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Abstract

Bayesian inference for latent factor models, such as principal component and canonical
correlation analysis, is easy for Gaussian likelihoods with conjugate priors using both Gibbs
sampling and mean-field variational approximation. For other likelihood potentials one
needs to either resort to more complex sampling schemes or to specifying dedicated forms
for variational lower bounds. Recently, however, it was shown that for specific likelihoods
related to the logistic function it is possible to augment the joint density with auxiliary
variables following a Pòlya-Gamma distribution, leading to closed-form updates for binary
and over-dispersed count models. In this paper we describe how Gibbs sampling and
mean-field variational approximation for various latent factor models can be implemented
for these cases, presenting easy-to-implement and efficient inference schemas.
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1. Introduction

Bayesian formulation of latent factor models including principal component analysis (PCA)
(Ilin and Raiko, 2010), factor analysis (FA) (Rowe, 2002), canonical correlation analysis
(CCA) (Klami et al., 2013), and their various further generalizations is easy for Gaussian
likelihoods. All of these models can be formulated as probabilistic low-rank matrix factor-
izations (Mnih and Salakhutdinov, 2007) with suitable priors for the factors and residual
noise, and posterior inference consisting solely of closed-formed updates is efficient for fully
observed data. For setups with missing data it is typically more efficient to resort for
gradient-based optimization for the factors (Ilin and Raiko, 2010).

While the equivalent models for other likelihoods as also easy to specify, posterior infer-
ence becomes notably more challenging for non-Gaussian models. The existing approaches
typically fall into one of two categories: Strategies for general exponential families, and
strategies designed for specific likelihoods. The prime examples of the first category are
exponential family PCA (Mohamed et al., 2009) and exponential family CCA (Klami et al.,
2010) that use Hybrid Monte Carlo samplers for inference. These samplers are computa-
tionally heavy, as illustrated by the small-scale experiments of at most hundreds of data
points presented by the authors. Even maximum a posterior estimation for such models
requires approximations and general-purpose gradient-based solvers (Li and Tao, 2010).

The more practical tools for factor analysis of non-Gaussian data are based on dedicated
inference schema for specific likelihoods, often via variational approximations that explicitly
bound the non-conjugate parts of the model. Jaakkola (1997) presented a bound for logistic
regression, Girolami and Rogers (2006) for probit transformations, and Bohning (1992) for
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multinomial data. Even though these bounds were originally developed for regression, they
generalize directly for factor models (Seeger and Bouchard, 2012; Khan et al., 2010) by
simply treating the covariates as random variables.

The above techniques explicitly construct a variational lower bound for the likelihood
and then estimate its parameters, whereas in this paper we consider posterior inference via
model augmentation. Recently Polson et al. (2013) introduced an augmentation scheme for
likelihood potentials of certain form, covering both logistic transformation for binary data
and negative binomial likelihood for over-dispersed count data. They managed to make
the conditional distribution of the regression weights Gaussian while retaining closed-form
distribution for the augmentation variable itself, providing Gibbs inference for the whole
model. The same augmentation leads also to closed-form mean-field variational updates.
This observation has already been used for developing Bayesian logistic regression (Polson
et al., 2013) and negative binomial regression models (Zhou et al., 2012).

This background naturally leads to latent factor models via similar constructs, as already
hinted by Polson et al. (2013). Even though extending regression models to factor models
is conceptually easy, the practical details have large effect on the efficiency and accuracy of
the solution, and for truly working solution one needs to re-use recent advances in Gaussian
factor models. In this paper we lay out the alternatives and demonstrate empirically the
large differences in computational time and accuracy; the naive solutions are shown to be
either an order of magnitude slower or inaccurate. We start by re-capping the inference
for Gaussian models (much of the derivations can be re-used for the other likelihoods) and
the necessary background on Pòlya-Gamma augmentations, before deriving the proposed
models and illustrating them on artificial data.

2. Background: Gaussian latent factor models

The basic construct considered in this manuscipt is of the form

xij ∼ N (

K∑
k=1

uikvjk, τ
−1), uik ∼ N (0, β−1k ), vjk ∼ N (0, α−1k ), βk, αk, τ ∼ G(a0, b0).

which corresponds to a latent factor model for X ∈ RN×D with K factors U ∈ RN×K and
their loadings V ∈ RN×D, alternatively written in the matrix form as X = UVT + ε, where
ε is noise with precision τ . Throughout the paper i runs over the N samples and j over the
D features. All of the factors are given normal priors with gamma priors on the precisions
(assuming equal hyperparameters for notational simplicity). To simplify the notation we
do not include explicit bias terms for U and V in the model; see Ilin and Raiko (2010) and
Klami et al. (2014) for inference for different alternative assumptions for the bias terms,
applicable also for the non-Gaussian likelihoods discussed later.

A wide range of standard models are subsumed by this formulation. By setting βk = 1
we get principal component analysis (Tipping and Bishop, 1999; Ilin and Raiko, 2010),
by setting βk = 1 and letting τ depend on the dimension as τj we get factor analysis
(Rowe, 2002). More complex models can be implemented with the exact same underlying
construct by introducing more matrices that are suitably tied to each other. Canonical

correlation analysis (CCA) (Klami et al., 2013) is obtained when xij =
∑

k uikv
(x)
jk and yij =

2



PG augmentations for factor models

∑
k uikv

(y)
jk , where U with βk = 1 is shared between the two input matrices while the V with

arbitrary α
(x)
k and α

(y)
k are not. More general constructs that can be implemented with the

same machinery include group factor analysis (Virtanen et al., 2012) and collective matrix
factorization (Singh and Gordon, 2010). Even though these models consider simultaneous
factorization of arbitrarily many matrices and they require specific forms of factor priors,
they can be implemented using almost exactly the same formulas.

For all models mentioned above, efficient Bayesian inference is possible via both Gibbs
sampling and variational approximation, using the same set of basic updates. The main
goal of this paper is to demonstrate that all of these factorization models can be easily
modified to work for binary and over-dispersed count data by suitable augmentation. In
the following we present the derrivations for the most straightforward case of PCA; the
other models require merely changes in book-keeping and priors. The necessary general
notation is presented in Klami et al. (2014), with a brief recap in Section 4.4 of this paper.

2.1. Gibbs sampling

The full likelihood of the PCA model is given by

G(τ |a0, b0)
∏
i,j

[
N (xij |

∑
k

uikvjk, τ
−1)

]∏
k

G(αk|a0, b0)
∏
i

N (uik|0, 1)
∏
j

N (vjk|0, α−1k )

 .
(1)

Straightforward Gibbs sampler is obtained by deriving the following conditionals:

ui|− ∼ N (µi,Σi), vj |− ∼ N (mj , Sj),

αk|− ∼ G(aαk
, bαk

), τ |− ∼ G(aτ , bτ ),

where ·|− refers to conditioning on all other parameters, and ui denotes the ith row of U.
The terms corresponding to the factor updates are given by

Σi = (I + τ
∑
j

vTj vj)
−1, µi = τ

∑
j

vjxijΣi,

Sj = (α+ τ
∑
i

uTi ui)
−1, mj = τ

∑
i

uixijSj .

These could also be written in matrix form, but these explicit summations are directly
applicable also for missing data so that the sums go only over the observed entries. For the
precision parameters the conditionals are defined by

aτ = a0 +ND/2, bτ = b0 +
∑
i,j

(xij −
∑
k

uikvjk)
2/2,

aαk
= a0 +D/2, bαk

= b0 +
1

2

∑
j

v2jk.

In practice the automatic relevance determination prior turns unnecessary factors off more
effectively if we marginalize over vjk in the last step, resulting in bαk

= b0 + 1
2

∑
j(m

2
jk +

Sj [k, k]), where Sj [k, k] is the kth element on the diagonal of Sj .
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A notable observation is that for fully observed data Σi and Sj do not depend on the data
point or feature, and hence only need to be computed and inverted once per iteration. For
partially observed data they need to be re-computed for each sample, since the summations
in Σi and Sj are only over the observed entries for each row/column.

2.2. Variational approximation

Variational approximation (Jaakkola, 1997) approximates the posterior distribution p(θ|X)
with a factorized distribution q(θ) =

∏
l q(θl), so that the variational lower bound L =

p(X) − KL(q|p) = const + 〈log p(x, θ) − log q(θ)〉 is maximized. Here 〈·〉 denotes expecta-
tion over q(θ) and KL(q|p) is the Kullback-Leibler divergence. The mean-field updates for
individual terms are obtained as q(θl) = e〈log p(x,θ)〉, where the expectation is over all other
terms.

Ilin and Raiko (2010) presented two alternative variational approximations for model
(1) that have later been used also for other factorization models. The naive approximation

q(θ) = q(τ |âτ , b̂τ )
∏
k

q(αk|âαk
, b̂αk

)
∏
i

q(ui|µ̂i, Σ̂i)
∏
j

q(vj |m̂j , Ŝj)

assumes the row and column latent variables to be independent, but models each of them as
a K-dimensional multivariate distribution. Since the model is fully conjugate, the functional
forms match the priors and the updates are

Ŝj = (〈α〉+ 〈τ〉
∑
i

〈uTi ui〉)−1 = (〈α〉+ 〈τ〉
∑
i

(µ̂Ti µ̂i + Σ̂i))
−1,

Σ̂i = (I + 〈τ〉
∑
j

〈vTj vj〉)−1 = (I + 〈τ〉
∑
j

(m̂T
j m̂j + Ŝj))

−1,

m̂j = 〈τ〉
∑
i

xij〈ui〉Ŝv = 〈τ〉
∑
i

xijµ̂iŜv, µ̂i = 〈τ〉
∑
j

xij〈vj〉Σ̂i = 〈τ〉
∑
j

xijm̂jΣ̂i,

âτ = a0 +ND/2, âαk
= a0 +D/2,

b̂τ = b0 +
∑
i,j

〈(xij − uivTj )2〉/2

= b0 +
∑
i,j

(
(xij − µ̂im̂T

j )2 + µ̂iŜvµ̂
T
i + m̂jΣ̂um̂

T
j + Tr[Σ̂iŜj ]

)
, and

b̂αk
= b0 + 〈(

∑
j

v2jk)/2〉 = b0 +
∑
j

(m̂2
jk + Ŝj [k, k]))/2,

where we have already written out all of the expectations using the variational parameters,
except for the gamma terms for which 〈τ〉 = aτ/bτ and similarly for αk. Again computation
is efficient for fully observed data since Σ̂i and Ŝj do not depend on the data point or
feature. For partially observed data they need to be re-computed for each case.

To improve the efficiency for the partially observed case, Ilin and Raiko (2010) proposed
a fully factorized approximation

q(θ) = q(τ |âτ , b̂τ )
∏
k

q(αk|âαk
, b̂αk

)
∏
i

q(uik|µ̂ik, σ̂2ik)
∏
j

q(vjk|m̂jk, ŝ
2
jk)

 .
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Even though introducing more independencies is generally unadviced, here it does not
notably influence the accuracy of the approximation since the goal is to learn latent factors
that eventually are independent of each other. Again all of the parameters can be updated
in closed form, with the only changes being for the way the expectations are computed.
However, updating µ̂ik and m̂jk one element at a time would be extremely inefficient due
to heavy correlations between the elements. Instead, one should perform gradient-based
optimization; the gradient of the variational lower bound with respect to m̂jk is

δL
δm̂jk

= −〈αk〉m̂jk − 〈τ〉
∑
i

[
−(xij − µ̂im̂T

j )µ̂ik + σ̂2ikm̂jk

]
,

the diagonal Hessian equals ŝ−2jk , and analogous equations are obtained for µ̂. Efficient
Newton-Rhapson -style optimization is hence possible; for details see Ilin and Raiko (2010).

Compared to the first approximation this solution has the advantage that no KxK
matrices need to be inverted, with the disadvantage that gradient-based updates are used
instead of closed-form updates. The gradients, however, allow updating the whole U and V
at once instead of doing it for each row at a time. In practice the two approximations often
have comparable computational cost per iteration (except for very large K that makes the
naive one slow) and require roughly as many iterations for convergence. For setups setups
with missing data the factorized one is clearly faster; then the naive one needs to invert
ND covariance matrices for each iteration, whereas the factorized one retains its speed.

3. Background: Pòlya-Gamma augmentation

To proceed towards efficient inference for binary and over-dispersed count data, we next
introduce the data augmentation scheme for logistic transformations.

Polson et al. (2013) proved the following equality

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω, (2)

where κ = a− b/2 and p(ω) = PG(ω|b, 0) is the Pòlya-Gamma distribution

PG(ω|b, c) = coshb(c/2)
2b−1

Γ(b)

∞∑
n=0

(−1)n
Γ(n+ b)Γ(2n+ b)

Γ(n+ 1)
√

2πω3
e−

(2n+b)2

8ω e−
c2

2
ω,

and the coshb(c/2) and e−
c2

2
ω terms simplify out for the special case PG(b,0) required for

the identity. Even though the density function is complicated, the moments of PG(ω|b, c)
can be computed in closed form; we will need in particular the equation 〈ω〉 = b

2ctanh(c/2).
In addition, Polson et al. (2013) provides an efficient algorithm for sampling from PG(b,0),
whereas Zhou et al. (2012) showed that samples from the general case PG(b,c) can be
drawn by truncating and bias-correcting an infinite sum of suitably weighted gamma random
variables, with good accuracy obtained already with very low truncation levels.

The practical significance of the construct in (2) is seen by noting that both Bernoulli
and negative binomial likelihoods of logistic parameters can be written in that form. If we
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denote p = logistic(ψ) = (1 + e−ψ)−1 then the Bernoulli likelihood is given by

p(x|p) = px(1− p)1−x =
(eψ)x

1 + eψ
,

which matches (2) with a = x, b = 1, and κ = x − 1/2. Similarly, the negative binomial
likelihood NB(x|r, p) using the same logistic transformation for the p parameter is

p(x|r, p) =
Γ(r + x)

x!Γ(r)
px(1− p)r ∝ (eψ)x

(1 + eψ)x+r
,

corresponding to a = x, b = x+ r, and κ = (x− r)/2.
In practice we use (2) to implement factor models for non-Gaussian data by explicitly

representing ω as a random variable. Then both of the above likelihoods can be written as

p(x, ω|,−) = p(x|ω,−)PG(ω|b, 0) ∝ 2−beκψ−ωψ
2/2PG(ω|b, 0).

We see that conditional on ω the likelihood depends quadratically on ψ and is hence Gaus-
sian. This suggests efficient inference techniques for models where ψ has normal priors,
assuming inference for ω conditional on the data and ψ is easy. As shown by Polson et al.
(2013), the conditional distribution p(ω|ψ, x) is obtained by exponential tilting of the prior
PG(ω|b, 0) and equals PG(ω|b, ψ). In other words, it is known in closed form and we can
easily compute expectations (and other moments) of it. Using these observations Polson
et al. (2013) derived a Gibbs sampler for logistic regression, and Zhou et al. (2012) provided
both Gibbs sampler and variational approximation for negative binomial regression.

4. Latent factor models with polya-gamma augmentation

Next we will derive efficient posterior inference schemes for arbitrary matrix factorization
models with normal priors on the factors and either Bernoulli or negative binomial likelihood
on data. The detailed derivations are shown for the special case of PCA model with Bernoulli
likelihood, but in Sections 4.3 and 4.4 we will show the necessary modifications for negative
binomial likelihood and other factor models.

We define the PG augmented factor model for binary data as

pij = logistic(ψij), xij ∼ Bernoulli(pij),

where ψ is either low-rank or low-rank with additive Gaussian noise:

ψij =
∑
k

uikvjk or ψij =
∑
k

uikvjk + εij .

In the former ψ is not a random variable, but merely a convenience notation. The priors
for U and V are as in (1), and εij ∼ N(0, τ−1).

We call the first alternative direct approach and the latter explicit noise approach. The
direct approach has the advantage of tying the data directly with the low rank parameters,
whereas the latter results in more efficient updates for fully observed data but (as shown
later) slower convergence due to the intermediate random variable ψ. Next we will present
the two alternatives in detail, providing both Gibbs and mean-field variational approxima-
tions for both.
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4.1. Model 1: Direct approach

The full likelihood of the direct approach in the augmented form is

∏
i

∏
j

[
eκijψij−ωijψ

2
ij/2PG(ωij |b, 0)

]∏
k

G(αk|a0, b0)
∏
i

N (uik|0, 1)
∏
j

N (vjk|0, α−1k )

 .
4.1.1. Gibbs sampler

For the factors we re-use the conditionals Polson et al. (2013) provided for logistic regression

Sj = (α+
∑
i

ωiju
T
i ui)

−1, mj =
∑
i

uiκijSj ,

with analogous equations for µi and Σi, whereas the conditionals for αk equal the Gaussian
case. The remaining update for ωij is simply element-wise sampling from PG(1, ψij) =
PG(1,

∑
k uikvjk), based on the exponential tilting argument in Section 3.

These updates can be contrasted with the Gaussian case in (1), to see a very close
relationship. The data is replaced by κij = xij − 1/2 which is merely a constant shift,
and ωij plays a role of element-wise noise precision when computing the covariance. An
important observation, however, is that ωij is not used for scaling the mean in the same
way as τ acts as a multiplier for mj in the Gaussian case. Finally, we see that Σi and Sj
depend on i and j due to ωij and hence this sampler is not efficient for large data.

4.1.2. Variational approximation

The naive variational approximation can be written as

q(θ) =
∏
k

q(αk|âαk
, b̂αk

)
∏
i

q(ui|µ̂i, Σ̂i)
∏
j

q(vj |m̂j , Ŝj)
∏
i,j

q(ωij |γ̂ij , η̂ij), (3)

where the single q(τ) factor of the Gaussian case is replaced with element-wise factors q(ωij).
The updates for q(αk) are identical to the Gaussian case, and the updates for the factors

are very closely related as

Ŝj = (〈α〉+
∑
i

〈ωij〉〈uiuTi 〉)−1 = (〈α〉+
∑
i

〈ωij〉(µ̂iµ̂Ti + Σ̂i))
−1,

m̂j =
∑
i

〈ui〉κijŜj =
∑
i

µ̂iκijŜj ,

with analogous updates for q(ui). The remaining update for q(ωij) can also be derived in
closed form. According to standard mean-field procedure we get

log q(ωij) = 〈log p(xij , ωij ,−)〉 = −1

2
ωij〈ψ2

ij〉+ logPG(ωij |b, 0).

This is regognized as exponential tilting of the PG distribution with
√
〈ψ2

ij〉, which implies

γ̂ij = b, η̂ij =
√
〈ψ2

ij〉 =
√

(µ̂im̂T
j )2 + µ̂iŜjµ̂Ti + m̂jΣ̂im̂T

j + Tr(Σ̂iŜj),

7



Klami

where we used the fact that ψij = uiv
T
j when computing the expectation. Finally, we need

〈ωij〉 for updating the factors:

〈ωij〉 =
b

2
√
〈ψ2

ij〉
tanh(

√
〈ψ2

ij〉/2). (4)

In summary, we get closed-form updates by only slightly modifying the Gaussian rules,
and the only computational overhead is for the hyperbolic tangent function since 〈ψ2

ij〉 is
needed for updating τ in the Gaussian case. However, we again have the problem that Σi

and Sj depend on i and j, which makes the algorithm slow in practice.
For the Gaussian case switching from the naive factorization to the fully factorized one

with gradient-based optimization helped avoiding the computationally expensive repeated
matrix inversion. The same can be done here by adding the gradient of the 〈eκψ〉 term,
replacing τ with ωij , and noting that ψij is centered around zero instead of the data:

δL
δm̂jk

= −〈αk〉m̂jk −
∑
i

[
(κij − 〈ωij〉µ̂im̂T

j )µ̂ik + 〈ωij〉σ̂2ikm̂jk

]
.

4.2. Model 2: Explicit noise approach

For the direct model the Gibbs sampling equations and the naive factorization led to inef-
ficient algorithms because ωij make the covariances depend on the sample and feature. We
can get rid of this problem by explicitly instantiating ψij as random variables with additive
Gaussian noise. Then the full likelihood becomes

G(τ |a0, b0)
∏
i

∏
j

[
eκijψij−ωijψ

2
ij/2e−τ/2(ψij−

∑
k uikvik)

2
PG(ωij |b, 0)

]
∏
k

G(αk|a0, b0)
∏
i

N (uik|0, 1)
∏
j

N (vjk|0, α−1k )

 .
4.2.1. Gibbs sampler

Now the Gibbs updates for the factors no longer depend on the data, but instead only on
ψij . Hence, they are exactly equivalent to the Gaussian case, as are the updates for αk and
τ , but replacing xij with ψij . Sampling of ωij , in turn, is exactly as in the direct approach.
The only new conditional is for ψij , given by

σ2ψij
= (ωij + τ)−1 µψij

= σ2ψij
(τ
∑
k

uikvjk + κij).

This is easy to sample, and hence the only notable computational overhead compared to
the Gaussian case is the sampling of ωij .

4.2.2. Variational approximation

Now the naive VB approximation ((3), with additional terms for q(ψij) = N(µ̂ψij
, σ̂2ψij

))
also leads to updates where the covariances do not depend on i or j. Again we can re-use
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the updates for the Gaussian case for q(ui), q(vj) and q(αk), and the updates for the direct
approach for q(ωij) (but noting that now the expectation 〈ψ2

ij〉 is simply µ2ψij
+ σ2ψij

). The

remaining updates for q(τ) and q(ψij) are given by

âτ = a0 +ND/2, b̂τ = b0 +
∑
i,j

〈(ψij − uivTj )2〉/2

σ̂ψij
= (〈ωij〉+ 〈τ〉)−1, µ̂ψij

= σ2ψij
(〈τ〉

∑
k

ûikv̂jk + κij).

Here we assumed q(ψij) to factorize over the samples. One could also consider factorizing
q(ψ) only over the rows or the columns. These would still be tractable, but requiring
inversion of D ×D or N ×N matrices, which is only feasible for small problems.

For cases with missing data it also makes sense to consider a fully factorized approxi-
mation, especially since the gradient updates of the Gaussian case can be readily re-used
by replacing the data xij and its square with the expectations µψij

and µ2ψij
+ σ2ψij

.

4.3. Negative binomial models

For fixed parameter r of the negative binomial likelihood, the equations above can be directly
re-used for implementing a negative binomial latent factor model, by simply replacing κij =
xij − 1

2 with κij = (xij − r)/2 and PG(1, .) with PG(xij + r, .) in both the samplers and
the variational approximations. However, in practice we want to perform inference over
r as well. There are four alternatives on how to formulate the model, corresponding to
constant r, one ri for each row, one rj for each column, and separate rij for each element.
The last choice is unlikely to work well in practice since both rij and ψij would compete on
modeling the same entry. In the following we show how the inference is done for the choice
of parameters rj controlling the magnitudes of individual features.

For inference on rj we turn to the solutions provided by Zhou and Carin (2012), based
on compound-Poisson augmentation of the negative binomial distribution. We do not have
space to repeat their details, but they show that with augmentation variables lij that
correspond to the number of tables occupied by xij customers in a Chinese restaurant
process with a concentration parameter rj and gamma prior on rj , there are closed-form
expressions on the conditional distributions: rj |lij is a gamma distribution and lij |rj , xij
is a sum of xij Bernoulli variables bn with probabilities rj/(n − 1 + rj). These constructs
provide both Gibbs sampling and variational updates. As a practical note, we observe that∑

i〈lij〉 needed for updating q(rj) only requires 〈lij〉 for each unique count in X multiplied
by their number; this is often much faster than directly computing 〈lij〉 for all ND elements.

Finally, it is no longer obvious that q(ωij) can be obtained via exponential tilting of
PG(b, 0). As in the binary case, we have

log q(ωij) = −1

2
ωij〈ψ2

ij〉+ 〈logPG(ωij |xij + r, 0)〉,

where the latter expectation over rj is now tricky since it is over a logarithm of an infinite
sum. Straightforward numerical comparison, however, reveals that the closed-form expres-

sion q(ωij) = PG(xij + 〈rj〉,
√
〈ψ2

ij〉) still holds. Finally, the variational updates for q(rj)

require computing the expectation 〈log(1 − logistic(ψij))〉 which cannot be done in closed
form but requires Monte carlo integration.
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4.4. Other matrix factorization models

Like mentioned earlier, the update rules and conditional densities presented here for the case
of binary PCA are directly applicable for wide range of other factor models. The functional
forms remain identical, requiring only marginal changes in implementation. For a practical
example, we briefly mention here the necessary changes for implementing a collective matrix
factorization model for a typical recommender engine scenario of three matrices. Here X1

is users times items, X2 is users times user-features, and X3 is items times item-features:

X1 ≈ U1U
T
2 , X2 ≈ U1U

T
3 , X3 ≈ U2U

T
4 ,

with separate gamma priors for the precisions of the columns of each uc and the approxi-
mation

q(θ) =
∏
c,k

q(αck|âαck
, b̂αck

)
∏
c

∏
i

q(ui|µ̂i, Σ̂i)
∏
m,i,j

q(ω
(m)
ij |γ̂

(m)
ij , η̂

(m)
ij ).

The updates for q(αck) are exactly as in the PCA case, done separately for each of the

C = 4 matrices Uc. Similarly the updates for ω
(m)
ij are done independently for each of the

M = 3 observation matrices Xm.
The only updates that change are the gradients for the latent factors that become sums

over the observation matrices Xm influenced by each low-rank term Uc. In the example
setup above the gradient for U1 is the sum of the gradients for two separate PCA models
for X1 and X2. While some of the other gradients would involve also matrix transposes, all
updates re-use the same pieces that were required for the PCA case, complemented with
suitable looping over the correct matrices, as presented by Klami et al. (2014).

5. Methods summary

Above we presented two Gibbs samplers and four variational approximations for both like-
lihood potentials. In terms of practical computation these fall into two categories: The
Gibbs sampler and the naive variational approximations for the direct approach are consid-
erably slower than the rest of the variants due to inverting a K×K matrix for each sample
and feature. These are hence only feasible for small problems. The explicit noise variants,
however, are roughly as efficient as the Gaussian case (for binary data) – the computational
complexity is identical, but the constant factor is larger. This, however, comes at the ex-
pense of considerably looser the link between the actual data and the factors, which often
means poor convergence.

The most interesting variants are the gradient-based fully factorized variational approx-
imations. For both direct and explicit noise cases these are again slower than the Gaussian
case only by a constant factor (for the binary case; the negative binomial case is slower
due to somewhat heavy inference for rj), and support for missing data is trivially achieved
exactly as in the Gaussian case. These are hence the most likely candidates to become
useful practical factor models for binary and over-dispersed count data.

5.1. Relationship with previous work

The models provided in this work are most closely related to the Pòlya-Gamma augmented
regression models by Polson et al. (2013) and Zhou et al. (2012). Except for the efficient
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updating of the Chinese restaurant table expectations for the negative binomial model and
the closed-form updates for q(ωij), the technical elements are for the augmentation are bor-
rowed from their derivations. The fully factorized variational updates are, however, novel
compared to their solutions, and are directly applicable for speeding up practical inference
also for regression tasks, especially in presence of missing covariates. Pólya-Gamma aug-
mentations have also recently been used for tensor factorizations by Rai et al. (2014), using
only binary data and Gibbs sampling; the variational solutions and support for count data
developed here could be extended also for the tensor case.

The most closely related sampling approaches for latent factor models are the Bayesian
exponential family PCA by Mohamed et al. (2009) and Bayesian exponential family pro-
jections for coupled data sources by Klami et al. (2010). Even though their samplers are
formulated for general exponential families, most practical applications (including the ex-
periments in their papers) are on binary data. Compared to these approaches, our samplers
have closed-form Gibbs updates, which makes implementation considerably easier. For fac-
tor models on count data we are not aware of earlier samplers, except for the Poisson factor
analysis model of Zhou and Carin (2012) that is more closely related to topic models; it
provides discrete latent variables instead of continuous ones as in our case.

The variational approximations provided here for the binary case can be directly con-
trasted with earlier approaches, for example those of Jaakkola (1997) and Seeger and
Bouchard (2012). They explicitly construct bounds for the logistic function, whereas here
the PG augmentation allows direct closed-form mean-field updates. This makes the approx-
imation conceptually easier, using the same basic principle for updating all of the terms.
The resulting updates, however, have interesting relationships with the earlier bounds.

First, we consider the relationships between the Bohning bound used for binary matrix
factorizations by Seeger and Bouchard (2012). Their bound results in Gaussian updates
wih fixed noise precision 0.25, applied on pseudo-data computed iteratively as x̃ij = (xij −
logistic(uiv

T
j ))/4 + uiv

T
j . In effect, it models the data with constant variance but attempts

to move the pseudo-data points further away from zero for high/low probabilities. Our
bounds, in turn, have element-wise precision 〈ωij〉 bounded above by 0.25, applied directly
on the original data. In practice our bound is more accurate in modeling very high/low
probabilities, as will be demonstrated in the next section, whereas for the linear regime of
the logistic transformation the methods are very close.

The relationship between our bound and the bound Jaakkola (1997) presented for the
binary regression case is even more interesting. Their bound results in, using our notation,
factor precisions of 〈α〉+

∑
i λi(ξ)〈uTi ui〉 where λi(ξ) is updated iteratively for each sample

as λi(ξ) = 1
2ξ tanh(ξ/2) and ξ2 = 〈(

∑
k uikvjk)

2〉. We immediately see the close relationship
with 〈ωij〉 in (4); both bounds use the same hyperbolic tangent mapping. An important
difference, however, is that the bound by Jaakkola (1997) has one parameter for each data
point, whereas our bound naturally leads to separate values for each entry of X.

6. Experiments

In this section we illustrate the approximations on synthetic data, to highlight the accuracy-
efficiency tradeoffs of the alternatives. We compare the proposed methods against gaussian
models followed by truncation of the parameter values into the correct domain, and against
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the variational factor models presented by Klami et al. (2014) for both binary and count
data, using Bohning bounds as presented by Seeger and Bouchard (2012). This is not to
be considered as a fully-fledged comparison, but instead as a way of illustrating how the
proposed solutions differ from characteristic examples of earlier work. For both the proposed
variant and the comparison methods we se set the number of factors to 1.5×Ktrue and let
ARD prune out the unnecessary factors; all methods do this with sufficient accuracy.

Since we compare also against models using different likelihood potentials, we evaluate
the methods by computing the mean absolute error of the learned parameters. For binary
data we measure the error for p(xij = 1) = 〈logistic(ψij)〉, and for count data for the mean
〈xij〉 = 〈rj〉〈eψij 〉. We evaluate these quantities with Monte Carlo integration and compare
them against the true values used for creating the data.

To avoid cluttering the presentation we present the results for four representative vari-
ants: (i) Direct approach with naive approximation (PG-Direct-Naive), (ii) Direct approach
with factorized approximation (PG-Direct-F), (iii) Explicit noise approach with factorized
approximation (PG-Noise-F), and (iv) Direct approach with Gibbs sampling. The com-
parison between (ii) and (iii) shows the difference between the approaches, whereas the
comparison between (i) and (ii) illustrates the dramatic difference in computational speed
between the naive and factorized approximations. For the gradient-based variants we use a
conservative choice of step length of 0.3 times the diagonal Hessian, and we run all methods
for equal number of iterations (3, 000 for binary data, 6, 000 for count data).

6.1. Comparison on binary data

Earlier binary factor models (Mohamed et al., 2009; Li and Tao, 2010) were demonstrated
on repeated binary patterns corrupted by flipping noise. Such data would be too simple to
highlight the differences of our model variants, but it is worth mentioning that all of our
variants find the correct structure for the data of Mohamed et al. (2009) in a few iterations
and in a matter of seconds, in contrast to the 4, 000 iterations required by their sampler.

For properly evaluating the proposed variants we create data from the underlying
model, sampling uij , vjk ∼ N(0, 1) and the data from Bernoulli distribution with logistic-
transformed ψij = suiv

T
j + b rate. Here s controls the extremity of the probabilities so that

small s makes all probabilities close to 0.5 whereas large s makes most probabilities close to
0 or 1. The shift parameter b, in turn, controls the ratio of ones; negative values make 1 less
likely. We run the experiments for various values of s and b to illustrate how the methods
work in different conditions relevant for real-world data analysis: (i) balanced data with
probabilities near the linear region of the logistic function (s = 0.5, b = 0), (ii) balanced
data with extreme probabilities (s = 2.5, b = 0), and (iii) imbalanced data with only few
ones (s = 2, b = −4). The first setup is easy for all methods since most probabilities are
near the linear region of the logistic function, the second one is harder, and the last one is
particularly difficult for the earlier techniques. For all cases we use N = 1000, D = 100 and
K = 10, but similar results would be obtained for a wide range of matrix sizes.

The errors for these three setups are presented in Figure 1. For the first scenario all
methods are roughly as accurate, whereas for the rest the PG-Direct variants outperform
the rest, with the Gibbs sampler being superior for the hardest case. The naive variational
approximation and the Gibbs sampler are, however, dramatically slower than the rest of the
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Figure 1: Illustration on binary data, showing the absolute error against wall-clock time in
log scale. On the easy setup (left) the comparison method of Klami et al. (2014)
using Bohning bound (green line) is as fast and accurate as the proposed methods
(black and blue lines), but on the harder setups (middle and right) the proposed
model variants with the direct approach are clearly the best. The Gibbs sampler
(blue line) is the most accurate method but slow compared to the factorized
variational approximations. The noisy variant (PG-Noise-F) and the Gaussian
baseline (red line) are inaccurate.

methods; they require minutes to converge compared to just seconds for the other methods.
The faster variants are not notably slower than the Gaussian model, which makes them
easily applicable also for large scale setups. While the data matrix here has only 100, 000
samples, the computational times would be roughly the same also for much larger setups
that have comparable number of observed entries.

The accuracy differences are best understood by looking at the extreme probabilities
near zero and one. For the second setup the mean absolute error for the entries that are
either below 0.05 or above 0.95 is 0.034 for PG-Direct-F and 0.044 for Bohning. This
difference explains almost completely the deviation in the overall accuracies. Similarly,
for the third setup the mean error for the entries with probability above 0.95 is 0.32 for
PG-Direct-F and 0.49 for Bohning. Since the Bernoulli likelihood emphasizes the extreme
probabilities, this difference would also be clearly visible if using likelihood for measuring
accuracy. For the second setup the average likelihood per entry is −0.155 for PG-Direct-F
and −0.168 for Bohning. For the third setup the difference is even bigger, −0.129 vs −0.185.

6.2. Comparison on count data

We run experiments on two kinds of count data. The first setup uses Poisson data having

equal mean and variance, which we generate using rate λij = esuiv
T
j +b. The second setup

uses over-dispersed data from the proposed model, with variance larger than the mean. We
generate it with rj ∼ G(5, 1) and pij = logistic(suiv

T
j + b). For both setups we sample data

sets with small and large counts by varying s, setting N = 500, D = 50 and K = 10.
The accuracies are visualized in Figure 2. For negative binomial data the three direct

alternatives are the most accurate ones, with PG-Direct-F being an order of magnitude
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Figure 2: Illustration on count data, with negative binomial data in the top row and Poisson
data in the bottom row. The direct variants are clearly the best on all but
the small-scale Poisson data (bottom left), and even for that setup PG-Direct-F
converges faster than the comparison method using Bohning bounds (green line).
The explicit noise variant (PG-Noise-F) has poor accuracy, as does the Gaussian
comparison method (red line) for all but the small-scale Poisson data.

faster than the naive variant and Gibbs sampler. Even though the proposed methods are
not designed for Poisson data, they are still the most accurate ones even for that when
the scale gets large. For the large-scale Poisson data the Gibbs sampler is ultimately the
most accurate method, but PG-Direct-F reaches good accuracy in a few seconds whereas the
sampler takes more than ten minutes to converge and half a minute to reach the accuracy of
PG-Direct-F. An interesting observation is that here PG-Direct-F is also considerably faster
than the comparison method of Klami et al. (2014), despite the additional computation
needed for updating q(rj). This is because the comparison method converges very slowly
due to too high noise precision, fixed to 0.17 max(xij) in that algorithm.

7. Conclusion

In this paper we laid out the details for implementing matrix factorization models for
binary and over-dispersed count data using Pòlya-Gamma augmentations. Even though
many of the inference details follow from what Polson et al. (2013) and Zhou et al. (2012)
presented for regression models, alternative ways of implementing the factor models lead to
big differences in accuracy and computational cost. The main result of this paper is that
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the fully factorized variational approximation (Ilin and Raiko, 2010) for the direct approach
is both accurate (only losing to the Gibbs sampler in some cases) and the most efficient
method, and hence the recommended alternative for large data sets. It learns factorizations
for fairly large matrices in a matter of seconds and is directly applicable for a wide range of
matrix factorization models besides PCA, including canonical correlation analysis (Klami
et al., 2013), group factor analysis (Virtanen et al., 2012), and collective matrix factorization
(Singh and Gordon, 2010; Klami et al., 2014). The main advantage compared to earlier
variational models is better accuracy for extreme probabilities in the binary case and support
for over-dispersed count data. The model was also shown to outperform the comparison
methods on imbalanced binary data.

The samplers presented here are accurate but not very efficient; the direct approach is
slow due to needing to invert K × K matrix for each sample, whereas the explicit noise
approach converges slowly. Nevertheless, they are good choices for small data sets. More
efficient solutions should be possible by gradient-based sampling for the direct approach.

In the course of deriving the variational approximations we also clarified some practical
details on variational inference for Pòlya-Gamma augmentations in general. Zhou et al.
(2012) used Monte Carlo integration for 〈ωij〉, whereas we showed that it can be computed
in closed form. We also showed how the Chinese restaurant process expectation required
for inferring q(rj) can be efficiently implemented with low computational cost. Finally, we
showed an interesting relationship between the explicit bound of Jaakkola (1997) and the
update rules of the PG augmentation for binary data.
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