To be Presented at the 6th European Conference on Controlled Fusion and

> Poloidal Field Measurements in the ST Tokamak by Harmonic Generation at the Upper Hybrid Layer
> R. Cano ${ }^{\dagger}$, I. Fidone ${ }^{\dagger}$, and J. Hosea
> Plasma Physies Laboratory, Princeton University, USA

The initial experimenta [1] on local genezation of the harmonic wave in the ST toikamak with an electromagnetic wave propagating along the major radius R revealed that the harmonic power characteristic matched the predictions of the theory for generation at the upper hybrid layer [2], However, the observed minimus of the harmonic power component ratio $\mathcal{P}_{\text {ord }} / P_{\text {est }} \sim 10^{-2}$ was too large to permit the harmonie polarization measurements which are required to specify the poloidal magnetic field $f_{y}(x)$. Experimental improvenents have resulted in a substantial reduction in the minimum of $P_{\text {ord }} / P_{\text {ext }}\left(t o \sim 10^{-3}\right)$ so that we are now able to resolve changes in polarization which although the measurements are preliminary, are commensurate with the expected poloidal effect at the upper hybrid layer.

The method used here is discussed in detail elsewhere [3]. Briefly, a locally generated extraordinary wave with frequency Ω, propagating in a plasma with $\omega_{p} \ll \omega_{c}<\Omega / 2$, maintains its initial polarization. Therefore, remote polarization measurements yield the direction of the confining mognetic field at the point of generation.

In Ref. 3, the case of a linearly polarized harmonic is discussed. For eiliptical polarization, the direction of the local magnetic field is obtained from the rotation of the ellipser The measurement of the rotation in this case requires the simultaneous detection of the amplitudes and phases of the harmonic electric field components. Let θ be the angle of the magnetic field with reapect to the z axis (defined here as the horizontal polarimeter axis) and \mathcal{E}_{1}, \mathbb{Z}_{1}, and We the wave components and their relative phase in the local magnetic field frame. Then correspordingly in the laboratory (polarimeter) frane

$$
\begin{equation*}
\frac{\left|E_{z}\right|^{2}}{\left|E_{y}\right|^{2}}-\frac{\left|E_{\| 1}\right|^{2}}{\left|E_{\perp}\right|^{2}}\left(1-2 \frac{\left|E_{1}\right|}{\left|E_{\|}\right|} \theta \cos \psi+\frac{\left|E_{\perp}\right|^{2}}{\left|E_{11}\right|^{2}} \theta^{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{can} x=\left(\left|E_{1}\right| \theta /^{f}\left|E_{n}\right|\right) \sin \psi+\text { constant } \tag{2}
\end{equation*}
$$

where θ is assumed small and X is the relative phase between B_{y} and E_{z}. In the absence of plama current, the polsrimeter is rotated to give $6=0$ and the rolarimeter measurements of $\left|\varepsilon_{z} f^{2} /\left|E_{y}\right|^{2}\right.$ and x give the elipticity $\varepsilon=\left|E_{\|}\right| /\left|E_{\|}\right|$. and the constant of Eq. (2).

Figure'l gives the preaent experimental arrangement. A carcinotron (f = 33.6 GHz) modulated at 50 kHz and delivering up to 15 watts of incident power is used in place of the lower power klystron of the initial experiments [1]. Improved hom allignment and the addition of a microwave absorber proride the reduced ellipticity already mentioned. The polarimeter is now rotatable to permit θ scans and finally, a phase comparator has been added to give the phase X simultaneously with the amplitude measurements.

In Fig.2, $\left|E_{z}\right|^{2} /\left|B_{F}\right|^{2}$ is plotted versus θ at two times for a helium discharge with the magnetic field on the vessel axis aet at $\mathrm{B}_{2}(\mathrm{x}=15 \mathrm{~cm})=14.1 \mathrm{k}$. The experimental points are found to fit parabolic curves as predicted by Eq. (I) with $\psi * \pi / 2$. The axes of the nolarimeter and of the ellipse coincide at the minimum of $\left|\mathrm{E}_{z}\right|^{2} /\left|\mathrm{E}_{y}\right|^{2}$. Rotation of the magnetic field due to plasma current is measured by the shift of the minimum between the zero current ($\mathrm{t}=0$) and the maximum current $(t=6 m s)$ cases. This shift of $n 1.5^{\circ}$ is in good agreement with the value expected at the upper hybrid layer, \boldsymbol{I} \& 20 em , which for the selected B_{z} is outside che imiter so that θ in $I_{z} / 5 r_{z} \sim 1.2^{\circ}$.

Pigure 3 presents the measured values of X versus θ for the discharge conditions of Fig.2. Within the experimental arrors, tanx $\approx x$ ie proportional to 0. The separation at $\theta \sim 0$ between the two curves yields the angle of rotation of the magnetic field wheread thriolopes sive the ellipticity at the respective
times; $\varepsilon \sim 6.4 \times 10^{-2}, 7.5 \times 10^{-2}$ in reasonable agreement with the values obtained from direct calibration of the detected amplitudes of $\varepsilon \sim 4 \times 10^{-2}$, 4.6×10^{-2} for $t=0,6 \mathrm{macc}$.

By varying the level of the toroidal field for a fixed polarimeter poition and constant incident frequancy, a preliminary meanuremont of the radial profila of $\theta=\mathrm{B}_{\mathrm{y}} / \mathrm{B}_{\mathrm{z}}$ may now be obtained. Combining these measurements of θ with the location of the upper hybrid lager deduced from Thomson scattering measurements of the electron denaity profile for similar ifacharge conditions gives the poloidal field profile plotted in Pig.4. The expected peak in B_{y} (in Fig.4, $\theta=\mathrm{B}_{\mathrm{y}} / 14.1 \times 10^{3} \mathrm{G}$) is clearly observed as is the $1 / \mathrm{r}$ variation outside the current channel.

The location of the peak in Fig. 4 is indicative of a rather flat current distribution. However, remaining uncertainties in the measuremente of θ plus the need for more exact density profile measuremente taken simultaneousiy with the θ data preclude a definite deternination of the current distribution at this time.

The reaults reported here demonstrate that the harmonic polarization is in fact sensitive to the poloidal field at the upper hybrid layer. Puture experiments are planned at twice the present incident frequency for which we expect to reduce further the harmonic ellipticity and obtain more reliable density profiles so that a quantitative measurement of the poloidal field profile, or equivalently the current denoity profile, may be obtained.

This work vae supported by D. S. Atonic Rnergy Commiseion Contract No. AT (11-1)-3073 and by the Asmocintion C. E. A.-EURATON, FOntemay-aux-Roses, France.

${ }^{\prime}$ Permanent addreae: Contre di'Studen Fucleairen, Fontenay-aur-Bosee,

Fig. 1

Fig. 2. $\left|E_{z} / B_{y}\right|^{2}$ versus θ for a helium discharge ($\mathrm{B}_{\mathrm{z}}=14.1 \mathrm{kG}$, a $=10.6$ $\mathrm{cm})$. For $t=0, I_{z}=0$ and for $t=6$ maec. $_{s}$! $I_{z}=26 \mathrm{kA}$ and $n_{e}(x=0)=7 \times 10^{12} \mathrm{~cm}^{-3}$.

Fig. 3

Fig. 4

References

[1] R. Cano, C. Etievant, and J. Hosea, Phys. Rev. Lett. 29, 1302 (1972).
[2] I. Fidone, G. Granata, and J. Teichann, Phys. Fluids 14, 737 (1971).
[3] R. Cano, I. Fidone, arid M. J. Schwartz, Phye. Rev. Lett. 27, 783 (1971).

