Poly(*N*-vinylimidazole) as efficient recyclable catalyst for the Michael addition of CH-acids to electron deficient alkenes in water*

E. A. Tarasenko,^{a*} V. S. Tyurin,^b F. Lamaty,^c and I. P. Beletskaya^{a*}

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russian Federation. Fax: +7 (495) 932 8846. E-mail: ea-t@mail.ru, beletska@org.chem.msu.ru
^bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Build. 4, 31 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (495) 952 5308
^cInstitut des Biomolécules Max Mousseron (IBMM), Université Montpellier 2, Place Eugène Bataillon cc1703, 34095 Montpellier, Cedex 05, France

Efficiency of poly(N-vinylimidazole) as the basic recyclable catalyst for the Michael addition of CH-acids to acrylonitrile, methyl acrylate, methyl vinyl ketone and methyl vinyl sulfone in water at ambient temperature was studied. In these reactions, formation of both 1 : 1 and 1 : 2 adducts is possible.

Key words: poly(*N*-vinylimidazole), CH-acids, electron deficient alkenes, basic catalysis, recyclable catalyst, the Michael addition.

The Michael addition is one of the most important and widely used methods for the carbon—carbon bond formation.^{1,2} Catalysis by strong bases commonly used in this reaction often led to formation of side products.³ Therefore, more selective catalysts were currently suggested, *e.g.*, soft bases,^{4–7} Lewis acids, including salts and complexes of transition metals and lanthanides,^{8,9} ionic liquids,^{10–12} enzymes,¹³ Amberlyst 15,¹⁴ SiO₂.¹⁵ Among them, chiral organic catalysts giving rise to non-racemic products^{16–19} are of particular value.

From the economical and ecological viewpoints, the catalysts which could be used repeatedly have major advantages.²⁰ Often enough, such catalytic systems contain synthetic polymers acting as supports for catalyst.²¹ Among them, the catalysts suitable for the Michael addition are also known.²²⁻²⁴ So-called smart polymers capable of changing physicochemical properties, especially solubility, depending on the conditions 20,21 are of great importance. This property makes it possible, on the one hand, to perform the reaction in the homogeneous conditions, and, on the other hand, to use the catalytic system repeatedly. In some cases, the polymers themselves can exhibit catalytic properties similar to biopolymers. We have previously shown that polymers bearing basic imidazole moieties catalyzed the Michael addition of thiols²⁵ and nitrogen heterocycles²⁶ to electron deficient alkenes.

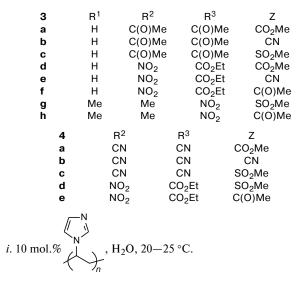
* Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 70th birthday.

In the present work, we studied the possibility to apply poly(N-vinylimidazole) with molecular weight 75300 as the basic catalyst for the Michael addition of the CH-acids to electron deficient alkenes.

Results and Discussion

In the presence of poly(*N*-vinylimidazole), CH-acids such as malononitrile, ethyl nitroacetate, acetylacetone, and 2-nitropropane react with electron deficient alkenes, *e.g.*, methyl acrylate, acrylonitrile, methyl vinyl sulfone, and methyl vinyl ketone (Scheme 1). Depending on the nature of the CH-acid, these reactions give predominantly the 1 : 1 (3a-h) or the 1 : 2 adducts (4a-e) (Table 1). The reactions proceed in water at ambient temperature.

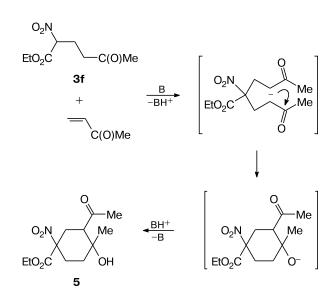
It was found that in the case of excess of alkene, malononitrile yielded exclusively 1 : 2 adducts (see Table 1, entries 1-3). Acetylacetone gave rise to the 1 : 1 adducts (entries 4-6), whereas ethyl nitroacetate gave products, whose composition depended on the nature of alkene and the reactant ratio (entries 7-11). Ethyl (3-acetyl-4-hydroxy-4-methyl-1-nitrocyclohexane)carboxylate (5) was synthesized with the excess of methyl vinyl ketone in 73% yield. Apparently, compound 5 formed *via* addition of the second molecule of methyl vinyl ketone to 1 : 1 adduct 3f followed by intramolecular aldol-crotonic condensation (Scheme 2).


It is of note that in contrast to other studied Michael acceptors, acrylonitrile readily reacts with malononitrile

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2561–2564, December, 2011.

1066-5285/11/6012-2613 © 2011 Springer Science+Business Media, Inc.

₿³ 3a—h 2a-d 1a-d \mathbb{R}^2 $R^1 = H$ R³¹ Ζ 4a-e R^3 \mathbb{R}^2 R^1 1 CN CN Н а b C(O)Me C(O)Me Н н NO₂ С CO₂Et d Me Me NO_2


2: $Z = CO_2Me$ (**a**), CN (**b**), SO₂Me (**c**), C(O)Me (**d**)

to give exclusively 1:2 adduct (see Table 1, entry 2); in the cases of acetylacetone and ethyl nitroacetate, the yields were low (entries 5 and 8).

In the present work, we studied the possibility of the catalyst recyclization on an example of the reaction between malononitrile and methyl acrylate (see Table 1, entry I). It was found that at least the second cycle proceeded without loss of the catalyst activity. After completion of the reaction (TLC monitoring), the product was extracted with ethyl acetate, the organic layer was separated, and the reactants and water in the amounts required for the next step were added to the water phase. In the second catalytic cycle, dimethyl 4,4-dicyanoheptanedioate (**4a**) was obtained in the yield of 90%.

In summary, poly(*N*-vinylimidazole) can be used as cheap, efficient, and most importantly easy-separable re-

cyclable organic catalyst for the addition of CH-acids to the Michael acceptors. Poly(*N*-vinylimidazole) provides performing these reactions under simple and cost-effective conditions, *e.g.*, with water as a solvent at ambient temperature.

Experimental

The course of the reactions was monitored by TLC on silica gel precoated plates 60 F_{254} (Merck), visualization in iodine vapor or in the KMnO₄ solution. Silica gel Merck 60 (0.040–0.063 mm) was used for column chromatography. ¹H and ¹³C NMR spectra were run on a Bruker AMX-400 instrument in CDCl₃ and DMSO-d₆ at working frequencies of 400.13 and 100.61 MHz, respectively; the chemical shifts are given in the δ scale relative to the residual signals of the solvents (CHCl₃, $\delta_{\rm H}$ 7.27, $\delta_{\rm C}$ 77.00; DMSO, $\delta_{\rm H}$ 2.50, $\delta_{\rm C}$ 39.51) as internal standards. The starting methyl vinyl ketone (Aldrich) was purified by vacuum distillation (b.p. 34–35 °C (120 Torr)), other starting compounds (Aldrich, AlfaAesar) were used as purchased. Poly-(*N*-vinylimidazole) with *M* 75300 was synthesized by the known procedure.²⁷

Addition of CH-acids (1a-d) to alkenes (2a-d) in the presence of poly(*N*-vinylimidazole) (general procedure). To a stirred solution of poly(*N*-vinylimidazole) (14.1 mg, 0.15 mmol per monomer unit) in distilled water (4 ml), CH-acid 1a-d(1.5 mmol) was added followed by addition of alkene 2a-d(4.5 mmol) after 5 min of stirring. The reaction mixture was stirred at ambient temperature until complete consumption of the reactants (see Table 1). In the case of formation of insoluble products (3g, 4c, and 4d), the precipitates were separated by filtration or centrifugation, washed with water and diethyl ether and dried *in vacuo*. Compound 4d was additionally recrystallized from AcOEt. All other products were extracted with AcOEt, the organic layer was dried with Na₂SO₄, the solvent was removed *in vacuo*, the residues were purified by column chromatography (elution with petroleum ether—AcOEt (2 : 1) for 3a, 3f, 3h, 4a,

Scheme 1

Scheme 2

4e, and 5, petroleum ether—AcOEt (1:1) for 4b, petroleum ether—AcOEt (1:2) for 3c, petroleum ether— CH_2Cl_2 (1:1) for 3d). Compounds 3a, 3c, 3d, 3f, 3h, 4a, 4e, and 5 are colorless oils, compound 4b is colorless crystals. Compounds 3b and 3e were not isolated, their yields were determined by ¹H NMR spectroscopy of the mixtures obtained by extraction and removal of the volatiles. Structures of known compounds were confirmed by the comparison of the ¹H and ¹³C spectra with published data (references are given in Table 1). The ¹H and ¹³C spectra and elemental analysis data for hitherto unknown compounds are given below.

3-(2-Methylsulfonylethyl)pentane-2,4-dione (3c). Colorless oil. ¹H NMR (CDCl₃), δ : 2.19 (s, 1.8 H, CH₃, enol); 2.25 (s, 6 H, CH₃, keto-form); 2.29–2.36 (m, 2 H, CH₂, keto-form); 2.81–2.84 (m, 0.6 H, CH₂, enol); 2.93 (s, 3 H, CH₃S, keto-form); 2.96 (s, 0.9 H, CH₃S, enol); 3.01 (t, 2 H, CH₂, keto-form); 2.96 (s, 0.9 H, CH₃S, enol); 3.01 (t, 2 H, CH₂, keto-form, J = 7.4 Hz); 3.05–3.06 (m, 0.6 H, CH₂, enol); 4.02 (t, 1 H, CH, keto-form, J = 6.9 Hz). ¹³C NMR (CDCl₃), δ : 19.97 (CH₃, enol); 20.33 (CH₃, keto-form); 22.96 (enol); 29.74 (keto-form); 40.86 (keto-form); 106.38 (C=C, enol); 191.41 (C=C, enol); 202.82 (C=O, keto-form). Found (%): C, 46.78; H, 6.73. C₈H₁₄O₄S. Calculated (%): C, 46.58; H, 6.84.

3-Methyl-1-methylsulfonyl-3-nitrobutane (3g). M.p. $108-110 \,^{\circ}\text{C}$ (purified by washing with water and diethyl ether). ¹H NMR (DMSO-d₆), δ : 1.58 (s, 6 H, CH₃); 2.29–2.34 (m, 2 H, CH₂); 3.01 (s, 3 H, CH₃S); 3.12–3.16 (m, 2 H, CH₂). ¹³C NMR (DMSO-d₆), δ : 25.06 (CH₃); 31.68 (CH₃); 40.14 (CH₂); 48.93 (CH₂); 87.17 (C). Found (%): C, 37.13; H, 6.65; N, 7.01. C₆H₁₃NO₄S. Calculated (%): C, 36.91; H, 6.71; N, 7.17.

Table 1. Addition of CH acids 1a-d to electron deficient alkenes 2a-d in the presence of poly(*N*-vinylimidazole) in water at 20-25 °C

Entry	CH- acid	Alkene	Reagents ratio ^a	<i>t/</i> h ^{<i>b</i>}	Product	Yield ^c (%)
1	1a	2a	1:3:0.1	8	4a ²⁸	90 (92 ^{<i>d</i>})
					9	00^d (cycle 2)
2	1a	2b	1:3:0.1	24	4b ^{<i>e</i>}	61 (90 ^d)
3	1a	2c	1:3:0.1	1	4c	98
4	1b	2a	1:3:0.1	48	3a ²⁹	69
5	1b	2b	1:3:0.1	24	3b ³⁰	20^d
6	1b	2c	1:3:0.1	48	3c	30 (35 ^d)
7	1c	2a	1:3:0.1	48	3d ³¹	80
8	1c	2b	1:3:0.1	120	3e ³²	34 ^d
9	1c	2c	1:3:0.1	144	4d	87
10	1c	2d	1:1.1:0.1	2	3f ³³	84
11	1c	2d	1:3:0.1	2	4e ³⁴	25
					5 ³⁴	73
12	1d	2c	1:1.1:0.1	120	3g	47 (55 ^d)
13	1d	2d	1:1.1:0.1	12	3h ³⁵	65 (87 ^d)

^{*a*} Molar ratio CH-acid : alkene : poly(*N*-vinylimidazole) (per monomer unit).

^b Reaction time.

^{*c*} Yield of the isolated product.

^d Yield by the ¹H NMR data using dimethyl fumarate as an internal standard.

^e M.p. 90–92 °C (cf. Ref. 11: 90–92 °C).

2,2-Bis(2-methylsulfonylethyl)malononitrile (4c). M.p. 209–211 °C (purified by washing with water and diethyl ether). ¹H NMR (DMSO-d₆), δ : 2.65–2.70 (m, 4 H, CH₂); 3.12 (s, 6 H, CH₃S); 3.43–3.47 (m, 4 H, CH₂). ¹³C NMR (DMSO-d₆), δ : 28.32 (CH₃); 35.37 (C(2)); 40.44 (CH₂); 49.38 (CH₂); 114.33 (CN). Found (%): C, 39.10; H, 4.95; N, 10.15. C₉H₁₄N₂O₄S₂. Calculated (%): C, 38.83; H, 5.07; N, 10.06.

Ethyl 4-methylsulfonyl-2-(2-methylsulfonylethyl)-2-nitrobutanoate (4d). M.p. 110–114 °C (from AcOEt). ¹H NMR (DMSO-d₆), δ : 1.24 (t, 3 H, CH₃, J = 7.1 Hz); 2.59–2.68 (m, 4 H, CH₂); 3.06 (s, 6 H, CH₃S); 3.16–3.31 (m, 4 H, CH₂); 4.30 (q, 2 H, OCH₂, J = 7.1 Hz). ¹³C NMR (DMSO-d₆), δ : 13.59 (CH₂CH₃); 26.72 (CH₃S); 40.11 (CH₂); 48.19 (CH₂); 63.75 (OCH₂); 93.20 (C(2)); 164.83 (C=O). Found (%): C, 34.92; H, 5.41; N, 3.88. C₁₀H₁₉NO₈S₂. Calculated (%): C, 34.77; H, 5.54; N, 4.06.

This work was financially supported by the Ministry of Education and Science of the Russian Federation (State Contract 02.740.11.0630), the Russian Academy of Sciences (Program for Basic Research No. 3 "Design and Study of Macromolecules and Macromolecular Structures of Novel Generation" of the Division of Chemistry and Materials Science of RAS).

References

- 1. M. E. Jung, in *Comprehensive Organic Synthesis*, Eds B. M. Trost, I. Fleming, Pergamon Press, 1991, **4**, 1.
- 2. P. Perlmutter, *Conjugate Addition Reactions in Organic Synthesis*, Oxford, Pergamon Press, 1992, 394 p.
- 3. E. D. Bergman, D. Ginsburg, R. Pappo, *Org. React.*, 1959, **10**, 179.
- 4. Z. Zhang, Y.-W. Dong, K. Komatsu, Synlett, 2004, 61.
- 5. W. Wang, M. Yu, Tetrahedron Lett., 2004, 45, 7141.
- 6. C. Xu, J. K. Bartley, D. I. Enache, D. W. Knight, G. J. Hutchings, *Synthesis*, 2005, 3468.
- 7. K. Ko, K. Nakano, S. Watanabe, Y. Ichikawa, H. Kotsuki, *Tetrahedron Lett.*, 2009, **50**, 4025.
- 8. J. Christoffers, Eur. J. Org. Chem., 1998, 1259.
- 9. J. Comelles, M. Moreno-Macas, A. Vallribera, *Arkivoc*, 2005, **9**, 207.
- 10. B. C. Ranu, S. Banerjee, Org. Lett., 2005, 14, 3049.
- 11. B. C. Ranu, S. Banerjee, R. Jana, Tetrahedron, 2007, 63, 776.
- 12. E. A. Mistryukov, Mendeleev Commun., 2007, 17, 230.
- G. A. Strohmeier, T. Sovic, G. Steinkellner, F. S. Hartner, A. Andryushkova, T. Purkarthofer, A. Glieder, K. Gruber, H. Griengl, *Tetrahedron*, 2009, 65, 5663.
- 14. B. Das, M. Krishnaiah, K. Laxminarayana, K. Damodar, D. N. Kumar, *Chem. Lett.*, 2009, **38**, 42.
- 15. S. Banerjee, S. Santra, Tetrahedron Lett., 2009, 50, 2037.
- Asymmetric Organocatalysts from Biomimetic Concepts to Applications in Asymmetric Synthesis, Eds A. Berkessel, H. Gröger, Wiley-VCH, Weinheim, 2005, 440 p.
- 17. Enantioselective Organocatalysis: Reactions and Experimental Procedures, Ed. P. I. Dalko, Wiley-VCH, 2007, 536 p.
- Organocatalysis, Eds M. T. Reetz, B. List, S. Jaroch, H. Weinmann, Springer-Verlag, Berlin—Heidelberg, 2008, 341 p.
- Top. Curr. Chem., Ed. B. List, Springer-Verlag, Berlin-Heidelberg, 2010, 291, 460 p.

- 20. *Recoverable and recyclable catalysts*, Ed. M. Benaglia, John Wiley and Sons Ltd., 2009, 471 p.
- Top. Curr. Chem., Ed. A. Kirschning, Springer-Verlag, Berlin—Heidelberg, 2004, 242, 337 p.
- 22. D. Benza, T. Constantieux, J. Rodriguez, *Synthesis*, 2004, 923.
- 23. C. Reddy, V. Reddy, J. G. Verkade, J. Org. Chem., 2007, 72, 3093.
- R. Ballini, L. Barboni, L. Castrica, F. Fringuelli, D. Lanari, F. Pizzo, L. Vaccaro, *Adv. Synth. Catal.*, 2008, **350**, 1218.
- 25. I. P. Beletskaya, E. A. Tarasenko, A. R. Khokhlov, V. S. Tyurin, *Zh. Org. Khim.*, 2007, **43**, 1732 [*Russ. J. Org. Chem. (Engl. Transl.*), 2007, **43**, 1733].
- 26. I. P. Beletskaya, E. A. Tarasenko, A. R. Khokhlov, V. S. Tyurin, *Zh. Org. Khim.*, 2010, **46**, 473 [*Russ. J. Org. Chem. (Engl. Transl.*), 2010, **46**, 461].
- 27. I. P. Beletskaya, A. R. Khokhlov, E. A. Tarasenko, V. S. Tyurin, J. Organomet. Chem., 2007, 692, 4402.

- S. Paganelli, A. Schionato, C. Botteghi, *Tetrahedron Lett.*, 1991, 32, 2807.
- 29. R. Chong, P. S. Clezy, Aust. J. Chem., 1967, 20, 123.
- 30. G. R. Zellars, R. Levine, J. Org. Chem., 1948, 13, 1911.
- A. A. Smirnova, V. V. Perekalin, V. A. Shcherbakov, *Zh. Org. Khim.*, 1968, 4, 2245 [*J. Org. Chem. USSR (Engl. Transl.*), 1968, 4, 2166].
- 32. A. Dornow, A. Frese, J. Liebigs Ann. Chem., 1953, 581, 211.
- 33. R. E. Moskalyk, A. L. C. Mak, L. G. Chatten, R. A. Locock, J. Pharm. Sciences, 1981, 70, 496.
- M. Picquet, C. Brineau, P. H. Dixneuf, *Tetrahedron*, 1999, 55, 3937.
- 35. P. B. Kisanga, P. Ilankumaran, B. M. Fetterly, J. G. Verkade, J. Org. Chem., 2002, 67, 3555.

Received October 18, 2011; in revised form December 2, 2011