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Abstract

High-resolution ocean velocity data has become readily available since the introduction of very high frequency (VHF) radar

technology. The vast amount of data generated so far, however, remains largely unused in environmental prediction. In this paper,

we use VHF data of the Florida coastline to locate Lagrangian coherent structures (LCS) hidden in ocean surface currents. Such

structures govern the spread of organic contaminants and passive drifters that stay confined to the ocean surface. We use the

Lagrangian structures in a real-time pollution release scheme that reduces the effect of industrial contamination on the coastal

environment.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The release of pollution in coastal areas [1–3] may

have a dramatic impact on local ecosystems, especially

if the pollution recirculates near the coast rather than

leaving for the open ocean. Due to the sensitive

dependence of Lagrangian particle motion on initial
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conditions, identical parcels of fluid released at the

same time but from two slightly different locations may

produce vastly different contaminant distributions. It

is commonly believed that this concept of sensitivity

to initial conditions only applies to trajectories starting

at the same time but at slightly different locations.

However, time-dependent vector fields generate flows

on the extended phase space (space-time) and particle

starting at the same location but at slightly different

time are also subject to sensitive dependence on their
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initial conditions (cf. Section 7). Except for degenerate

cases, trajectories with high sensitivity to the initial

release position are also highly sensitive to the initial

release time. As a result, one needs a detailed under-

standing of the nonlinear dynamics of surface currents

to devise pollution schemes that result in favorable

outcomes.

Such a detailed understanding may be gained from

very high frequency (VHF) radar technology (see

Section 2), which produces well resolved real-time

surface velocities at select coastal locations. In this

paper, we show how such velocity data can be used to

uncover hidden invariant manifolds in the Lagrangian

particle dynamics of the ocean surface. We then use

the location of numerically computed Lagrangian

coherent structures (as defined in [4]) to devise an

automated pollution release scheme that minimizes

the harmful recirculation of contaminants near the

coastline.

In our analysis, we use a combination of accurate

surface current measurement [5,6] and recent develop-

ments in nonlinear dynamical systems theory [7]. In

contrast to earlier approaches to pollution control in

simple flow models [8–12], we rely on real-time ve-

locity data collected by coastal Doppler radar systems.

Discounting measurement errors (typically of the order

of 5 cm s−1), we consider the VHF velocity data shown

in Fig. 1 to be a faithful discretized representation of

the actual surface velocity field.

We locate time-dependent coherent structures in the

VHF velocity data by employing the Direct Lyapunov

exponent (DLE) algorithm proposed by Haller [7].

Local maximizing curves or ridges [4] of the DLE field

are time-dependent manifolds governing mixing and

transport in the fluid flow. These structures are known

to be quite robust with respect to measurement and pro-

cessing errors [13]. In other words, the measurement

error on the velocity field (VHF radar data) does not

affect much the geometry and position of the structures

presented here. A formal proof is given in [13] but

a simpler, more intuitive justification can easily be

derived from the definition given in Section 5. The

DLE field is the derivative of the flow map with respect

to the initial conditions. As a result, measurement

errors in the velocity field are averaged along trajec-

tories before it affects the DLE field. For unbiased

observation stations and long trajectories spanning a

large domain, the averaged Lagrangian error becomes

very small with respect to the corresponding Eulerian

error.

Other methods for extracting invariant manifolds

from geophysical data include the advection of ju-

diciously chosen material lines [14–16], relative and

absolute dispersion [17], finite-size Lyapunov expo-

nents [18], and the use of a Lagrangian version of the

Okubo-Weiss criterion [19]. Reviews of the different

techniques can be found in [7,20]. In this work, we fa-

vor Lagrangian structures computed using Direct Lya-

punov exponent field for their robustness to Eulerian

errors.

Analyzing the location of the extracted coherent

structure relative to a hypothetic pollution release spot,

we identify the main frequency components of the

manifold’s own motion. We then use these components

to predict the short-term motion of the structure, with an

emphasis on predicting its environmentally friendly po-

sitions. Our automated pollution scheme uses the envi-

ronmentally friendly time windows to release contami-

nants. As we show by simulations, this scheme achieve

a significant reduction in recirculating pollutants.

The organization of this paper is as follows. The ex-

perimental setting used to measure the velocity along

the coast of Florida is described in Section 2. This

data is used in Sections 3 and 4 to integrate numer-

ically parcels of pollution. Based on the definition of

Lagrangian Coherent Structure given in Section 5, a La-

grangian barrier is computed for the domain of interest

in Section 6. Section 7 uses the barrier to minimize

the effect of the pollution in coastal Florida and a final

algorithm is given in Section 8.

2. VHF radar data along the coast of Florida

The use of radio frequencies to measure ocean sur-

face currents has received attention in recent coastal

oceanographic experiments, using high frequency (HF)

radar techniques [21,22]. Recent surface current ob-

servations from ocean surface current radar (OSCR)

using the very high frequency (VHF) mode reveal

complex surface current patterns near the coast of

Florida [5,6].

The OSCR VHF system was deployed for the South-

ern Florida Ocean Measurement Center (SFOMC)

four-dimensional current experiment from June 25 to

August 25, 1999. Radio waves are backscattered from
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Fig. 1. Surface velocity maps obtained by VHF radar along the southeast coast of Florida, near Fort Lauderdale, during the SFOMC 4D Current

Experiment on June 26, 1999: (a) 01:20 GMT; (b) 02:20 GMT; (c) 04:00 GMT; (d) 05:20 GMT. The sequence shows a northward propagating

submesoscale vortex. The translation speed of the vortex is about 30 cm s−1 and its horizontal scale is 2–3 km [5].

the moving ocean surface by surface waves of one-half

of the incident radar wavelength.

This Bragg scattering effect [23] results in two

discrete peaks in the Doppler spectrum. In the absence

of surface current, spectral peaks are symmetric and

their frequencies are offset from the origin by an

amount proportional to the surface wave phase speed

and the radar wavelength. If there is an underlying

surface current, Bragg peaks in the Doppler spectrum

are displaced by the radial component of current along

the radar’s look direction. Using two radar stations

sequentially transmitting radio waves resolves the

two-dimensional velocity vector [5,6]. The resultant

data set represents coastal ocean surface currents

mapped over a 7 km × 8.5 km domain at 20 min

intervals with a horizontal resolution of 250 m at 700

grid points. The radars, transmitting at 50 MHz, were

located in John Lloyd State Park, Dania Beach, Florida

(Master) and an oceanfront site in Hollywood Beach,

Florida (Slave), which are separated by 7 km.

Given the narrow shelf off Ft. Lauderdale and the

strong Florida Current that intrudes onto the shelf on

one-to-three day time scales [6,24], the VHF radar

domain is ideally located for purposes of examining a

wide spectrum of coastal and oceanographic processes.

At times, the speed of the Florida Current exceeds
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2 m s−1 just 5 km offshore [6]. The average ambient

relative vorticity is 4f, where f is the local Coriolis

parameter, and maximum relative vorticity exceeds

10f [24]. The dominant period in the velocity data

increases from ten hours near-shore to 5 days offshore.

There is also significant energy at 27 h, the inertial

period.

During this experiment, surface current observa-

tions (Fig. 2) revealed Florida Current intrusions over

the shelf break, wavelike structures along the inshore

edge of the current and numerous submesoscale vor-

tices. One example started at 01:20 GMT on July 20,

1999 (Fig. 1) when a submesoscale vortex was located

along the southern part of the VHF-radar domain just

inshore of the Florida Current. Surface currents within

the vortex ranged from 20–30 cm s−1 at a diameter of

about 1–1.25 km from the vortex’s center. The vortex’s

northward displacement of about 6 km occurred over a

5-h period. See [5] for a more detailed analysis of this

vortex.

3. Interpolation and velocity field

The discrete data set containing the radar measure-

ment does not constitute a velocity field, a vector func-

tion giving the velocity at each point and at each time.

Experimental data must be interpolated between grid

points and the resulting interpolating function is used

as a velocity field. Since the smoothness of the flow

depends directly on the smoothness of the velocity

field and the methods used in this paper involve the

first derivative of the flow, we require that the ve-

locity field used is differentiable in space and time

and that its derivatives are continuous in space and

time, which is usually denoted by v ∈ C1, or more

explicitly:

v =

(

u(x, y, t)

v(x, y, t)

)

∈ C1(�× R → R
2), (1)

where Ω ⊆ R
2 is the spatial domain of interest. Data

is provided at the vortices of a regular mesh (xi, yj), at

discrete times tk. We use the tricubic local interpolation

scheme described in [25] that represents each compo-

nent of the velocity as a piecewise third order polyno-

mial function. The polynomials areC∞ inside each cell

and the interpolated function is globally C1 (see proof

in [25]). In addition, the functions ∂2u/∂x2, ∂2u/∂t2,

∂2u/∂t2 ∂3u/∂x∂y∂t and the corresponding derivatives

for v are also continuous. As a result, the local tricu-

bic interpolator described here is truly C1 in space and

time. Uniqueness, existence and C1 smoothness of so-

lutions for the system is therefore guaranteed (see [26],

for example).

Notice that the methods described in this paper are

independent on the model (HF radar data and tricubic

interpolation). For instance, modal analysis [27,28] or

empirical modes [29] can be used to interpolate the

experimental data. A smooth model velocity field can

alternatively be obtained from high resolution ocean

modeling [30–32]. Recently, data assimilation was ex-

tended to use Lagrangian data (floats and drifters),

broadening the range of geophysical flow available for

Lagrangian studies [33,34]. The Lagrangian coherent

structures presented in this paper are robust to errors

and variations in the velocity field [13].

4. Numerical experiments

The complexity of the flow resulting from the

integration of the interpolated HF radar data becomes

evident from tracking different realizations of a

fluid parcel–a model for a spreading contaminant–

released at the same time, but at a slightly different

location. The results for two such numerical exper-

iments are shown in Figs. 3 and 4. The complete

animation, along with others, are available from

http://www.lekien.com/∼francois/papers/rsmas. The

analysis uses two parcels of particles launched at

09:45 GMT on July 10, 1999. Using the available

high-resolution VHF velocity data, the fluid particles

are advected using a 4th order Runge-Kutta-Fehlberg

algorithm (RKF45) combined with 3rd order tricubic

interpolation in both space and time. The motivation for

using such a complex interpolator is that the resulting

velocity field is C1 in extended phase space [25].

Note that large concentrations of the black contam-

inant remain for relatively long times near the coast,

whereas the white parcel exits the domain quickly to

the north and are advected into the open ocean. The lat-

ter scenario is highly desirable, because it minimizes

the impact of the contaminant on coastal waters, by

causing it to be safely dispersed into the open ocean.

http://www.lekien.com/~francois/papers/rsmas
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Fig. 2. (Top panel) The velocity pattern obtained by HF radar along the coast of Florida, near Fort Lauderdale, for two different time periods,

July 20 and August 3, 1999. A submesoscale vortex is evident in each velocity map. (Middle panel) The corresponding normalized (by the local

Coriolis parameter) relative vorticity anomaly fields. The mean vorticity, of order 4f , was removed from each estimate to reveal the anomalies.

Large positive relative vorticity values are associated with the vortices that are elongated due to the velocity shear of the Florida Current. Large

negative values are found in the vicinity of a near-shore topographic step. (Bottom Panel). The corresponding horizontal divergence fields are

calculated from spline fits to the velocity data.
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Fig. 3. Two parcels of contaminant released at exactly the same time,

but at slightly different initial locations on July 10, 1999 at 09:45

GMT. The white parcels leave the domain quickly as they are ad-

vected by the northward flowing Florida Current. The black parcels

re-circulate near the coast for more than 36 h. Animation available

at http://www.lekien.com/∼francois/papers/rsmas.

This observation provides an opportunity to understand

and predict differing evolution patterns of a fluid par-

cel, depending on its initial location and time of release.

Such patterns are known to be delineated by repelling

material lines or finite-time stable manifolds [35–38],

which we compute in the next section.

Notice that the domain studied in Fig. 4 is not com-

pletely closed by a coastline. Particles can leave the

domain through the open-boundary (southern, west-

ern and northern edges). Once particles leave the do-

main, no information is available to follow their track

and they are disregarded. One might wonder if our

conclusion holds in the real world where the white

parcel can possibly be pushed back into the domain

of Fig. 4 by unknown currents. This would invali-

date the reasoning above and the proposed contaminant

control scheme. Such a problem is inherent to open-

boundaries and must be studied from two different

approaches:

• Open-boundary flow. An estimate on how likely

parcels can leave the domain and re-enter it in a

reasonable amount of time can be derived from a

study of the flow on a section of the open-boundary.

In the case of the white parcel of Fig. 4 (or more

generally, particles leaving the domain through the

northern open-boundary), one can notice that the ve-

locity vectors are almost always pointing toward the

outside of the domain. During the numerical exper-

iment (July 10, 1999 → July 12, 1999), less than

0.1% of the velocity vectors on the northern edge

were indicating inflow. Moreover, such vectors were

of relatively small magnitude and localized near the

shoreline at the beginning of the experiment. It is

therefore very unlikely that particles forming the

white parcel will re-enter the domain through the

northern edge. Re-entrant particles must travel a

long distance outside the domain and re-enter

through the western or southern open-boundary.

After such a long travel time, diffusion and dis-

persion have destroyed the parcel of contaminant

significantly and the resulting very low concentra-

tions of white contaminant can be ignored. To gen-

eralize this notion, we computed the inflow and the

outflow through the northern segment of the open-

boundary. For a given segment of open-boundary

∂Ω the outflow is defined as

Jout =

∫

dt

∫

∂Ω

U(n̂ · v)dl, (2)

where the unit normal vector n̂ is pointing outside

the domain and

U(z) =

{

0 if z ≤ 0

z if z > 0
. (3)

Similarly, we define the inflow as

Jin =

∫

dt

∫

∂Ω

U(−n̂ · v) dl. (4)

For the months of July and August 1999, we have

Jin/(Jin + Jout) < 0.01%. This justifies the fact that

particles leaving the northern edge of the domain

do not typically re-enter the domain through this

edge. If enough diffusion of the contaminant and

dispersion due to sub-scale processes occur, the

white parcel can safely be disregarded when it

leaves the domain.

• Diffusion and dispersion. The argument above

only holds if there is a reasonable difference

between the motion of the tracers and the pure

http://www.lekien.com/~francois/papers/rsmas
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Fig. 4. A time sequence of the motion of two parcels released almost at the same position on July 10, 1999 at 09:45 GMT. The interpolated

velocity from the radar and the position of the parcels is shown for (a) July 10 09:45 GMT, (b) July 10 13:45 GMT, (c) July 10 16:45 GMT, (d)

July 10 23:45 GMT, (e) July 11 11:45 GMT and (d) July 11 20:45. Animation available at http://www.lekien.com/∼francois/papers/rsmas.

http://www.lekien.com/~francois/papers/rsmas
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Lagrangian model. In reality, contaminant are not

advected exactly as fluid particles and their motion

is best described by an advection-diffusion equation

[39,40], for example. The parcels in Fig. 4 only

represent the motion of contaminant for short inte-

gration time. For longer integration times, such as

particles leaving through the northern edge and re-

entering the domain through the western or southern

edge, the advective terms destroy this localized

representation and smooth the distribution of con-

taminants. In addition to diffusion, a correct model

of the motion of such contaminant must include sta-

tistical processes to model sub-grid processes that

are not resolved in the VHF radar data [41,42]. For

small trajectories, the idealized Lagrangian parcel

is a reasonable approximation of the concentration

of contaminant [43]. For long trajectories, diffusion

and dispersion tend to average the concentrations

[44]. The objective of the contaminant control

scheme in this paper is to avoid peaks of large

concentration. As a result, we are only concerned

with the small time effect of the release (e.g., before

parcels could re-enter the domain). In the long

term, diffusion and dispersion play in favor of our

objective.

A recently developed nonlinear technique, called the

direct Lyapunov exponent (DLE) analysis [7], identi-

fies repelling or attracting material lines associated to

Lagrangian coherent structures (LCS) in velocity data

by means of curves experiencing maximum material

stretching. Measured HF radar data allow the compu-

tation of such structures and the identification of envi-

ronmentally friendly release spots.

5. Lagrangian coherent structures

The study of transport and mixing in fluid flows

can be highly simplified by the use of finite-time

invariant manifolds or Lagrangian coherent structures

[14,16,45–47]. This work does not involve discussing

the existence or uniqueness of hyperbolic trajectories.

A preliminary discussion on this topic can be found in

[4]. In this paper we use the Direct Lyapunov Expo-

nent algorithm [7] to compute Lagrangian structures

and divide the domain into regions of qualitatively

different dynamics.

5.1. Direct Lyapunov exponents

The DLE algorithm starts with the computation of

the flow map, the map that takes an initial fluid particle

position x0 at time t0 to its later position x(t, x0) at time

t. To perform this analysis, a uniform grid of 200 × 200

particles are launched at time t0. Each particle is

advected using a 4th order Runge-Kutta-Fehlberg al-

gorithm and a 3rd order interpolation for t − t0 = 25 h.

An analysis of the influence of the integration time

t − t0 in the computation of DLE maps can be found

in [48].

These particle trajectories are used to approximate

the flow map, which associates current positions to po-

sitions at time t0. The coastline is modeled as a free-slip

boundary. Particles that cross the open boundaries of

the domain on the northern, eastern and southern edges

are disregarded. These numerical algorithms have been

compiled into a software package, MANGEN, that is

available from the authors upon request [49].

The spatial gradient of the flow map (∂x/∂x0) is

a 2 × 2 matrix and can be computed by using using

finite differences in the grid of trajectories [37]. The

direct Lyapunov exponent σt(x0, t0) is defined as the

normalization of the largest singular value of the spatial

gradient of the flow map [37]. More specifically,

σt(x0, t0) =

ln λmax

(

[

∂x(t,x0)
∂x0

]⊤ [

∂x(t,x0)
∂x0

]

)

2|t − t0|
, (5)

with the superscript ⊤ referring to the transpose of a ma-

trix. Notice that the denominator of Eq. (5) normalizes

the Lyapunov exponent. The logarithm of the largest

singular value of the gradient of the flow map has a

linear dependence in the integration time (t − t0). Di-

viding the result by (t − t0) allows for a more constant

value of σt when (t − t0) changes. This is particularly

important for domains with an open-boundary where

the computation of certain trajectories must be stopped

when they leave the domain. Such trajectories are dis-

regarded when they exit the domain and the Lyapunov

exponent must be computed with a smaller integration

time. As noted above, such smaller integration time

do not influence the results presented here. Contami-

nants only follow pure Lagrangian advection as a first

approximation. In the long term, diffusion and disper-

sion will naturally distribute the contaminant at a very

low concentration. Our goal is to study the short-term
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peaks of concentration, hence Direct Lyapunov expo-

nents with short integration times.

5.2. Lagrangian ridges

Repelling material lines are maximizing ridges of

the scalar field σt(x0, t0) [7,13]. By ridge of a scalar

field, we mean a gradient line of this field that has max-

imum curvature in the orthogonal direction [4]. More

specifically, a ridge is a C1 curve c(s), s ∈]a, b[, satis-

fying the following conditions:

(1) c(s) is parallel to ∇σt(c(s), t0),

(2)
dc(s)

ds
�= 0,

(3) �(n,n) = min‖u‖=1�(u,u), wheren is a unit vec-

tor normal to the curve c(s) and � = ∂2σt/∂x
2 is

the second derivative of σ thought of as a bilinear

form evaluated at the point c(s).

Notice that the ridges defined here are not necessarily

contour level sets of σt . They correspond to “water-

dividing lines” of the field. The ridges of the Lyapunov

exponent field as defined in this section are not neces-

sarily Lagrangian and do not strictly behave as material

lines. They are instantaneous screenshots of the future

Lagrangian dynamics. However, recent studies [4] have

shown that the Lyapunov exponent σt is Lagrangian

for large integration times (t − t0) (in the sense that the

change of its value along trajectories varies as the in-

verse of (t − t0)). In the definition above, a Lagrangian

structure is a gradient line of σ that has maximum cur-

vature in the transverse direction. For typical coastal

flows such as the one studied here, such a ridge has a

relatively constant value of σt and is, in good approxi-

mation, a Lagrangian line of the flow (see [4] for proofs

and numerical results).

Relative dispersion and finite-size Lyapunov expo-

nents have been successfully used to identify chaotic

patterns in fluid flows [50,51]. In small domains such

as the one depicted in this paper, the velocity field is

typically too small for the diffusion coefficients to give

any relevant information about transport in mixing.

Recent extensions [52,53] allow for the extraction of

information for a particular length scale or time scale.

Such methods were verified experimentally in [54]. In

this work, we seek precise Lagrangian lines rather than

chaotic regions or patterns. Direct Lyapunov exponents

and Lagrangian coherent structures [4,37] provide such

a framework. A fundamental difference is that there is

no need for estimating relevant length scales. The algo-

rithm described above will extract both small and large-

scale structures. Some small-scale structures might

have high exponents. However, they do not shadow the

large-scale structures of interest. Lagrangian structures

are identified as ridges [4] and the intensity of the

Lyapunov exponents is much less relevant than the

curvature along the ridge, for example. Once extracted,

the ridges differ by their length and can be classified

or eliminated based on their length, rather than

intensity.

The same procedure performed backward in time

(i.e., for t < t0) renders attracting material lines at t0
as ridges of σt(x0, t0). These curves are not apparent

to naked-eye observations and are not easily deduced

from velocity field plots, yet they govern global mixing

patterns in the fluid [55]. Such Lagrangian structures in

measured ocean data have previously been inaccessible

due to lack of an efficient extraction methods and coarse

resolution of the observations.

6. Data analysis

Direct Lyapunov Exponents are used to analyze the

Lagrangian trajectories in the VHF radar domain. In

particular, we want to be able to define pollution barri-

ers and pathways near the southeast coast of Florida.

Selected frames of the contour level sets of the

maximum Lyapunov exponents are shown in Fig. 5.

During the experiment, the plot reveals a strong stable

Lagrangian structure attached to the coast near

Fort Lauderdale, propagating to the southeast. This

structure acts as a quasi Lagrangian barrier between

the coastal recirculating zone (southwest of the LCS)

and the Florida Current (northeast of the same LCS).

Recent work [4] shows that the flux of particles

crossing the Lagrangian structure is negligible. As

a result, the LCS also acts as a material barrier.

Superimposed on Fig. 5 are the two parcels used in

Figs. 3 and 4. The average lifetime of the Lagrangian

barrier is about 48 h and parcels typically travels from

South to North in less than 12 h, so we expect that the

barrier has a significant effect on the flow.

Analysis of Fig. 3 reveals that any particle northeast

of the barrier (white parcel) is flushed out of the domain
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Fig. 5. Level Sets of the maximal Direct Lyapunov Exponents σ along the coast of Florida on (a) July 10, 1999 09:45 GMT, (b) July 10

13:45 GMT, (c) July 10 16:45 GMT, (d) July 10 23:45 GMT, (e) July 11 11:45 GMT and (d) July 11 20:45. The simulation shows repelling

material lines attached to the coast near Fort Lauderdale. Superimposed on each figure panel are the respective positions of the two parcels

from Fig. 4. Every particle North of the coherent structure flows through the northern open-boundary. It is non-optimal to release contami-

nants below the branch of the manifold because it will remain between the coast and the manifold for a long time. Animation available at:

http://www.lekien.com/∼francois/papers/rsmas.

http://www.lekien.com/~francois/papers/rsmas
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Fig. 6. Level Sets of the maximal Direct Lyapunov Exponents σ

along the coast of Florida on July 15, 1999 at 9:45 GMT. The dashed

line represents future positions of the repelling coherent structure.

The parcel North of the manifold flows through the northern open-

boundary (white parcel). It is dangerous to release contaminants be-

low the branch of the coherent structure because they will persist

between the coast and the structure for a long time (black parcel).

in only a few hours. In contrast, parcels starting south-

west of the barrier (black parcel) typically re-circulate

several times near the Florida coast before they finally

rejoin the current. Interestingly, such behavior is not

obvious from a simple observation of the velocity foot-

prints, which is typical of fast varying time-dependent

flows. In this mathematical framework, the surface cur-

rents are not necessarily influencing particle paths di-

rectly, but the currents influence the Lagrangian struc-

tures, such as causing transport barriers and pathways,

and the Lagrangian structures act directly on particle

paths (Fig. 6).

7. Minimizing the effect of pollution

The location of the base of the Lagrangian coherent

structure (along the coastline) can be used as a cri-

terion to minimize the effect of coastal pollution. We

will refer to the intersection of the coastline and the La-

grangian structure as the barrier point. For the region

and time period analyzed here, factories and sewage

discharge pipelines along the coast should not release

anything if the barrier point is located North of them.

Optimizing the release site by moving the source of

pollution is unrealistic. Optimizing the release times

is a much more implementable operation. The Direct

Lyapunov exponents typically give the influence of the

initial position x0 on the final position x(t; t0, x0) of the

trajectory that started at x0. However, a change in ini-

tial time t0 → t0 + δt0 can be interpreted as a change

of initial position x0 → x0 − v(x0, t0)δt0 and we

have

∂x(t; t0, x0)

∂t0
= −

∂x(t; t0, x0)

∂x0
v(t0, x0), (6)

so sensitivity with respect to the initial position can al-

ways be interpreted as sensitivity with respect to the

initial condition in the direction of the initial velocity

vector v(x0, t0) (see Fig. 7). Moreover, in this case, we

used a slip boundary condition and the velocity field

is always tangent to the coastline. In other words, for

any x0 on the coastline, v(x0, t0) is tangent to the coast-

line, so optimizing the release site along the coastline

is equivalent to optimizing the release time. More pre-

cisely, we have,

∂x(t; t0, x0(s))

∂t0
= ∓

∂x(t; t0, x0(s))

∂s
‖v(t0, x0(s))‖, (7)

where s is the arc-length along the coastline and the

sign is determined by the projection of the velocity on

the tangent vector ∂x/∂s. Eq. (7) shows that sensitivity

Fig. 7. Sensitivity to initial conditions must be studied in terms of

spatial perturbations δx0 and temporal perturbations δt0 of the ini-

tial condition (x0, t0). However, the law of motion ẋ = v(x, t) gives

directly x(t; t0 + δt0, x0) = x(t; t0, x0 − v(x0, t0) δt0) and sensitivity

to initial time can be derived from the dependence in x0.
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Fig. 8. Imaginary source of pollution along the Florida coast.

The black spots are the resulting contaminants from a fac-

tory releasing at a constant rate. Superimposed on this fig-

ure are the white spots of a factory releasing only during

environmental friendly time windows. Animations available at

http://www.lekien.com/∼francois/papers/rsmas.

in terms of the release time is equivalent to sensitivity in

terms of release position along the coastline and we can

decide to keep the pollution source fixed and modify the

release schedule, which is much easier to implement in

practice.

To illustrate how an efficient pollution release algo-

rithm can be set up, a fixed imaginary source of pol-

lution is placed along the coastline. Using the DLE

plots of Fig. 5, we identify zones of (green) favorable

release1 and (red) dangerous release.2

To minimize the effect of coastal pollution, we

propose using a holding tank that stores contaminants

during dangerous release times. The tank stores

pollution during the half-period of the barrier point

oscillation, during which contaminants should not be

released. The contents of the tank are released once the

barrier point moves South of the source of pollution

as shown in Fig. 8.

The black spots on Fig. 8 are the trace of the pol-

lution of a factory releasing at a constant rate. Super-

imposed on this figure is the white trace of contami-

nants released only during time windows determined

1 When the structure is below the position of the factory.
2 When the structure is above the factory.

Fig. 9. Three different release strategies for pollutants at a factory on

the coast. The black line shows the mass of pollutant in the coastal

area for a uniform release in time. The dashed line is for releasing

pollutants at times determined by the DLE analysis. The purple line

is a strategy that is based on the DLE analysis and the criterion of

minimizing peak values.

using our DLE algorithm. The total mass of contam-

inant in the coastal area for the two modes is shown

on Fig. 9.

The two sources of pollution release the exact

same mass of pollutant in the ocean. However, by

obtaining information from the DLE results, the white

factory (dashed curve) is able to reduce the effect of

the pollution in the shallow coastal area by a factor of

three.

Also shown on Fig. 9 are the results of a third nu-

merical experiment. In many cases, the damage to the

environment is a function of the maximum concentra-

tion of contaminant. From this viewpoint, the algorithm

(releasing nothing during “red” zones and as much as

possible during “green” zones) does not seem to be

efficient. The peak of maximum concentration for the

white factory has only decreased by a small amount.

The results reveal that a long “red” zone can lead to the

accumulation of large amount of pollution in the tank.

If such a zone is followed by a short “green” zone, the

large content of the tank is released quickly and creates

a peak in the concentration. To set up a more elaborate

algorithm, we release a minimum flux of pollution into

the ocean independently of the type of zone (red or

green). We define a new degree of freedom α, the per-

http://www.lekien.com/~francois/papers/rsmas
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centage of contaminant produced that will be released

during “red” zones. Here, the solid curve of Fig. 9 corre-

sponds to α = 100%, the dashed curve to α = 0%. The

purple curve of Fig. 9 corresponds toα = 33% (i.e., 1/3

of the pollution is released at all time). Fig. 9 shows that

a significant reduction of the peak of maximum con-

centration can be obtained using an appropriate partial

release during zones that are marked dangerous by the

DLE algorithm.

8. An automated pollution control algorithm

The purpose of this section is to show that it is pos-

sible to implement a pollution release scheme based on

the motion of a LCS in real time. If, at anytime, the DLE

field was available, a simple decision system based on

the position of the LCS at the present time should be

able to select the beginning and the end of favorable

release zones (see previous section). Unfortunately, if

the velocity is known up to the present time, the DLE

field can only be computed up to a certain time in the

past. As we approach the present time, DLE can only

be computed over a short amount of time and does not

converge towards the expected Lagrangian structure.

Instead, the plot reveals the maximum eigenvalues of

the linearized flow. We determined empirically that 8 h

at least were necessary to obtain a correct picture of

the LCS. Our algorithm needs to be able to predict the

position of the Lagrangian structure at least 8 h in the

future. Notice that we do not attempt to predict the

Eulerian velocity field. We propose to extrapolate the

position of the Lagrangian barrier up to the present

time.

8.1. Prediction algorithm

Several predictive methods could be used. One

might think of using a model of the area, use it to

predict the velocity field and compute the DLE field

based on predicted velocities. However, the values of

the DLE field are sequences in time and can also be pre-

dicted directly. We elected a simple prediction scheme.

Since we are only interested in the latitude of the mov-

ing barrier, for each time, the latitude of the barrier is

computed up to the latest time in the past where DLE

can be computed (i.e. 8 h before the present time). This

forms a time sequence that we would like to predict for

at least 8 h. We refer to this operation as a short time

Lagrangian prediction because the velocity (Eulerian

field) is never interpolated in time during this process.

The spectrum of each sequence has been com-

puted using the last 50 h and a few examples are

shown in Fig. 10. A complete animation of the

spectrums computed at each time can be found

at http://www.lekien.com/∼francois/papers/rsmas. We

identified the different components of the oscillations

of the Lagrangian barrier as the frequency at the max-

imum of each peak in the spectrum. Fig. 11 shows the

significant frequencies that were identified at each time

step. Notice that there is very little tidal influence on

the spectrum of Fig. 11. These spectrums are based

on the motion of Lagrangian particles along the coast-

line. Tidal oscillations influence the flow mostly in the

direction orthogonal to the coastline for such a linear

coast. Notice that, even for more complicated costlines,

non-tidal dominant frequencies usually appear in the

motion of Lagrangian structures (see [49] for exam-

ple). The weak amplitude of the tidal frequencies in

this example is a direct consequence of the fact that the

Lagrangian motion studied is parallel to the coastline.

Simulations using longer time sequences (e.g. Fig. 12)

reveal that the computed frequencies are not sensitive

to the length of the time sequence used. Within an ap-

propriate range (50–200 h), using more data does not

necessarily provide more accurate predictions.

Based on the relevant frequencies Ti, we use a very

simple predictive algorithm based on a Fourier decom-

position where the motion of the Lagrangian barrier is

represented as a finite sequence of Fourier modes

y = A0 +

N
∑

i=1

Ai cos

(

2π

Ti
t

)

+ Bi sin

(

2π

Ti
t

)

, (8)

and, the optimal model is obtained when one minimizes

the error

ǫ =

√

√

√

√

√

∑

k

(

yk − A0 −

N
∑

i=1

Ai cos

(

2π

Ti
tk

)

− Bi sin

(

2π

Ti
tk

)

)2

, (9)

http://www.lekien.com/~francois/papers/rsmas
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Fig. 10. Entropy spectrum of the time sequence of the latitude of the Lagrangian barrier computed using 50 h of data at selected time steps.
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Fig. 11. Spectral peaks in the time sequence of the latitude of the

Lagrangian barrier computed using 50 h of data.

where yk are the K positions of the Lagrangian barrier

measured in the last 50 h (at times tk). The error is

minimum when

∂ǫ

∂Ai
= 0, (10)

Fig. 12. Spectral peaks of the time sequence of the latitude of the

Lagrangian barrier computed using 75 h of data.

and

∂ǫ

∂Bi
= 0, (11)

for all i, which leads to the linear system in (2K + 1)

unknowns3

(Qij)
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where

Qij =
∑

k

fi(tk)fj(tk), (13)

and

fi(t) =























1 if i = 1

cos 2πt
Ti−1

if i = 2, 3, . . . , K + 1

sin 2πt
Ti−K−1

if i = K + 2,

K + +3, . . . , 2K + 1

(14)

In this paper, the linear system given by Eq. (12)

was solved using the GNU Scientific Library (GSL)

for maximum 13 modes and each mode is a domi-

nant frequency automatically extracted from the spec-

trums computed at each time slice. The system is ill-

conditioned when some frequencies are close to each

other (e.g., if Ti ≈ Ti′ , the determinant of the linear

system is close to zero, in which case the coefficients

Ai, Bi,Ai′ and Bi′ can grow arbitrarily large). To avoid

this problem, groups of close peaks, defined as relative

distances less than 1%, are ignored and combined into

a single resonant frequency. Moreover, we allow the

algorithm to select the optimal number of modes for

each time step. The linear system is solved with the

jth most significant modes (3 ≤ j ≤ 13) and the best

result is kept.

At each time step, once the number K of modes is

established and the coefficients Ak and Bk are com-

puted, the sequence in Eq. (8) is used to extrapolate the

3 The (2K + 1) unknowns are A0, A1, A2, · · ·AK and

B1, B2, . . . BK .
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position of the barrier during the past 8 h where DLE

was unavailable as well as in the future. Fig. 13 shows

some of these results for selected time slices.

Sometimes the prediction can be very accurate for

many hours in the future, such as on July 12 10:00 GMT

or July 14 03:45 GMT. However, large errors can occur

even at the present time such as July 12 17:45 GMT.

On July 12 21:00 GMT and July 13 11:45 GMT, the

system automatically switched to a low-mode analysis

because a better fit of the past data could not be ob-

tained with more modes. Results can be significantly

improved such as on July 13 11:45 or have a strong di-

vergence such as July 12 21:00 GMT. This phenomena

has been observed several times and is a consequence

of the presence of close frequencies in the spectrum.

Removing lower modes usually provides a sufficient

solution.

While no attempts were made to improve the pre-

diction method, the objective was to study the possible

advantages of a pollution algorithm. Thus, it sometimes

used erroneous data as input, even though it may have

been obvious not to be able to predict the position of

the barrier accurately.

Our goal is to show that even in the presence of

errors in the prediction of the position of the Lagrangian

barrier, a significant reduction of the concentration of

pollution can be achieved by the algorithm.

To determine favorable release time intervals, only

the relative position of the predicted barrier with

respect to the latitude of the release site is important.

The release site is indicated by a the horizontal line on

Fig. 13 and a favorable release interval occurs when

the latitude of the barrier point is below the release

site. To assess the quality of the prediction algorithm,

the predicted curve was used at each time to decide

whether or not the system was in a favorable zone.

The answer to this question was compared at each

time with the correct answer based on the actual time

sequence of the DLE ridge.4 The predicted curve

agrees with the actual curve in 78% of the cases. In

this experiment, the actual curve only stays below the

release site about 40% of the time. The algorithm was

used to simulate with different release sites, and all of

them had a success rate ranging from 70 to 80%.

4 The “actual” DLE ridge is computed at the end of the experiment,

thus with all data available.

8.2. Decision algorithm

To account for the high error rate on the raw deci-

sion algorithm (favorable release zones), the factory or

another release center is expected to simulate a more

complex decision algorithm to decide which portion of

the pollutant is to be released and which is to be stored

in the tank. The data from the 4 last predictions (last

hour) is used to increase the accuracy. A persistent low

impact release time interval occurs when at least 75%

of the last 4 points indicate that it is a good release

interval. A persistent high impact zone corresponds to

at least 75% of the points detecting an unfavorable in-

terval. In other cases, the system is in an undetermined

state.

Based on the type of zone that the factory thinks it

is in, the release flux or position of the valve to the tank

was computed as follows:

• If the system is in a low impact zone, the production

of the factory is released in the ocean. If not empty,

the tank is emptied at maximum speed;
• If the system is in an high impact state, the produc-

tion of the factory is moved to the tank. If the tank is

full, the production is released in the ocean but the

tank is not emptied; and,
• If the system is in an undecidable state, the action

depends on the amount of liquid stored in the tank.

If the tank is less than half full, the production is

stored in the tank. If the tank is more than half full,

the pollution produced is emptied in the ocean but

the tank is not to be emptied.

The action taken in the undecidable case results from

the following observation: if we are uncertain that the

release will have a low impact on the environment, it

is better not to take any risk and keep the pollutants

produced in the tank.

However, if the tank is more than half full, it is a

much higher risk to store more pollutant because a long

high impact zone could follow. In this case, the system

may be forced to release pollution during the unfavor-

able zone, simply because the tank has reached its max-

imum capacity. When the tank is more than half full,

it is less risky to release the pollution when there is at

least a 50% chance that the release will be favorable. In

addition to the framework presented above, we learned

in the previous section that a small percentage of the
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Fig. 13. Predictive motion of the intersection of the coherent structure with the coastline. The prediction is shown for selected times and uses

the last 50 h of data. The black curve represents the actual time sequence that can be computed at the end of the time of the experiment. The

blue vertical line in each figure represents the actual time and the green vertical line represents the time up to which DLE can be computed. In

other words, the position of the Lagrangian structure is known up to the green vertical line. The red curve shows the Fourier sequence that was

used to predict the position of the LCS in the future. It has been fitted to the measured data up to the green line and may or may not make a good

prediction during the 8 h preceding the current time and in the future.
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Fig. 14. Concentration of pollutant. The solid curve shows the con-

centration of pollutants in the coastal area of a source releasing at

a constant rate. The dashed curve shows the effect of a source of

pollution releasing the same amount of pollutant, but using the DLE

algorithm to reduce its effect on the coastal environment.

pollution has to be released in the ocean at all times

to achieve effective reduction of the peak of maximum

concentration.

The result of such an experiment is presented on

Fig. 14. The factory was producing 1.2 tonnes of pol-

lutant per hour and at least 0.4 tonnes h−1 were to be

dumped in the ocean (α = 33%). The tank had a max-

imum capacity of 30 tonnes and the maximum release

rate from the tank was set to 3.6 tonnes h−1.

9. Conclusions

We have shown the existence of a set of repelling

material lines in the VHF-radar derived surface cur-

rent fields acquired along the Hollywood, Florida coast

in July 2003. We have also shown how these material

lines can be used to minimize the effect of coastal pol-

lution by determining and predicting optimal release

times. This approach can be used for simulating tra-

jectories of buoyant contaminants or the trajectories

of nearly Lagrangian tracers.5 The data source can be

5 By nearly Lagrangian tracers, we refer to particles following

almost exactly the currents. In this case, the Lagrangian structures

VHF radar data or any other current data source, such

as data-assimilated ocean models that approximate the

near-surface velocity field to some reasonable level of

accuracy. The advantage of using ocean models is that

the velocity provided is 3D+1, and thus we can ex-

plore the Lagrangian structures that develop at various

depths. We have shown that a real-time experimental

realization of our pollution release is possible and can

efficiently reduce the impact of a polluting source in

a coastal area without reducing productivity. Applica-

tions of the algorithm are limited to regions where an

experimental setting (such as VHF radars) or an accu-

rate model of the flow is available. The cost of such an

installation is usually high but can be shared by several

sources of pollution in a nearby area.

The algorithm is only efficient when an effective bar-

rier exists in the domain,6 attaches to the coastline and

oscillates about the pollution sources. In any other case,

the algorithm presented here does not reduce the effect

of the pollutant better than a constant release scheme.

Future improvements include the combination of this

algorithm with other methods that are not based on La-

grangian structures to combine the beneficial effects of

each method. A major effort is currently furnished to

adapt these methods to three-dimensional spaces and

capture three-dimensional effects, such as upwelling

and downwelling in coastal areas.
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