urban
agglomerations such as Delhi and Mumbai. This growth and the consequent need for more supplies have
affected the environment resulting in higher levels of smog, fine dust and water pollution. In particular, we
think that the connection between fine particulate matter and COVID-19 deaths happens through the
process of social and economic urbanization. Since 2018, most of the world’s population have lived in
urban areas and the United Nations predicts that by 2030, 60% will do so. Urbanization is likely to be one
of the main future challenges in developing countries such as India. Migration from the countryside to
cities is a critical factor in terms of environmental impact and pollution. According to the WHO (2018), air
quality in most cities (which use systems for monitoring and detecting air pollution levels) is below the
established limits. However, the WHO itself reports that in many countries with higher economic growth,
such as India, urban agglomerations are characterized by high levels of pollution. In fact, Delhi currently
holds the highest negative record in terms of emission of polluting particles into the atmosphere. In our
dataset, we observed very high daily and hourly levels of PM2.5 in Delhi (from February 2020 to May
2020) (Figure 5), with values above the limit recommended by the WHO (10 μg/m3).

These high concentrations of PM2.5 could aggravate the COVID-19 crisis in India. Our model, excluding
the presence of other variables with direct causality for COVID-19 deaths, therefore supports the design of
policies for rapid reduction of polluting particles, because their function as a vehicle for the virus
(Dominici et al., 2020) could accelerate the number of deaths across the country.

Conclusion
This paper aimed to analyse the relationship between economic growth, polluting emissions and COVID-
19 deaths. We have used two estimation models. The econometric model verified the unidirectional
causal link between economic growth and PM2.5, CO2 and NO2. Our machine learning analysis, with D2C
algorithm, demonstrated that in our time series there was a direct relationship between concentration of
PM2.5 and COVID-19 deaths. Our results confirm those of numerous preprint contributions, which discuss
or present data analyses on the relationship between air pollution levels and the COVID-19 epidemic
(Bianchi and Cibella, 2020; Cheng et al., 2020; Conticini et al., 2020; Schwartz et al., 2020). Attention is
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paid in particular to the potential effects of fine particulate matter, the spread of the epidemic and the
prognosis of respiratory infections. The underlying hypothesis is that a high concentration of PM (PM10,
PM2.5) makes the respiratory system more susceptible to infection and complications of coronavirus
disease. The higher and more constant the exposure to PM over time (as with the elderly), the higher the
probability that the respiratory system is predisposed to more severe disease.

This air pollution situation developed from the rapid economic growth, as demonstrated by the time
series model. Such air pollution is a characteristic of developing countries and their intensive polluting
activities. Therefore, it is necessary to put in place measures that limit the damage caused by pollution.
They can be reassigned below.

- To control the emissions arising for the motor vehicles, its best to put in place measures to adopt
vehicles that are less emissive. Such measures would include the use of vehicles that consume less
fossil fuel, which results in less emissions due to less combustion.  There should also be advocacy for
cleaner fuel with less toxic emissive capacity to adequately reduce the toxic gas emissions. In the long
run, the country should think of adopting latest technologies which have already been adopted by
developed countries, such is the use of electrically driven vehicles. There are pollutants-free vehicles that
need to replace the existing fuel-dependent vehicles, in order to achieve a lower number of fossil gases
emissions such as carbon monoxide and sulfur dioxide, that are being released to the environment. This
will help, in the long term, in reducing respiratory-related diseases that have an expensive cost of
treatments for the majority of citizens.

-  How agricultural activities are being carried out should be streamlined to meet the present and
environmentally friendly means. Farmers should be educated on the best practices such as the use of
natural fertilizers, which causes no pollution for the soil. The continued use of the current fertilizers will
continue affecting the environment by having soils affected by chemicals. The use of manure should be
replaced with the current fertilizers; farmers should collect manure from cattle and chicken droppings. On
the issue of setting plantations fields on fire, farmers should be sensitized on the best practice to ensure
that the vegetation that should be set on fire is a good source of humus for the soil. The twigs and
bushes should be grounded and buried in the soil to create natural humus content for the crops. Burning
should be discouraged at all cost as it even leads to the killing of living organisms that should otherwise
perform aeration of the soil to maximize its output.  The government cuold set aside funds to educate
farmers on this, and the air pollution that has always been witnessed will be a story of the past in the
state of Punjab and other states.

-    Dust which would always cause smog during winter can be minimized by increasing green cover in
major parts of the country. Those places with bare land should be covered by planting either grass or any
land cover such as trees to prevent any dust source. Planting of trees will serve a better position as it will
not only create a soil cover but also serve as windbreakers, thus preventing dust from moving from one
point to another. If this is achieved, issues of formation of smog during winter will never be realized
again; on the other hand, will be contained by putting in place measures that curb wrongdoers such as
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smokers near forest areas. Clear instructions should be displayed to the public on the consequences of
causing a fire in a forest. Firefighting department should also set up near forest areas and major towns to
curb any possible incidence of fire occurrences.

-    Municipalities should create rules, those guidelines for the emissions and emission limits of toxic
substances.  Power plants should ensure that the gases emitted to the atmosphere are treated to ensure
that no harmful substance is emitted to the atmosphere. Such mechanisms will only be possible if the
environmental agency sets out measures that will be able to guide the population and also if standards
will be established.  This will go a long way in ensuring that most of the toxic gases that would cause
respiratory diseases are controlled. Such control mechanisms will lead to an increase in the life
expectancy of people living in India, because chronic illnesses like cancer and asthma will considerably
decrease. Regular inspections of power plants should be periodically conducted to certain the rate of
pollution.

- Waste management should be beamed by laying down strategies that will see the implementation of
waste treatment and achieving recycling. The long term goals should be to ensure that no landfill is
available anymore in major towns and that all the waste is treated and recycled. Corporate management
should do away with landfills and ensure that every firm, industry, corporation and even at individual level
treat its waste before it disposes to the environment. Such measures will ensure that no toxins are
disposed of. Local management should also ensure that offenders are punished severely to serve as
examples. Such punishments would include closing up of factories that discharge untreated waste. Such
mechanisms will shy other firms from disposing of untreated wastes.  The expenses that municipalities
would all year-end spend on transportation of wastes from towns to landfills should rather be used in the
treatment of the waste at the source level, and possible recycling is carried out.
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1. C) D2C Core Commad
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numpy import
_scipy import poly
_scipy.linalg import
_def d2c (sys,method='zoh'):
sycs: continous system ss or tf 
if is intance (sys,TransferFunction):
sys= tf2ss(sys)
flag=1
n=shape (a) [0]
nb=shape (b) [1]
nc=shape (c) [0]
nd=shape (d) [1]
nf=shape (f) [0]
ng=shape (g) [1]
nh=shape (h) [0]
ni=shape (i) [1]
nl=shape (l) [0]
nm=shape (m) [1]
if b[0,0]==1:
A= 0
B= b/sys.dt
C=c
D=d
E=e
F=f
H=h
I=i
L=l
M=m
elif method== 'foh':
A= (2/Ts)*(a-I)*inv(a+i)
B=tk*iab
c=tk*(c*inv(I+a))
D=d-(c*iab)

Figures
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Figure 1

Machine Learning Process

Figure 2

Importance Test
Source: our elaboration with BGML

Figure 3

Predictive Linear Regression test
Source: our elaboration with NN Designer



Page 16/16

Figure 4

Perform Training Test
Source: our elaboration with NN Designer

Figure 5

Concentration (μg/m3) PM2.5 in Delhi
Source: our elaboration on hourly data. https://openaq.org/


