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Abstract 

Beam-hardening is an artifact, which produces false integrals if polychromatic x-ray 

sources are used. It is due to the photon energy dependence of the attenuation 

coefficient. The present work proposes an algorithm for beam-hardening correction 

incorporating the inherent error formula developed at IIT Kanpur. The effect of beam 
hardening and its removal along with inherent error is shown on both simulated and 

experimental data set. It is compared from the point-of-view of nearness of the 

corrected polychromatic projection data to the desired monochromatic projection 

data. The results indicate that the algorithm, proposed originally for medical 

applications, is giving encouraging results for non-medical objects though the 

physical situations are vastly different. 

 

Keywords: Tomography, Beam-hardening, Inherent error 

 

1. Introduction 

Tomography has become a routine part 

in medicine and its use in nondestructive 

evaluation is increasing day by day. 

Measurement in x-ray tomography can only 

be used to estimate the line integrals of the 

absorption coefficient of photons. 

Inaccuracies in these estimates are due to 

width of the x-ray beam, hardening of the 

beam and photon statistics. When x-rays are 

passed through an object, their attenuation 

depends on the density distribution and 

energy spectrum of the beam. As a 

consequence of polychromatic x-ray source, 

the attenuation is no longer a linear function 

of absorber thickness. The attenuation at a 

fixed point is generally greater for photons 

of lower energy and thus energy spectrum 

of x-rays hardens as it passes through the 

material. X-ray beams reaching at particular 

point inside the material from different 

directions are likely to have different spectra 

and therefore these rays attenuate differently 

at that point and it becomes difficult to 

interpret image quantitatively. Beam 

hardening effect has to be compensated to 

prevent reconstructed image from 

corruption by cupping artifacts [1-3].   

In the present study Convolution Back 

Projection (CBP) is used for the 

reconstruction of the projection data and 

with any filter function in CBP will lead to 

inherent error in the reconstruction process 

[4,5]. In the present work, corrections for 

the cupping artifact and the reduction of the 

inherent error in the images are discussed. 
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2. Theory 

2.1 Beam Hardening (BH) Correction 

The linear x-ray coefficient at a point 

inside a cross section of the object depends 

on the position of the point ( , )x y  and on 

energye . It can be denoted as ( , , )x y eµ  In 

case of monochromatic beam it can be 

written as 

( , , )L

L

m x y e dlµ= ∫        (1) 

In case of polychromatic beam result will 

not be Lm but rather an estimate for the 

more complicated integral 

0

ln ( ) ( , , )L

L

P e exp x y e dl deτ µ
∞  

= − − 
 

∫ ∫    

     (2) 

Where ( )eτ  is the probability that the 

detected photon is at energy e [2]. It is 

assumed that the spectrum of the x-ray 

beam can be approximated by a discrete 

spectrum consisting of J energies e(1), 

e(2)….., e(J ) and that e( j ) t is the 

probability that a detected photon is at 

energy e(J) . Let us divide the cross section 

into I pixels. We try to estimate the linear 

attenuation coefficient in each of the I 

pixels. Thus we can get the discretized 

version of (1 and 2) 

 
1

I
i i

e

i

m Zµ
=

=∑                      (3) 

 ( ) ( )

1 1

ln
J I

i i

e j e j

j i

p exp Zτ µ
= =

 
= − − 

 
∑ ∑    (4) 

The least expensive type of the beam 

hardening correction can be done by using a 

function f , which is such that, for 

source/detector pair ( )f p  is a reasonable 

estimate of m . Let us refer to the 

reconstruction from the so corrected 

polychromatic data { ( )}f p  as the first 

reconstruction. It is a set of I numbers i

eµ , 

representing the estimated linear attenuation 

coefficient at energy e  of the material in the 

ith of a total of I  pixels. 

We see that m approximate to m, and p  

approximate to p  and hence ( )f p  

approximate to ( )f p . Furthermore, since the 

line integrals in equations (1 and 2) are 

approximated in the same way in Eqs. (3 

and 4), it appears likely that the errors, 

m m−  and ( ) ( )f p f p−  will be similar, i.e. 

the difference between these errors will be 

considerably smaller than either of these 

errors. The term, ( ) ( )m f p f p− + , is an 

approximation to m  and is superior to the 

use of just ( )f p . This is true in the sense 

that  

({ ( ) ( )},{ }) ({ ( )},{ })f p m f p m f p m∆ + − < ∆
 

Where ∆  represents the root mean square 

error. The second reconstruction is one 

obtained from the data ( ) ( )m f p f p− + . 

Since the second reconstruction is 

presumably more accurate than the first one, 

this process can be repeated [6,7]. 

2.2 Inherent Error Correction 

Projection data obtained from the final 

iteration of BH correction is free from beam 

hardening artifacts can be further processed 

to reduce inherent error. First Kanpur 

Theorem (KT-1) is applied to remove 

inherent error caused by filter function [4-

5]. 

Initially factor η  is calculated using 

following equation. 

 

1

2

NMAX

NMAX
η =  
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Where 1NMAX  and 2NMAX  are 

maximum gray level values of 

monoenergetic and BH corrected data 

respectively. KT-1 is used to modify the 

convolving function by the factor η  after 

that final reconstruction is done using 

modified convolving function. 

Beam hardening and inherent error 

correction is summarized in a combined 

numerical algorithm as stated below: 

1. Reconstruct the polyenergetic projection 

data of test phantom using CBP. The 

function if  is estimated with respect to 

this specimen, which forms our initial 

guess O
0
. 

2. Collecting a new set of relevant 

information including geometry, size of 

specimen from the reconstructed image 

and coefficients of linear attenuation for 

the particular materials used, generate 

specimens iX  at different energies from 

the x-ray source spectrum. 

3. From the generated specimens iX , 

evaluate pseudo monochromatic ray 

sums im  from the equation given below: 

i
I

1i

i

e z µ  m ∑
=

=  

4. Generate pseudo polychromatic ray 

sum,  p  using equation given below 

with )j(eτ  as the probability that a 

detected photon of the x-ray beam is at 

energy )j(e . )j(eτ  can be calculated 

from the x-ray source spectrum. 

de  dz  (z)µ -   τ  -  p

D

0

e

E

0

e 







= ∫∫  expln  

5. Get the correlation functions if ’s, 

utilizing curve fitting strategy between 

im  and p . The most inexpensive curve-

fitting route is to adopt a polynomial 

function for f , and determine its 

coefficients, by least squares technique. 

if ’s can be obtained by, 

)p(f  m ii ≈  

.........p a  p a  p a  a  3

3

2

210i ++++=m  

6. Apply correlation function if  to the 

actual measured data p  recorded in the 

experiment. 

(p)f  m ii ≈  

7. For the second step of BH correction, a 

more superior function is given below 

where the R.M.S. error is minimized. 

im  = im - )p(fi  + )p(fi  

8. Reconstruct im  obtained from above 

step and compare with the initial 

guess 0O . Improve the initial guess from 

im  and repeat above steps till cupping 

artifact and dark bands are reduced 

considerably. This completes the BH 

correction. 

9. Calculate factorη , given by the equation 

below.  

2NMAX

1NMAX
=η  

10. Using KT-1, modify the convolving 

function (here H54) used in CBP 

algorithm by the factorη . Now 

reconstruct all the ‘ im ’s using this 

modified filter function. This completes 

the inherent error correction. 
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Fig. 1: (a) Polyenergetic reconstruction of simulated specimen (S1) (b) Monoenergetic 

reconstruction of simulated specimen at 60Kev (c) BH corrected data after applying KT-

1 for simulated specimen 
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Fig. 2: (a) Polyenergetic reconstruction of specimen-S2 (b) Monoenergetic reconstruction of 

specimen-S2 at 200Kev (c) Reconstruction of BH corrected data after applying KT-1 for 

specimen-S2 
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Fig. 3: (a) Polyenergetic reconstruction of specimen-S3 (b) Monoenergetic reconstruction of 

specimen-S3 at 200Kev (c) Reconstruction of BH corrected data after applying KT-1 for 
specimen-S3  
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3. Specimens Details 

a) Specimen-1 (S1): 

This is computer generated specimen 

which contains materials of three different 

densities. The object considered is a circle 

made up of material ‘a’ with three circular 

holes, one filled with material ‘b’ and two 

filled with material ‘c’. A crack (of density 

zero) is introduced in the right inner 

circular hole with material ‘c’. 

b) Specimen-2 (S2): 

The test phantom considered here is a 

Perspex cylinder of 60 mm radius with 

five holes embedded in it. There is a 

central hole of 12.5mm radius and the 

remaining four holes each of 7.5 mm 

radius are placed on either side of the 

central hole perpendicularly. Here the 

central hole is filled with a uniform mild 

steel cylinder and the remaining four holes 

are unfilled.  

c) Specimen-3 (S3): 

The test phantom considered here is 

same as the specimen-2 but with all the 

holes filled with mild steel. Thus here it is 

a Perspex cylinder with five mild steel pins 

embedded in it. Since there is lot of 

attenuation for this specimen, high energy 

X-rays should be used for scanning. This 

specimen is chosen to check for cupping 

artifact along with dark bands in between 

the steel pins. 

4. Results 

Beam Hardening and Inherent error 

correction has been applied to three 

specimens.  Projection data is acquired in 

fan beam mode at DRDL Hyderabad, with 

source to center distance of 1320.7 mm for 

512 views and 256 rays for the specimens 

2-3. Fan beam projection data is converted 

to parallel beam mode. X-ray source 

spectrum is discretised into five energy 

levels and the probabilities for each of the 

energy levels are calculated. 

Monoenergetic data sets for the above 

specimens are simulated at the discrete 

energy levels. The filter function used in 

all the reconstructions of CBP is Hamming 

54, that resolves well the smooth 

variations in the attenuation coefficient 

and hence the density. Figures 1-3 show 

the monoenergetic; polyenergetic and BH 

corrected images after applying KT-1 

theorem with corresponding density 

profiles for the specimens S1-S3 

respectively. Results are given in the 

above section for all the specimens. Since 

simulated specimen is generated for 128 

rays, it is reconstructed for a grid size of 

128. Similarly, specimens S2 and S3 are 

reconstructed for the grid size of 256. 

Density profiles are drawn for the 

specimens for CT numbers versus the 

pixel numbers. Beam hardening correction 

is done by fitting second order polynomial 

in the least squares sense. 

5. Discussion 

Investigating above results it is depicted 

that all the polyenergetic reconstructions 

have high NMAX  values compared to 

their corresponding monoenergetic ones. 

Monoenergetic projections having high 

probability are considered to give better 

solutions for beam-hardening correction. 

Hence, all the monoenergetic 

reconstructions considered for least 

squares curve fitting (BH correction) are at 

the mean energy level. Simulation of the 

polyenergetic reconstructions should be 

done with good accuracy to ensure better 

BH correction, deviation of which may 

lead to distorted images.  

It can be noticed from figures 1-3 that 

images almost match with the 

monoenergetic ones and cupping artifact 

reduces considerably at the final iteration. 

Fig. 2 shows that BH corrected data of 

specimen S2 is well approximated to its 

monoenergetic data. This indicates that 

algorithm works equally well for object 

with more than two materials. Dark bands 

forming bridges between steel pins are 
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clearly visible from Fig. 3(b), 

polyenergetic image of specimen S3. 

Removal of dark bands at the final 

iteration for specimen S3 can be noticed. 

Thus algorithm is checked for all the 

specimens. 

Table-1 gives the error estimates for the 

simulated and experimental specimens at 

each iteration of the beam hardening 

correction algorithm, before and after 

applying inherent error correction. The 

error presented here is the relative error 

and should approach zero for the ideal 

case. It can be observed that error in the 

images is limiting towards zero after 

processing them for inherent error 

correction.  

Table 1: Relative errors in the images 

Error in 

Polyenergetic 

data 

Error in 

2
nd
 BH iteration 

Specimen 

Before 

KT-1 

After   

KT-1 

Before 

KT-1 

After   

KT-1 

S1 0.3530 0.2393 0.2801 0.0139 

S2 0.9020 0.8972 0.0471 0.00003 

S3 0.9142 0.9120 0.0246 0.0004 

 

6. Conclusions 

Algorithm works well for both 

homogenous and heterogeneous cross-

sections. For objects with high density 

materials, cupping artifact and dark bands 

appeared in the polyenergetic 

reconstruction can also be reduced to a 

great extent. First Kanpur error theorem 

efficiently reduced inherent errors and 

technique used for these error removal is 

quite encouraging, applying which 

the NMAX  values for experimental and 

monoenergetic data are in well agreement. 

Inherent error for real data is dominated by 

other experimental errors and there is only 

4%-6% of change in relative error after 

applying KT-1. Numerical algorithm has 

been checked for all the complexities of 

beam-hardening, inherent error and 

different geometries. The proposed 

algorithm found to be quite robust and is 

working efficiently for the simulated and 

experimental data. 
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