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ABSTRACT

Damage of the waterproofing system in a waste material depository or sewage sludge composting

plant and the penetration of pollutants into the soil and groundwater may cause an environmental

mishap. Although the standard waterproofing technologies are extremely safe, one cannot disregard

possible malfunctions. For a well-established plan of managing unexpected events, the impact of

such damage must be forecast. With the help of models described in the relevant literature, we

propose the basic ideas used in simulations for two planned regional waste material depositories, a

planned sewage sludge composting plant and an active aluminium dross depository of a foundry.
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INTRODUCTION

When building a waste material depository or sewage

sludge composting plant, damage of the waterproofing

system is regarded as a possible malfunction. The pene-

tration of pollutants into the soil and groundwater causes

environmental damage. Since the standard waterproofing

technologies are extremely safe, the probability of

environmental pollution caused by the failure of water-

proofing is very small, but it cannot be excluded. Hence, in

addition to the effort in the interests of maximum safety,

the elaboration of a plan for managing unexpected

malfunctions and possible damage becomes a funda-

mental requirement. As usual, state laws impact on this

requirement, too.

In order to trace the spread of pollutants in the

groundwater after a mishap, the concentration of ground-

water pollution in the damageable area can be well esti-

mated by the use of models described in the relevant

literature. In this paper, we describe the basic ideas used in

calculations. They concern two planned regional waste

material depositories to be built in the vicinity of the

Hungarian villages Gyál and Taksony, a planned sewage

sludge composting plant near the town of Dunaharaszti

and an active aluminium dross depository at a foundry

near the village of Apc. These predictions resulted in a

relatively low level of pollution. They formed part of

the analysis in the environmental impact assessments

submitted for gaining permission from the authorities for

environmental protection. The other parts of the analysis

made in cooperation with other institutions and firms will

not be discussed here.

It is well known that groundwater pollutants may

involve severe consequences when live water, wells and

water bases are affected. The laws of the spread of pollut-

ants in groundwater can be described approximately by

transport equations. Their solutions describe the concen-

tration of pollutants. Knowledge of the concentration

level is a prerequisite for finding efficient ways for both the

prevention of further spread and the removal of pollutants

from the groundwater.

The transport equations contain various parameters.

Their identification can be difficult and their values may

still remain inexact. Our experience was, however, that

in the actual parameter range we get satisfactorily

correct results, suitable for evaluating the environmental

situation.

Different forms of the transport equation that are valid

locally are well described in the literature and are

explained even at the textbook level (see, e.g., Kovács &

255 © IWA Publishing 2002 Journal of Hydroinformatics | 04.4 | 2002

Downloaded from http://iwaponline.com/jh/article-pdf/4/4/255/392508/255.pdf
by guest
on 21 August 2022

https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2002.0025&domain=pdf&date_stamp=2002-10-01


Szabó 1995). Depending on the complexity of the global

model, its solution is obtained either by closed formula or,

more frequently, by numerical methods. For the first case,

one can be advised by texts on mathematical physics (see,

e.g., Tikhonov & Samarskii 1966) or, alternatively,

numerical methods must be involved. Detailed studies

cannot be managed without computer support.

For the first evaluation of a mishap, a simple model

borrowed from Kovács & Szabó (1995) and modified

slightly turned out to be satisfactory. In the next

section, we describe the transport model applied to the

phenomenon under consideration.

THE TRANSPORT MODEL AND ITS COMPUTATION

For the first approximation of the transport process,

several assumptions can be made. In the coordinate

system with coordinates x, y, z, the ground surface is

approximated by the coordinate plane (x, y). The

boundary of the impermeable layer is parallel to the

ground surface and is located at depth z = m. The

cylindrical waste depository with its axis along the z axis is

assumed to have a negligibly small cross section with

respect to the size of the domain where the pollution

permeates. Thus, a line source between the two planes

along the z axis acting over the period 0< t<T is con-

sidered. The infiltration has a prevailing direction. The

x axis is chosen in this direction and the y axis is

perpendicular to it. In the prevailing direction x, the

infiltration has a constant speed vx in the whole region. In

directions different from x, the infiltration is neglected.

As is widely used in the literature, in the unbounded

three-dimensional domain − ∞ <x, y<∞, 0< z<m, we

model the convective–dispersive transport phenomenon

by a quasi-linear parabolic equation for t>0:

Rn0ct + vxcx = aLvxcxx + aTvxcyy

+ aTvxczz − lRn0c + f(x,y,z,t). (1)

In this equation, c(x,y,z,t) (in brief, c) stands for the

unknown concentration and the subscripts t, xx, yy and zz

refer to the first and second partial derivatives with respect

to the indicated variables. The meaning of the physical

parameters R, n0, aL and l, together with their most

frequent values, as well as for vx is extracted from Kovács

& Szabó (1995) and given in Table 1. Comments on the

transversal dispersity aT will follow in the next section.

The depository located at the origin begins leaking at

t = 0. The intensity of leaking is time-independent until

stopped at t = T and it varies smoothly with respect to the

depth z. Thus, the line source used in the model is

f(x,y,z,t) = d(x)d(y)q(z)(O(t) − O(t − T))

where d is the Kronecker function, O is the Heavyside

function, q is smooth on [0,m],

∫
m

0
∫
∞

∂∞
∫
∞

∂∞
d(x)d(y)q(z)dxdydz = m = const.

Table 1 | Physical parameters

Parameter Meaning
Minimum
value Typical value

Maximum
value Dimensions

nx Infiltration speed 0.75 1.5 3 m/d

R Delay factor 1 1.2 1.5 —

aL Longitudinal dispersity 20 25 31.5 m

l Decay rate 0 0 0.0001 1/d

n0 Porosity 0.12 0.15 0.18 —
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Initially, the ground is not polluted:

c(x,y,z,0) = 0, − ∞ <x,y<∞, 0< z<m.

The boundary planes are completely impermeable, that is

(2)

∂z

∂c(x, y, z, t)

z=0
= 0,

∂z

∂c(x, y, z, t)

z=m

0, t > 0,∂∞<x,y<∞.

=

The most important simplification in the above model is

that the parameters are assumed constant. They do not

depend either on the actual concentration or the position.

If accepted, the homogeneity of the domain results in a

linear problem, with the global behavior of the solution

contradicting experience. In reality, the pollution runs

over only with a finite speed and only a part of the domain

becomes polluted, while in the model the pollution

immediately appears everywhere. However, in the relative

vicinity of the source, the homogeneity may be taken for

granted, at least at the first stage of modelling.

The initial boundary problem could be solved by

the standard Fourier method using the expansion of the

function q(z):

(3)

2

x∂

∂

∂ +

qk cos z}

dt+

c(x,y,z, t) =

∞

k=1
∑

exp[∂l(t∂t)]

exp

exp

c}

& /
˜

˜

˜

fi ^·4nx(t∂t) aL

R R
nx(t∂t)

t∂t

1

m

kp

2

q0
∫
min(t,T)

0

exp[∂lk(t∂t)]
t∂t

1
∫
min(t,T)

0

aT

y2

2

x∂

+ dt
& /fi ^· ·4nx(t∂t) aL

R R
nx(t∂t)

aT

y2

where

2
c =1/(4pnxn0√aLaT),  lk = l +aTnx ,  k = 1,...,

m

kp

& /

q(z) =

m

kp

2

q0

m

2

m

kp
z,

qk =

qk cos

q(z) cos zdz,  k = 0,1,... .

+
∞

k= 0
∑

∫
m

0

In the parameter range characteristic for our problem, the

very first term dominates the later ones in the Fourier

expansion. On the other hand, this term itself appears as a

solution of a two-dimensional problem posed for the

average of the concentration depth. In order to verify this

claim, let us denote the average concentration by C:

m

1
C(x, y, t) = c(x, y, z, t)dz∫

m

0

and let f be the average value of the source along the

z axis:

m

1
f(x, y, t) = d(x)d(y)(θ(t)∂θ(t∂T)) q(z)dz =∫

m

0

2

q0
(4)d(x)d(y)(θ(t)∂θ(t∂T)), t > 0,∂∞<x,y<∞.

If (1) is integrated along the depth z and (2) is taken into

account, we arrive at an initial value problem for the

equation containing two space variables:

Rn0Ct + vxCx = aLvxCxx + aTvxCyy − lRn0C + f(x,y,t) (5)

with initial value

C(x,y,0) = 0, − ∞ <x,y<∞.

The solution is of the form

(6)

2

x∂
∂ + dt .

C(x,y, t) = c exp[∂l(t∂t)]

exp
& /

˜ fi ^·4nx(t∂t) aL

R R
nx(t∂t)

t∂t

1

2

q0
∫
min(t,T)

0

aT

y2
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It is worth noting that, in this formula, m = 1
2
q0m is the

total source production in unit time. In reality, the value

of m characterizes an extreme situation. Further on, in

formula (6) we will use rather m than q0.

The approximate value of the concentration can be

obtained by any composed quadrature rule. For a small

relative error, a uniform partition combined with a simple

integration formula calls for a dense grid. Basically, in our

calculations we used both the composed trapezoidal rule

and midpoint rule with a fixed number Ñ of subintervals.

Tests by Romberg iteration showed that, for integer values

t and T, the convenient choices Ñ = Ntm, tm = min(t,T) and

N = 1 are sufficient. In this case, the formulae are

k1 = ktm =
2

1

otherwise ki = 1

,
tm

i= 0
∑

m

m
C(x, y, t) = c kix(x, y, t, i),

for the trapezoidal rule and

2

1tm

i= 1
∑

m

m
C(x, y, t) = c x x, y, t, i∂& /

for the midpoint rule. Here x(x,y,t,t) is the integrand

in (6) and note that x(t) is replaced by lim
t→t

x(t) in the

trapezoidal rule.

For the relative accuracy e = 10 − 5, the computational

costs became smaller by two orders when a higher order

formula (an eight-point Newton–Cotes quadrature)

and an adaptive automatic selection of subinterval length

were applied. For verification of the numerical results,

including the check of dependency on parameters, we

applied formulae of this type.

PARAMETER SELECTION, SENSITIVITY AND
NUMERICAL RESULTS

When assigning parameter values, the least difficulties

occur with the constant production of the pollution m and

with the thickness m of the layer. Both quantities appear

in (6) as multipliers. The same holds for the porosity n0.

The infiltration speed is taken equal to the speed of the

groundwater flow. This assumption is acceptable until the

concentration reaches a high value.

Table 2 | Regional parameters

Parameter Dimension

Source point at

Gyál Taksony Apc Dunaharaszti

Duration d 90 90 90 60

Thickness of layer (m) m 20 10 20 5

Infiltration speed (nx) m/d 1.5 1.0 1.5 0.2

Porosity (n0) — 0.15 0.25 0.15 0.23

Longitudinal dispersity (aL) m 25 25 25 15

Transversal dispersity (aT) m 0.5 1 1 1.5

Delay factor (R) — 1.2 1.2 1.2 1.2

Decay rate (l) — 0.0001 0 0 0

Prevailing direction (x axis) — W–SW S E–SE SW
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As concerns the dispersities, we could rely upon the

estimates of the local experts. The pollution source is

assumed to be active at most between two consequent

monitoring dates, i.e. the period of activity is 30, 60 or 90

days. As we stated previously, during this period the

production is assumed to be uniform. Due to the uncer-

tainty in the parameters, we checked the sensitivity of the

concentration with respect to the parameters occurring in

(6) non-linearly. The main point was sensitivity with

respect to the ratio a = aL/aT. While aL is relatively well

known, this is not the case with aT. As the experts claim,

the measurements give rather the value of a than aT and

with high uncertainty. Along the x axis, a appears as an

amplification factor only. In general, however, it has an

impact on the shape of the level sets. Together with the

maximal value during the observation period, the maxi-

mum point is displaced as well. An illustrative example

will be given at the end of the next section.

Computations were made for four regions. The

parameter set characteristic for the regions is listed in

Table 2. The last row contains the prevailing direction of

the flow. It is used for locating the coordinate system.

Due to the costs and time restrictions there was no

possibility of carrying out either repeated measurements

or calibration of data. Instead, we made an intensive

computation and a consequent comparison of the

results in the range of the parameters (Table 1). The

next section contains some results obtained with the data

corresponding to Table 2.

POLLUTION MAPS

We wanted to follow the propagation of the pollution in

the region where it is most dangerous. Hence, in the

prevailing direction of infiltration (x) a relatively large

distance was covered by the computation, while in the

perpendicular direction a shorter distance was chosen.

When the homogeneity took place, the concentration was

computed over a rectangular grid in the domain

0≤x≤2000, − 100≤y≤100. (7)

We recall that the model is valid until homogeneity is not

violated. Thus, the impact caused by a river, an artificial

channel or a lake required additional analysis. This was

the case near Apc due to the brook Szuha and also

at Dunaharaszti where the Danube–Tisza Channel is

located. In the first case, we could neglect the presence of

Table 3 | Maximal concentrations versus distance

Distance
Number
of days

Max.
concentration

200 90 0.0029

400 240 0.0014

600 400 0.00092

800 560 0.00067

1000 710 0.00053
Figure 1 | Pollution wave at waste material depository, Gyál, 500 days after the break

down.

Figure 2 | Pollution wave at waste material depository, Gyál, 1000 days after the break

down.
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the Szuha because it is very small. In the second case, we

suggested a more rigorous monitoring, ensuring that the

groundwater pollution with a significant concentration

could not reach the vicinity of the channel.

We now describe some tables and maps provided by

our simulation model and suitable for the evaluation of a

mishap.

Worst-case study

The maximal concentration values along the x axis were

found at the distances given in the first column of Table 3.

They occurred t̃ days after the operational mishap was

assumed to be noticed and stopped (at T = 90 days). The

second column contains the values t̃. The maximal con-

centration value itself is given in the third column (m = 1).

The data are given for the region of Gyál. A post-mishap

situation is simulated there.

Time dependence of the distribution of the pollution

(in region (7))

Three-dimensional plots drawn from the data show the

post-mishap distribution at t = 100, 200, . . ., 1200 days.

Two of these maps for the Gyál region are given in

Figures 1 and 2.

Table 4 | Maximal concentrations versus time

Number of
days

Maximal
concentration

Location of the
maximum (m)

100 0.0090 50

200 0.0027 200

300 0.0017 300

400 0.0012 450

500 0.00093 550

600 0.00076 700

700 0.00063 800

800 0.00055 950

900 0.00048 1050

1000 0.00042 1200

1100 0.00038 1300

1200 0.00034 1450

Figure 3 | Estimated soil water pollution at aluminium smeltery, Apc, 100 days after the

break down.

Figure 4 | Estimated soil water pollution at aluminium smeltery, Apc, 150 days after the

break down.
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Table 5 | Dependence of the concentration on the dispersity

Case (a) Longitudinal dispersity=15.0, transversal dispersity=1.5

Number
of days

Second coordinate (perpendicular to the prevailing direction)

0 m ±10 m ±20 m ±30 m ±40 m ±50 m

380 7.754E-3 5.872E-3 2.553E-3 0.640E-3 0.93E-4 0.8E-5

390 7.916E-3 6.041E-3 2.688E-3 0.699E-3 1.07E-4 1.0E-5

400 8.055E-3 6.192E-3 2.815E-3 0.759E-3 1.22E-4 1.2E-5

410 8.170E-3 6.324E-3 2.934E-3 0.818E-3 1.38E-4 1.4E-5

420 8.263E-3 6.438E-3 3.046E-3 0.877E-3 1.54E-4 1.7E-5

430 8.336E-3 6.535E-3 3.150E-3 0.936E-3 1.72E-4 2.0E-5

440 8.389E-3 6.615E-3 3.246E-3 0.993E-3 1.90E-4 2.3E-5

450 8.423E-3 6.679E-3 3.333E-3 1.048E-3 2.08E-4 2.6E-5

460 8.440E-3 6.729E-3 3.412E-3 1.102E-3 2.27E-4 3.0E-5

470 8.440E-3 6.764E-3 3.483E-3 1.154E-3 2.47E-4 3.4E-5

480 8.426E-3 6.786E-3 3.546E-3 1.204E-3 2.66E-4 3.8E-5

490 8.398E-3 6.795E-3 3.601E-3 1.251E-3 2.86E-4 4.3E-5

500 8.357E-3 6.792E-3 3.648E-3 1.296E-3 3.05E-4 4.8E-5

Case (b) Longitudinal dispersity=25.0, transversal dispersity=1.0

380 8.808E-3 5.801E-3 1.661E-3 2.09E-4 1.2E-5 0

390 8.819E-3 5.876E-3 1.742E-3 2.31E-4 1.4E-5 0

400 8.815E-3 5.938E-3 1.819E-3 2.55E-4 1.6E-5 0

410 8.797E-3 5.987E-3 1.891E-3 2.79E-4 1.9E-5 1E-6

420 8.766E-3 6.025E-3 1.960E-3 3.03E-4 2.3E-5 1E-6

430 8.723E-3 6.053E-3 2.025E-3 3.28E-4 2.6E-5 1E-6

440 8.671E-3 6.070E-3 2.085E-3 3.53E-4 3.0E-5 1E-6

450 8.609E-3 6.078E-3 2.142E-3 3.78E-4 3.4E-5 2E-6

460 8.538E-3 6.077E-3 2.194E-3 4.03E-4 3.8E-5 2E-6

470 8.461E-3 6.069E-3 2.242E-3 4.28E-4 4.2E-5 2E-6

480 8.376E-3 6.053E-3 2.286E-3 4.53E-4 4.7E-5 3E-6

490 8.286E-3 6.030E-3 2.326E-3 4.77E-4 5.2E-5 3E-6

500 8.191E-3 6.002E-3 2.362E-3 5.01E-4 5.7E-5 4E-6
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The figures are scaled adaptively. For more

transparency, the locations and the values of the maximal

concentrations at fixed time values were extracted from

the plots and supplied in Table 4.

Direct in-time decisions

Coloured maps were drawn for specific components of the

pollution. At Apc an aluminium smeltery is in operation.

An accident may cause pollution of the region by hazard-

ous chemicals including As, Ba, Cd, Co, Cr, Cu, Hg, K, Mo,

Ni, Pb, Zn, cyanids, etc. For most of them predictions were

computed and the results were shown on separate col-

oured maps. The value ranges for the colours were chosen

for each component relative to their load limits and inter-

vention limits. Figures 3 and 4 illustrate the maps in a

black and white version.

Sensitivity analysis

The impact of the uncertainty in parameters aL and aT

requires special attention at Dunaharaszti, where the com-

posting plant is close to the Danube–Tisza Channel (the

distance is 125 m). As we mentioned before, the model is

not valid near the channel. Therefore we compare the

concentrations for different parameter values on a line

separating the composting plant and the channel. The

shortest distance between them is divided in the ratio 1:4.

The groundwater flow is perpendicular to the flow in the

channel. Thus the highest concentration along the line is

at the point (x,y) = (100.0). Results in the neighbourhood

of this point at the line parallel to the channel, i.e. for

− 50<y<50 and for time values relatively close to the

moment when the concentration is maximal at the given

point, are tabulated for two equally possible parameter

pairs (aL, aT), see Table 5. To compare with the given load

limits, we resized the concentration computed for

m = 1. The results become very expressive in coloured

maps. Here, black and white versions are supplied as

Figures 5 and 6.

CONCLUSION

A relatively simple transport equation modelling the

spread of pollutants in groundwater was used for

evaluation of the possible damage to the environment. An

extensive analysis of the numerical results accompanied

by visualization convinced us in the applicability of the

Figure 5 | Plant, Dunaharaszti, 470 days after the break down.
Figure 6 | Plant, Dunaharaszti, 700 days after the break down.
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models for four regions in Hungary. Based on the analysis,

we could give a sufficiently reliable forecast at a relatively

low computational cost.
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