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Abstract. A Markov process of  partitions of  the natural numbers is constructed 
by defining a P61ya-like urn model. The marginal distributions of  this process 
are the Ewens'  sampling distributions of  population genetics. 
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1. Introduction 

This paper  is motivated by Ewens' [ 1, Eq. (18)], where it is shown that if a random 
sample of  genes, each of which can be in one of many allelic states, is drawn 
from an evolving populat ion which has come to an equilibrium, then the probabil- 
ity that the ( j  + 1)th gene is of a type previously drawn is j/(O +j) where 0 > 0 
is some constant. This behaviour mimics the conditional probabilities of  drawings 
in a P61ya urn and it is this connection which we explore. 

Consider then a process {Xn} generated by sampling from an urn containing 
one black ball and various numbers of coloured (non-black) or labelled balls. 
The black ball has mass 0 > 0 and every other ball has mass one. At time n a 
ball is selected at random (that is in proport ion to its mass) from the urn. I f  
labelled it is returned together with one additional ball of  the same colour, but 
if black it is returned together with one additional ball of  a previously unobserved 
colour. For definiteness we will use the natural numbers for labelling the colours 
and choose them sequentially as the need arises. The random variable X,  is then 
the label of  the additional ball returned after the nth drawing. This describes the 
Pdlya-like process. Originally there is only one ball in the urn, the black one. 
T h u s X l = l ,  X 2 = l  or 2, X 3 = l ,  2 o r 3 ,  etc. 

I f  we define the quantity K as the random number  of distinct labels present 
then at time n the urn will contain a total of  n balls of  which n~ (1 <~ i ~< K)  are 
numbered i and its contents may be identified with a configuration of n tokens 
placed in K cells. (The black ball is ignored in describing the urn configuration 
since it is always present and merely a device for generating new labels, that is 
introducing mutations.) 
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This model  being motivated by a genetic applicat ion in which no physical  
significance may be at tached to the actual labels requires that all biologically 
meaningful  informat ion be contained in the unordered  occupancy  numbers  
{nl, nz, �9 . . ,  nK}. It is thus o f  interest to ascertain their distribution. To this end 
we recall the not ion o f  a partit ion [3]. 

A part i t ion o f  a positive integer n is a representat ion o f  n as a sum of  positive 
integers. A set o f  occupancy  numbers  { h i , . . .  , nK} where n~ + .  �9 �9 +nK = n thus 
defines a part i t ion o f  n. For  each 1 <~ i <~ n, let ai = # o f  times the integer i appears 
in { n l , . . . ,  nK}. The vector  a = ( a l , . . . ,  an) is called the allelic part i t ion corre- 
sponding  to { n ~ , . . . ,  nr}.  It is a convenient  description in genetic applications 
where the labels represent distinct allelic forms of  a gene and ai the number  o f  

X " alleles with i representatives. Observe that the sequence o f  draws { k}k=~ results 
in a r a n d o m  parti t ion denoted by Hn. 

2. Theorem 

{H,} is a Markov process with marginal distribution 

n ! 0 ~' 
P[H~ = a ] =  ~ i=,l~ i~ai[ (1) 

where [0] n = 0(0 + l) �9 �9 �9 (0 + n  - 1) is the ascending factorial and a = (al, . . . ,  an) 
with ~ iai = n. 

Proof: Fix a part i t ion a = ( a ~ , . . . , a ~ )  resulting from occupancy  numbers  
{nl, �9 �9 �9 nK) and consider  a possible sample path {XI = xl, X2 = x2,. �9 �9 X~ = x~}. 
Clearly 

OK K 
P [ X , = x t , . . . , X , = x , ] =  l~j=l (nj-- l)! (2) 

[0]" 

The factor  O K reflects the selection K times o f  the black ball following which 
each new label must  be selected an addit ional  ( n i - 1 )  times. The denomina tor  
[0]" = 0(0 + 1) �9 �9 �9 (0 + n -  1) is the p roduc t  o f  the successive masses o f  the balls  
in the urn on each of  the first n drawings. 

It remains to count  the number  o f  such sample paths. This obviously equals 
the number  of  distinguishable permutat ions o f  n objects which are divided into 
types 1, 2 . . . .  , K subject to the following constraints:  

(i) The first object o f  type 1 precedes the first object o f  type 2 which precedes 
the first object o f  type 3 and so on;  

(ii) The numbers  o f  each type are not  fixed; rather there are n~ of  some type, 
n2 o f  another,  . . .  and nK of  a last where nl +" �9 �9 +n/r = n. 

For  example if the unordered  occupancy  numbers  are {1, 2, 1, 1} determining 
the part i t ion a = ( 3 ,  1,0, 0, 0) then the sequence o f  urn drawings 12234 is a 
permissible sample path  while 13224 is not. 

In t roduce  the fol lowing notation. Arrange the occupancy  numbers  in their 
decreasing order  statistics n~/> nz t> �9 �9 �9 I> nK. Let p equal the number  o f  distinct 
integers in the set { n ~ , . . . ,  nK} and define a~ to be the number  o f  indices i such 
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that n~ = n~, ~2 the number of indices i such that n~ = n~,+l and so on, and finally 
ap the number of indices i such that n~ = n~: (see [2]). 

Imposing condition (ii) on the sample paths observe that there are K !/[[P=~ a~! 
distinguishable ways of distributing the numbers { n~ , . . . ,  nK } among the K types 
and for each such way there are n !/I] Y-l n~! permutations of labels agreeing with 
the occupancy numbers, resulting in a total of 

K!n!  
r 7= " (3) 

permutations fulfilling condition (ii). 
Not all among these will obey condition (i). Separate the permutations into 

disjoint classes determined by the order of first appearance of the digits 
{1, 2 , . . . ,  K}. There are K!  such disjoint classes each having, by symmetry, the 
same cardinality, and only one satisfying (1). If we multiply (2) by (3) and divide 
by K!  we will obtain 

n! O K 

[o]" If,"=, 
which is just another way of expressing (1). Hence the marginal distributions are 
just the Ewens' distributions for different sample sizes n. The Markovian assertion 
is immediate. 

Remarks: Equation (1) is known as Ewens' sampling formula in population 
genetics [1]. It arises in various models (see Kingman [3] who has identified three 
broad features linking the models) in all of  which a population with genetic 
material is evolving through reproduction and mutation and (1) is essentially the 
limit distribution of the genetic content in a random sample taken from the 
population. This derivation exhibits Ewens' formula as the marginal distribution 
of a Markov process of  partitions, the main novelty thus being that there is no 
limit involved in obtaining the distribution. 

3. Connection with combinatorics 

As an example of the usefulness of the above we explain the appearance [3] of 
r l  , a .  

the combinatorial component n !/I]~= I i ,a~ !. This function of a is known to equal 
the number of permutations of n objects whose cycle decomposition has precisely 
ai cycles of length i, and we now give an alternate proof  of the preceding theorem, 
based on cyclic permutations, to count the number of sample paths. The approach 
is reminiscent of the well-known duality between urn models and occupancy 
problems. 

Consider an object set O = { A l , . . . ,  A,} and o- a permutation on O. Express 
cr as a product of cyclic permutations, say K cycles. With each cycle associate 
a label coded by an integer in {1, 2 , . . . ,  K}. Each element in O appears in one 
and only one cycle and thus acquires a label. Now o- also has a permutation 
representation as a member of S, the symmetric group on n objects. In this 
representation replace each element of the object set by its label. 
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Here is an example with K = 3. Let O = {A, B, C, D, E, F, G} and consider 
the permutation o ' (ABCDEFG)=(CEDABGF) .  Its cycle representation is 
(ACD)(BE)(FG) .  Consider then the labelling (ACD)~-~. 1, (BE) ~--~2, (FG) ~--~3. 
Using this labelling we find that (CEDABGF) becomes (1211233). Similarly with 
the labelling ( A C D ) ~  1, (BE)~--~ 1, (FG),~-~ 3, (CEDABGF)  becomes (2122133). 

There are K ! labellings possible but in only one of these will it be the case 
that in the permutation representation the first appearance of 1 will precede the 
first appearance of 2 which will precede the first appearance of 3 and so on. 
Choose this labelling to define a mapping T from permutations on n objects to 
permutations of K integers satisfying the previous condition (i). Now this map- 
ping is not 1 -1 .  For instance with the above notation the permutation 
o"( ABCDEFG)  = ( DEACBGF)  has the cycle representation ( A D C  )( BE)( FG) 
and the labelling (ADC)~-~ 1, (BE) ~--~2, (FG),,-~ 3 transforms (DEACBGF)  into 
(1211233) which is the same as in the first example of the previous paragraph�9 

Two permutations will map into the same sequence of K integers fulfilling 
(i) if and only if their cycle representations contain the same groups of symbols. 
Fixing one member of a cycle uniquely determines the cycle so that if a cycle 
contains nj elements there are (n j -1) !  distinct cycles with the same elements. 

�9 K 
Hence the mapping T has multiplicity l]j_ 1 (nJ - 1)! on those permutations whose 
cycle representation has cycle numbers { n l , . . . ,  nK}. 

To each permutation o- there corresponds a partition a = ( a l , . . . ,  an) of n 
defined by a~ =- ai(o-) = the number of cycles of length i in the cyclic representation 
of o- and the number of permutations whose cycle decomposition determines a 
fixed partition ( a l , . . . ,  a,)  is given by n !/II7=~ ia'ai !. Hence the number of distinct 

I n ! K sample paths satisfying (i) and (ii) is n ./(I]~=1 ia'ai.)(llj=l (nj - 1)!). Multiplica- 
tion of this expression by (2) will give (1) again�9 
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