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Pollution exacerbates China’s water scarcity
and its regional inequality
Ting Ma 1,2,3,8*, Siao Sun 4,8, Guangtao Fu 5, Jim W. Hall 6, Yong Ni 1,2,7*, Lihuan He 7,

Jiawei Yi 1,2, Na Zhao1,2, Yunyan Du1,2, Tao Pei 1,2,3, Weiming Cheng1,2, Ci Song 1,2, Chuanglin Fang2,4 &

Chenghu Zhou 1,2*

Inadequate water quality can mean that water is unsuitable for a variety of human uses, thus

exacerbating freshwater scarcity. Previous large-scale water scarcity assessments mostly

focused on the availability of sufficient freshwater quantity for providing supplies, but

neglected the quality constraints on water usability. Here we report a comprehensive

nationwide water scarcity assessment in China, which explicitly includes quality requirements

for human water uses. We highlight the necessity of incorporating water scarcity assessment

at multiple temporal and geographic scales. Our results show that inadequate water quality

exacerbates China’s water scarcity, which is unevenly distributed across the country. North

China often suffers water scarcity throughout the year, whereas South China, despite suffi-

cient quantities, experiences seasonal water scarcity due to inadequate quality. Over half of

the population are affected by water scarcity, pointing to an urgent need for improving

freshwater quantity and quality management to cope with water scarcity.
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T
he survival and development of human society depends on
water, and the global demand has increased by nearly
eightfold over the period 1900–20101,2, driven by popula-

tion growth, expanding irrigated croplands, economic develop-
ment, and dietary shifts2–8. Increasing water demands in
combination with their geographic and temporal mismatch with
freshwater availability have rendered water scarcity a widespread
problem in many parts of the world, which occurs when demand
for freshwater exceeds available supply9,10. Particularly in China,
with per capita available water resource amounting to only one
fourth of the world average11–13, water scarcity is one of the most
significant threats that challenge sustainable development14–16.
The uneven distributions of water and population create
inequality in water scarcity13, with some regions in North China
facing extreme water pressures to an extent that is not revealed by
national average figures. As a result of rising conflicts among
regional and sectoral water uses, policy attention on mitigating
water scarcity is growing in China16–18.

Understanding water scarcity should underpin sustainable
water resources management10,19,20. Many previous studies
have assessed China’s water scarcity at regional and national
levels21–24, or in a global context4,25–27. Previous water scarcity
assessments mostly focused on the quantity of water available for
water supplies3,26,28–32, but neglected the fact that inadequate water
quality may pose a significant constraint on water usability33,34.
The dramatic economic development in recent decades in China
has come at an environmental cost, where widespread land use
changes, increasing volumes of untreated wastewater from house-
holds, and industry and agricultural runoff have led to severe
pollution of the aquatic environment12,14,18,35–37. In a few earlier
water scarcity assessments for Chinese cities and river basins, the
water quality issue was included by comparing the gray water
footprint (i.e., the amount of water required to dilute pollutants in
wastewater to meet environmental water quality standards) with
water availability22,24,34,38. Later, China’s water scarcity was ana-
lyzed at the national level based on this gray water footprint con-
cept, however, using a rather coarse spatial resolution for 31
provincial-level administrative units39. A recent study assessed the
implications of pollution for water scarcity by explicitly considering
sectoral water quality requirements in comparison to available
water quality34.

Despite a recognized need, nationwide assessment of water
quality as a contributing factor to water scarcity in China has not
yet been implemented at a high spatial resolution, probably due to
a limited coverage of water quality data20,40. The impact of
inadequate water quality on water scarcity and its regional
inequality remains unclear. While most large-scale water scarcity
assessments were implemented at either grid cell or watershed
scale4,25–27,30–32,39, the effect of using different spatial resolutions
on water scarcity and accompanied uncertainty still present a
great knowledge gap.

To address these, we quantified China’s present-day water
scarcity, by examining needs for human water uses meeting both
quantity and quality requirements at various temporal and spatial
scales, in the meantime, taking into account environmental flow
requirement (EFR). We compiled nationwide datasets consisting
of water availability, water quality (measured by three typical
water quality indicators, including the chemical oxygen demand,
COD; ammonium nitrogen, NH+4-N; and electrical conductivity,
EC), and sector-specific water withdrawal (for irrigation, indus-
try, domestic use, and eco-environmental compensation use). All
the datasets contain multiple geographic and temporal scales: at
the 0.25 × 0.25 arc-degree grid cell, the first-order, second-order,
and third-order basin levels on the annual, seasonal, and monthly
basis for the 5-year period: 2012–2016 (Methods section). We
then assessed the impact of inadequate water quality on water

scarcity across four different geographic levels at three time scales.
The results are crucially important for informing policy-making
for regional water scarcity adaptation and alleviation.

Results
Quality-included water scarcity at various geographic scales.
Quantity-based water scarcity (referred to as WSqua, see Methods
section), quality-based water scarcity (also pollution-induced
water scarcity, abbreviated as WSpol), and water scarcity based
on the combined effect of both quantity and quality (referred to
as WScom) in present-day China exhibit geographical variations
(Fig. 1). At the grid cell level, WScom tends to increase areas
under water scarcity and intensify water scarcity in many places
in comparison to WSqua (Fig. 1b–d). A total of 28.8% and 32.0%
of China’s area suffer WSqua and WScom (WSqua > 1 and
WScom > 1, see methods for the equations), respectively. Water
scarce areas are mainly distributed in North China. Over half
areas in the Huai, Hai, Yellow, and Liao River basins, and 45.4%
areas in the Songhua River basin are under WScom. In the
Northwest River basin with large wild and unpopulated regions,
water scarcity mainly occurs in west Xinjiang province with large
irrigated croplands. While not under WSqua, a number of grid
cells in the middle and lower reaches of Yangtze River and on the
southeast coasts face WScom. This implies that in South China,
water shortage is only relevant when quality issue is considered,
though quality-induced water scarcity alone is not significant.

Water scarcity assessments at the basin levels, in which the
heterogeneity of water availability, withdrawal, and quality within
a basin is neglected, show some consistency with the high-
resolution grid cell-based results. That is, basins with higher
percentages of grid cells under water scarcity tend to be more
water stressed (Fig. 2). The third-order, second-order, and first-
order basins under WScom constitute respectively 64.6%, 59.2%,
and 70.0% of the total numbers of basins of corresponding levels.
At the first-order basin level, the four basins in South China are
mostly under low WScom (WScom < 1, with the exception for the
Southeast River basin slightly >1), whereas the other six basins in
North China face both WSqua and WScom. In the most water-
stressed Hai and Huai River basins with dense population and
intensive agricultural activities, WSqua is >5, indicating that
human water withdrawal (not accounting EFR) is larger than
local available water resource. Areas where water withdrawal
exceeds water availability have long been relying on exploitation
of nonrenewable fossil groundwater and inter-basin water
transfers, e.g., the south-to-north water transfer project17,18.
Consequently, groundwater overexploitation has resulted in
abrupt decline of groundwater tables, which is unsustainable
and leads to a series of eco-environmental problems. Inter-basin
water diversion is usually energy consuming and cost intensive,
and may have adverse eco-environmental impacts on the source
basins17. In the Hai River basin, which is home to nearly 10% of
the Chinese population, the inclusion of water quality dimension
has led to more than doubling the value of WScom in comparison
to WSqua, indicating a significant effect of degraded water quality
on exacerbating water scarcity.

Seasonal and sectoral water scarcity. As all the influencing fac-
tors for water scarcity, i.e., water resources availability, water
withdrawal, and water quality show seasonal variations, water
scarcity levels also present seasonal differences (Fig. 3). The cli-
mate in China is mostly controlled by the Pacific and Indian
Ocean monsoons, so that in most regions 70–80% of annual
precipitation falls between four consecutive months (i.e., May to
August, or June to September41). Overall, spring is the most water
scarce season, as the season is relatively dry (Supplementary
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Fig. 1 Estimates of annual water scarcity at the grid cell level in China. a Spatial distributions of river basins in this study. b Quantity-based water scarcity

(WSqua). c Pollution-induced water scarcity (WSpol). d Combined water scarcity, including both quality and quantity effects (WScom). Estimated water

scarcity was based on the average of annual assessments during 2012–2016 at a spatial resolution of 0.25 × 0.25 arc-degree (n= 15997). The graph at the

lower left corner in a represents the sampling locations of water quality. Maps of grid cell-level WScom at other time scales are shown in Supplementary

Fig. 2. NA, no data or water scarcity is <10−5. Source data are provided as a Source Data file.
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Fig. 2 Quality-included water scarcity (WScom) across river basins on an annual basis. a The third-order basin level (n= 209). b The second-order

basin level (n= 76). c The first-order basin level (n= 10). Maps of WScom at other time scales for these three basin levels are shown in Supplementary

Figs. 3–5. Source data are provided as a Source Data file.
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Fig. 1), and the agricultural water demand is high in this early
growing season. Seasonal water scarcity maps show significant
spatial differences (Supplementary Figs. 2–5). WScom occurs in
the middle reach of Yangtze River basin and lower reach of
Southwest River basin in spring when a large quantity of irriga-
tion water is needed, but not in other seasons. Many third-order
basins in North China are under WScom in all the months
throughout the year. A few third-order basins in South China,
which do not face annual WScom, however, still suffer WScom in
dry seasons or months. Figure 3 also shows that seasonal water
scarcity is sensitive to the geographic scale. In the most water
scarce spring, basins under WScom comprise 70.0%, 69.7%, and
71.3% of the total numbers of basins at the first-order, second-
order, and third-order basin levels, respectively; 39.3% gird-cells
suffer WScom. The season with the least number of geographic
units under WScom is summer or autumn, depending on the
geographic scale.

Proportions of sectoral water scarcity levels in the first-order
basins are provided in Supplementary Fig. 6. Agriculture is the
sector where water scarcity has the greatest relevance, because it is
the most water consuming sector that represents ~67% of the
total water withdrawal at the national level. On the annual basis,
agricultural water withdrawal always comprises the largest share

of the total water withdrawal in the first-order basins.
Agriculture-induced WScom is occasionally smaller than industry
or domestic sector-induced WScom in 6.6% and 8.6% of the
second-order and third-order basins, respectively. As a result of
seasonal variations in sectoral water withdrawals (in particular in
agricultural water withdrawal), sectoral water scarcity proportions
also show great seasonality. Contributions of water scarcity from
agricultural water withdrawal are usually most significant in
spring and summer (Supplementary Fig. 6). Since domestic and
industrial water uses usually have priority over agriculture when
competition between sectoral water uses intensifies, agriculture is
the most vulnerable sector to water scarcity42–44. However, due to
its high water use volume and intensity, the potential for
agricultural water conservation is also high. Therefore, one of the
keys for addressing water scarcity is sustainable agricultural water
use and management9,45, while ensuring food security.

Population under water scarcity at multiple scales. In China,
~80% of the human population live in 10% of the land area.
Water scarce regions are densely populated, because water
demands are closely related to human activities, while some of
these densely populated areas are also in drier parts of the
country. Superimposing the population distribution map on the
results of our water scarcity assessment enables the number of
people living in water scarcity conditions to be estimated19,26.
The numbers of people facing different water scarcity levels based
on assessments at different temporal and geographic scales are
shown in Fig. 4. On an annual basis, about 51.3%, 75.2%, 86.6%,
and 86.1% of a total population of 1.36 billion in China live in
WScom conditions according to the assessments based on the
first-order, second-order, third-order basin, and grid cell scales,
respectively (Fig. 4a). A higher spatial resolution estimation
generally corresponds to a larger number of people facing water
scarcity. On the first-order basin scale, people who face WScom
live in the six basins in North China plus the Southwest River
basin, while on the grid cell scale, people living in highly popu-
lated areas in other basins in South China also suffer WScom. The
inclusion of WSpol in the assessment makes between 2.3–5.7%
more people under WScom in China (in comparison to those
facing WSqua), depending on different geographic scales.

When seasonal variability is considered, about 65.1%, 97.7%,
96.1%, and 92.9% of the population are under WScom for at least
one season, with increasing geographic resolutions from the first-
order basin to grid cell scales (Fig. 4b). A total of 100%, 99.9%,
98.8%, and 94.7% of the population live in WScom for at least
1 month, based on assessments of the above four geographic
scales, respectively. These numbers are much larger than those
from annual estimates, implying that annual estimates may
underestimate water scarcity severity26,29,31. All of the ten first-
order basins face WScom for at least 1 month. In the least water-
stressed Southeast River basin, where the annual WScom is <0.1,
WScom occurs in December when the monthly natural water
resource availability is the least and pollution discharges in cities
(e.g., Xining and Lhasa) are remarkable.

About 51.3%, 82.6%, 94.4%, and 91.6% of the population face
severe WScom (WScom > 2) for at least 1 month according to
assessments at the four geographic scales with increasing
resolutions (Fig. 4c). The number of people under severe WSqua
for at least 1 month (WSqua > 2) ranges between 0.62 and 1.24
billion. These estimates bracket a previous estimate of 0.9 billion
from Mekonnen and Hoekstra’s global study of water quantity26,
yet provide an uncertainty range originating from changing
geographic scales. A total of 0.34–0.82 billion people are subject
to severe monthly WScom all year round. Of all the people who
face severe monthly WScom, 0.34 billion people live in five basins
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in North China at the first-order basin level, while 0.82 billion
people also include those who live in the Songhua River basin and
South China according to the third-order basin scale assessment.

Regional inequality of water scarcity. As specified previously,
water scarcity in basins in North China is generally more severe
than South China. Given limited total available water resources
(~2.77 trillion m3 annually on average in China41), a greater level
of inequality corresponds to more severe water scarcity in a few
regions and more people under water scarcity, if the water scar-
city level is held constant at the national level. The curves of
cumulative proportions of water withdrawal and water avail-
ability (sorted in an increasing order of the ratio of water with-
drawal to water availability) on the annual basis are far from the
45 degree line, which represents perfect water withdrawal
equality, confirming high inequality in spatial water scarcity in
China (Fig. 5a). The curves taking into account water quality
requirements are even further from the equality line than those
considering only water quantity, implying that the inclusion of
water quality dimension aggravates water scarcity inequality in
China. On the graph for first-order basins, basins in South China
are located on the bottom of curves where WSqua or WScom
values are relatively low, whereas basins in North China are on
the top of the curves with higher WSqua and WScom values.
Graphs showing inequality of water scarcity for different time
scales are shown in Supplementary Figs. 7–10.

The Theil’s L index (Methods section) provides a quantitative
measure for inequality of water scarcity levels at different
temporal and geographic scales (Fig. 5b). A higher Theil’s index
corresponds to a greater inequality. The Theil’s index for WScom
is always higher than for WSqua. A finer resolution assessment
for water scarcity corresponds to a higher Theil’s index. The

Theil’s indices also present seasonal variabilities. The greatest
regional inequality occurs in the most water scarce spring. The
month with the greatest regional water scarcity inequality falls
between March and May, depending on the geographic scales.
Because natural water bodies have a self-cleansing capacity that
can remove polluting substances by a series of chemical and
biological self-purification processes and such a capacity is often
related to water availability, water pollution is also about
quantities. Therefore, quality-induced regional inequality appears
to be larger in high water scarce seasons or months. This also
explains greater regional inequality in WScom than in WSqua.

Discussion
This research provides a comprehensive analysis of China’s pre-
sent water scarcity levels at various geographic and temporal
scales, for the first time including the implications of water
quality. The results show that the inclusion of water quality in
water scarcity assessment leads to aggravated water scarcity, as
well as greater water scarcity inequality in China. North China
often suffers from water scarcity from both insufficient water
quantity and inadequate quality throughout the year, whereas
South China is subject to seasonal water scarcity mainly due to
water quality degradation. Chinese state and local government
have invested thousands of billions of Chinese Yuan to enhance
wastewater treatment and control pollution sources dedicated to
environmental restoration in the recent decade37. Contributions
of the investments on the improved surface water quality (char-
acterized mainly by COD and NH+4-N concentrations) and the
regional difference were quantified in a recent study46. Not-
withstanding a recent trend in improved water quality, our results
show that quality still presents a great issue for achieving safe
water supply in China.
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The metric WSpol used in this study for measuring quality-
induced water scarcity, i.e., the ratio of water required for dilution
to obtain adequate quality for sectoral water uses to water
availability34, is useful in guiding policy-making to identify basins
where water supplies are mostly threatened by degraded water
quality. At the third-order basin level (at which aquatic envir-
onment restorations are often planned and managed in China),
prominent examples of water quality inferior to level IV
(according to the Environmental Quality Standard for Surface
Water in China47) include sub-basins in Hai River, Yellow River,
and Liao River basins (Supplementary Fig. 11). Given that the
investment budget into aquatic environment restoration is limited
each year, our results suggest that the need for water quality
improvement in the Hai River sub-basins is the most urgent due
to the severe scarcity (WSpol > 2). The impact of water quality on
domestic and production water uses can also be analyzed using
the concept of water carrying capacity, which refers to the max-
imum population or economic scale that can be sustainably
supported by available water resources48.

The water carrying capacity, in terms of a multiplier of present-
day population or economic scale, is analyzed in Supplementary
Note 1, and similar conclusions can be derived as those from
WSqua and WScom assessments. For instance, at the first-order
basin level on an annual basis, the quality-included carrying
capacities in all the six North China basins and the Southeast
River basin is <1, indicating an insufficient capacity of water
resources for sustaining the population and economic activities in
these basins. While the quantity is sufficient for supporting
human’s water needs and EFR in the Southeast River basin, its
inadequate water quality makes the quality-included carrying
capacity <1 (Supplementary Note 1, Supplementary Fig. 12).

While most global water scarcity studies performed in single-
or multi-model settings have estimated water uses based on FAO
AQUASTAT country-specific data or model simulations8,26,31,32,
the regional-scale statistics used in this study allow for more

accurate high-resolution sectoral water withdrawal downscaling
in China. We estimate that the number of people facing WScom
is between 0.70 and 1.36 billion, which presents large uncertainty
when different temporal and geographic scales are considered.
Most previous water scarcity assessments recommended a grid
cell-based assessment, claiming that it is able to consider spatial
variations of water resources and withdrawals within basins3,26,32.
However, this high-resolution approach sometimes differs from
the real world, because the distance between water abstraction
and water use can be substantial and not captured within a grid
cell10. For instance, large cities have extensive urban water supply
systems, sometimes hundreds of kilometers distant from water
sources49; many river basins (e.g., the Yellow River basin) have
implemented integrated basin-scale water resources allocation in
order to address sub-regional and sectoral water use competition.
Previous studies also highlighted that annual assessments hide the
intra-annual variability of both water availability and uses, and
may underestimate the extent of water scarcity19,26,29,32. How-
ever, because reservoirs are common on Chinese rivers8,10,50,
occasionally seasonal or monthly water scarcity in many basins
may have been addressed or reduced by seasonal flow regulations.
Hence, assessment at a finer geographic or temporal resolution
does not necessarily correspond to a better water scarcity estimate
unless it takes account of infrastructure operation.

Therefore, we argue here that it is essential to conduct water
scarcity analyses at different temporal and geographic scales,
unless sufficient evidence supports a specific scale. Analyses at
different geographic and temporal scales provide lower and upper
bounds of water scarcity levels due to uncertainty in practical
water uses and management. Our estimates of water scarcity
intervals at various spatiotemporal scales also provide insights in
the extent to which a corresponding measure (i.e., water resources
allocations between seasons or sites) can be useful in coping with
water scarcity. For instance, in basins where people suffer water
scarcity in all the months, seasonal flow regulation will not be
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effective in reducing water scarcity. Because human interventions
(e.g., man-made reservoirs and human water uses), as well as legal
and institutional arrangements may all result in changes in water
scarcity8, more detailed information from improved monitoring,
and management reporting needs to be incorporated in future
water scarcity assessment to reduce uncertainty.

The role of seasonal variability for EFR in water scarcity
assessment has been highlighted in recent studies39,51. Here, we
present seasonal and monthly water scarcity with a fixed pro-
portion of EFR for consistency with annual analyses. The inclu-
sion of seasonal variability for EFR has an effect on seasonal water
scarcity (Supplementary Note 2, Supplementary Fig. 13a), because
the proportion of EFR directly impacts water resources avail-
ability for human uses. Nevertheless, regional inequality of
monthly water scarcity is insensitive to seasonal variability for
EFR in this case (Supplementary Fig. 13b). It has to be recognized
that we do not differentiate groundwater withdrawal and quality
from surface water in this research, because of a lack of nation-
wide groundwater quality data. Quality from both surface water
and groundwater for sectoral water uses is represented by in situ
surface water quality. This will not have any impact on WSqua.
However, in regions where surface water quality is inadequate for
specific uses and a significant proportion of groundwater is
exploited, WSpol is expected lower in reality, as groundwater
quality is often superior to surface water. Our research, which
does not focus on the effect of large engineering approaches on
water scarcity, does not consider water scarcity condition changes
due to water transfers across basins (e.g., south-to-north water
transfer project).

Given the fact that over half of the population in China are
currently facing WScom, even when seasonal and locally
grid cell water scarcity (that can be solved by adequate
seasonal within-basin water resources allocations) is not
taken into account, water use efficiency improvement41, water
conservation18,52, physical and virtual water transfers across
basins17,53, and aquatic environmental restoration14,18,37 are
probably the key solutions for alleviating water scarcity in
China, which is essential for sustainable socio-economic
development and eco-environmental protection. High regio-
nal inequality of water scarcity in China urges locally specific
policies for water demand management. In the meantime,
inter-basin water transfers can directly mitigate water scarcity
by supplying extra water sources to water scarce basins. Water
scarcity assessment with a finer resolution corresponds to a
greater inequality, indicating that water allocations within and
between basins will be effective in reducing water scarcity
inequality. However, the impact of water transfers on both
source basins (e.g., social and eco-environmental impacts) and
receiving basins (e.g., non-native species invasions and
spreading of chemical/biological contaminants) needs to be
carefully analyzed to minimize negative consequences.

The urgent need to further improve inland water quality in
China, especially in northern basins, has been pointed out14,35–37,54

—mostly because water pollution presents a great risk to public
health and ecosystem services—and our results show evidence of
this need from the perspective of providing adequate water supplies
to population, economy, and ecosystems based on a quality-
included water scarcity analysis.

The challenge of WScom that China faces is also shared by
many other countries, as freshwater pollution is a worldwide
problem in both developing and developed countries39.
The methodology in this research could help to assess the mag-
nitude of the challenge in other countries, thereby helping to
formulate effective policies to achieve sustainable water supply.
However, at present, inadequate water quality data availability
makes it challenging to develop a global WScom assessment.

Methods
Assessment of water scarcity considering water quality. For a target region,
quantity-based water scarcity WSqua is measured as the ratio of regional water
withdrawal to water availability, considering a balance between human uses of
freshwater and ecosystem protection:

WSqua ¼

P

i Di

Q� EFR
ð1Þ

where Di is water withdrawal for sector i, Q is water availability, EFR is the
environmental flow requirement, which is defined as 80% of water availability,
following previous studies19,26. Adapting from van Vliet et al.34, a dilution
approach is applied to translate inadequate water quality into extra water quantity
required so that it can be compared with water availability for water scarcity
assessment. Quality-based water scarcity WSpol is calculated as the ratio of water
required for dilution to obtain adequate quality for water uses to water availability:

WSpol ¼

P

i dqi
Q� EFR

ð2Þ

with

dqi ¼ max dqi;j

� �

dqi;j ¼
0; Cj � Cmaxi;j

Di

Cj

Cmaxi;j
� 1

� �

; Cj >Cmaxi;j

8

<

:

ð3Þ

where dqi is extra water required for dilution to obtain acceptable quality for water use
sector i, dqi,j indicates the amount of dilution water for sector i based on water quality
parameter j, Cj is actual water quality level of parameter j, and Cmaxi,j is the max-
imum water quality threshold based on parameter j for water use sector i. Equation
(3) is slightly different from its original form developed by van Vliet et al.34. Instead of
diluting all the available water to obtain water quantity needed for a sectoral water use,
we estimate the extra amount of water by diluting the volume of the sectoral water
withdrawal. Quality constraint for EFR is not considered in this study.

Combined water scarcity WScom taking into account both water quantity and
quality dimensions is calculated:

WScom ¼ WSquaþWSpol ð4Þ

In this study, water scarcity is classified into four levels based on the value of
WSqua and WScom: low (<1.0), moderate (1.0–1.5), significant (1.5–2.0), and
severe (>2.0), which is consistent with many previous studies19,26,39,55. The mean
of WSqua or WScom values in 5 years from 2012 to 2016 is reported to represent
the present-day water scarcity levels in China, because high-density water quality
monitoring data are only available in this recent period. The inter-annual
variabilities of WSqua and WScom are thus not discussed in this study.

Water quality requirements for sectoral water uses. Water withdrawal is
mainly for four major sectoral uses in China: agriculture, industry, domestic uses,
and eco-environmental compensation. Quality requirements for each sectoral
water use Cmax in Eq. (3) are defined according to three typical water quality
measures—COD (the permanganate index), NH+4-N, and EC. For agricultural
water use, EC= 0.7 dS m−1, which indicates a salinity constraint for crops, sug-
gested by FAO56 is considered as the maximum water quality threshold for irri-
gation. Maximum water quality thresholds for quality requirements for other
sectoral uses are based on COD and NH+4-N concentrations according to the
Environmental Quality Standard for Surface Water in China47: COD= 6.0 and
NH+4-N= 1.0 mg L−1 for domestic uses (water quality level I–III), COD= 10.0 and
NH+4-N= 1.5 mg L−1 for industrial uses (water quality not inferior to level IV), and
COD= 15.0 and NH+4-N= 2.0mg L−1 for eco-environmental compensation
(water quality not inferior to level V). These thresholds of water quality parameters
represent the minimum water quality requirements for sector-specific uses.

Data sources and data processing. Annual provincial-level natural water avail-
ability data from 2012 to 2016 (ref. 57) are downscaled to monthly grid cell values
based on Variable Infiltration Capacity (VIC) hydrologic model simulation results58.
The VIC simulation results, which have been validated with gauge measurements
across China, provide a grid cell-level estimate for monthly water availability
(including both subsurface and surface runoff) with a spatial resolution of 0.25 × 0.25
arc-degree. The annual statistical data of water availability are firstly downscaled to
the grid cell level on the annual basis by letting water resources in grid cells pro-
portional to those from VIC model simulation results (Supplementary Fig. 14a). The
grid cell-level annual water availability is then disaggregated into monthly values
proportional to simulated monthly runoff in corresponding grid cells. The average
annual freshwater availability in the period 2012–2016 in mainland China is ~2.91
trillion m3, ~5% more than the long-term average ~2.77 trillion m3 and can roughly
represent the average annual water resource availability condition in China.

Annual sectoral water withdrawal data at the province-level in China for the
period 2012–2016 (ref. 57) are downscaled to monthly grid cell data based on
multisourced information. Agricultural water withdrawal is mainly for irrigation, and
is hence disaggregated based on relevant information including crop land uses
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(Supplementary Fig. 14b) and net irrigation requirements. Net irrigation requirements
are calculated as the difference between the reference crop evapotranspiration and
effective precipitation at the grid cell level, which are derived mainly from
meteorological data. Annual industrial water withdrawal is downscaled based on
maps of the industrial gross domestic product (GDP) at the grid cell level
(Supplementary Fig. 14c). The maps of industrial GDP are generated by
disaggregating province-level data through a proportional sharing method based on
areas of industrial lands weighted by nighttime brightness59. Industrial water
withdrawals are assumed uniformly distributed in all the months within a year.
Annual domestic water withdrawal data are disaggregated according to spatial urban
and rural population distributions and monthly water use factors. Rural population is
disaggregated based on rural residential areas in grid cells, and urban population is
disaggregated based on urban areas in grid cells weighted by nighttime light (similar
to industrial GDP downscaling) (Supplementary Fig. 14d). A monthly factor for
domestic water use, which is a function of temperature, is introduced to consider
seasonal water use variations following previous studies32,60. Eco-environmental
compensation water withdrawal is mainly used for irrigating green spaces, and
replenishing dry rivers and lakes in urbanized areas57, and only represents 2% of the
total water withdrawal in China. As it is difficult to discern green spaces and water
bodies in urbanized areas based on the available land use maps, we assume that water
withdrawal for eco-environmental compensation is proportional to the size of
urbanized areas in grid cells (Supplementary Fig. 14e). Eco-environmental
compensation water withdrawals are assumed uniformly distributed in all the months
within a year (see Supplementary Notes 3 and 4 for detailed methodology and
equations for sectoral water withdrawal downscaling).

Water quality data are collected from the national environmental monitoring
network, which covers China’s major inland rivers and lakes. Monthly observations of
COD, NH+4-N, and EC are available for 2630 sampling sites (with an average spatial
density of 2.74 sampling sites per 104 km2, Fig. 1a) for the period 2012–2016
(Supplementary Note 5, Supplementary Table 1). Based on the regional assemblage of
site-level measurements, we use an inverse distance weighting function with an
exponent of 1 to interpolate the spatial water quality parameters61 at the grid cell level.
We assemble site-level water quality data in second-order basins in which the
majority (~75%) of grid cells are covered, and make the spatial interpolation for these
grid cells. For the remaining ~25% of grid cells, the spatial interpolation of water
quality parameters is made within first-order basins due to the lack of site-level
observations in corresponding second-order basins. The cross-validation, which
estimates water quality in grid cells containing sampling sites based on measurements
in other grid cells, is applied to test the validity of the interpolated water quality
parameters by comparing with the actual measurements. The results show that the
interpolation provides sufficiently accurate water quality estimations with high R-
square and low root-mean-square error (RMSE; R2= 0.81 and RMSE= 1.11mg L−1

for COD; R2= 0.80 and RMSE= 1.13mg L−1 for NH+4-N; and R2= 0.90 and
RMSE= 0.74 dSm−1 for EC). At the grid cell level, the mean value of a monthly
water quality parameter in one season or 1 year (weighted by monthly water
availability) is used to represent the corresponding seasonal or annual water quality.
Water quality at a basin level is represented by the mean of water quality parameters
in grid cells within corresponding basins (weighted by grid cell water availability).

Weighted Theil’s L Index for regional inequality. We used the Theil’s L index TL,
i.e., the mean log deviation, to measure the inequality of water scarcity among n
regions. TL is weighted by water withdrawal:

TL ¼
X

n

i¼1

wi ´ Log
μ

WSi

� �� �

ð5Þ

with

μ ¼
X

n

i¼1

wi ´WSið Þ

wi ¼
WWi

Pn
i¼1 WWi

where WSi is the water scarcity index (either WSqua or WScom) in geographic
unit i, and WWi is the amount of water withdrawal in geographic unit i.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
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data that support the findings of this study are available from the corresponding author
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