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Abstract

We characterize all linear operators on finite or infinite-dimensional polynomial
spaces that preserve the property of having the zero set inside a prescribed region
� � C for arbitrary closed circular domains � (i.e., images of the closed unit
disk under a Möbius transformation) and their boundaries. This provides a natural
framework for dealing with several long-standing fundamental problems, which we
solve in a unified way. In particular, for �DR our results settle open questions that
go back to Laguerre and Pólya-Schur.

1. Introduction

Some of the main challenges in the theory of the distribution of zeros of
polynomials and transcendental entire functions concern the description of linear
operators that preserve certain prescribed (“good”) properties. Notwithstanding
their fundamental character, most of these problems are in fact still open as they
turn out to be surprisingly difficult in full generality. Two outstanding questions
among these are the following: Let � � C be an appropriate set of interest, and
denote by �.�/ the class of all (complex or real) univariate polynomials whose
zeros lie in �.

PROBLEM 1. Characterize all linear transformations

T W �.�/! �.�/[f0g:

Let �n be the vector space (over C or R) of all polynomials of degree at most
n, and denote by �n.�/ the subclass of �.�/ consisting of polynomials of degree
at most n. The finite degree analogue of Problem 1 is as follows.

PROBLEM 2. For n 2 N, describe all linear operators

T W �n.�/! �.�/[f0g:
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These problems were stated in precisely this general form in [CC04], [Cso06] (see
also [BBCV07], [RS02, pp. 182–183]), thereby encompassing essentially all similar
questions or variations thereof scattered throughout the literature. Problems 1 and 2
originate from the works of Laguerre [Lag82] and Pólya and Schur [PS14] and have
been open for all but trivial choices of �, including such important cases as when
�D R or � is a half-plane. In this paper we completely solve Problems 1 and 2 in
arguably the most relevant cases, namely all closed circular domains (iii)–(v) and
their boundaries (i)–(ii):

(i) � is a line,

(ii) � is a circle,

(iii) � is a closed half-plane,

(iv) � is a closed disk,

(v) � is the complement of an open disk.

Despite their long history, relatively few results pertaining to Problems 1 and
2 are known. As we note in the following (very brief) survey, these deal almost
exclusively with special types of linear transformations satisfying the required
properties.

To prove the transcendental characterizations of linear preservers of polynomi-
als whose zeros are located on a line or in a closed half-plane (Theorems 5 and 6), we
first establish a result on uniform limits on compact sets of bivariate polynomials that
are nonvanishing whenever both variables are in the upper half-plane (Theorem 12).
Entire functions that are uniform limits on compact sets of sequences of univariate
polynomials with only positive zeros were first described by Laguerre [Lag82]. In
the process, he showed that if Q.z/ is a real polynomial with all negative zeros,
then T .�.R//� �.R/[f0g, where T W RŒz�! RŒz� is the linear operator defined
by T .zk/ D Q.k/zk for k 2 N. Laguerre also stated without proof the correct
result for uniform limits of polynomials with all real zeros. The class of entire
functions thus obtained — the so-called Laguerre-Pólya class — was subsequently
characterized by Pólya [Pól13]. A more complete investigation of sequences of such
polynomials was carried out in [LP14]. This also led to the description of entire
functions obtained as uniform limits on compact sets of sequences of univariate
polynomials whose zeros all lie in a given closed half-plane [Lev80], [Obr41],
[Szá43] as well as the description of entire functions in two variables obtained as
limits, uniform on compact sets, of sequences of bivariate polynomials that are
nonvanishing when both variables are in a given open half-plane [Lev80].

The Laguerre-Pólya class has ever since played a significant role in the theory
of entire functions [CCS87], [Lev80]. It was for instance a key ingredient in
Pólya and Schur’s (transcendental) characterization of multiplier sequences of the
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first kind [PS14]; see Theorem 1 below. The latter are linear transformations
T on RŒz� that are diagonal in the standard monomial basis of RŒz� and satisfy
T .�.R//� �.R/[f0g. Pólya and Schur’s seminal paper generated a vast literature
on this topic and related subjects at the interface between analysis, operator theory
and algebra, but a solution to Problem 1 in the case � D R has so far remained
elusive (cf. [CC04]). Among the most noticeable progress in this direction we should
mention Theorem 17 of [Lev80, Ch. IX], where Levin describes a certain class of
“regular” linear operators acting on the closure of the set of univariate polynomials
with all zeros in the closed upper half-plane. However, Levin’s theorem actually
uses rather restrictive assumptions and seems in fact to rely on additional (albeit
not explicitly stated) nondegeneracy conditions for the transformations involved.
Indeed, one can easily produce counterexamples to Levin’s result by considering
linear operators such as the ones described in Corollary 2(a) of this paper. In
[CC77], Craven and Csordas established an analogue of the Pólya-Schur theorem
for multiplier sequences in finite degree, thus solving Problem 2 for �D R in the
special case of diagonal operators. Unipotent upper triangular linear operators T on
RŒz� satisfying T .�.R//� �.R/[f0g were described in [CPP02a]. Quite recently,
the authors in [BB06] solved Problem 1 for � D R and obtained multivariate
extensions for a large class of linear transformations, namely all finite order linear
differential operators with polynomial coefficients. Further partial progress towards
a solution to Problem 1 for �D R is preliminarily reported in [Fis06], although
the same kind of remarks as in the case of Levin’s theorem apply here. Namely, the
results of [Fis06] are valid only in the presence of extra nondegeneracy or continuity
assumptions for the operators under consideration. Various other special cases of
Problem 1 for �DR have been considered in [ABH04], [Brä06], [Bre89], [INS91],
[IN87], [IN90]. Finally, we should mention that to the best of our knowledge
Problems 1 and 2 have so far been widely open in cases (ii)–(v).

To begin with, in Section 2.1 and Sections 3.1 and 3.2, we solve Problems 1
and 2 for �D R and �D fz 2 C W Im.z/� 0g and thus obtain complete algebraic
and transcendental characterizations of linear operators that preserve hyperbolicity
and stability, respectively. In order to deal with Problems 1 and 2 for all closed
circular domains and their boundaries, we are naturally led to considering a third
classification problem, namely the following more general version of Problem 2:

PROBLEM 3. Let n 2 N and �� C. Describe all linear operators

T W �n.�/ n�n�1.�/! �.�/[f0g:

As we explain in Section 2.2, Problems 2 and 3 are equivalent for closed
unbounded sets, but for closed bounded sets the latter problem is more natural and
actually turns out to be a crucial step in solving Problems 1 and 2 for closed discs.
In Sections 2.2 and 3.3, we fully answer Problem 3 for any closed circular domain
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or the boundary of such a domain. As a consequence, we get complete solutions to
Problems 1 and 2 in all cases ((i)–(v)) listed above.

On the one hand, these results accomplish the classification program origi-
nating from the works of Laguerre and Pólya-Schur that we briefly outlined in
this introduction. On the other hand, they seem to have numerous applications
ranging from entire function theory and operator theory to real algebraic geometry,
matrix theory and combinatorics. Some of these will be studied in forthcoming
publications. Section 4 concludes this paper with several remarks on related open
problems and potential further developments.

2. Main results

2.1. Hyperbolicity and stability preservers. To formulate the complete an-
swers to Problems 1 and 2 for R and the half-plane fz 2 C W Im.z/� 0g, we need
to introduce some notation. As in [BB06] — and following the commonly used
terminology in e.g. the theory of partial differential equations [ABG70] — we call
a nonzero univariate polynomial with real coefficients hyperbolic if all of its zeros
are real. Such a polynomial is said to be strictly hyperbolic if in addition all of
its zeros are distinct. A univariate polynomial f .z/ with complex coefficients is
called stable if f .z/¤ 0 for all z 2C with Im.z/ > 0, and it is called strictly stable
if f .z/ ¤ 0 for all z 2 C with Im.z/ � 0. Hence a univariate polynomial with
real coefficients is stable if and only if it is hyperbolic. These classical concepts
have several natural extensions to multivariate polynomials, the most general notion
being as follows.

Definition 1. We say a polynomial f .z1; : : : ; zn/ 2 CŒz1; : : : ; zn� is stable if
f .z1; : : : ; zn/¤ 0 for all n-tuples .z1; : : : ; zn/2Cn with Im.zj / > 0 for 1� j � n.
If in addition f has real coefficients, it will be referred to as real stable. The sets of
stable and real stable polynomials in n variables are denoted by Hn.C/ and Hn.R/,
respectively.

Note that f is stable (respectively, real stable) if and only if for all ˛ 2 Rn

and v 2 Rn
C

the univariate polynomial f .˛ C vt/ 2 CŒt � is stable (respectively,
hyperbolic). The connection between real stability and (Gårding) hyperbolicity for
multivariate homogeneous polynomials is explained in e.g. [BB06, Prop. 1].

NOTATION 1. Henceforth it is understood that if T is a linear operator on
some (real) linear subspace V �RŒz1; : : : ; zn� then T extends in an obvious fashion
to a linear operator — denoted again by T — on the complexification V ˚ iV of V .

Definition 2. A linear operator T defined on a linear subspace V of CŒz1;

: : : ; zn� (respectively, RŒz1; : : : ; zn�) is called stability preserving (respectively, real
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stability preserving) on a given subset M � V if

T .Hn.C/\M/�Hn.C/[f0g (respectively, T .Hn.R/\M/�Hn.R/[f0g):

A real stability preserver in the univariate case will alternatively be referred to
as a hyperbolicity preserver. For m 2 N, let RmŒz� D ff 2 RŒz� W deg.f / � mg
and CmŒz� D RmŒz�˚ iRmŒz� D ff 2 CŒz� W deg.f / � mg. If T is a stability
(respectively, hyperbolicity) preserving operator on CmŒz� (respectively, RmŒz�),
we will also say that T preserves stability (respectively, hyperbolicity) up to degree
m.

Pólya and Schur’s characterization of multiplier sequences of the first kind,
which we referred to in Section 1, is given in the following theorem; see [CC04],
[Lev80], [PS14].

THEOREM 1 (Pólya-Schur). Let � W N! R be a sequence of real numbers,
and let T W RŒz�! RŒz� be the corresponding (diagonal) linear operator given by
T .zn/D �.n/zn for n 2 N. Define ˆ.z/ to be the formal power series

ˆ.z/D

1X
kD0

�.k/

kŠ
zk :

The following assertions are equivalent:

(i) � is a multiplier sequence.

(ii) ˆ.z/ defines an entire function which is the limit, uniform on compact sets, of
polynomials with only real zeros of the same sign.

(iii) Either ˆ.z/ or ˆ.�z/ is an entire function that can be written as

Czneaz
1Y
kD1

.1C˛kz/;

where n 2 N, C 2 R, a; ˛k � 0 for all k 2 N, and
P1
kD1 ˛k <1.

(iv) For all nonnegative integers n, the polynomial T Œ.zC 1/n� is hyperbolic with
all zeros of the same sign.

As noted in e.g. [CC04, Th. 3.3], parts (ii) and (iii) in the Pólya-Schur the-
orem give a “transcendental” description of multiplier sequences, while part (iv)
provides an “algebraic” characterization. We emphasize right away the fact that
our main results actually yield algebraic and transcendental characterizations of
all hyperbolicity and stability preservers, respectively, and are therefore natural
generalizations of Theorem 1. Moreover, they also display an intimate connection
between Problem 1 and its finite degree analogue (Problem 2) in the case of (real)
stability preservers.
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NOTATION 2. Given a linear operator T on CŒz�, we extend it to a linear
operator — denoted again by T — on the space CŒz; w� of polynomials in the
variables z and w by setting T .zkw`/D T .zk/w` for all k; ` 2 N.

Definition 3. Let ˛1 � ˛2 � � � � � ˛n and ˇ1 � ˇ2 � � � � � ˇm be the zeros of
two hyperbolic polynomials f; g 2H1.R/. We say that these zeros interlace if they
can be ordered so that either ˛1 � ˇ1 � ˛2 � ˇ2 � � � � or ˇ1 � ˛1 � ˇ2 � ˛2 � � � � .
Note that in this case one has jm� nj � 1. By convention, the zeros of any two
polynomials of degree 0 or 1 interlace.

Our first theorem characterizes linear operators preserving hyperbolicity up to
some fixed degree n.

THEOREM 2. Let n 2 N, and let T W RnŒz�! RŒz� be a linear operator. Then
T preserves hyperbolicity if and only if either

(a) T has range of dimension at most two and is of the form

T .f /D ˛.f /P Cˇ.f /Q for f 2 RnŒz�;

where ˛; ˇ W RnŒz�! R are linear functionals and P;Q 2H1.R/ have inter-
lacing zeros;

(b) T Œ.zCw/n� 2H2.R/; or

(c) T Œ.z�w/n� 2H2.R/.

In [BB06], we recently characterized real stable polynomials in two variables
as the polynomials f .z; w/ 2 RŒz; w� that can be expressed as

(2-1) f .z; w/D˙ det.zACwBCC/;

where A and B are positive semidefinite matrices and C is a symmetric matrix.
Hence (b) and (c) in Theorem 2 can be reformulated as

T Œ.zCw/n�D˙ det.zA˙wBCC/;

where A and B are positive semidefinite matrices and C is a symmetric matrix.
We will also need to deal with the case when we allow complex coefficients.

THEOREM 3. Let n 2 N, and let T W CnŒz�! CŒz� be a linear operator. Then
T W �n.R/! �.R/ if and only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CnŒz�;

where ˛ W CnŒz�! C is a linear functional and P 2H1.R/;

(b) T has range of dimension at most two and is of the form

T .f /D �˛.f /P C �ˇ.f /Q for f 2 CnŒz�;
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where � 2 C, ˛; ˇ W CnŒz�! C are linear functionals with ˛.RnŒz�/� R and
ˇ.RnŒz�/� R, and P;Q 2H1.R/ have interlacing zeros;

(c) there exists an � 2 C such that �T Œ.zCw/n� 2H2.R/; or

(d) there exists an � 2 C such that �T Œ.z�w/n� 2H2.R/.

The next theorem concerns stability preservers up to some fixed degree n.

THEOREM 4. Let n 2 N, and let T W CnŒz�! CŒz� be a linear operator. Then
T preserves stability if and only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CnŒz�;

where ˛ W CnŒz�! C is a linear functional and P 2H1.C/; or

(b) T Œ.zCw/n� 2H2.C/.

From Theorems 2 and 4 we may deduce algebraic characterizations of hyper-
bolicity and stability preservers, respectively:

COROLLARY 1 (algebraic characterization of hyperbolicity preservers). A
linear operator T W RŒz�! RŒz� preserves hyperbolicity if and only if either

(a) T has range of dimension at most two and is of the form

T .f /D ˛.f /P Cˇ.f /Q for f 2 RŒz�;

where ˛; ˇ W RŒz�! R are linear functionals and P;Q 2H1.R/ have interlac-
ing zeros;

(b) T Œ.zCw/n� 2H2.R/[f0g for all n 2 N; or

(c) T Œ.z�w/n� 2H2.R/[f0g for all n 2 N.

COROLLARY 2 (algebraic characterization of stability preservers). A linear
operator T W CŒz�! CŒz� preserves stability if and only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CŒz�;

where ˛ W CŒz�! C is a linear functional and P 2H1.C/; or

(b) T Œ.zCw/n� 2H2.C/[f0g for all n 2 N.

NOTATION 3. To any linear operator T W CŒz�! CŒz�, we associate a formal
power series in w with polynomial coefficients in z given by

GT .z; w/D

1X
nD0

.�1/nT .zn/

nŠ
wn 2 CŒz�ŒŒw��:
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Let n be a positive integer, and denote by Hn.C/ and Hn.R/ the set of entire
functions in n variables that are limits, uniform on compact sets, of polynomials
in Hn.C/ and Hn.R/, respectively. Hence in our notation, H1.R/ is the Laguerre-
Pólya class of entire functions; this class is sometimes denoted L-P in the literature.
For a description of H1.C/ and H2.C/, see [Lev80, Chap. IX].

Remark 1. As noted in [BB06], any linear operator T on CŒz� may be uniquely
represented as a formal linear differential operator with polynomials coefficients,
i.e., T D

P1
kD0Qk.z/ d

k=dzk , where Qk 2 CŒz� and k � 0. In [BB06], we
used the (formal) symbol FT .z; w/ WD

P1
kD0Qk.z/w

k 2 CŒz�ŒŒw�� of T . One can
easily check that the “modified symbol”GT .z; w/ introduced in Notation 3 satisfies
GT .z; w/e

zw D FT .z;�w/.

THEOREM 5 (transcendental characterization of hyperbolicity preservers). A
linear operator T W RŒz�! RŒz� preserves hyperbolicity if and only if either

(a) T has range of dimension at most two and is of the form

T .f /D ˛.f /P Cˇ.f /Q for f 2 RŒz�;

where ˛; ˇ W RŒz�! R are linear functionals and P;Q 2H1.R/ have interlac-
ing zeros;

(b) GT .z; w/ 2H2.R/; or

(c) GT .z;�w/ 2H2.R/.

THEOREM 6 (transcendental characterization of stability preservers). A linear
operator T W CŒz�! CŒz� preserves stability if and only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CŒz�;

where ˛ W CŒz�! C is a linear functional and P 2H1.C/; or

(b) GT .z; w/ 2H2.C/.

2.2. Preservers of polynomials with zeros in a closed circular domain or its
boundary. Recall that a Möbius transformation is a bijective conformal map of the
extended complex plane, i.e., a map ˆ W C[f1g! C[f1g given by

(2-2) ˆ.z/D
azCb

czCd
for a; b; c; d 2 C with ad � bc ¤ 0:

The inverse of ˆ is then given by

ˆ�1.z/D
dz�b

�czCa
:
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Definition 4. Let

H D fz 2 C W Im.z/ > 0g and H D fz 2 C W Im.z/� 0g:

An open circular domain is the image of H under a Möbius transformation, i.e., an
open disk, the (open) complement of a closed disk or an open affine half-plane. A
closed circular domain is the image of H under a Möbius transformation, that is, a
closed disk, the (closed) complement of an open disk or a closed affine half-plane.

For technical reasons we will henceforth assume the following:

(2-3)
If C is a half-plane, then the corresponding Möbius trans-
formation ˆ W C ! H is a translation composed with a
rotation, i.e., c D 0 in (2-2).

Let us also extend Definition 1 to arbitrary sets �� C.

Definition 5. A polynomial f 2 CŒz1; : : : ; zn� is said to be �-stable if it
satisfies f .�1; : : : ; �n/¤ 0 whenever �j 2� for all 1� j � n.

Remark 2. An H -stable polynomial is precisely a stable polynomial in the
sense of Definition 1.

When C1 is closed and unbounded and C2 is closed and bounded, a fundamen-
tal discrepancy between �n.C1/ and �n.C2/ is that �n.C1/n�n�1.C1/ is dense in
�n.C1/ while �n.C2/ n�n�1.C2/ is not dense in �n.C2/, since constant nonzero
polynomials do not belong to the closure of �n.C2/ n �n�1.C2/. In order for a
linear transformation T W CnŒz�! CŒz� to map �n.C1/[f0g into �.C1/[f0g, it
is therefore enough (by Hurwitz’s theorem) for T to map �n.C1/ n�n�1.C1/ into
�.C1/[f0g. However, this is not the case for C2. Indeed, take for instance C2 to
be the closed unit disk, and let Tn W CnŒz�! Cn�1Œz� be defined by

T .zk/D .n� k/zkC kzk�1 for 0� k � n:

An application of Theorem 7 below shows that T W�n.C2/n�n�1.C2/!�.C2/[f0g

but T .zn�1/Dzn�2.zCn�1/, which does not belong to �.C2/ for n�3. Therefore
we need to solve a more general version of Problem 2, namely Problem 3. This is
done in the next two theorems for all closed circular domains and their boundaries.

NOTATION 4. Given �� C, we denote its complement C n� by �0 and its
boundary � n V� by @�. We let �r be the interior of the complement of �, that is,
�r D V�0.

THEOREM 7. Let n 2 N, and let T W CnŒz�! CŒz� be a linear operator. Let
C be an open circular domain given by C D ˆ�1.H/, where ˆ is a Möbius
transformation as in (2-2). Then T W �n.C 0/n�n�1.C 0/! �.C 0/[f0g if and only
if either
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(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CnŒz�;

where ˛ W CnŒz�! C is a linear functional and P 2 �.C 0/; or

(b) the polynomial T Œ..azC b/.cwC d/C .awC b/.czC d//n� is C -stable.

Remark 3. In the case when C 0 is the closed unit disk then for

(2-4) ˆ.z/D
.i=2/.zCi/

z�i

the polynomial in (b) of Theorem 7 reduces to inT Œ.1C zw/n�.

NOTATION 5. Given a Möbius transformation ˆ as in (2-2) and n 2 N, we
define an invertible linear transformation �n W CnŒz� ! CnŒz� by �n.f /.z/ D
.czC d/nf .ˆ.z//.

THEOREM 8. Let n 2 N, and let T W CnŒz� ! CŒz� be a linear operator.
Let C D ˆ�1.H/ be an unbounded open circular domain, where ˆ is a Möbius
transformation as in (2-2). Then T W �n.@C / n �n�1.@C /! �.@C /[ f0g if and
only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CnŒz�;

where ˛ W CnŒz�! C is a linear functional and P 2 �.@C /;

(b) T has range of dimension two, and the linear operator given by S D ��1m T�n
is a stability preserver as in (b) of Theorem 3, wheremDmaxfdegT .f / W f 2
CnŒz�g;

(c) the polynomial T Œ..azCb/.cwCd/C .awCb/.czCd//n� is both C -stable
and C r -stable; or

(d) the polynomial T Œ..azCb/.cwCd/� .awCb/.czCd//n� is both C -stable
and C r -stable.

Remark 4. If @C is the unit circle, then for ˆ as in (2-4) the polynomials in (c)
and (d) of Theorem 8 simply become inT Œ.1Czw/n� and T Œ.z�w/n�, respectively.

For completeness, we also formulate analogues of Corollaries 1 and 2 pro-
viding algebraic characterizations in the case of closed circular domains and their
boundaries.

COROLLARY 3 (algebraic characterization: closed circular domain case). Let
T W CŒz�! CŒz� be a linear operator, and let C � C be an open circular domain
given by C D ˆ�1.H/, where ˆ is a Möbius transformation as in (2-2). Then
T W �.C 0/! �.C 0/[f0g if and only if either
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(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CŒz�;

where ˛ W CŒz�! C is a linear functional and P 2 �.C 0/; or

(b) the polynomial T Œ..azC b/.cwC d/C .awC b/.czC d//n� is C -stable for
all n 2 N.

COROLLARY 4 (algebraic characterization: circle and line case). Suppose
T W CŒz�! CŒz� is a linear operator and C D ˆ�1.H/ is an unbounded open
circular domain, whereˆ is a Möbius transformation as in (2-2). Then T W�.@C /!
�.@C /[f0g if and only if either

(a) T has range of dimension at most one and is of the form

T .f /D ˛.f /P for f 2 CŒz�;

where ˛ W CŒz�! C is a linear functional and P 2 �.@C /;

(b) T has range of dimension two, and for all n 2 N the linear operator given
by Sn D ��1

m.n/
T�n is a stability preserver as in (b) of Theorem 3, where

m.n/DmaxfdegT .f / W f 2 CnŒz�g;

(c) the polynomial T Œ..azCb/.cwCd/C .awCb/.czCd//n� is both C -stable
and C r -stable for all n 2 N; or

(d) the polynomial T Œ..azCb/.cwCd/� .awCb/.czCd//n� is both C -stable
and C r -stable for all n 2 N.

Similarly, we may characterize all linear maps that take polynomials with
zeros in one closed circular domain �1 to polynomials with zeros in another closed
circular domain �2, or the boundary of one circular domain �1 to the boundary of
another circular domain �2. However, this only amounts to composing with linear
operators of the type defined in Notation 5, namely �n W CnŒz�! CnŒz�, where
�n.f /.z/D .czC d/

nf .ˆ.z// and ˆ is an appropriate Möbius transformation of
the form (2-2).

3. Proofs of the main results

3.1. Hyperbolic and stable polynomials. Recall that if the zeros of two hyper-
bolic polynomials f; g2H1.R/ interlace, then the WronskianW Œf; g� WDf 0g�fg0

is either nonnegative or nonpositive on the whole real axis R.

Definition 6. Given f; g 2H1.R/ we say that f and g are in proper position,
and write f � g, if the zeros of f and g interlace and W Œf; g�� 0.

For technical reasons we also say that the zeros of the polynomial 0 interlace
the zeros of any (nonzero) hyperbolic polynomial and write 0� f and f � 0.
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Note that if f � g and g� f , then f and g must be constant multiples of each
other, that is, W Œf; g�� 0.

The following is a version of the classical Hermite-Biehler theorem [RS02].

THEOREM 9 (Hermite-Biehler). Let h WD f C ig 2 CŒz�, where f; g 2 RŒz�.
Then h 2 H1.C/ if and only if f; g 2 H1.R/ and g� f . Moreover, h is strictly
stable if and only if f and g are strictly hyperbolic polynomials with no common
zeros and g� f .

The next theorem is often attributed to Obreschkoff [Obr63].

THEOREM 10 (Obreschkoff). Let f; g 2 RŒz�. Then f̨ Cˇg 2H1.R/[f0g

for all ˛; ˇ 2 R if and only if either f � g, g� f , or f D g � 0. Moreover,
f̨ Cˇg is strictly hyperbolic for all ˛; ˇ 2 R with ˛2Cˇ2 ¤ 0 if and only if f

and g are strictly hyperbolic polynomials with no common zeros and either f � g

or g� f .

Remark 5. Note that if T W �n.R/! �.R/ is an R-linear operator then by
Obreschkoff’s theorem T also preserves interlacing, as follows: if f and g are
hyperbolic polynomials of degree at most n whose zeros interlace, then the zeros
of T .f / and T .g/ interlace provided that T .f /T .g/¤ 0.

LEMMA 1. Let n 2 N. Suppose T W RnC1Œz�! RŒz� preserves hyperbolicity
and f 2 RŒz� is a strictly hyperbolic polynomial of degree n or nC 1 for which
T .f /D 0. Then T .g/ is hyperbolic for all g 2 RŒz� with degg � nC 1.

Let T W CnŒz�! CŒz� be a stability preserver, and suppose that f 2 CŒz� is a
strictly stable polynomial of degree n for which T .f /D 0. Then T .g/ is stable for
all g 2 CŒz� with degg � n.

Proof. Let f be a strictly hyperbolic polynomial of degree n or nC1 for which
T .f /D 0, and let g 2 RŒz� be a polynomial with degg � nC 1. From Hurwitz’s
theorem it follows that for � 2 R with j�j small enough the polynomial f C �g is
strictly hyperbolic. Since deg.f C �g/� nC 1 and T preserves hyperbolicity up
to degree nC 1, we get that T .g/D ��1T .f C �g/ is hyperbolic.

Suppose f 2CŒz� is a strictly stable polynomial of degree n such that T .f /D0,
and suppose the degree of g2CŒz� does not exceed n. By Hurwitz’s theorem, f C�g
is strictly stable for all sufficiently small j�j. Then because deg.f C �g/� n and
because T preserves stability up to degree n, it follows that T .g/D ��1T .f C �g/
is stable. �

LEMMA 2. Suppose V � RŒz� is an R-linear space whose nonzero elements
are all hyperbolic. Then dimV � 2.

Suppose V � CŒz� is a C-linear space whose nonzero elements are all stable.
Then dimV � 1.
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Proof. We first deal with the real case. Suppose there are three linearly
independent polynomials f1; f2 and f3 in V . By Obreschkoff’s theorem, the zeros
of these polynomials mutually interlace. Without loss of generality, we may assume
that f1� f2 and f1� f3. Consider the line segment `� D �f3C .1� �/f2 for
0 � � � 1. Since f1 � `0 and f1 � `1 by Hurwitz’s theorem, there is a real
number � between 0 and 1 such that f1� `� and f1� `�. This means that f1
and `� are constant multiples of each other, which contradicts the assumption that
f1, f2 and f3 are linearly independent.

For the complex case, let VR D fp W pC iq 2 V with p; q 2RŒz�g be the “real
component” of V . By the Hermite-Biehler theorem, all polynomials in VR are
hyperbolic, so by the above we have dimR VR � 2. Clearly V is the complex span
of VR. If dimR VR � 1, we are done, so we may assume that fp; qg is a basis for
VR with f WD pC iq 2 V . By definition W Œp; q�� 0 on the whole of R, and the
Wronskian is not identically zero. Assume now that g is another polynomial in V .
Then gD apCbqC i.cpCdq/ for some a; b; c; d 2R. We must show that g is a
(complex) constant multiple of f . Since g 2 V , we have

W ŒapC bq; cpC dq�D .ad � bc/W Œp; q�� 0;

so that ad � bc � 0. Now by linearity we have

gC .uC iv/f D .aCu/pC .b� v/qC i..cC v/pC .d Cu/q/ 2 V

for all u; v 2 R, which, as above, gives

H.u; v/ WD .aCu/.d Cu/� .b� v/.cC v/� 0

for all u; v 2 R. But

4H.u; v/D .2uC aC d/2C .2vC c � b/2� .a� d/2� .bC c/2;

so H.u; v/� 0 for all u; v 2 R if and only if aD d and b D�c. This gives

g D ap� cqC i.cpC aq/D .aC ic/.pC iq/D .aC ic/f: �

NOTATION 6. Let H�1 .C/ D ff 2 CŒz� W f .z/ ¤ 0 if Im.z/ < 0g. By the
Hermite-Biehler theorem and Definition 6, if f; g 2 RŒz� then f C ig 2 H�1 .C/

if and only if f; g 2 H1.R/ and f � g. Given a linear subspace V of CŒz� and
M � V , we say that a linear operator T on V is stability reversing on M if
T .H1.C/\M/�H�1 .C/[f0g. Note that if S WCŒz�!CŒz� is the linear involution
defined by S.f /.z/D f .�z/, then T is stability reversing if and only if S ıT is
stability preserving.

LEMMA 3. Suppose T W RnŒz�! RŒz� maps all hyperbolic polynomials of
degree at most n to hyperbolic polynomials. Then T is either stability preserving,
stability reversing, or the range of T has dimension at most two. In the latter case
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T is given by

(3-1) T .f /D ˛.f /P Cˇ.f /Q for f 2 RnŒz�;

where P and Q are hyperbolic polynomials whose zeros interlace and ˛ and ˇ are
real-valued linear functionals on RnŒz�.

Proof. The lemma is obvious for n D 0, so we may and do assume n is a
positive integer. By Remark 5 and the Hermite-Biehler theorem, we know T maps
all stable polynomials of degree n into the set H1.C/ [H�1 .C/ [ f0g. We now
distinguish two cases. Suppose first there are two strictly stable polynomials f and
g of degree n such that T .f / 2H1.C/ and T .g/ 2H�1 .C/.

CLAIM. If the above conditions are satisfied, then the kernel of T must contain
a strictly hyperbolic polynomial of degree at least n� 1.

From Lemma 1 and the claim, we deduce that T WRnŒz�! �.R/[f0g. Hence
all nonzero polynomials in the image of T are hyperbolic, which by Lemma 2 gives
that dimT .RnŒz�/� 2. Thus T must be of the form (3-1).

Proof of the claim. Suppose f1 and f2 are two strictly stable polynomials
of degree n for which T .f1/ 2 H1.C/ and T .f2/ 2 H�1 .C/, respectively. By a
homotopy argument, invoking again Hurwitz’s theorem, there is a strictly stable
polynomial h of degree n for which T .h/ 2H1.C/\H�1 .C/[ f0g. Writing h as
hD pC iq, where p and q are strictly hyperbolic polynomials (by the Hermite-
Biehler theorem) gives that T .p/ and T .q/ are constant multiples of each other.
Suppose degp D n. Then deg q � n� 1 since the zeros of p and q interlace. If
T .q/D 0, the claim is obviously true, so suppose T .q/¤ 0. Then T .p/D �T .q/
for some � 2 R. By the Obreschkoff theorem, p��q is strictly hyperbolic and of
degree at least n� 1. Clearly, T .p��q/D 0, which proves the claim. �

Now suppose T maps all strictly stable polynomials of degree n into the
set H1.C/[ f0g (the case when T maps all such polynomials into H�1 .C/[ f0g

is treated similarly). Let f be a strictly stable polynomial with degf < n, and
set f�.z/D .1� �iz/n�degf f .z/. Then f� is strictly stable whenever � > 0 and
T .f�/2H1.C/[f0g, since degf�Dn. Letting �! 0, we get T .f /2H1.C/[f0g,
and since strictly stable polynomials are dense in H1.C/, it follows that T is stability
preserving. �

As a final tool we will need the Grace-Walsh-Szegö coincidence theorem
[Gra02], [Sze22], [Wal22]. Recall that a multivariate polynomial is multi-affine if it
has degree at most one in each variable.

THEOREM 11 (Grace-Walsh-Szegö coincidence theorem). Suppose that f 2
CŒz1; : : : ; zn� is symmetric and multi-affine, and let C be a circular domain con-
taining the points �1; : : : ; �n. Assume further that either the total degree of f



PÓLYA-SCHUR MASTER THEOREMS FOR CIRCULAR DOMAINS AND THEIR BOUNDARIES 479

equals n or C is convex (or both). Then there exists a point � 2 C such that
f .�1; : : : ; �n/D f .�; : : : ; �/:

This theorem has an immediate corollary:

COROLLARY 5. Let f 2 CŒz1; : : : ; zn� be of degree at most d in z1, and
consider the expansion of f in powers of z1 given by

f .z1; : : : ; zn/D

dX
kD0

Qk.z2; : : : ; zn/z
k
1 for Qk 2 CŒz2; : : : ; zn� and 0� k � d:

Then f is stable if and only if the polynomial

dX
kD0

Qk.z2; : : : ; zn/ek.x1; : : : ; xd /
. �d

k

�
is stable in the variables z2; : : : ; zn; x1; : : : ; xd , where the ek.x1; : : : ; xd / for 0�
k � d are the elementary symmetric functions in the variables x1; : : : ; xd given by
e0 D 1 and ek D

P
1�j1<j2<���<jk�d

xj1
� � � xjk

for 1� k � d .

LEMMA 4. Suppose T W CnŒz1�! CŒz1� is a linear operator such that

T Œ.z1Cw/
n� 2H2.C/:

If f 2 Hm.C/ is of degree at most n in z1 then T .f / 2 Hm.C/ [ f0g, where
T is extended to a linear operator on CŒz1; : : : ; zm� by setting T .z˛1

1 � � � z
˛m
m / D

T .z
˛1

1 /z
˛2

2 � � � z
˛m
m for all ˛ 2 Nm with ˛1 � n (compare with Notation 2).

Proof. Let f 2Hm.C/ be of degree n in z1. For � > 0, set

f�.z1; : : : ; zm/D f .z1C �i; z2; : : : ; zm/:

Fixing �2; : : : ; �m in the open upper half-plane, we may write

f�.z1; �2; : : : ; �m/D C.z1� �1/.z1� �2/ � � � .z1� �n/

D C

nX
kD0

.�1/kek.�1; : : : ; �n/z
n�k
1 ;

where C ¤ 0 and Im.�j / < 0 for 1� j � n. Note that z1 7! f�.z1; �2; : : : ; �m/ is
indeed a polynomial of degree n in z1. This is because

f�.z1; z2; : : : ; zm/D z
n
1Qn.z2; : : : ; zm/C terms of lower degree in z1

and Qn.z2; : : : ; zn/ WD limr!1 r�nf .r; z2; : : : ; zm/ is stable by Hurwitz’s theo-
rem; hence Qn.�2; : : : ; �n/¤ 0. Let us now write

T Œ.z1Cw/
n�D

nX
kD0

�n
k

�
T .zn�k1 /wk 2H2.C/:
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By Corollary 5 we know that
nX
kD0

T .zn�k1 /ek.w1; : : : ; wn/ 2HnC1.C/:

But then

T .f�/.z1; �2; : : : ; �m/D C

nX
kD0

T .zn�k1 /ek.��1; : : : ;��n/ 2H1.C/;

which gives T .f�/ 2 Hm.C/. Letting � ! 0 we have T .f / 2 Hm.C/[ f0g. If
f 2Hm.C/ is of degree less than n in z1, we consider f � D .1� �iz1/n�degf f 2

Hm.C/. Then by the above we have T .f �/2Hn.C/[f0g for all � > 0. The lemma
now follows from Hurwitz’s theorem by letting �! 0. �

Proof of Theorem 4. If T Œ.zCw/n� 2H2.C/ then by applying Lemma 4 with
mD 1, it follows that T is stability preserving.

Suppose now that T preserves stability. Assume first that there exists a w0 2C

with Im.w0/ > 0 such that .zCw0/n is in the kernel of T . Then since .zCw0/n

is strictly stable, it follows from Lemma 1 and Lemma 2 that dimC T .CnŒz�/� 1.
Hence T is given by T .f /D ˛.f /P , where P is a fixed stable polynomial and
˛ W CnŒz�! C is a linear functional. Otherwise, we assume T Œ.zCw0/n� 2H1.C/

for all w0 2 C with Im.w0/ > 0 and conclude that T Œ.zCw/n� 2H2.C/. �

Proof of Theorem 2. Recall Notation 6, and note that by Lemma 3 we may
assume that dimR T .RnŒz�/ > 2, so that T is either stability reversing or stability
preserving. Theorem 4 says T is stability reversing or stability preserving if and
only if T Œ.zCw/n� 2H2.C/ or T Œ.z�w/n� 2H2.C/, respectively, which proves
the theorem. �

Proof of Theorem 3. By Theorem 2, it suffices to prove that if a linear operator
T W CnŒz�! CŒz� satisfies T W �n.R/! �.R/ then either

(a) there exists a � 2 R such that T D ei� QT , where QT W RnŒz� ! RŒz� is a
hyperbolicity preserver when restricted to RnŒz�, or

(b) T is given by T .f /D ˛.f /P , where ˛ WCnŒz�!C is a linear functional and
P is a hyperbolic polynomial.

We prove this by induction on n 2 N. If n D 0 there is nothing to prove, so we
may assume that n is a positive integer. Note that T restricts to a linear operator
T 0 W�n�1.R/!�.R/ and that by induction T 0 must be of the form (a) or (b) above.
Suppose T 0 D ei� QT 0, where QT 0 is a hyperbolicity preserver up to degree n� 1. If
T .zn/ D ei�fn, where fn 2 RŒz� (actually, fn 2 H1.R/[ f0g), then T is of the
form (a). Hence we may assume that T .zn/D ei
fn, where 0� 
 < 2� . We may
also assume that 
 � � is not an integer multiple of � and that fn is a hyperbolic
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polynomial. Suppose there is an integer k < n such that T .zk/ is not a constant
multiple of fn. Let M be the largest such k and set R.z/D e�i�T .zM /. Then

e�i�T ŒzM .1C z/n�M �DR.z/C .r C ei.
��//fn.z/ for some r 2 R.

But this polynomial is supposed to be a complex constant multiple of a hyperbolic
polynomial, which can only happen if R and thus T

�
zM

�
is a constant multiple of

fn. This contradiction means that T must be as in (b) above with P D fn.
Assume now that T 0 is as in (b). If T .zn/ is a constant multiple of P there is

nothing to prove, so we may assume T .zn/D ei�fn, where 0� � < 2� and fn is
a hyperbolic polynomial that is not a constant multiple of P . Suppose there is an
integer k < n such that ˛.zk/e�i� …R, and let M be the largest such integer. Then

e�i�T ŒzM .1C z/n�M �D .˛.zM /e�i� C r/P.z/Cfn.z/ for some r 2 R.

However, the latter polynomial should be a complex constant multiple of a hyper-
bolic polynomial, and this can happen only if ˛.zM /e�i� 2 R, which contradicts
the above assumption. This means that T must be as in (a). �

Proof of Corollary 1. Note first that if T W RŒz�! RŒz� is as in (a), (b) or (c)
of Corollary 1 then by Theorem 2, we have that T preserves hyperbolicity up to
any degree n 2 N. Conversely, if T W RŒz�! RŒz� preserves hyperbolicity then for
any n 2 N, the restriction T W RnŒz�! RŒz� preservers hyperbolicity (up to degree
n). The case when dimR T .RŒz�/� 2 is clear. Suppose now that dimR T .RŒz�/ > 2

and that T Œ.z C w/n� 2 H2.R/ for some n 2 N. Then by Lemma 4 we have
T Œ.z Cw/m� 2 H2.C/ [ f0g for all m � n, and since the latter polynomial has
real coefficients, we get T Œ.zCw/m� 2 H2.R/[ f0g for all m � n. Similarly, if
T Œ.z �w/n� 2H2.R/, then T Œ.z �w/m� 2H2.R/[ f0g for all m � n. It follows
that if dimR T .RŒz�/ > 2 then either T Œ.zCw/n� 2 H2.R/[ f0g for all n 2 N or
T Œ.z�w/n� 2H2.R/[f0g for all n 2 N. �

By appropriately modifying the arguments in the proof of Corollary 1, one
can easily check that Corollary 2 follows readily from Theorem 4.

3.2. The transcendental characterization. We will need a lemma due to Szász;
see [Szá43, Lem. 3].

LEMMA 5 (Szász). Let m; n 2 N with m � n, and suppose that f .z/ DPn
kDm ckz

k 2 CŒz�. If f .z/ 2H1.C/ and cmcn ¤ 0 then, for any r � 0,

jf .z/j � jcmjr
m exp

�
r
jcmC1j

jcmj
C 3r2

jcmC1j
2

jcmj2
C 3r2

jcmC2j

jcmj

�
whenever jzj � r .

For k; n2N, let .n/k D kŠ
�
n
k

�
D n.n�1/ � � � .n�kC1/ if k � n and .n/k D 0

if n < k denote as usual the Pochhammer symbol.



482 JULIUS BORCEA and PETTER BRÄNDÉN

THEOREM 12. Let F.z;w/D
P1
kD0 Pk.z/w

k be a formal power series in w
with polynomial coefficients. Then F.z;w/ 2H2.C/ if and only if

nX
kD0

.n/kPk.z/w
k
2H2.C/[f0g

for all n 2 N.

Proof. Suppose that F.z;w/ D
P1
kD0 Pk.z/w

k 2 H2.C/ has polynomial
coefficients. Given n 2 N, the sequence f.n/kgnkD0 is a multiplier sequence, and
since it is nonnegative, it is a stability preserver by Lemma 3. By Corollary 2
and Lemma 4, this multiplier extends to a map ƒ W H2.C/ ! H2.C/ [ f0g. If
QFm.z; w/D

PNm

kD0
Pm;k.z/w

k is a sequence of polynomials in H2.C/ converging
to F.z;w/, uniformly on compacts, then Pm;k.z/! Pk.z/ as m!1 uniformly
on compacts for fixed k 2 N. But then ƒŒ QFm.z; w/�!ƒŒF.z; w/� uniformly on
compacts, which gives

Pn
kD0.n/kPk.z/w

k 2H2.C/[f0g.
Conversely, suppose that

Pn
kD0.n/kPk.z/w

k 2 H2.C/[ f0g for all n 2 N,
and let Fn.z; w/D

Pn
kD0.n/kn

�kPk.z/w
k .

CLAIM. Given r > 0, there is a constant Cr such that

jFn.z; w/j � Cr for jzj � r; jwj � r and all n 2 N:

This claim proves the theorem since fFn.z; w/g1nD0 is then a normal fam-
ily whose convergent subsequences converge to F.z;w/ (due to the fact that
n�k.n/k! 1 for all k 2 N as n!1).

We first prove the claim in the special case when Pk.z/ 2 RŒz� for all k 2 N

and PK.z/ is a nonzero constant, where K is the first index for which PK.z/¤ 0.

Proof of the claim in the special case. Let jPK.z/j D A,

Br DmaxfjPKC1.z/j W jzj � rg and Dr DmaxfjPKC2.z/j W jzj � rg:

Then, if we fix � 2 C with Im.�/ > 0, we have Fn.�; w/ 2 H1.C/[ f0g, and by
Lemma 5

(3-2) jFn.�; w/j � Ar
K exp

�
r
Br
A
C 3r2

B2r
A2
C 3r2

Dr
A

�
whenever Im.�/ > 0, j�j � r and jwj � r . If � 2 C is fixed with Im.�/ < 0, then
Fn.�;�w/2H1.C/ (since Fn.z; w/ has real coefficients and Fn.z; w/DFn.z; w/).
By Lemma 5, this means that (3-2) holds also for Im.�/ < 0 and by continuity also
for � 2 R, which proves the claim. �

Next we assume deg.PK.z//D d � 1. An application of Theorem 4 verifies
that T Dd=dz preserves stability, and Lemma 4 shows T D @=@z preserves stability
in two variables. Hence @Fn.z; w/=@z 2H2.R/[f0g if Fn.z; w/2H2.R/[f0g. To
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deal with this case, it is therefore enough to prove that if j@Fn.z; w/=@zj � Cr for
jzj � r , jwj � r and all n2N, then there is a constantDr such that jFn.z; w/j �Dr
for jzj � r , jwj � r and all n 2 N. Clearly, Fn.0; w/ 2H1.R/[f0g for all n 2 N.
Moreover, if m is the first index such that Pm.0/¤ 0, then for n�m we have

Fn.0; w/D .n/mn
�mPm.0/w

m
C .n/mC1n

�m�1PmC1.0/w
mC1
C � � � 2H1.R/;

which by Lemma 5 gives

jFn.0; w/j � jPm.0/jr
m exp

�
r
jPmC1.0/j

jPm.0/j
C 3r2

jPmC1.0/j
2

jPm.0/j2
C 3r2

jPmC2.0/j

jPm.0/j

�
for jzj � r . Here we have used .n/kn�k � 1 and .n/kC1n�k�1=.n/kn�k � 1 for
0� k � n. Denote by Er the right side of the inequality above. Supposeˇ̌̌

@Fn.z; w/

@z

ˇ̌̌
� Cr for jzj � r; jwj � r and all n 2 N:

Then

Fn.z; w/D Fn.0; w/C z

Z 1

0

@Fn
@z
.zt; w/dt;

so
jFn.z; w/j �Er C rCr for jzj � r; jwj � r and all n 2 N:

Next we prove the above claim in the general case. We will need a property of
multivariate stable polynomials established in [BB06, Cor. 1]:

FACT. If hD gC if 2Hn.C/, then f; g 2Hn.R/.

Now this means that if we let Pk.z/DRk.z/C iIk.z/ then we may write

Fn.z; w/D F
Re
n .z; w/C iF Im

n .z; w/;

with FRe
n .z; w/; F Im

n .z; w/ 2H2.R/[f0g, where

FRe
n .z; w/D

nX
kD0

.n/kn
�kRk.z/w

k and F Im
n .z; w/D

nX
kD0

.n/kn
�kIk.z/w

k :

By the above, there are constants Ar and Br such that

jFRe
n .z; w/j � Ar and jF Im

n .z; w/j � Br for jzj � r; jwj � r and all n 2 N:

Hence jFn.z; w/j �
p
A2r CB

2
r for jzj � r , jwj � r and all n 2 N, which proves

the claim in the general case. �

We can now prove the transcendental characterizations of hyperbolicity and
stability preservers.

Proof of Theorems 5 and 6. We only prove Theorem 6 since the proof of
Theorem 5 is almost identical. Theorem 6 follows quite easily from Theorem 12
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and Corollary 2. Indeed, note that T Œ.1�zw/n�2H2.C/ if and only if T Œ.zCw/n�2
H2.C/. Since

T Œ.1� zw/n�D

nX
kD0

.n/k
.�1/kT .zk/

kŠ
wk

for all n 2N, we deduce the desired conclusion by comparing the above expression
with the modified symbol GT .z; w/ introduced in Notation 3. �

Finally, we show how Pólya and Schur’s algebraic and transcendental charac-
terizations of multiplier sequences (Theorem 1) follow from our results.

Proof of Theorem 1. We may assume that �.0/D 1. Statements (i)–(iv) are all
true if dimR T .RŒz�/� 2, since then �.j /D 0 for all j � 2. Hence we may assume
that dimR T .RŒz�/ > 2. Corollary 1 implies that either

T Œ.1� zw/n�D

nX
kD0

.�1/k
�n
k

�
�.k/.zw/k 2H2.R/ for all n 2 N

or T Œ.1C zw/n�D

nX
kD0

�n
k

�
�.k/.zw/k 2H2.R/ for all n 2 N:

We claim that if f .z/ 2 RŒz�, then f .zw/ 2H2.R/ if and only if all the zeros of f
are real and nonnegative. Suppose first that f .zw/ is real stable. Letting zDwD t ,
we see that f .t2/ is hyperbolic, which can only happen if all the zeros of f are
nonnegative (since aCt2 is hyperbolic if and only if a� 0). On the other hand, if f
has only real nonpositive zeros, then f .zw/ factors as f .zw/DC

Qn
jD0.zwC j̨ /;

where j̨ 2 R for 1� j � n. Now zwC j̨ 2H2.R/ if and only if j̨ � 0. Hence
(i) is equivalent to (iv), and by Theorem 5, we also have that (ii) is equivalent to
(iv). The equivalence of (ii) and (iii) is Laguerre’s classical result. �

3.3. Closed circular domains and their boundaries. Recall Definitions 1 and 4,
Notation 4 and the linear operators �n introduced in Notation 5. In particular, an
H -stable polynomial in the sense of Definition 4 is precisely a stable polynomial
in the sense of Definition 1.

LEMMA 6. Let T W CnŒz� ! CmŒz� be a linear operator, and suppose m
is minimal, i.e., m D maxfdegT .f / W f 2 CnŒz�g. Let C D ˆ�1.H/ be an
open circular domain, where ˆ is a Möbius transformation as in (2-2), and let
S W CnŒz�! CmŒz� be the linear operator defined by S D ��1m T�n. The following
are equivalent:

(i) T .f / is C -stable or zero whenever f is of degree n and C -stable;

(ii) S.f / is H -stable or zero whenever f is of degree n and H -stable;

(iii) S.f / is H -stable or zero whenever f is of degree at most n and H -stable.
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The following are also equivalent:

(i) T .f / is @C -stable or zero whenever f is of degree n and @C -stable;

(ii) S.f / is R-stable or zero whenever f is of degree n and R-stable;

(iii) S.f / is R-stable or zero whenever f is of degree at most n and R-stable.

Proof. Note first that the equivalences of (ii) and (iii) and of (ii) and (iii) are
simple consequences of the density argument used in Section 2.2. Let us now show
that (i) and (ii) are equivalent. This is obvious if C is an open half-plane, i.e., if
c D 0 (cf. (2-3)). Therefore we assume that c ¤ 0 and that the boundary of C is
a circle. If C is an open disk, then a=c is in the open lower half-plane, so that
�czC a is H -stable. Moreover, �d=c 2 @C , and thus czC d is C -stable. Hence
f is H -stable if and only if �n.f / is C -stable, so the assertion follows in this case
as well.

It remains to prove that (i) and (ii) are equivalent in the case when C is the
open complement of a (closed) disk.

Proof that (i) implies (ii). Clearly, we may assume that T is not the trivial
(identically zero) operator. Let p.z/ D

Pn
kD0 akz

k be an H -stable polynomial
of degree n and suppose first that

Pn
kD0 aka

kcn�k ¤ 0. Then �n.p/ is a C -
stable polynomial of degree n so that by assumption T .�n.p// is C -stable or
zero. If S.p/ ¤ 0, it follows that we can express S.p/ uniquely as S.p/ D
.�czC a/r.p/S0.p/, where S0.p/ is H -stable and r.p/ is a nonnegative integer.
By a continuity argument and an application of Hurwitz’s theorem, a factorization
as above holds for any H -stable polynomial of degree n. Since the set of H -stable
polynomials of degree n is dense in �n.H 0/[ f0g— that is, the set of H -stable
polynomials of degree at most n union the zero polynomial — we deduce that such
a factorization holds for the image under S of any H -stable polynomial p of degree
at most n, namely S.p/D .�czC a/r.p/S0.p/, where S0.p/ is H -stable or zero
and r.p/ is a nonnegative integer.

Fix a basis fpj .z/gnjD0 of CnŒz� consisting of strictly H -stable (that is, H -
stable) polynomials of degree n. We distinguish two cases:

First suppose S.f /¤ 0 for all strictly H -stable polynomials f of degree n.
Since the topological space of strictly stable polynomials of degree n is (path-)
connected, we have by Hurwitz’s theorem that r.f / is constant on the set of strictly
H -stable polynomials of degree n. Thus, by the minimality assumption on m and
the fact that �n is invertible, we must have deg.T .�n.pk/// D m for some k. It
follows that r.pk/D 0; hence S.f /D S0.f / for any strictly H -stable polynomial
f of degree n. Using again a standard density argument and Hurwitz’s theorem,
we deduce that S preserves (H -)stability up to degree n.

Suppose now that S.f /D 0 for some strictlyH -stable polynomial f of degree
n, and let g 2CnŒz�. Clearly, f C�g is strictly H -stable for all � > 0 small enough.
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By the above,

S.g/D ��1S.f C �g/D .�czC a/r.g/S0.g/;

where S0.g/ is H -stable or zero. It follows that V WD S.CnŒz�/ is a C-linear space
such that every nonzero polynomial in V is a .�czC a/r -multiple of an H -stable
polynomial. We know that r.pk/D 0 for the strictlyH -stable polynomial pk above.
Assume that h 2 CnŒz� is such that r.h/¤ 0. Since r.pk/D 0 and

S.h/C ıS.pk/D S.hC ıpk/D .�czC a/
r.hCıpk/S0.hC ıpk/ 2 V;

where S0.hCıpk/ isH -stable or zero, we conclude that S.h/CıS.pk/ isH -stable
or zero for all ı ¤ 0. Letting ı ! 0, we have by Hurwitz’s theorem that either
S.h/ D 0 or S.h/ is H -stable. However, this contradicts the fact that a=c 2 H
and S.h/.a=c/ D 0, which follows from the assumption that r.h/ ¤ 0. Hence
all nonzero polynomials in V are H -stable. Thus we deduce that S preserves
(H -)stability up to degree n in this case as well. �

Proof that (ii) implies (i). Since the set of H -stable polynomials of degree n
is dense in the set of H -stable polynomials of degree at most n, it follows that S
preserves H -stability on the latter set (i.e., S preserves H -stability up to degree n).
Let f be a C -stable polynomial of degree n. Then ��1n .f / is H -stable. Hence so
is S.��1n .f //, and thus T .f /D �m

�
S.��1n .f //

�
is a C -stable polynomial (note

that �d=c 2 @C ). �

The equivalence of (i) and (ii) follows just as above by replacing “strictly
H -stable” with “strictly hyperbolic”, that is, real- and simple-rooted. �

NOTATION 7. Given a polynomial f 2 CŒz; w� of degree at most m in z and
at most n in w and a Möbius transformation ˆ as in (2-2), we let

�m;z.f /.z; w/D .czC d/
mf .ˆ.z/; w/;

�n;w.f /.z; w/D .cwC d/
nf .z;ˆ.w//:

LEMMA 7. Let f .z; w/ 2 CŒz; w� be of degree at most m in z and at most n
in w, and let ˆ W C !H be a Möbius transformation as in (2-2). If either

(a) C is not the exterior of a disk, or

(b) C is the exterior of a disk and

(b1) the degree in z of �m;z.f /.z; w/ is m, and
(b2) the degree in w of �n;w�m;z.f /.z; w/ is n,

then f is H -stable if and only if �n;w�m;z.f / is C -stable.

Proof. The equivalence is clear when C is a disk or a half-plane since in
these cases �cz C a is H -stable and cz C d is C -stable (cf. (2-3)). Hence we
may assume that C is the exterior of a disk. Note that if g.z/ is a polynomial of
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degree k, then a=c is not a zero of ��1
k
.g/.z/. In particular, if g.z/ is a C -stable

polynomial of degree k, then ��1
k
.g/.z/ is an H -stable polynomial of degree k.

Now since�d=c 2@C , we have that czCd is C -stable, and therefore �n;w�m;z.f /
is C -stable if f is H -stable, which proves one of the implications.

Conversely, suppose that G.z;w/ WD �n;w�m;z.f /.z; w/D
Pn
kD0Qk.z/w

k

is C -stable. Then so is ��nG.z; � C �.w � �// whenever � � 1, where � is the
center of C 0. Letting �!1, we see by Hurwitz’s theorem that .w� �/nQn.z/
is C -stable. Hence, so is Qn.z/. For every z0 2 C the degree of G.z0; w/ is n,
from which it follows that ��1n;w.G/.z; w/D �m;z.f /.z; w/¤ 0 whenever z 2 C
and w 2 H . Similarly, if �m;z.f /.z; w/ D

Pm
kD0 Pk.w/z

k , then Pm.w/ is H -
stable so that �m;z.f /.z; w0/ has degree m for every w0 2H . We conclude that
f .z; w/D ��1m;z�

�1
n;w.G/.z; w/ is H -stable, as claimed. �

The following lemma is a simple consequence of Hurwitz’s theorem, since
boundedness prevents zeros from escaping to infinity.

LEMMA 8. Let �1 be a path-connected subset of C, and let �2 be a bounded
subset of C. If T W CnŒz�! CŒz� is a linear operator such that

T W �n.�1/ n�n�1.�1/! �.�2/;

then all the polynomials in the image of �n.�1/ n�n�1.�1/ have the same degree.

Note that in the hypothesis of Lemma 8, we do not allow the identically zero
polynomial to be in the image of �n.�1/ n�n�1.�1/.

Proof of Theorem 7. Suppose T W CnŒz� ! CmŒz�, where as before m is
minimal in the sense that mDmaxfdegT .f / W f 2 CnŒz�g. By combining Lemma
6 with Hurwitz’s theorem we see T W �n.C 0/ n �n�1.C 0/! �.C 0/[ f0g if and
only if ��1m T�n W �n.H

0/! �.H 0/[f0g. The case dimC T .CnŒz�/� 1 is clear. If
dimC T .CnŒz�/ > 1 then by Theorem 4, we have

��1m T�n W �n.H
0/! �.H 0/[f0g

if and only if f .z; w/ WD ��1m T�n Œ.zCw/
n� is H -stable. Now the polynomial in

(b) of Theorem 7 is precisely �n;w�m;z.f /. Moreover, by Lemma 7(a) we may
assume that C is the exterior of a disk. Therefore, in order to complete the proof it
only remains to show that conditions (b1) and (b2) of Lemma 7 are satisfied.

If there were two different C -stable polynomials of degree n that were mapped
by T on polynomials of different degrees, then by Lemma 8 there would be a
C -stable polynomial g of degree n in the kernel of T . However, since ��1n .g/ is
strictly H -stable it would then follow from Lemmas 1 and 2 that ��1m T�n and
hence also that T has range of dimension at most one, which is not the case. We
infer that degT .h/Dm for any C -stable polynomial h of degree n.



488 JULIUS BORCEA and PETTER BRÄNDÉN

Clearly, �m;z.f /.z; w/ D T Œ�n;z
�
.z Cw/n

�
�. Let w0 2 H n f�a=cg. The

only zero of the degree n polynomial

pw0
.z/ WD �n;z..zCw0/

n/D ..aCw0c/zC bCw0d/
n

is ˆ�1.�w0/ 2 C 0, so pw0
.z/ is C -stable. By the previous paragraph we then

have deg.�m;z.f /.z; w0//D deg.T Œpw0
.z/�/Dm, which verifies condition (b1)

of Lemma 7.
Note next that the coefficient ofwn in the polynomial defined in (b) of Theorem

7 is T Œ.2aczC bcC ad/n�. We claim the polynomial .2aczC bcC ad/n is C -
stable and of degree n. Since the image of any C -stable polynomial of degree
n is of degree m, this would verify condition (b2) of Lemma 7. To prove the
claim, note first that since C is the exterior of a disk we have that ac ¤ 0, so
deg.2aczC bcC ad/n D n. Let � D �b=a and �D �d=c. Since ˆ.�/D 0 and
ˆ.�/D1, we have that �; � 2 @C , which implies — again by the assumption that
C is the exterior of a disk — that the zero of .2aczC bcC ad/n, namely

�
bcCad

2ac
D
�C�

2
;

is in C 0. Thus .2aczC bcC ad/n is C -stable and of degree n, as required. �

Proof of Theorem 8. Let m D maxfdegT .f / W f 2 CnŒz�g. Lemma 6 says
that T W �n.@C /! �.@C /[ f0g if and only if ��1m T�n W �n.R/! �.R/[ f0g.
Using this and Theorem 3, it is not difficult to verify the theorem in the case
dimC T .CnŒz�/ � 2. Let f .z; w/ D ��1m T�nŒ.z Cw/

n�. To settle the remaining
cases, note first that by Theorem 3(c) and (d), we have that

T W �n.@C /! �.@C /[f0g

if and only if f .z; w/ or f .z;�w/ is a complex multiple of a real stable polynomial.
Now the condition that f .z; w/ is a complex multiple of a real stable polynomial
is equivalent to saying that f .z; w/ is both H -stable and H r -stable; see [BB06,
Prop. 3] (note that H r D�H ). By Theorem 7, we know that f .z; w/ is H -stable
if and only if the polynomial in (c) of Theorem 8, that is, �n;w�m;z.f /.z; w/, is
C -stable. On the other hand, since �czC a is H r -stable and czC d is C r -stable
(since C r is not the exterior of a disk), we also have that f .z; w/ is H r -stable if
and only if �n;w�m;z.f / is C r -stable. It follows in similar fashion that condition
(d) in Theorem 8 is equivalent to saying that f .z;�w/ is a complex multiple of a
real stable polynomial. �

Corollaries 3 and 4 are immediate consequences of Theorems 7 and 8, respec-
tively.
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4. Open problems

As we already noted in Section 1, Problems 1 and 2 have a long and distin-
guished history. In this paper we completely solved them for a particularly relevant
type of sets, namely all closed circular domains and their boundaries. Among the
most interesting remaining cases that are currently under investigation are (a) � is
an open circular domain, (b) � is a sector or a double sector, (c) � is a strip, (d) �
is a half-line, and (e) � is an interval.

Let us briefly comment on the importance of the above cases.
Case (a). The classical notion of Hurwitz (or continuous-time) stability refers

to univariate polynomials whose roots all lie in the open left half-plane. Its well-
known discrete-time version — often called Schur or Schur-Cohn stability — is
when all the roots of a polynomial lie in the open unit disk. Both these notions are
fundamental and widely used in e.g. control theory and engineering sciences. (The
authors easily found several hundred publications in both purely mathematical and
applied areas devoted to the study of Hurwitz and Schur stability for various classes
of polynomials as well as continuous or discrete-time systems.)

Case (b). Polynomials and transcendental entire functions whose zeros are all
confined to a (double) sector often appear as solutions to, for example, Schrödinger-
type equations with polynomial potential or, more generally, any linear ordinary
differential equation with polynomial coefficients and constant leading coefficient;
see for instance [HR89], [Hil69]. Concrete information about linear transformations
preserving this class of polynomials and entire functions turns out to be very useful
for asymptotic integration of linear differential equations.

Case (c). Specific examples of linear transformations preserving the class of
polynomials whose roots all lie in the strip jIm.z/j � ˛ for ˛ > 0 can be found in
the famous articles by Pólya [Pól26], Lee and Yang [LY52] and de Bruijn [dB50].
A complete characterization of all such linear transformations would shed light
on a great many problems in the theory of Fourier transforms and operator theory
[BB08], [BBCV07].

Case (d). Polynomials whose roots all lie on either the positive or negative half-
axis appeared already in Laguerre’s works and in Pólya and Schur’s fundamental
paper [PS14] and have been frequently used in various contexts ever since. In
addition to their description of multiplier sequences of the first kind in [PS14],
Pólya and Schur also classified multiplier sequences of the second kind, i.e., diagonal
linear operators mapping polynomials with all real roots and of the same sign to
polynomials with all real roots. A natural extension of these results would be to
characterize all linear transformations with this property. Solving case (d) would
answer this question and thus complete the program initiated by Pólya and Schur
over 90 years ago.
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Case (e). Numerous papers have been devoted to this case of Problems 1
and 2 and its connections with Pólya frequency functions, integral equations with
totally positive or sign regular kernels, Laplace transforms, the theory of orthogonal
polynomials, etc. A complete description of all linear transformations preserving
the set of polynomials whose zeros all lie in a given interval would therefore have
many interesting applications and would also answer several of the questions raised
in e.g. [CPP02b], [INS91], [IN87], [IN90], [IS89], [Pin02], [PS76] on these and
related subjects.
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