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PolSAR Image Classification Based on

Low-Frequency and Contour Subbands-Driven

Polarimetric SENet
Rui Qin , Xiongjun Fu , and Ping Lang

Abstract—In order to more efficiently mine the features of Pol-
SAR images and build a more suitable classification model that
combines the features of the polarimetric domain and the spatial
domain, this article proposes a PolSAR image classification method,
called low-frequency and contour subbands-driven polarimetric
squeeze-and-excitation network (LC-PSENet). First, the proposed
LC-PSENet introduces the nonsubsampled Laplacian pyramid to
decompose polarimetric feature maps, so as to construct a multi-
channel PolSAR image based on the low-frequency subband and
contour subband of these maps. It guides the network to perform
feature mining and selection in the subbands of each polarimetric
map in a supervised way, automatically balancing the contributions
of polarimetric features and their subbands and the influence of
interference information such as noise, making the network learn-
ing more efficient. Second, the method introduces squeeze-and-
excitation operation in the convolutional neural network (CNN) to
perform channel modeling on the polarimetric feature subbands.
It strengthens the learning of the contributions of local maps of the
polarimetric features and subbands, thereby, effectively combining
the features of the polarimetric domain and the spatial domain.
Experiments on the datasets of Flevoland, The Netherlands, and
Oberpfaffenhofen show that the proposed LC-PSENet achieves
overall accuracies of 99.66%, 99.72%, and 95.89%, which are
0.87%, 0.27%, and 1.42% higher than the baseline CNN, respec-
tively. The isolated points in the classification results are obviously
reduced, and the distinction between boundary and nonboundary
is more clear and delicate. Also, the method performs better than
many current state-of-the-art methods in terms of classification
accuracy.

Index Terms—Convolutional neural network (CNN), nonsub-
sampled laplacian pyramid (NSLP), polarimetric synthetic
aperture radar (PolSAR) image classification, polarimetric feature,
spatial domain, squeeze-and-excitation (SE) network.

I. INTRODUCTION

P
OLARIMETRIC synthetic aperture radar (PolSAR) is a

kind of electromagnetic sensor that can work under all-

weather and day-and-night conditions. It provides rich informa-

tion of the observation area and has been widely used in the

field of remote sensing including urban planning, agriculture
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assessment, environment monitoring, and military surveillance

[1]–[5]. These applications generate some specific research field

like terrain classification, change detection, and target recog-

nition [6]–[10]. Terrain classification of PolSAR images is a

research hotspot in recent years, which requires the full mining

and interpretation of PolSAR images.

Generally, terrain classification of PolSAR images contains

two steps: feature extraction and classifier design. Classic feature

extraction methods on PolSAR images are mainly based on

polarimetric scattering mechanisms [11] and statistical charac-

teristics [12], [13]. As to the polarimetric scattering mechanisms,

polarimetric target decomposition is generally concerned by

researchers. The Cloude–Pottier decomposition, Pauli decom-

position, Freeman–Durden decomposition, and Krogager de-

composition are some famous ones [11], [14]–[17]. Based on the

basic features extracted by these decomposition methods, some

multiple features have been constructed to improve the clas-

sification performance [6], [18]–[20]. In addition, some other

advanced features like the roll-invariant features are explored

by researchers [21]. During classification, unsupervised and

supervised classifiers are commonly used, including the fuzzy

k-means cluster classifier [22], [23], maximum likelihood classi-

fier [5], support vector machine [24], decision tree [25], sparse

representation classifier [26], [27], and neural networks [28],

[29]. Considering the statistical distribution of the POLSAR

image, some researchers have introduced a unique classifier,

namely Wishart classifier [13], [30], [31]. Most PolSAR images

classification methods based on the aforementioned feature ex-

tractions and classifiers are pixel-based, without considering the

spatial relations between pixels, which limits the classification

performance.

In recent years, deep learning has been widely used in the

fields of image recognition and has achieved great success,

including remote sensing image classification [32], [33]. As

the most representative technology in deep learning, the convo-

lutional neural network (CNN) automatically extracts features

hierarchically from image, which can better represent the rela-

tions between pixels [34]–[39]. A large number of researchers

have also introduced CNN-based methods to the research of

the PolSAR image classification [18], [40]–[44]. Zhou et al.

extracted 6-D real-value features from the T matrix to represent

each pixel of the PolSAR image, and fed the six-channel real

image into a tailored CNN for classification, which achieved

better performance than directly using the real value of the
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T matrix as the input representation of the CNN [18]. Chen

and Tao [43] proposed a polarimetric-feature-driven deep CNN

method for PolSAR image classification, which combines ex-

pert knowledge of target scattering mechanism interpretation

and polarimetric feature mining to drive the CNN model. The

method uses both classical roll-invariant polarimetric features

and hidden polarimetric features in the model to achieve high

classification accuracy. Considering the phase of the elements in

the T matrix, Zhang et al. proposed to use complex-valued CNN

for the PolSAR image classification [44]. Experiments have

shown that the classification accuracy is improved compared to

the real-valued CNN. In addition to the CNN, the convolutional

autoencoder (CAE) has good feature representation learning

capability [45]. Geng et al. proposed a PolSAR classification

method based on the deep CAE, and verified its performance

[46]. Considering the statistical characteristics of the T matrix

of PolSAR data, Xie et al. introduced the Wishart distance as

the reconstruction loss of the CAE, and proposed the W-CAE

method [7]. The aforementioned methods mainly use polari-

metric scattering features and statistical characteristics of each

pixel to form several polarimetric maps, and feed them to the

CNN-based network for the automatic feature extraction and

classification. Therefore, both polarimetric features and spatial

features are considered.

However, there are still two aspects to be improved. First, due

to the influence of speckle noise and other factors, there are many

isolated points in the classification result. Second, the commonly

used CNN-based methods assume that the feature maps in one

layer have the same importance to the next layer when extracting

features. This type of model is not the most suitable for the

PolSAR classification since features from different polarimetric

feature maps may contribute to the classification inequality.

Zhang et al. proposed a stacked sparse autoencoder (SSAE)

using the local spatial information of the pixels by controlling

the influences of the neighbor pixels on the central pixel referring

their spatial distances, and they verified that the connectivity of

the classification result is obviously improved [47]. Guo et al.

[48] and Liu et al. [49] introduced a postprocessing technique

called clean to filter out the isolated points of the classification

map after classification using WRBM and W-DBN, which en-

hanced the classification accuracy. But these methods require

manual modeling of pixel relationships or setting thresholds

rely on experience. Liu et al. proposed a coding method for the

complex scattering matrix S of each pixel, which expands one

pixel of the original image to 4 ∗ 4 pixels so that the convolution

kernel not only mine the spatial features between the original

pixels, but also the relations of elements in the S matrix of

each pixel [50]. But it is difficult to encode more polarimetric

features, because the image becomes very large, and the size of

the convolution kernel is difficult to determine.

To better deal with the aforementioned two problems, this ar-

ticle proposes a new solution, called low-frequency and contour

subbands-driven polarimetric squeeze-and-excitation network

(LC-PSENet). First, the proposed LC-PSENet introduces the

nonsubsampled Laplacian pyramid (NSLP) to decompose each

polarimetric feature map into a low-frequency subband and

a contour subband, which helps to construct a multichannel

PolSAR image based on these polarimetric subband maps. It

can guide the network to perform feature mining and selection

in the low-frequency and contour (LC) subbands, automatically

balancing the contribution of polarimetric features and their

subbands and the influence of interference information such

as noise, making learning more efficient, and enhancing the

continuity of the classification results. Second, the method in-

troduces squeeze-and-excitation (SE) operation in the CNN to

perform channel modeling on the multichannel image composed

of the subbands of polarimetric feature maps. It strengthens the

learning of the contributions of local maps of the polarimetric

features and subbands, which more effectively combines the

features of the polarimetric domain and the spatial domain,

thereby improving the classification accuracy. The proposed

method provides new ideas for reducing the isolated points in the

classification results and efficiently combining the polarimetric

domain features and spatial domain features for PolSAR image

classification. Experiments on three real PolSAR datasets show

that the proposed LC-PSENet significantly improves the classi-

fication accuracy of the baseline CNN, the isolated points in the

classification results are significantly reduced, and the distinc-

tion between boundaries and nonboundaries is more clear and

refined. In addition, the classification results are also superior to

many recent state-of-the-art methods.

The main contributions of this article can be summarized as

follows.

1) This article proposes to decompose the PolSAR image to

obtain the LC subbands, and guide the network to mine

the two types of subbands to varying degrees under su-

pervision, making the learning of network more efficient.

And the NSLP method distributes the noise unevenly to

the subbands, which increases the flexibility of network,

and helps to balance the impact of noise.

2) This article proposes to perform channel modeling on fea-

ture maps composed of polarimetric features and spatial

subbands. It strengthens the balance between the contribu-

tions of polarimetric feature maps and their subbands, and

the influence of the noise, thereby, effectively combining

the features of the polarimetric domain and the spatial

domain.

3) In this article, the supervised thinking in deep learning is

combined with signal processing based image decompo-

sition and enhancement, which provides a new idea for

PolSAR image classification to efficiently combine the

polarimetric domain and the spatial domain and reduce

the isolated points of the classification results.

The remainder of this article is organized as follows. Sec-

tion II presents an introduction and analysis of the proposed

LC-PSENet. Experiments and results analysis on three real

datasets are described in Section III. Section IV concludes this

article.

II. METHODOLOGY

In this section, we present an introduction and analysis of the

proposed LC-PSENet in detail. First, we introduce the represen-

tation of PolSAR data and extract polarimetric features. Then,
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the PolSAR LC subbands image construction and polarimetric

channel modeling methods are concerned and analyzed. Finally,

we present an overview of the proposed method.

A. PolSAR Data and Polarimetric Feature Extraction

Polarimetric target decomposition method can extract features

from each resolution cell of the PolSAR image. A variety of

polarimetric decomposition features constitute a series of polari-

metric feature maps with the same size as the original PolSAR

image, which provides rich information for the PolSAR image

classification. When these polarimetric feature maps are fed to a

CNN-based model, features of polarimetric domain and spatial

domain are combined.

1) Representation of PolSAR Images: PolSAR images are 2-

D high-resolution radar images. In each resolution cell, the basic

PolSAR data are expressed by a 2× 2 complex scattering matrix

S =

[

SHH SHV

SVH SVV

]

(1)

where SHV is the scattering element of the horizontal trans-

mitting and vertical receiving polarization, and the other three

elements are similarly defined. H and V denote the bases of

horizontal polarization and vertical polarization, respectively.

According to the reciprocity theorem and Pauli decomposition

[14], the scattering matrix can be also represented as a 3-D vector

k =
1√
2
[SHH + SVV, SHH − SVV, 2SHV]

T
(2)

where the superscript T denotes the transpose. Then, the polari-

metric coherency matrix is obtained as

T =
1

L

L
∑

i=1

kik
H
i =

⎡

⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤

⎦ (3)

where L is the number of looks, the superscript H de-

notes conjugate transpose, respectively, and T is the element

of T. Apparently, it is a Hermitian matrix whose diago-

nal elements are real numbers, while off-diagonal elements

are complex numbers. Hence, its upper triangular elements

{T11, T12, T13, T22, T23, T33} can fully represent the scattering

characteristics of PolSAR image.

In the research of the CNN-based PolSAR image classifica-

tion, Zhou et al. [18] proposed a new 6-D real vector represen-

tation of the PolSAR image extracted from T, which is tailored

for neural networks as follows:

A = 10log10 (SPAN) (4)

B = T22/SPAN (5)

C = T33/SPAN (6)

D = |T12| /
√

T11 · T22 (7)

E = |T13| /
√

T11 · T33 (8)

F = |T23| /
√

T22 · T33 (9)

where A is the total scattering power in decibel of all polarization

channels, SPAN = T11 + T22 + T33, B and C are the normal-

ized ratio of the power of T22 and T33, respectively, and D, E,

and F are the relative correlation coefficients.

All polarimetric features used in the following research are

based on the aforementioned representations.

2) Polarimetric Feature Extraction: Based on the target de-

compositions (TD) theorems, many features with actual phys-

ical meaning can be extracted from the coherency matrix T.

A number of works on PolSAR detection and classification

have introduced these decomposition features [6], [21]. Cloude–

Pottier decomposition [11] is a famous TD method based on

eigenvalue–eigenvector, which is widely used in classification.

Through this decomposition, the coherency matrix T can be

parameterized as

T = U3

⎡

⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦U
H
3 (10)

where λ1, λ2, and λ3 are the eigenvalues of the coherency

matrix T, and U3 represents a matrix composed of the

three decomposed eigenvectors. Based on the decomposed

eigenvalue–eigenvectors, three typical polarimetric features can

be extracted, namely entropy H, mean alpha angle ᾱ, and

anisotropy Ani.

H = −
3

∑

n=1

Pnlog3Pn, ᾱ =
3

∑

n=1

Pnαn, Ani =
λ2 − λ3

λ2 + λ3

(11)

where Pn = λn/(λ1 + λ2 + λ3), and cos(αn) is the magnitude

of the first component of the nth coherency matrix eigenvector.

Both the three eigenvalues and the derived features are com-

monly used in PolSAR image classification works [31].

Based on the aforementioned representation and feature

extraction of the PolSAR data, we can use a 21-D real vector

to represent each pixel of the PolSAR image. Obviously, there

is information redundancy in this feature vector because the T

matrix can completely represent the PolSAR image. However,

the superposition of multiple polarimetric feature maps may

enrich the spatial relations between pixels. Therefore, we

conducted a preliminary experiment on the Flevoland dataset

using the baseline CNN, and analyzed the 21-D features,

thereby, selecting a set of features for the verification of the

proposed method in this article. First, we divided the 21-D

features into three categories for combined testing. These three

categories are real value from T matrix, the 6-D real vector

representation, and the Cloude–Pottier features, respectively,

which are expressed as T, 6-D, and Cloude. The combination

test accuracy of T, 6-D + Cloude, T + Cloude, T + 6-D, and

T+ 6-D+Cloude were 98.29%, 97.60%, 98.66%, 98.75%, and

98.80%, respectively. The results show that in the CNN-based

classification, T matrix contributes the most among these three

types of features, and the superimposed features have obvious

advantages over the use of one type of these features alone.

However, the test accuracy gap between T + 6-D and T +
6-D + Cloude is not very big. Therefore, we retain the T matrix

and only consider removing a few features that are extremely
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redundant with the T matrix. In these features, features B and C

are almost the same as T11, T22, and T33, and λ3, ᾱ, and Ani can

also fully express λ1 and λ2. In addition, [30] has proved that the

mean scattering angle ᾱ can help to improve the discrimination

of pixels in the PolSAR image. Combining the aforementioned

tests and analysis, we chose 16 features to form a 16-D vector to

represent the PolSAR image, which can achieve classification

accuracy comparable to that when using all 21-D features

in the baseline CNN model, showing 98.79%. The selected

16-D feature is∗∗ expressed as [T11, T22, T33, R(T12), I(T12),
R(T13), I(T13), R(T23), I(T23), λ3, ᾱ,Ani, A, D, E, F ]T,

where R(·) and I(·) are the real and imaginary parts of the

complex ·, respectively.

B. PolSAR LC Subbands Image Construction

Based on the NSLP

This section introduces the NSLP method to decompose the

aforementioned 16 polarimetric feature maps to obtain subband

maps, and analyzes the characteristics of each subband type.

After that, it uses the LC subbands to expand the polarmetric

channels, thereby, constructing a polarmetric subband-based

multichannel PolSAR image.

1) Principle of the NSLP: The NSLP is an improved Lapla-

cian pyramid (LP) decomposition algorithm. It retains the mul-

tiscale characteristics of the LP algorithm and can perform

feature decomposition on images at different scales. They are

both widely used in contour transformation of images. Since LP

performs downsampling after low-pass filtering at each layer,

the size of the decomposed image changes without translation

invariance, which is not suitable for pixel-based classification.

The NSLP draws on the idea of the atrous algorithm to use a

nonsubsampled pyramid filter bank (NSPFB) to design a filter

structure with translation invariance [51], which has multiscale

properties similar to LP. Difference from LP decomposition,

NSLP does not downsample the components after filtering, but

upsamples the filter accordingly. That is to say, the secondary

filter of the NSLP can be obtained by upsampling the filter

of the previous stage with a step size of 2. When an image

undergoes the L-level NSLP decomposition, L + 1 subband

images with the same size as the original image can be obtained.

Fig. 1 shows the structure of the three-layer NSLP decompo-

sition, where H0 represents the low-pass decomposition filter,

H1 represents the band-pass filter, and H2
0 represents the filter

obtained by up-sampling the filter H0 with a step size of 2. The

other filters in this figure also follow this representation style.

2) LC Subbands PolSAR Image Construction: Due to the

translation invariance of the NSLP, a polarimetric feature map

can be decomposed into multiple subband maps with the same

size without changing the positional relationship of pixels [51].

The NSLP continuously decomposes the image at multiple

scales, so each subband map can reflect features at different

scales. Choosing the appropriate subband maps to replace the

original polarimetric feature maps as the input of the CNN will

be helpful to improve the learning efficiency of the network and

obtain even better features.

Fig. 1. Structure of three-layer NSLP decomposition.

Let the ith polarimetric feature map be xi, it can be decom-

posed into L + 1 subband maps through the L-layer NSLP

decomposition, expressed as

xi (m,n) = y1i (m,n) + y2i (m,n) + . . .+ yL+1
i (m,n)

(12)

where L is the number of layers of the NSLP decomposition, (m,

n) represents the pixel position, that is, the pixel in the mth row

and nth column. The decomposed L+1 subband maps express as

{y1i , y2i , . . . , yL+1
i }, where yL+1

i is the low-frequency subband

map, and {y1i , y2i , . . . , yLi } is the high-frequency component in

each layer.

Taking the T11 feature map as an example, Fig. 2 shows

the subband maps decomposed by the three-layer NSLP, where

Fig. 2(a) is the T11 feature map, Fig. 2(b) is the decomposed

low-frequency subband map, and Fig. 2(c)–(e) are the high-

frequency sub-band maps of the decomposition output from the

third layer to the first layer. As shown in the figure, Fig. 2(a)

contains most of the information of the original image, the

information of the homogeneous region is relatively complete,

and the speckle noise in this map is much weaker than the

original image. But the image becomes blurred, especially the

boundaries between different categories. The reason is that

during the NSLP decomposition process, the low-frequency

subbands of each layer are continued to be decomposed in the

next layer, and the scale of the filter is doubled for each additional

layer of decomposition, making the low-frequency subband has

the largest decomposition scale. The large-scale low-frequency

filtering makes the speckle noise coefficient of the image very

weak [52]. But for the high-frequency subband of each layer, the

NSLP no longer decomposes them. As shown in Fig. 2(c)–(e),

they contain less useful information than the low-frequency sub-

band, and are accompanied by noise with different intensities.

In other words, the main information and noise of the image are

unequally distributed in different subbands. Moreover, Fig. 2(c)

is the high-frequency part decomposed by the last layer. It has a

larger filtering scale and can reflect the contour information of

the PolSAR image well. And because part of the speckle noise

energy is distributed in higher frequency subbands, this contour

subband contains only the weakened noise. In Fig. 2(d), the
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Fig. 2. T11 map and the subband maps decomposed by three-layer NSLP. (a)
T11 map. (b) Low-frequency subband map. (c) High-frequency subband map
of the third layer. (d) High-frequency subband map of the second layer. (d)
High-frequency subband map of the first layer.

contour and noises have similar power intensity, which is easy

to be confused. Fig. 2(e) contains almost no useful information

of the image, and is mainly manifested as noise.

Therefore, this article extracts the LC subbands of each po-

larimetric feature map to construct a PolSAR image based on

these subband maps. That is to say, we choose the subband maps

yL+1
i and yLi to convert the 16 polarimetric feature maps into

32 subband feature maps to represent the PolSAR image, as

shown in Fig. 3. Thus, a multichannel PolSAR image based

on polarimetric subband maps is constructed, and it can be

expressed as {yL+1
1 , yL1 , y

L+1
2 , yL2 , . . . , y

L+1
16 , yL16}. When the

subbands of polarimetric feature maps are used as the input of

a CNN-based model, the features in the low-frequency subband

and the contour subband will be mined to varying degrees under

supervision, and the impact of noise on the classification will

also be automatically weighed following the varying degrees of

feature mining of the two types of subband. That is, the features

and noise of the image will be reorganized under the supervision

of the classification network. Compared with the direct use of

polarimetric feature maps as input, this method is more flexible

and advantageous.

C. Polarimetric Channel Modeling Based on

Squeeze-and-Excitation Networks (SENet)

In addition to the overall contribution of polarimetric features

and the subbands, the contribution and noise level of the local

Fig. 3. Schematic diagram of converting 16 polarimetric feature maps to 32
subband feature maps.

maps of the subbands are also unequal. However, a typical

CNN mainly uses convolution kernels to extract image features

hierarchically, it assumes that the feature maps in one layer have

the same importance to the next layer. Such an assumption in

this study is not the most appropriate. Here, we will discuss

the modeling of polarimetric feature channels in the CNN,

which helps to design a more suitable model for PolSAR image

classification.

1) SE Modeling on Polarimetric Maps: In this research, we

introduce the SE module into our network to modeling the

polarimetric maps so that we can easily learn the weights of

the polarimetric feature maps in the convolution layers. Thus, it

strengthens the allocating of the contribution of each polarimet-

ric feature and its sub-bands.

The SENet can model the channels of feature maps in the CNN

[53]. Huang and Wang applied the network to the field of SAR

image recognition, and proposed the group squeeze excitation

sparsely connected convolutional networks [54] and enhanced

SENet [55], respectively. Fig. 4 shows the network structure of

an SE module. The input feature maps can be express as a tensor

U,U ∈ R
W×H×C , where R represent the set of real numbers,

W and H represent the width and height of the feature map, and C

represents the number of feature maps. As shown in the figure,

the SE module constructs a branch network in the sequential

model, which contains the global average pooling, the fully con-

nected layers, and the corresponding activation functions, where

r is a fixed hyperparameter in the module. The branch network

first outputs a parameter with a size of 1 × 1×C, expressed

as S,S ∈ R
1×1×C , which has the same number of channels as

the input U. After that, a scale operation multiplies the input

U by the parameter S and outputs a new feature map tensor X,

whereX shares the same size with U, i.e.,X ∈ R
W×H×C . This

operation is expressed as X = Fscale(U,S) = U · S, and S is
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Fig. 4. Structure of the SE module.

equivalent to the weights of the feature maps, which allows the

network to automatically learn the contribution of each feature

map in the layer.

For the PolSAR image classification in this article, each

channel of U represents the feature map learned from different

polarimetric feature subbands, and the SE module can learn

the importance of these feature maps, which indirectly learns

the importance of polarimetric features and the LC subbands.

Therefore, by introducing the SE module to modeling the po-

larimetric feature channel in a CNN model, a polarimetric SENet

(PSENet) is tailored for PolSAR images classification. Thus, the

network has the capability to efficiently mine features from the

polarimetric domain and spatial domain, and is more suitable

for PolSAR image classification than the baseline CNN. First,

from the perspective of the spatial domain of the polarimetric

feature maps, the convolution operation will learn the spatial

relations between pixels such as the geometric texture of the

polarimetric feature maps. Second, for polarimetric features,

the SE module builds a 1-D deep neural network indirectly for

learning the weight of the channels, which allocates weights to

the polarimetric features to compute their contributions.

2) Design SENet for Polarimetric Maps: Since this article is

a study of pixel-level classification of PolSAR images, pixel-

centric patches will be used as the input of the network. There-

fore, in this study, we design a general PSENet network, which

is suitable for the classification of PolSAR images of different

sizes. The detailed design of our PSENet is shown in Fig. 5. It

contains two convolution layers, two fully connected layers and

an output layer, and the first convolution layer follows a max

pooling layer. Besides, a rectified linear unit (ReLu) activation

function is added to each convolution layer and fully connected

layer, and the output layer is activated by a softmax function

with the crossentropy loss function. The convolution and pooling

layers have no padding. In order to model the channels of

different polarimetric feature maps and their subband maps,

an SE module is added after the first convolution layer of the

network. This operation includes two fully connected layers,

Fig. 5. Designed PSENet.

and they are activated by the ReLu function and the Sigmoid

function, respectively. After that, a scale operation is used to

fusion the outputs. The detailed parameters in each layer of the

network are also shown in the figure, including kernel sizes, fully

connected unit numbers, and channel numbers.

In this network, the convolution layer shares the weights to

preserve the space locality by the sliding convolutional kernels,

which considers the spatial relations of pixels in each subband

maps. And the SE module allocates weights to the learned

feature maps, that is, the network learns the contribution of

different polarimetric feature maps and their LC subbands to

classification.

D. Processing Flow of the Proposed LC-PSENet

In this section, we briefly present an overview of the pro-

posed LC-PSENet. The processing procedure of the proposed

algorithm is shown in Fig. 6. First, a number of features are

extracted by polarimetric representation and the target decom-

position algorithms. These features mainly reflect the polari-

metric scattering mechanisms and statistical characteristics of

PolSAR images in a resolution cell. According to the analysis

in Section II-A, a total of 16 polarimetric features are selected

including the real value of the coherent matrix in this research.

Thus, 16 polarimetric feature maps with the same size and

relative position of pixels as the original PolSAR image are

obtained. Second, we introduce an NSLP to decompose each

feature map and select two subband maps, namely LC subband.

The nonsubsampled decomposition method ensures that the size

of the LC subbands is the same as the size of the polarimetric

feature maps, and does not change the positional relationship

of the pixels. In this way, 16 polarimetric feature maps are

decomposed to obtain 32 subband maps, which can be ex-

pressed as {yL+1
1 , yL1 , y

L+1
2 , yL2 , . . . , y

L+1
16 , yL16}. We separately



4766 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6. Processing flow of the LC-PSENet.

normalize the 32 subband maps by using the Z-score technique

to form the original input 32-channel image, which can guide

neural networks to focus on the study of the homogeneous

region and boundary region features of PolSAR images. Third,

taking each pixel as the center and extracting a 9 × 9 patch,

each pixel of the PolSAR image can be represented as a 9 ×
9 × 32 data, which we use as the direct input of the neural

networks. In particular, this operation employs a zero-padding

strategy for pixels near the image boundary. That is, a 9 × 9

patch centered at a pixel near the boundary will be zero padded

for those pixels outside the image. Finally, an SENet tailored

for the PolSAR image classification is designed. We randomly

divide the samples into three parts according to a certain ratio,

which are used as training set, verification set and test set,

respectively. In this network, along the channel direction of the

input image, pixel at any position (m, n) can be expressed as

{yL+1
1 (m,n), yL1 (m,n), yL+1

2 (m,n), . . . , yL16(m,n)}, which

represents the features of the polarimetric subbands within that

pixel. The channel modeling of the SENet network automatically

learns the contributions of polarimetric feature maps and the

LC subbands. In our model, when the SE module acts on the

output of the convolutional layer, the result of the channel

modeling is

Feq =

[

(

w1
yL

1m1
yL

1 + · · ·+ wa
yL

1ma
yL

1 + · · ·
)

+
(

w1
yL+1

1m1
yL+1

1 + · · ·+ wb
yL

1mb
yL

1 + · · ·
)

]

+ · · ·+
[

(

wi
yLimi

yL
i + · · ·+ wp

yL
imp

yL
i + · · ·

)

+
(

wi
yL+1imi

yL+1
i + · · ·+ wp

yL+1
imp

yL+1
i + · · ·

)

]

+ · · ·+
[

(

w16
yL

16m16
yL

16 + · · ·+ wu
yL

1mu
yL

16 + · · ·
)

+
(

w16
yL+1

16m16
yL+1

16 + · · ·+ wv
yL

16mv
yL

16 + · · ·
)

]

(13)

where m
yL

i

p represents the pth feature map from the L (contour)

subband of the ith polarimetric feature image, w
yL

i

p is the cor-

responding channel weight; m
y
L+1

i

q is the qth feature map from

the L+1 (low-frequency) subband of the ith polarimetric feature

image, and w
y
L+1

i

q is the corresponding channel weight. The

other variables are similarly defined. It thus captures not only

the weighted polarimetric features and LC subbands, but also

the spatial relations surrounding the center pixel.

III. EXPERIMENT AND DISCUSSION

In this section, the performance of the proposed algorithm is

evaluated and analyzed on three real POLSAR datasets. The

overall accuracy (OA) and the classification result map are

used to evaluate the performance of the proposed LC-PSENet.

Moreover, the baseline CNN, PSENet, and LC-CNN is used

to compare with the proposed LC-PSENet. This comparison

experiment mainly demonstrates the effectiveness of LC sub-

bands image construction and the SE operate in the CNN model.

All these comparison algorithms have almost the similar exper-

imental parameters in the classification model, including the

number of convolution layers, the size of input patches, and

the size of convolution filter in each convolution layer, which

makes the comparison fair. Based on the network design in

Section II, the degrees of freedom (DoF) of parameters of the

aforementioned four comparison networks are 70927, 79247,

87311, and 95631, respectively. Also, to further demonstrate

the competitive performance of the proposed LC-PSENet, some

recent state-of-the-art methods are used for another comparison,

which are CV-CNN [44], PCN [50], SSAE [47], W-DBN [49],

SF-CNN [43], and WCAE [7].

In our experiment data, for example, in the coherency matrix

T of the Flevoland dataset, T11, T22, and T33 of some pixels at

the boundary are zero. These zero values may be measurement

errors of some pixels at the boundary, which causes abnormal

extraction of some features such as feature D in the pixel. In

order not to affect feature extraction, we correct these abnormal

data before feature extraction. Through the approach of near

assignment, these data are corrected before feature extraction.

Specifically, for the zero values of the four vertices of the image,

we assign the corresponding values of the pixels in the diagonal

direction of the three adjacent pixels to them, and for zero values
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Fig. 7. Flevoland dataset. (a) Pauli RGB of the PolSAR image. (b) Ground-
truth map. (c) Legend of the ground truth.

of other pixels at the boundary, we assign them the nearest

nonboundary values in their horizontal or vertical direction.

For parameter setting and optimization, the weight parameters

of the kernel in each convolution layer are initialized from

Gaussian distributions with zero mean and a standard deviation

of
√

2/n, where n denotes the number of inputs to each units.

We use the Adadelta algorithm to optimize the network during

the training. The batch size is set to 64, and we initialize the

learning rate η to 1 with the decay factor of 0.95 per iterations.

In addition, we reduce the learning rate periodically with a factor

of 0.5 per 25 epochs. The network is totally trained for 80 epochs.

The subband decomposition of PolSAR images ran on MAT-

LAB platform. The networks were trained and evaluated on the

Keras deep learning framework with Tensorflow as the backend,

and ran on a Linux server with Intel Xeon CPU (2.2 GHz) and

NVIDIA Tesla K80 GPU (24 GB).

A. Experiment on Flevoland Dataset

The Flevoland dataset is an L-band fully polarized SAR image

of a farmland area in The Netherlands, which was obtained by the

NASA / Jet Propulsion Laboratory AIRSAR platform in 1989

[56]. The PolSAR data have an azimuth resolution of 12.1 m and

a slant angle resolution of 6.6 m. The Pauli RGB image of this

dataset is shown in Fig. 7(a) with a size of 1024 × 750 pixels,

and the corresponding ground truth is shown in Fig. 7(b). The

area contains 15 types of land cover classes, which are mainly

crops. Fig. 7(c) is the legend of the ground truth.

For training sample ratio in this experiment, Zhang et al.

conducted a sensitivity analysis on the ratio of different training

samples [44]. They demonstrated that after the training data

exceeds 10%, the test accuracy tends to be stable. And in most

literatures using this dataset, the proportion of training samples

is between 5% and 10%. For the convenience of comparison,

we refer to the literature [50] to randomly select 200 samples of

Buildings and 1000 samples per type of the other 14 types. These

samples accounted for about 9% of the total number of samples,

of which about 8% as the training set, 1% as the validation set.

TABLE I
CLASSIFICATION ACCURACY OF THE FOUR DESIGNED METHODS ON

FLEVOLAND DATASET

Bold is the maximum value of the experimental results.

1) Accuracy: Table I lists the classification accuracy of each

designed method in each category on the Flevoland dataset, and

the OA is in the last line. The best results are shown in bold. As

is shown in the table, the OA of the CNN, PSENet, LC-CNN,

and LC-PSENet are 98.79%, 98.89%, 99.51%, and 99.66%,

respectively. Apparently, the proposed LC-PSENet achieves the

highest accuracy among the four comparison methods, which is

0.87% higher than the baseline CNN under the same experiment

conditions. In detail, by decomposing the polarimetric feature

maps, and then, using the CNN to fuse the decomposed LC

subbands, the LC-CNN improves the testing accuracy by 0.72%

compared with directly using the CNN to fuse the polarimet-

ric feature maps. This result shows that the construction of

LC subbands image significantly improves the classification

accuracy. Based on the LC-CNN, the SE module is used to

model the LC subbands of the polarimetric feature maps, and

the LC-PSENet algorithm is obtained, with a testing accuracy

of 99.66%, which is further improved than the LC-CNN by

0.15%. These results demonstrate the effectiveness of LC sub-

bands image construction and SE channel modeling. Besides,

LC-CNN’s testing OA is 0.62% higher than PSENet, and its

testing accuracy on each category is higher than PSEnet, which

shows that the LC subbands image construction contributes more

to classification accuracy improvement than SE operations. In

addition, when analyzing the performance of each method on

different categories, we found that the accuracy of LC-PSENet

on the worst performing category Rapeseed is as high as 98.96%,

which is 2.33% higher than that of CNN and PSENet. And the

accuracies on the other 13 categories are all over 99%, showing

a more balanced performance on various categories. But CNN

and PSENet performed poorly in some categories, such as

Rapeseed and Grass. There may be three reasons for the excellent

performance of LC-PSENet. First, the selected LC subbands of

the polarimetric feature maps can guide the neural network to

focus on the boundary regions and homogeneous regions of the

PolSAR image, respectively, providing a priori knowledge for

the neural network to mine more useful features. Second, the

LC subband maps contain only weakened speckle noise, and
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TABLE II
CLASSIFICATION ACCURACY COMPARISON WITH THE OTHER STATE-OF-THE-ART ALGORITHMS

the low-frequency map and the contour map contain different

levels of noise. After training of the network, the proportion of

low-frequency features and contour features that are mined is not

the same, so the noise is also suppressed following the ratio of

different feature types, which may finally effectively reduce the

isolated points. Third, the SE module models the feature channel,

effectively weighing the contribution of different polarimetric

features, as well as the contribution of low-frequency maps and

contour maps.

Table II lists the classification accuracy of the proposed

LC-PSENet and some other state-of-the-art methods including

W-CAE, W-DBN, PCN, CV-CNN, SSAE, and SF-CNN, where

values in parentheses are the results after postprocessing. The

testing OA are 93.31%, 97.57%, 96.94%, 97.70%, 95.02%,

99.30%, and 99.66%, respectively. It shows that the proposed

LC-PSENet achieves the highest OA among the comparison

methods, and performs best on most categories, demonstrating

its superiority. Although there are fewer training samples for

W-CAE and W-DBN, but their accuracies is much lower than

LC-PSENet, and W-DBN needs an additional clean algorithm

to maintain the accuracy of 97.57%. In addition, we trained our

model with 5% data and the test result is 99.24%, which shows

the LC-PSENet still have advantages.

Fig. 8 shows the classification results of the first four de-

signed comparison methods on the whole Flevoland map and the

areas with the ground truth. Compared with Fig. 8(a-1)–(c-1),

Fig. 8(d-1) is more in line with the ground truth. As is shown

in the figure, Fig. 8(a-1) and (b-1) have many isolated points

in many homogeneous regions, and these isolated points are

misclassified points. In Fig. 8(c-1) and (d-1), such isolated points

are greatly reduced, as shown in the area marked by the red

rectangular frame. And the isolated points in Fig. 8(d-1) are

slightly less than in Fig. 8(c-1). This result illustrates the effec-

tiveness of the proposed LC-PSENet again, and demonstrates

the aforementioned argument that it can suppress the effect of

speckle noise through control the proportion of feature mining

in the two types of subbands. By comparing Fig. 8(a-2)–(d-2),

we can also find that the LC-PSENet has fewer isolated points in

most homogeneous regions. And for the boundary, such as the

green area wrapped by the blue area in the upper right corner

of the maps, CNN and PSENet have thicker and uneven red

pixels on their boundary, while LC-PSENet is more uniform at

the boundary, which improves the discrimination and fineness

of boundaries between different areas. This result proves that

LC-PSENet can guide the neural network to learn more useful

features for classification.

2) Convergence and Time Consumption: Fig. 9 shows the

convergence curve of the four comparison networks, where

Fig. 9(a) is the training loss curve and Fig. 9(b) is the validation

accuracy curve. We can see from the training loss curve that

LC-PSENet converges first, followed by the LC-CNN, finally,

PSENet and CNN. And in the validation accuracy curve, LC-

PSENet and LC-CNN obtain the highest validation accuracy.

These results show us that the proposed LC-PSENet not only

improves the recognition accuracy, but also accelerates the con-

vergence speed. The improvement of the convergence speed is

due to the subband maps providing a priori information for the

network input, guiding the network to learn the main spatial

features of the polar feature maps more effectively, and avoiding

the network to directly mine features from PolSAR images

containing noise and fuzzy boundaries.

As to time consumption, to make the comparison fair, the four

comparison networks designed in this article have similar struc-

ture and parameter design. Because the differences in DoF of
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Fig. 8. Classification results on the Flevoland dataset. (a-1) Result overlaid
with the ground truth map of CNN. (a-2) Result of whole map of CNN. (b-1)
and (b-2) Results of the PSENet. (c-1) and (c-2) Results of the LC-CNN. (d-1)
and (d-2) Results of the LC-PSENet.

the four comparison networks are very small, the four networks

take 161.009, 161.011, 161.010, 161.012 s, respectively, for all

80 epochs in the training period of our experiment, with almost

no difference. Also, the testing time of the comparison methods

is basically the same. However, considering the convergence

speed, LC-PSENet in Fig. 9(a) converges at least five epochs

earlier than the CNN, which can save 10 s of the training time.

Although LC-PSENet still needs to perform subband decom-

position on the polarimetric feature maps before training, for

a map of 750 × 1024 pixels, it only needs 1–2 s on the CPU

to decompose the entire image using the NSLP. Therefore, LC-

PSENet still has the advantage in time consuming. On the whole,

LC-PSENet significantly improves the classification accuracy

on the basis of the CNN, and it can save a certain amount of

Fig. 9. Convergence curve of the four comparison networks. (a) Training loss.
(b) Validation accuracy.

training time because of its faster convergence speed, further

illustrating that it is an effective method.

3) Algorithm Complexity: In order to further verify the effi-

ciency of the proposed method, the complexity of the proposed

method will be compared with several methods. Because the

parameters of the aforementioned partial comparison methods

are not fully shown in the literature, this article only compares the

proposed algorithm with the PCN, CV-CNN, and SF-CNN. The

complexity comparison in this article includes two aspects: time

complexity and space complexity. In convolutional networks,

some operations such as pooling operations account for a very

small proportion of the complexity, and the number of similar

operations in the comparison network is also equivalent, so we

only include convolutional layers and fully connected layers in

our calculations. The time complexity of a single convolutional
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TABLE III
ALGORITHM COMPLEXITY COMPARISON WITH OTHER METHODS

Fig. 10. Netherlands dataset. (a) Pauli RGB of the PolSAR image. (b) Ground-
truth map and the legend.

layer is expressed as

T ∼ O
(

M2 ·K2 · Cin · Cout

)

(14)

where M represents the side length of the feature map output

by the convolutional layer, K represents the side length of the

convolution kernel of the layer, Cin is the number of input

channels, and Cout is the number of output channels. The space

complexity of a single convolutional layer is expressed as

S ∼ O
(

K2 · Cin · Cout

)

. (15)

For the fully connected layer, it can be regarded as a special

convolutional layer whose convolution kernel size K is consis-

tent with the size of the input matrix. The output feature maps of

each convolutional layer is scalar points, that is, M = 1. Because

NSLP takes very little time compared to neural network training,

its complexity is not discussed mixed with neural networks.

Table III shows the time complexity and space complexity

of the comparison algorithms. The figure shows that the time

complexity and space complexity of the proposed algorithm are

the smallest among the four networks. Among them, the time

complexity of the PCN algorithm is extremely large, because

the image size is enlarged by 16 times after the PCN encoding,

and the network uses the entire image as the input so that the

size of the feature maps of each layer is more than 10 000 times

that of several other networks. The size of the input patch of the

CV-CNN and SF-CNN is also a multiple of LC-PSENet, making

LC-PSENet less complex.

B. Experiment on Netherlands Dataset

Another L-band fully polarized SAR data obtained by AIR-

SAR in 1991 over Flevoland, the Netherlands was used to verify

the effectiveness of the proposed method [56]. Fig. 10(a) shows

the Pauli RGB image of this dataset with a size of 1020 × 1024,

and Fig. 10(b) is the corresponding ground truth and its legend.

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY OVER THE GROUND-TRUTH

AREA OF NETHERLANDS DATASET

Bold is the maximum value of the experimental results.

The dataset contains 14 types of land cover classes. Same as the

literature [44], we randomly choose 850 samples per category

as training and validation samples, where 10 800 samples are

used for training and 1 100 samples for validation. The residual

labeled data are used for testing. In this experiment, in addition

to verifying its performance in classification accuracy, the per-

formance of the method between the category boundaries is also

discussed in detail.

Table IV lists the classification accuracy of each comparison

method in each category on the Netherlands dataset, where the

best OA is shown in bold. As is shown in Table IV, the testing

OA of the CV-CNN, CNN, PSENet, LC-CNN, and LC-PSENet

are 99.0%, 99.45%, 99.51%, 99.67%, and 99.72%, respectively.

It shows that the proposed LC-PSENet achieves the highest

classification accuracy among the comparison methods. In ad-

dition, in the classification results of LC-PSENet, the majority

classes have a positive accuracy close to 100%, and all classes are

higher than 99%. Since the parameter design of CNN, PSENet,

LC-CNN, and LC-PSENet are similar, and they all use the

same number of training samples as the CV-CNN in [44], the

performance of LC-PSENet in the classification accuracy proves

the superiority of the proposed method.

Fig. 11 shows the classification results of the designed four

methods on the whole Flevoland map and the areas with the

ground truth. At first glance, Fig. 11(a-1)–(d-1) are all in good

agreement with the ground truth. But the classification accuracy

of the LC-PSENet in some categories is significantly improved

compared with other methods, such as the classification results

of Barley. The red rectangular box in Fig. 11(a-1)–(d-1) marks

the classification result of the four comparison algorithms in a

same Barley area. As can be seen from the figure, the misclassi-

fied pixels in this area decrease sequentially from Fig. 11(a-1)–

(d-1). The experimental results also prove the effectiveness of

the LC-PSENet. In addition, as shown in the area marked by the

black rectangular frame in Fig. 11(a-2)–(d-2), two phenomena

occur in the classification result of the boundary. First, at the

boundaries of different categories, Fig. 11(a-1) and (b-1) have

significantly more heterogeneous pixels than Fig. 11(d-1), while
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Fig. 11. Classification results on the Netherlands dataset. (a-1) Result overlaid
with the ground-truth map of CNN. (a-2) Result of whole map of CNN. (b-1)
and (b-2) Results of the PSENet. (c-1) and (c-2) Results of the LC-CNN. (d-1)
and (d-2) Results of the LC-PSENet.

Fig. 11(d-1) appears as a fine line. Second, at the junction of

two identical regions, Fig. 11(d-1) can be better classified as a

homogeneous region without adding a heterogeneous boundary.

These two phenomena show that the proposed algorithm is more

delicate in boundary processing and reduces the probability of

cutting a homogeneous region.

Fig. 12. Oberpfaffenhofen dataset. (a) Pauli RGB of the PolSAR image. (b)
Ground-truth map and the legend.

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY OVER THE GROUND-TRUTH

AREA OF OBERPFAFFENHOFEN DATASET

Bold is the maximum value of the experimental results.

C. Experiment on Oberpfaffenhofen Dataset

In order to further verify the universality of the method, an

extra experiment was conducted on the ESAR L-band data over

Oberpfaffenhofen, Germany [56]. Fig. 12(a) shows the Pauli

RGB image of this dataset with a size of 1300 × 1200, and

Fig. 12(b) is the corresponding ground truth with the legend.

The dataset contains three types of land cover classes. Because

of the large size and small number of classes, only 1% of the

labeled samples are randomly sampled as the training dataset in

this experiment. Thus, the training samples and the validation

samples are 0.9% and 0.1%, respectively.

Table V lists the classification accuracy of each comparison

method in each category on the Oberpfaffenhofen dataset. As is

shown in Table V, the OA of the CV-CNN, CNN, PSENet, LC-

CNN, and LC-PSENet are 93.4%, 94.47%, 94.62%, 95.67%,

and 95.89%, respectively. So, we can judge that the proposed

LC-PSENet performs best. And a detailed comparison of CNN

and LC-CNN, and PSENet and LC-PSENet shows that the clas-

sification accuracy of the network using LC subbands as input

is significantly higher than that of directly using polarimetric

feature maps as the input, with increase more than 1%. In addi-

tion, the classification results of the LC-PSENet in built-up areas

are the most improved compared with the CNN and PSENet.

By observing the Pauli RGB image in Fig. 12, it is found that

the texture of built-up areas of the Oberpfaffenhofen image is

snowflake like, while the texture of wood land and open areas is

more uniform. The substantial improvement in the classification

results of built-up areas stems from the LC subbands’ effective

guidance of network learning.

Fig. 13 shows the classification results of the designed four

methods on the areas with the ground truth. It can be seen that
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Fig. 13. Classification results on the Oberpfaffenhofen dataset. (a) Result
overlaid with the ground truth map of CNN. (b) Results of the PSENet. (c)
Results of the LC-CNN. (d) Results of the LC-PSENet.

this map is more complicated than the Flevoland, since there are

similarities between the built-up areas and the wood land in some

extent for Fig. 12(a). By comparing Fig. 13(a)–(d), we can also

find that the LC-PSENet reduces the number of isolated pixels in

many areas, as shown in the area marked by the black rectangular

frame. The experimental results also prove the effectiveness of

the LC-PSENet.

IV. CONCLUSION

In this article, a novel PolSAR image classification method

named LC-PSENet is proposed. It aims to make full use of the

polarimetric features and spatial features of PolSAR images

to reduce the isolated points in the classification results and

improve the classification accuracy. The proposed LC-PSENet

first innovatively decomposes each polarimetric feature map into

low-frequency subband and contour subband, and guides the

network to perform feature mining and selection unevenly in

the subbands in a supervised way, making the learning of the

network more efficient and flexible. Then, by channel modeling

in the CNN network, this method strengthens the network to

learn the contribution of each polarimetric feature map and its

LC subbands, which provides a more reasonable network for

the PolSAR image classification with joint polarimetric features

and spatial features. Experiments on three real PolSAR datasets

have shown that this method significantly improves the classifi-

cation accuracy of the CNN-based PolSAR image classification

method, and effectively reduces the number of isolated points

in the classification results, and makes the distinction between

boundaries more clear and delicate. At the same time, the clas-

sification accuracy of this method is better than many current

state-of-the-art methods.
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