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Abstract

The use of deep pre-trained transformers has led to remarkable progress in a num-
ber of applications (Devlin et al., 2019). For tasks that make pairwise compar-
isons between sequences, matching a given input with a corresponding label, two
approaches are common: Cross-encoders performing full self-attention over the
pair and Bi-encoders encoding the pair separately. The former often performs
better, but is too slow for practical use. In this work, we develop a new trans-
former architecture, the Poly-encoder, that learns global rather than token level
self-attention features. We perform a detailed comparison of all three approaches,
including what pre-training and fine-tuning strategies work best. We show our
models achieve state-of-the-art results on four tasks; that Poly-encoders are faster
than Cross-encoders and more accurate than Bi-encoders; and that the best results
are obtained by pre-training on large datasets similar to the downstream tasks.

1 Introduction

Recently, substantial improvements to state-of-the-art benchmarks on a variety of language under-
standing tasks have been achieved through the use of deep pre-trained language models followed by
fine-tuning (Devlin et al., 2019). In this work we explore improvements to this approach for the class
of tasks that require multi-sentence scoring: given an input context, score a set of candidate labels,
a setup common in retrieval and dialogue tasks, amongst others. Performance in such tasks has to
be measured via two axes: prediction quality and prediction speed, as scoring many candidates can
be prohibitively slow.

The current state-of-the-art focuses on using BERT models for pre-training (Devlin et al., 2019),
which employ large text corpora on general subjects: Wikipedia and the Toronto Books Corpus
(Zhu et al., 2015). Two classes of fine-tuned architecture are typically built on top: Bi-encoders and
Cross-encoders. Cross-encoders (Wolf et al., 2019; Vig & Ramea, 2019), which perform full (cross)
self-attention over a given input and label candidate, tend to attain much higher accuracies than their
counterparts, Bi-encoders (Mazaré et al., 2018; Dinan et al., 2019), which perform self-attention
over the input and candidate label separately and combine them at the end for a final representa-
tion. As the representations are separate, Bi-encoders are able to cache the encoded candidates, and
reuse these representations for each input resulting in fast prediction times. Cross-encoders must
recompute the encoding for each input and label; as a result, they are prohibitively slow at test time.

In this work, we provide novel contributions that improve both the quality and speed axes over the
current state-of-the-art. We introduce the Poly-encoder, an architecture with an additional learnt at-
tention mechanism that represents more global features from which to perform self-attention, result-
ing in performance gains over Bi-encoders and large speed gains over Cross-Encoders. To pre-train
our architectures, we show that choosing abundant data more similar to our downstream task also
brings significant gains over BERT pre-training. This is true across all different architecture choices
and downstream tasks we try.

We conduct experiments comparing the new approaches, in addition to analysis of what works best
for various setups of existing methods, on four existing datasets in the domains of dialogue and in-
formation retrieval (IR), with pre-training strategies based on Reddit (Mazaré et al., 2018) compared
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to Wikipedia/Toronto Books (i.e., BERT). We obtain a new state-of-the-art on all four datasets with
our best architectures and pre-training strategies, as well as providing practical implementations for
real-time use. Our code and models will be released open-source.

2 RelatedWork

The task of scoring candidate labels given an input context is a classical problem in machine learn-
ing. While multi-class classification is a special case, the more general task involves candidates as
structured objects rather than discrete classes; in this work we consider the inputs and the candidate
labels to be sequences of text.

There is a broad class of models that map the input and a candidate label separately into a com-
mon feature space wherein typically a dot product, cosine or (parameterized) non-linearity is used
to measure their similarity. We refer to these models as Bi-encoders. Such methods include vector
space models (Salton et al., 1975), LSI (Deerwester et al., 1990), supervised embeddings (Bai et al.,
2009; Wu et al., 2018) and classical siamese networks (Bromley et al., 1994). For the next utterance
prediction tasks we consider in this work, several Bi-encoder neural approaches have been con-
sidered, in particular Memory Networks (Zhang et al., 2018a) and Transformer Memory networks
(Dinan et al., 2019) as well as LSTMs (Lowe et al., 2015) and CNNs (Kadlec et al., 2015) which
encode input and candidate label separately. A major advantage of Bi-encoder methods is their abil-
ity to cache the representations of a large, fixed candidate set. Since the candidate encodings are
independent of the input, Bi-encoders are very efficient during evaluation.

Researchers have also studied a more rich class of models we refer to as Cross-encoders, which
make no assumptions on the similarity scoring function between input and candidate label. Instead,
the concatenation of the input and a candidate serve as a new input to a nonlinear function that scores
their match based on any dependencies it wants. This has been explored with Sequential Matching
Network CNN-based architectures (Wu et al., 2017), Deep Matching Networks (Yang et al., 2018),
Gated Self-Attention (Zhang et al., 2018b), and most recently transformers (Wolf et al., 2019; Vig &
Ramea, 2019; Urbanek et al., 2019). For the latter, concatenating the two sequences of text results
in applying self-attention at every layer. This yields rich interactions between the input context and
the candidate, as every word in the candidate label can attend to every word in the input context,
and vice-versa. Urbanek et al. (2019) employed pre-trained BERT models, and fine-tuned both
Bi- and Cross-encoders, explicitly comparing them on dialogue and action tasks, and finding that
Cross-encoders perform better. However, the performance gains come at a steep computational cost.
Cross-encoder representations are much slower to compute, rendering some applications infeasible.

3 Tasks

We consider the tasks of sentence selection in dialogue and article search in IR. The former is a task
extensively studied and recently featured in two competitions: the Neurips ConvAI2 competition
(Dinan et al., 2020), and the DSTC7 challenge, Track 1 (Yoshino et al., 2019; Jonathan K. Kummer-
feld & Lasecki, 2018; Chulaka Gunasekara & Lasecki, 2019). We compare on those two tasks and
in addition, we also test on the popular Ubuntu V2 corpus (Lowe et al., 2015). For IR, we use the
Wikipedia Article Search task of Wu et al. (2018).

The ConvAI2 task is based on the Persona-Chat dataset (Zhang et al., 2018a) which involves dia-
logues between pairs of speakers. Each speaker is given a persona, which is a few sentences that
describe a character they will imitate, e.g. “I love romantic movies”, and is instructed to get to know
the other. Models should then condition their chosen response on the dialogue history and the lines
of persona. As an automatic metric in the competition, for each response, the model has to pick the
correct annotated utterance from a set of 20 choices, where the remaining 19 were other randomly
chosen utterances from the evaluation set. Note that in a final system however, one would retrieve
from the entire training set of over 100k utterances, but this is avoided for speed reasons in common
evaluation setups. The best performing competitor out of 23 entrants in this task achieved 80.7%
accuracy on the test set utilizing a pre-trained Transformer fine-tuned for this task (Wolf et al., 2019).

The DSTC7 challenge (Track 1) consists of conversations extracted from Ubuntu chat logs, where
one partner receives technical support for various Ubuntu-related problems from the other. The
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best performing competitor (with 20 entrants in Track 1) in this task achieved 64.5% R@1 (Chen
& Wang, 2019). Ubuntu V2 is a similar but larger popular corpus, created before the competition
(Lowe et al., 2015); we report results for this dataset as well, as there are many existing results on it.

Finally, we evaluate on Wikipedia Article Search (Wu et al., 2018). Using the 2016-12-21 dump
of English Wikipedia (∼5M articles), the task is given a sentence from an article as a search query,
find the article it came from. Evaluation ranks the true article (minus the sentence) against 10,000
other articles using retrieval metrics. This mimics a web search like scenario where one would like
to search for the most relevant articles (web documents). The best reported method is the learning-
to-rank embedding model, StarSpace, which outperforms fastText, SVMs, and other baselines.

We summarize all four datasets and their statistics in Table 1.

ConvAI2 DTSC7 Ubuntu V2 Wiki Article Search

Train Ex. 131,438 100,000 1,000,000 5,035,182
Valid Ex. 7,801 10,000 19,560 9,921
Test Ex. 6634 5,000 18,920 9,925

Eval Cands per Ex. 20 100 10 10,001

Table 1: Datasets used in this paper.

4 Methods

In this section we describe the various models and methods that we explored.

4.1 Transformers and Pre-training Strategies

Transformers Our Bi-, Cross-, and Poly-encoders, described in sections 4.2, 4.3 and 4.4 respec-
tively, are based on large pre-trained transformer models with the same architecture and dimension
as BERT-base (Devlin et al., 2019), which has 12 layers, 12 attention heads, and a hidden size of
768. As well as considering the BERT pre-trained weights, we also explore our own pre-training
schemes. Specifically, we pre-train two more transformers from scratch using the exact same archi-
tecture as BERT-base. One uses a similar training setup as in BERT-base, training on 150 million of
examples of [INPUT, LABEL] extracted from Wikipedia and the Toronto Books Corpus, while the
other is trained on 174 million examples of [INPUT, LABEL] extracted from the online platform
Reddit (Mazaré et al., 2018), which is a dataset more adapted to dialogue. The former is performed
to verify that reproducing a BERT-like setting gives us the same results as reported previously, while
the latter tests whether pre-training on data more similar to the downstream tasks of interest helps.
For training both new setups we used XLM (Lample & Conneau, 2019).

Input Representation Our pre-training input is the concatenation of input and label [IN-
PUT,LABEL], where both are surrounded with the special token [S], following Lample & Conneau
(2019). When pre-training on Reddit, the input is the context, and the label is the next utterance.
When pre-training on Wikipedia and Toronto Books, as in Devlin et al. (2019), the input is one
sentence and the label the next sentence in the text. Each input token is represented as the sum of
three embeddings: the token embedding, the position (in the sequence) embedding and the segment
embedding. Segments for input tokens are 0, and for label tokens are 1.

Pre-training Procedure Our pre-training strategy involves training with a masked language
model (MLM) task identical to the one in Devlin et al. (2019). In the pre-training on Wikipedia and
Toronto Books we add a next-sentence prediction task identical to BERT training. In the pre-training
on Reddit, we add a next-utterance prediction task, which is slightly different from the previous one
as an utterance can be composed of several sentences. During training 50% of the time the candi-
date is the actual next sentence/utterance and 50% of the time it is a sentence/utterance randomly
taken from the dataset. We alternate between batches of the MLM task and the next-sentence/next-
utterance prediction task. Like in Lample & Conneau (2019) we use the Adam optimizer with
learning rate of 2e-4, β1 = 0.9, β2 = 0.98, no L2 weight decay, linear learning rate warmup, and
inverse square root decay of the learning rate. We use a dropout probability of 0.1 on all layers, and
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a batch of 32000 tokens composed of concatenations [INPUT, LABEL] with similar lengths. We
train the model on 32 GPUs for 14 days.

Fine-tuning After pre-training, one can then fine-tune for the multi-sentence selection task of
choice, in our case one of the four tasks from Section 3. We consider three architectures with which
we fine-tune the transformer: the Bi-encoder, Cross-encoder and newly proposed Poly-encoder.

4.2 Bi-encoder

In a Bi-encoder, both the input context and the candidate label are encoded into vectors:

yctxt = red(T1(ctxt)) ycand = red(T2(cand))

where T1 and T2 are two transformers that have been pre-trained following the procedure described
in 4.1; they initially start with the same weights, but are allowed to update separately during fine-
tuning. T (x) = h1, .., hN is the output of a transformer T and red(·) is a function that reduces that
sequence of vectors into one vector. As the input and the label are encoded separately, segment
tokens are 0 for both. To resemble what is done during our pre-training, both the input and label are
surrounded by the special token [S] and therefore h1 corresponds to [S].

We considered three ways of reducing the output into one representation via red(·): choose the first
output of the transformer (corresponding to the special token [S]), compute the average over all
outputs or the average over the first m ≤ N outputs. We compare them in Table 7 in the Appendix.
We use the first output of the transformer in our experiments as it gives slightly better results.

Scoring The score of a candidate candi is given by the dot-product s(ctxt, candi) = yctxt ·ycandi
. The

network is trained to minimize a cross-entropy loss in which the logits are yctxt ·ycand1
, ..., yctxt ·ycandn

,
where cand1 is the correct label and the others are chosen from the training set. Similar to Mazaré
et al. (2018), during training we consider the other labels in the batch as negatives. This allows for
much faster training, as we can reuse the embeddings computed for each candidate, and also use a
larger batch size; e.g., in our experiments on ConvAI2, we were able to use batches of 512 elements.

Inference speed In the setting of retrieval over known candidates, a Bi-encoder allows for the
precomputation of the embeddings of all possible candidates of the system. After the context em-
bedding yctxt is computed, the only operation remaining is a dot product between yctxt and every
candidate embedding, which can scale to millions of candidates on a modern GPU, and potentially
billions using nearest-neighbor libraries such as FAISS (Johnson et al., 2019).

4.3 Cross-encoder

The Cross-encoder allows for rich interactions between the input context and candidate label, as
they are jointly encoded to obtain a final representation. Similar to the procedure in pre-training,
the context and candidate are surrounded by the special token [S] and concatenated into a single
vector, which is encoded using one transformer. We consider the first output of the transformer as
the context-candidate embedding:

yctxt,cand = h1 = f irst(T (ctxt, cand))

where f irst is the function that takes the first vector of the sequence of vectors produced by the
transformer. By using a single transformer, the Cross-encoder is able to perform self-attention be-
tween the context and candidate, resulting in a richer extraction mechanism than the Bi-encoder. As
the candidate label can attend to the input context during the layers of the transformer, the Cross-
encoder can produce a candidate-sensitive input representation, which the Bi-encoder cannot. For
example, this allows it to select useful input features per candidate.

Scoring To score one candidate, a linear layer W is applied to the embedding yctxt,cand to reduce it
from a vector to a scalar:

s(ctxt, candi) = yctxt,candi
W

Similarly to what is done for the Bi-encoder, the network is trained to minimize a cross entropy loss
where the logits are s(ctxt, cand1), ..., s(ctxt, candn), where cand1 is the correct candidate and the
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Figure 1: Diagrams of the three model architectures we consider. (a) The Bi-encoder encodes
the context and candidate separately, allowing for the caching of candidate representations during
inference. (b) The Cross-encoder jointly encodes the context and candidate in a single transformer,
yielding richer interactions between context and candidate at the cost of slower computation. (c)
The Poly-encoder combines the strengths of the Bi-encoder and Cross-encoder by both allowing for
caching of candidate representations and adding a final attention mechanism between global features
of the input and a given candidate to give richer interactions before computing a final score.

others are negatives taken from the training set. Unlike in the Bi-encoder, we cannot recycle the
other labels of the batch as negatives, so we use external negatives provided in the training set. The
Cross-encoder uses much more memory than the Bi-encoder, resulting in a much smaller batch size.

Inference speed Unfortunately, the Cross-encoder does not allow for precomputation of the can-
didate embeddings. At inference time, every candidate must be concatenated with the input context
and must go through a forward pass of the entire model. Thus, this method cannot scale to a large
amount of candidates. We discuss this bottleneck further in Section 5.4.

4.4 Poly-encoder

The Poly-encoder architecture aims to get the best of both worlds from the Bi- and Cross-encoder.
A given candidate label is represented by one vector as in the Bi-encoder, which allows for caching
candidates for fast inference time, while the input context is jointly encoded with the candidate, as
in the Cross-encoder, allowing the extraction of more information.

The Poly-encoder uses two separate transformers for the context and label like a Bi-encoder, and
the candidate is encoded into a single vector ycandi

. As such, the Poly-encoder method can be im-
plemented using a precomputed cache of encoded responses. However, the input context, which is
typically much longer than a candidate, is represented with m vectors (y1

ctxt..y
m
ctxt) instead of just one

as in the Bi-encoder, where m will influence the inference speed. To obtain these m global features
that represent the input, we learn m context codes (c1, ..., cm), where ci extracts representation yi

ctxt

by attending over all the outputs of the previous layer. That is, we obtain yi
ctxt using:

yi
ctxt =

∑

j

w
ci

j
h j where (w

ci

1
, ..,w

ci

N
) = softmax(ci · h1, .., ci · hN)

5



Published as a conference paper at ICLR 2020

The m context codes are randomly initialized, and learnt during finetuning.

Finally, given our m global context features, we attend over them using ycandi
as the query:

yctxt =
∑

i

wiy
i
ctxt where (w1, ..,wm) = softmax(ycandi

· y1
ctxt, .., ycandi

· ym
ctxt)

The final score for that candidate label is then yctxt · ycandi
as in a Bi-encoder. As m < N, where N is

the number of tokens, and the context-candidate attention is only performed at the top layer, this is
far faster than the Cross-encoder’s full self-attention.

5 Experiments

We perform a variety of experiments to test our model architectures and training strategies over four
tasks. For metrics, we measure Recall@k where each test example has C possible candidates to
select from, abbreviated to R@k/C, as well as mean reciprocal rank (MRR).

5.1 Bi-encoders and Cross-encoders

We first investigate fine-tuning the Bi- and Cross-encoder architectures initialized with the weights
provided by Devlin et al. (2019), studying the choice of other hyperparameters (we explore our own
pre-training schemes in section 5.3). In the case of the Bi-encoder, we can use a large number of neg-
atives by considering the other batch elements as negative training samples, avoiding recomputation
of their embeddings. On 8 Nvidia Volta v100 GPUs and using half-precision operations (i.e. float16
operations), we can reach batches of 512 elements on ConvAI2. Table 2 shows that in this setting,
we obtain higher performance with a larger batch size, i.e. more negatives, where 511 negatives
yields the best results. For the other tasks, we keep the batch size at 256, as the longer sequences
in those datasets uses more memory. The Cross-encoder is more computationally intensive, as the
embeddings for the (context, candidate) pair must be recomputed each time. We thus limit its batch
size to 16 and provide negatives random samples from the training set. For DSTC7 and Ubuntu V2,
we choose 15 such negatives; For ConvAI2, the dataset provides 19 negatives.

Negatives 31 63 127 255 511

R@1/20 81.0 81.7 82.3 83.0 83.3

Table 2: Validation performance on ConvAI2 after fine-tuning a Bi-encoder pre-trained with BERT,
averaged over 5 runs. The batch size is the number of training negatives + 1 as we use the other
elements of the batch as negatives during training.

The above results are reported with Bi-encoder aggregation based on the first output. Choosing the
average over all outputs instead is very similar but slightly worse (83.1, averaged over 5 runs). We
also tried to add further non-linearities instead of the inner product of the two representations, but
could not obtain improved results over the simpler architecture (results not shown).

We tried two optimizers: Adam (Kingma & Ba, 2015) with weight decay of 0.01 (as recommended
by (Devlin et al., 2019)) and Adamax (Kingma & Ba, 2015) without weight decay; based on val-
idation set performance, we choose to fine-tune with Adam when using the BERT weights. The
learning rate is initialized to 5e-5 with a warmup of 100 iterations for Bi- and Poly-encoders, and
1000 iterations for the Cross-encoder. The learning rate decays by a factor of 0.4 upon plateau of the
loss evaluated on the valid set every half epoch. In Table 3 we show validation performance when
fine-tuning various layers of the weights provided by (Devlin et al., 2019), using Adam with decay
optimizer. Fine-tuning the entire network is important, with the exception of the word embeddings.

With the setups described above, we fine-tune the Bi- and Cross-encoders on the datasets, and report
the results in Table 4. On the first three tasks, our Bi-encoders and Cross-encoders outperform
the best existing approaches in the literature when we fine-tune from BERT weights. E.g., the Bi-
encoder reaches 81.7% R@1 on ConvAI2 and 66.8% R@1 on DSTC7, while the Cross-encoder
achieves higher scores of 84.8% R@1 on ConvAI2 and 67.4% R@1 on DSTC7. Overall, Cross-
encoders outperform all previous approaches on the three dialogue tasks, including our Bi-encoders
(as expected). We do not report fine-tuning of BERT for Wikipedia IR as we cannot guarantee the
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Fine-tuned parameters Bi-encoder Cross-encoder

Top layer 74.2 80.6
Top 4 layers 82.0 86.3

All but Embeddings 83.3 87.3
Every Layer 83.0 86.6

Table 3: Validation performance (R@1/20) on ConvAI2 using pre-trained weights of BERT-base
with different parameters fine-tuned. Average over 5 runs (Bi-encoders) or 3 runs (Cross-encoders).

test set is not part of the pre-training for that dataset. In addition, Cross-encoders are also too slow
to evaluate on the evaluation setup of that task, which has 10k candidates.

Dataset ConvAI2 DSTC 7 Ubuntu v2 Wikipedia IR

split test test test test

metric R@1/20 R@1/100 MRR R@1/10 MRR R@1/10001

(Wolf et al., 2019) 80.7

(Gu et al., 2018) - 60.8 69.1 - - -

(Chen & Wang, 2019) - 64.5 73.5 - - -

(Yoon et al., 2018) - - - 65.2 - -

(Dong & Huang, 2018) - - - 75.9 84.8 -

(Wu et al., 2018) - - - - - 56.8

pre-trained BERT weights from (Devlin et al., 2019) - Toronto Books +Wikipedia

Bi-encoder 81.7 ± 0.2 66.8 ± 0.7 74.6 ± 0.5 80.6 ± 0.4 88.0 ± 0.3 -

Poly-encoder 16 83.2 ± 0.1 67.8 ± 0.3 75.1 ± 0.2 81.2 ± 0.2 88.3 ± 0.1 -

Poly-encoder 64 83.7 ± 0.2 67.0 ± 0.9 74.7 ± 0.6 81.3 ± 0.2 88.4 ± 0.1 -

Poly-encoder 360 83.7 ± 0.2 68.9 ± 0.4 76.2 ± 0.2 80.9 ± 0.0 88.1 ± 0.1 -

Cross-encoder 84.8 ± 0.3 67.4 ± 0.7 75.6 ± 0.4 82.8 ± 0.3 89.4 ± 0.2 -

Our pre-training on Toronto Books +Wikipedia

Bi-encoder 82.0 ± 0.1 64.5 ± 0.5 72.6 ± 0.4 80.8 ± 0.5 88.2 ± 0.4 -

Poly-encoder 16 82.7 ± 0.1 65.3 ± 0.9 73.2 ± 0.7 83.4 ± 0.2 89.9 ± 0.1 -

Poly-encoder 64 83.3 ± 0.1 65.8 ± 0.7 73.5 ± 0.5 83.4 ± 0.1 89.9 ± 0.0 -

Poly-encoder 360 83.8 ± 0.1 65.8 ± 0.7 73.6 ± 0.6 83.7 ± 0.0 90.1 ± 0.0 -

Cross-encoder 84.9 ± 0.3 65.3 ± 1.0 73.8 ± 0.6 83.1 ± 0.7 89.7 ± 0.5 -

Our pre-training on Reddit

Bi-encoder 84.8 ± 0.1 70.9 ± 0.5 78.1 ± 0.3 83.6 ± 0.7 90.1 ± 0.4 71.0

Poly-encoder 16 86.3 ± 0.3 71.6 ± 0.6 78.4 ± 0.4 86.0 ± 0.1 91.5 ± 0.1 71.5

Poly-encoder 64 86.5 ± 0.2 71.2 ± 0.8 78.2 ± 0.7 85.9 ± 0.1 91.5 ± 0.1 71.3

Poly-encoder 360 86.8 ± 0.1 71.4 ± 1.0 78.3 ± 0.7 85.9 ± 0.1 91.5 ± 0.0 71.8

Cross-encoder 87.9 ± 0.2 71.7 ± 0.3 79.0 ± 0.2 86.5 ± 0.1 91.9 ± 0.0 -

Table 4: Test performance of Bi-, Poly- and Cross-encoders on our selected tasks.

5.2 Poly-encoders

We train the Poly-encoder using the same batch sizes and optimizer choices as in the Bi-encoder
experiments. Results are reported in Table 4 for various values of m context vectors.

The Poly-encoder outperforms the Bi-encoder on all the tasks, with more codes generally yielding
larger improvements. Our recommendation is thus to use as large a code size as compute time allows
(see Sec. 5.4). On DSTC7, the Poly-encoder architecture with BERT pretraining reaches 68.9% R1
with 360 intermediate context codes; this actually outperforms the Cross-encoder result (67.4%) and
is noticeably better than our Bi-encoder result (66.8%). Similar conclusions are found on Ubuntu
V2 and ConvAI2, although in the latter Cross-encoders give slightly better results.

We note that since reporting our results, the authors of Li et al. (2019) have conducted a human
evaluation study on ConvAI2, in which our Poly-encoder architecture outperformed all other models
compared against, both generative and retrieval based, including the winners of the competition.
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Scoring time (ms)

CPU GPU

Candidates 1k 100k 1k 100k

Bi-encoder 115 160 19 22

Poly-encoder 16 122 678 18 38

Poly-encoder 64 126 692 23 46

Poly-encoder 360 160 837 57 88

Cross-encoder 21.7k 2.2M* 2.6k 266k*

Table 5: Average time in milliseconds to predict the next dialogue utterance from C possible candi-
dates on ConvAI2. * are inferred.

5.3 Domain-specific Pre-training

We fine-tune our Reddit-pre-trained transformer on all four tasks; we additionally fine-tune a trans-
former that was pre-trained on the same datasets as BERT, specifically Toronto Books +Wikipedia.
When using our pre-trained weights, we use the Adamax optimizer and optimize all the layers of the
transformer including the embeddings. As we do not use weight decay, the weights of the final layer
are much larger than those in the final layer of BERT; to avoid saturation of the attention layer in the
Poly-encoder, we re-scaled the last linear layer so that the standard deviation of its output matched
that of BERT, which we found necessary to achieve good results. We report results of fine-tuning
with our pre-trained weights in Table 4. We show that pre-training on Reddit gives further state-of-
the-art performance over our previous results with BERT, a finding that we see for all three dialogue
tasks, and all three architectures.

The results obtained with fine-tuning on our own transformers pre-trained on Toronto Books +
Wikipedia are very similar to those obtained with the original BERT weights, indicating that the
choice of dataset used to pre-train the models impacts the final results, not some other detail in our
training. Indeed, as the two settings pre-train with datasets of similar size, we can conclude that
choosing a pre-training task (e.g. dialogue data) that is similar to the downstream tasks of interest
(e.g. dialogue) is a likely explanation for these performance gains, in line with previous results
showing multi-tasking with similar tasks is more useful than with dissimilar ones (Caruana, 1997).

5.4 Inference Speed

An important motivation for the Poly-encoder architecture is to achieve better results than the Bi-
encoder while also performing at a reasonable speed. Though the Cross-encoder generally yields
strong results, it is prohibitively slow. We perform speed experiments to determine the trade-off of
improved performance from the Poly-encoder. Specifically, we predict the next utterance for 100
dialogue examples in the ConvAI2 validation set, where the model scores C candidates (in this case,
chosen from the training set). We perform these experiments on both CPU-only and GPU setups.
CPU computations were run on an 80 core Intel Xeon processor CPU E5-2698. GPU computations
were run on a single Nvidia Quadro GP100 using cuda 10.0 and cudnn 7.4.

We show the average time per example for each architecture in Table 5. The difference in timing
between the Bi-encoder and the Poly-encoder architectures is rather minimal when there are only
1000 candidates for the model to consider. The difference is more pronounced when considering
100k candidates, a more realistic setup, as we see a 5-6x slowdown for the Poly-encoder variants.
Nevertheless, both models are still tractable. The Cross-encoder, however, is 2 orders of magnitude
slower than the Bi-encoder and Poly-encoder, rendering it intractable for real-time inference, e.g.
when interacting with a dialogue agent, or retrieving from a large set of documents. Thus, Poly-
encoders, given their desirable performance and speed trade-off, are the preferred method.

We additionally report training times in the Appendix, Table 6. Poly-encoders also have the benefit
of being 3-4x faster to train than Cross-encoders (and are similar in training time to Bi-encoders).
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6 Conclusion

In this paper we present new architectures and pre-training strategies for deep bidirectional trans-
formers in candidate selection tasks. We introduced the Poly-encoder method, which provides a
mechanism for attending over the context using the label candidate, while maintaining the ability to
precompute each candidate’s representation, which allows for fast real-time inference in a produc-
tion setup, giving an improved trade off between accuracy and speed. We provided an experimental
analysis of those trade-offs for Bi-, Poly- and Cross-encoders, showing that Poly-encoders are more
accurate than Bi-encoders, while being far faster than Cross-encoders, which are impractical for
real-time use. In terms of training these architectures, we showed that pre-training strategies more
closely related to the downstream task bring strong improvements. In particular, pre-training from
scratch on Reddit allows us to outperform the results we obtain with BERT, a result that holds for all
three model architectures and all three dialogue datasets we tried. However, the methods introduced
in this work are not specific to dialogue, and can be used for any task where one is scoring a set of
candidates, which we showed for an information retrieval task as well.
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A Training Time

We report the training time on 8 GPU Volta 100 for the 3 datasets considered and for 4 types of
models in Table 6.

Dataset ConvAI2 DSTC7 UbuntuV2

Bi-encoder 2.0 4.9 7.9

Poly-encoder 16 2.7 5.5 8.0

Poly-encoder 64 2.8 5.7 8.0

Cross-encoder64 9.4 13.5 39.9

Table 6: Training time in hours.

B Reduction layer in Bi-encoder

We provide in Table 7 the results obtained for different types of reductions on top of the Bi-encoder.
Specifically we compare the Recall@1/20 on the ConvAI2 validation set when taking the first output
of BERT, the average of the first 16 outputs, the average of the first 64 outputs and all of them except
the first one ([S]).

Setup ConvAI2 valid Recall@1/20

First output 83.3

Avg first 16 outputs 82.9

Avg first 64 outputs 82.7

Avg all outputs 83.1

Table 7: Bi-encoder results on the ConvAI2 valid set for different choices of function red(·).

C Alternative Choices for Context Vectors

We considered a few other ways to derive the context vectors (y1
ctxt, ..., y

m
ctxt) of the Poly-encoder from

the output (h1
ctxt, ..., h

N
ctxt) of the underlying transformer:

• Learn m codes (c1, ..., cm), where ci extracts representation yi
ctxt by attending over all the

outputs (h1
ctxt, ..., h

N
ctxt). This method is denoted “Poly-encoder (Learnt-codes)” or “Poly-

encoder (Learnt-m)”, and is the method described in section 4.4

• Consider the first m outputs (h1
ctxt, ..., h

m
ctxt). This method is denoted “Poly-encoder (First

m outputs)” or “Poly-encoder (First-m)”. Note that when N < m, only m vectors are
considered.

• Consider the last m outputs.

• Consider the last m outputs concatenated with the first one, h1
ctxt which plays a particular

role in BERT as it corresponds to the special token [S].

The performance of those four methods is evaluated on the validation set of Convai2 and DSTC7
and reported on Table 8. The first two methods are shown in Figure 2. We additionally provide the
inference time for a given number of candidates coming from the Convai2 dataset on Table 9.
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Dataset ConvAI2 DSTC 7

split dev test dev test

metric R@1/20 R@1/20 R@1/100 R@1/100

(Wolf et al., 2019) 82.1 80.7 - -

(Chen & Wang, 2019) - - 57.3 64.5

1 Attention Code

Learnt-codes 81.9 ± 0.3 81.0 ± 0.1 56.2 ± 0.1 66.9 ± 0.7
First m outputs 83.2 ± 0.2 81.5 ± 0.1 56.4 ± 0.3 66.8 ± 0.7
Last m outputs 82.9 ± 0.1 81.0 ± 0.1 56.1 ± 0.4 67.2 ± 1.1

Last m outputs and h1
ctxt - - - -

4 Attention Codes

Learnt-codes 83.8 ± 0.2 82.2 ± 0.5 56.5 ± 0.5 66.8 ± 0.7
First m outputs 83.4 ± 0.2 81.6 ± 0.1 56.9 ± 0.5 67.2 ± 1.3
Last m outputs 82.8 ± 0.2 81.3 ± 0.4 56.0 ± 0.5 65.8 ± 0.5

Last m outputs and h1
ctxt 82.9 ± 0.1 81.4 ± 0.2 55.8 ± 0.3 66.1 ± 0.8

16 Attention Codes

Learnt-codes 84.4 ± 0.1 83.2 ± 0.1 57.7 ± 0.2 67.8 ± 0.3
First m outputs 85.2 ± 0.1 83.9 ± 0.2 56.1 ± 1.7 66.8 ± 1.1
Last m outputs 83.9 ± 0.2 82.0 ± 0.4 56.1 ± 0.3 66.2 ± 0.7

Last m outputs and h1
ctxt 83.8 ± 0.3 81.7 ± 0.3 56.1 ± 0.3 66.6 ± 0.2

64 Attention Codes

Learnt-codes 84.9 ± 0.1 83.7 ± 0.2 58.3 ± 0.4 67.0 ± 0.9
First m outputs 86.0 ± 0.2 84.2 ± 0.2 57.7 ± 0.6 67.1 ± 0.1
Last m outputs 84.9 ± 0.3 82.9 ± 0.2 57.0 ± 0.2 66.5 ± 0.5

Last m outputs and h1
ctxt 85.0 ± 0.2 83.2 ± 0.2 57.3 ± 0.3 67.1 ± 0.5

360 Attention Codes

Learnt-codes 85.3 ± 0.3 83.7 ± 0.2 57.7 ± 0.3 68.9 ± 0.4
First m outputs 86.3 ± 0.1 84.6 ± 0.3 58.1 ± 0.4 66.8 ± 0.7
Last m outputs 86.3 ± 0.1 84.7 ± 0.3 58.0 ± 0.4 68.1 ± 0.5

Last m outputs and h1
ctxt 86.2 ± 0.3 84.5 ± 0.4 58.3 ± 0.4 68.0 ± 0.8

Table 8: Validation and test performance of Poly-encoder variants, with weights initialized from
(Devlin et al., 2019). Scores are shown for ConvAI2 and DSTC 7 Track 1. Bold numbers indicate
the highest performing variant within that number of codes.

Scoring time (ms)

CPU GPU

Candidates 1k 100k 1k 100k

Bi-encoder 115 160 19 22

Poly-encoder (First m outputs) 16 119 551 17 37

Poly-encoder (First m outputs) 64 124 570 17 39

Poly-encoder (First m outputs) 360 120 619 17 45

Poly-encoder (Learnt-codes) 16 122 678 18 38

Poly-encoder (Learnt-codes) 64 126 692 23 46

Poly-encoder (Learnt-codes) 360 160 837 57 88

Cross-encoder 21.7k 2.2M* 2.6k 266k*

Table 9: Average time in milliseconds to predict the next dialogue utterance from N possible candi-
dates. * are inferred.
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Figure 2: (a) The Bi-encoder (b) The Cross-encoder (c) The Poly-encoder with first m vectors. (d)
The Poly-encoder with m learnt codes.

Dataset ConvAI2 DSTC 7 Ubuntu v2

split dev test dev test dev test

metric R@1/20 R@1/20 R@1/100 R@1/100 R@10/100 MRR R@1/10 R@1/10 R@5/10 MRR

Hugging Face
82.1 80.7 - - - - - - - -

(Wolf et al., 2019)

(Chen & Wang, 2019) - - 57.3 64.5 90.2 73.5 - - - -

(Dong & Huang, 2018) - - - - - - - 75.9 97.3 84.8

pre-trained weights from (Devlin et al., 2019) - Toronto Books +Wikipedia

Bi-encoder 83.3 ± 0.2 81.7 ± 0.2 56.5 ± 0.4 66.8 ± 0.7 89.0 ± 1.0 74.6 ± 0.5 80.9 ± 0.6 80.6 ± 0.4 98.2 ± 0.1 88.0 ± 0.3

Poly-encoder (First-m) 16 85.2 ± 0.1 83.9 ± 0.2 56.7 ± 0.2 67.0 ± 0.9 88.8 ± 0.3 74.6 ± 0.6 81.7 ± 0.5 81.4 ± 0.6 98.2 ± 0.1 88.5 ± 0.4

Poly-encoder (Learnt-m) 16 84.4 ± 0.1 83.2 ± 0.1 57.7 ± 0.2 67.8 ± 0.3 88.6 ± 0.2 75.1 ± 0.2 81.5 ± 0.1 81.2 ± 0.2 98.2 ± 0.0 88.3 ± 0.1

Poly-encoder (First-m) 64 86.0 ± 0.2 84.2 ± 0.2 57.1 ± 0.2 66.9 ± 0.7 89.1 ± 0.2 74.7 ± 0.4 82.2 ± 0.6 81.9 ± 0.5 98.4 ± 0.0 88.8 ± 0.3

Poly-encoder (Learnt-m) 64 84.9 ± 0.1 83.7 ± 0.2 58.3 ± 0.4 67.0 ± 0.9 89.2 ± 0.2 74.7 ± 0.6 81.8 ± 0.1 81.3 ± 0.2 98.2 ± 0.1 88.4 ± 0.1

Poly-encoder (First-m) 360 86.3 ± 0.1 84.6 ± 0.3 57.8 ± 0.5 67.0 ± 0.5 89.6 ± 0.9 75.0 ± 0.6 82.7 ± 0.4 82.2 ± 0.6 98.4 ± 0.1 89.0 ± 0.4

Poly-encoder (Learnt-m) 360 85.3 ± 0.3 83.7 ± 0.2 57.7 ± 0.3 68.9 ± 0.4 89.9 ± 0.5 76.2 ± 0.2 81.5 ± 0.1 80.9 ± 0.1 98.1 ± 0.0 88.1 ± 0.1

Cross-encoder 87.1 ± 0.1 84.8 ± 0.3 59.4 ± 0.4 67.4 ± 0.7 90.5 ± 0.3 75.6 ± 0.4 83.3 ± 0.4 82.8 ± 0.3 98.4 ± 0.1 89.4 ± 0.2

Our pre-training on Toronto Books +Wikipedia

Bi-encoder 84.6 ± 0.1 82.0 ± 0.1 54.9 ± 0.5 64.5 ± 0.5 88.1 ± 0.2 72.6 ± 0.4 80.9 ± 0.5 80.8 ± 0.5 98.4 ± 0.1 88.2 ± 0.4

Poly-encoder (First-m) 16 84.1 ± 0.2 81.4 ± 0.2 53.9 ± 2.7 63.3 ± 2.9 87.2 ± 1.5 71.6 ± 2.4 80.8 ± 0.5 80.6 ± 0.4 98.4 ± 0.1 88.1 ± 0.3

Poly-encoder (Learnt-m) 16 85.4 ± 0.2 82.7 ± 0.1 56.0 ± 0.4 65.3 ± 0.9 88.2 ± 0.7 73.2 ± 0.7 84.0 ± 0.1 83.4 ± 0.2 98.7 ± 0.0 89.9 ± 0.1

Poly-encoder (First-m) 64 86.1 ± 0.4 83.9 ± 0.3 55.6 ± 0.9 64.3 ± 1.5 87.8 ± 0.4 72.5 ± 1.0 80.9 ± 0.6 80.7 ± 0.6 98.4 ± 0.0 88.2 ± 0.4

Poly-encoder (Learnt-m) 64 85.6 ± 0.1 83.3 ± 0.1 56.2 ± 0.4 65.8 ± 0.7 88.4 ± 0.3 73.5 ± 0.5 84.0 ± 0.1 83.4 ± 0.1 98.7 ± 0.0 89.9 ± 0.0

Poly-encoder (First-m) 360 86.6 ± 0.3 84.4 ± 0.2 57.5 ± 0.4 66.5 ± 1.2 89.0 ± 0.5 74.4 ± 0.7 81.3 ± 0.6 81.1 ± 0.4 98.4 ± 0.2 88.4 ± 0.3

Poly-encoder (Learnt-m) 360 86.1 ± 0.1 83.8 ± 0.1 56.5 ± 0.8 65.8 ± 0.7 88.5 ± 0.6 73.6 ± 0.6 84.2 ± 0.2 83.7 ± 0.0 98.7 ± 0.1 90.1 ± 0.0

Cross-encoder 87.3 ± 0.5 84.9 ± 0.3 57.7 ± 0.5 65.3 ± 1.0 89.7 ± 0.5 73.8 ± 0.6 83.2 ± 0.8 83.1 ± 0.7 98.7 ± 0.1 89.7 ± 0.5

Our pre-training on Reddit

Bi-encoder 86.9 ± 0.1 84.8 ± 0.1 60.1 ± 0.4 70.9 ± 0.5 90.6 ± 0.3 78.1 ± 0.3 83.7 ± 0.7 83.6 ± 0.7 98.8 ± 0.1 90.1 ± 0.4

Poly-encoder (First-m) 16 89.0 ± 0.1 86.4 ± 0.3 60.4 ± 0.3 70.7 ± 0.7 91.0 ± 0.4 78.0 ± 0.5 84.3 ± 0.3 84.3 ± 0.2 98.9 ± 0.0 90.5 ± 0.1

Poly-encoder (Learnt-m) 16 88.6 ± 0.3 86.3 ± 0.3 61.1 ± 0.4 71.6 ± 0.6 91.3 ± 0.3 78.4 ± 0.4 86.1 ± 0.1 86.0 ± 0.1 99.0 ± 0.1 91.5 ± 0.1

Poly-encoder (First-m) 64 89.5 ± 0.1 87.3 ± 0.2 61.0 ± 0.4 70.9 ± 0.6 91.5 ± 0.5 78.0 ± 0.3 84.0 ± 0.4 83.9 ± 0.4 98.8 ± 0.0 90.3 ± 0.3

Poly-encoder (Learnt-m) 64 89.0 ± 0.1 86.5 ± 0.2 60.9 ± 0.6 71.2 ± 0.8 91.3 ± 0.4 78.2 ± 0.7 86.2 ± 0.1 85.9 ± 0.1 99.1 ± 0.0 91.5 ± 0.1

Poly-encoder (First-m) 360 90.0 ± 0.1 87.3 ± 0.1 61.1 ± 1.9 70.9 ± 2.1 91.5 ± 0.9 77.9 ± 1.6 84.8 ± 0.5 84.6 ± 0.5 98.9 ± 0.1 90.7 ± 0.3

Poly-encoder (Learnt-m) 360 89.2 ± 0.1 86.8 ± 0.1 61.2 ± 0.2 71.4 ± 1.0 91.1 ± 0.3 78.3 ± 0.7 86.3 ± 0.1 85.9 ± 0.1 99.1 ± 0.0 91.5 ± 0.0

Cross-encoder 90.3 ± 0.2 87.9 ± 0.2 63.9 ± 0.3 71.7 ± 0.3 92.4 ± 0.5 79.0 ± 0.2 86.7 ± 0.1 86.5 ± 0.1 99.1 ± 0.0 91.9 ± 0.0

Table 10: Validation and test performances of Bi-, Poly- and Cross-encoders. Scores are shown for
ConvAI2, DSTC7 Track 1 and Ubuntu v2, and the previous state-of-the-art models in the literature.
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