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POLYA URN MODELS UNDER GENERAL
REPLACEMENT SCHEMES

Kiyoshi Inoue* and Sigeo Aki*

In this paper, we consider a Pdlya urn model containing balls of m different
labels under a general replacement scheme, which is characterized by an m x m ad-
dition matrix of integers without constraints on the values of these m? integers other
than non-negativity. This urn model includes some important urn models treated
before. By a method based on the probability generating functions, we consider the
exact joint distribution of the numbers of balls with particular labels which are drawn
within n draws. As a special case, for m = 2, the univariate distribution, the prob-
ability generating function and the expected value are derived exactly. We present
methods for obtaining the probability generating functions and the expected values
for all n exactly, which are very simple and suitable for computation by computer
algebra systems. The results presented here develop a general workable framework
for the study of Pdlya urn models and attract our attention to the importance of
the exact analysis. Our attempts are very useful for understanding non-classical urn
models. Finally, numerical examples are also given in order to illustrate the feasibility
of our results.

Key words and phrases: Pélya urn, replacement scheme, addition matrix, probabil-
ity generating functions, double generating functions, expected value.

1. Introduction

Urn models have been among the most popular probabilistic schemes and
have received considerable attention in the literature (see Johnson et al. (1997),
Feller (1968)). The Pdlya urn was originally applied to problems dealing with
the spread of a contagious disease (see Johnson and Kotz (1977), Marshall and
Olkin (1993)).

We describe the Pdélya urn scheme briefly. From an urn containing «; balls
labeled 1 and a9 balls labeled 2, a ball is drawn, its label is noted and the ball
is returned to the urn along with additional balls depending on the label of the
ball drawn; If a ball labeled ¢ (i = 1,2) is drawn, a,; balls labeled j (j = 1,2)
are added. This scheme is characterized by the following 2 x 2 addition matrix

of integers, (21; Z;;), whose rows are indexed by the label selected and whose
columns are indexed by the label of the ball added.

Several Polya urn models have been studied by many authors in the various
addition matrices, which generate many fruitful results. The case of the classical
Pélya urn model (a1 = ag2,a12 = a9; = 0) was studied earlier and a detailed
discussion can be found in Johnson and Kotz (1977). In the case of a;; = ag9,

aio = az; = 0, Aki and Hirano (1988) obtained the Pélya distribution of order
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k. In the case of aj; = ¢, a;;j = 0 for i # j (4,5 = 0,1,...,m), Inoue and
Aki (2000) considered the waiting time problem for the first occurrence of a
pattern in the sequence obtained by an (m + 1) x (m + 1) Pélya urn scheme.
In the case of aj; = a9, aia = a2, Friedman (1949) obtained the moment
generating function of the total number of balls with a particular label remaining
in the urn after n draws; Friedman’s urn can be used to model the growth of
leaves in recursive trees (see also Mahmoud and Smythe (1991)). In the case
of aj1 + a12 = a9 + ase, Bagchi and Pal (1985) showed an interesting example
of Pélya urn scheme applied to data structures in computer. (Gouet (1989,
1993) corrected some of the statements made by Bagchi and Pal (1985)). In
a p x p Pélya urn scheme (constant row sums allowing negative entries on the
diagonal, but having several constraints on the eigenvalue structure), Smythe
(1996) considered a central limit theorem.

One interest has been focused on the exact distribution of the total numbers
of balls with particular labels remaining in the urn after n draws, or the exact
distribution of the numbers of balls with particular labels which are drawn within
n draws from the urn. Their derivation involves a combinatorial method of
counting paths representing a realization of the urn development.

For a long time, most investigations have been made under the special struc-
ture of the constant addition matrix with constant row sums, which implies a
steady linear growth of the urn size. The reason for the imposition of this con-
straint is mathematical convenience; Urn schemes where the constraint is imposed
are generally much simpler to analyze than those where it was not imposed.

Recently, Kotz et al. (2000) attempted to treat a Plya urn model containing
2 different labels according to a general replacement scheme, and pointed out that
no constraint case is considerably more challenging even in 2 x 2 case. That is,
the exact distribution of the number of balls with a particular label which are
drawn within n draws is rather convoluted and such an exact distribution is
rather unwieldy for large n for numerical computation.

Our purpose in the present paper is to develop a general workable framework
for the exact distribution theory for Pélya urn models mentioned before and to
emphasize the importance of the exact analysis. The approach is to solve a system
of equations of conditional probability generating functions (p.g.f.’s). Then, the
probability functions and moments are derived from an expansion of the solution
regardless of whether or not the constraint is imposed.

In this paper, a Pélya urn model containing balls of m different labels and
characterized by a general replacement scheme is considered, which include some
important models treated before. We consider the exact joint distribution of
the numbers of balls with particular labels which are drawn within n draws.
As a special case, a univariate distribution is derived from a Pélya urn model
containing balls of 2 different labels.

For the derivation of the main part of the results, we use the method based
on the conditional p.g.f.’s. This method was introduced by Ebneshahrashoob
and Sobel (1990), and was developed by Aki and Hirano (1993, 1999), Aki et al.
(1996). The procedure is very simple and suitable for computation by computer
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algebra systems.

Furthermore, we propose two methods for the Pélya urn model. One is a
recurrence for obtaining the expected values for all n, which is derived from
the system of equations of conditional p.g.f.’s. The other is a useful method for
obtaining the p.g.f.’s. Here, a double variable generating function and a notion of
truncation parameter are introduced, where, for a sequence of p.g.f.’s {¢pn (t) }n>0,
we define the double variable generating function by ®(t, z) = > 72 ¢n(t)2". The
p.g.f.’s are derived from the system of equations of the double variable generating
functions. The difference between the method of conditional p.g.f.’s and the
method based on the double variable generating function is that for a fixed n,
the p.g.f. ¢, (t) is obtained by the former method, whereas, for a fixed truncation
parameter ug, all the p.g.f.’s up to uo, ¢o(t), @1(t),..., Pu,(t) are obtained by
the latter method. The procedures of two methods presented here are also very
simple and suitable for computation by computer algebra systems.

The rest of this paper is organized in the following ways. In Section 2, a
Pélya urn model containing balls of m different labels is introduced, which is
characterized by the general replacement scheme. As a special case, a univariate
distribution is derived from a Pélya urn model containing balls of 2 different
labels. Section 3 gives two methods for the Pélya urn models. One is a recurrence
for obtaining the expected values for all n. The other is a useful method for
obtaining the p.g.f.’s. Here, double variable generating function and a notion
of truncation parameter are introduced, which play an important role. Both
methods are also very simple and suitable for computation by computer algebra
systems. In Section 4, numerical examples are given in order to illustrate the
feasibility of our main results.

2. The models

In this section, we consider a Pdlya urn model characterized by an m x m
addition matrix. As a special case, for m = 2, the univariate distribution, the
probability generating function and the expected value are derived exactly.

2.1. The Pdlya urn model containing m different labels

From an urn containing «; balls labeled 1, a9 balls labeled 2, ... a,, balls
labeled m, a ball is chosen at random, its label is noted and the ball is returned
to the urn along with additional balls according to the addition matrix of non-
negative integers, A = (a;5) 7, = 1,..., m, whose rows are indexed by the label
of the ball chosen and whose columns are indexed by the label of the ball added.
Always starting with the newly constituted urn, this experiment is continued n
times. Let Z,Zs,...,Z, be a sequence obtained by the above scheme, which
take values in a finite set B = {1,2,...,m}. Let r be a positive integer such
that 1 < r < 2™ —1 and let By, Bo,..., B, be subsets of B, where B; # () and
B; # Bj for i # j. Then, we define the numbers of balls whose labels belong to the

subsets B; (i = 1,...,7) which are drawn within n draws by x¥ = i11B,(Z))
(it = 1,...,r), where Ig,(-) ( = 1,...,r) means the indicator function of the
subset B;.
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x (D (2) (r) . .
In the sequel, we will obtain the p.g.f. E[t] Xn té( ...tXn "] of the joint
distribution of (Xn , Xn (2) XT(lT)). Hereafter, we denote the urn composi-

tion and the total of the balls in the urn by b = (ai1,a9,...,qy,) and |b| =
a1 + a9 + - - - + oy, respectively. We denote the i-th row of the addition matrix
A by a; = (ai1, a9, - - -,aim). Needless to say, a; > 0 (i=1,...,m) and [b] #0
are assumed throughout this paper.

Suppose that we have an urn composition b = (a1,qa,...,0m) after £ (€=
0,1,...,n) draws. Then, we denote by ¢n—¢(b;t) the p.g.f. of the conditional
dlstrlbumon of the numbers of balls whose labels belong to the subsets B; (i =
1,...,r) which are drawn within (n — ¢) draws, where t = (t1,.. -, tr).

THEOREM 2.1. From the definitions of ¢n_¢(b;t) (¢ =0,1,...,n), we have
the following system of the equations;

m

(2.1) Z !b| t180g, 1 (b+ a;t),

(2.2)  pn_e(bst) = Zlbl t1e@We , ((b+ait), £=1,2,...,n—1,

1, (i) IB,(1)  ,Ip.(1)
r .

(2.3) do(bt) =1,  where, 1 Ia() — ¢ 51%¢,

PROOF. It is easy to see that ¢o(b;t) = 1 by the definition of the p.g.f..

Suppose that the urn composition is b = (a1, @z, . .., am) after £ (£=0,1,...,n—
1) draws. Then, the p.g.f. of the conditional dlstrlbutlon of the numbers of balls
whose labels belong to the subsets B; (; = 0,...,r) which are drawn within

(n —¢) draws is ¢p_e(b;t) (£ =0,1,...,n—1). We should consider the condition
of one-step ahead from every condition. Given the condition we observe the
(¢ 4+ 1)-th draw. For every i = 1,...,m, the probability that we draw the ball
labeled i is a; /|b|. If we have the ball labeled i ( = 1,...,m), then the p.g.f. of the
conditional distribution of the numbers of balls whose labels belong to the subsets
B; (j =0,...,7) which are drawn within (n — £ — 1) draws is ¢,_¢—1(b+ a;;t)
(¢=0,1,...,n —1). Therefore, we obtain the equations (2.1) and (2.2). O

Ezample 2.1. Assume that B = {1,2,3,4}, By = {2,4}, B2 = {3,4}, t =
(t1,t2) and the addition matrix is equal to the 4 x 4 zero matrix. Suppose that we
have an urn composition b = (a1, as, as, ay) after £ (£ = 0,1,...,n) draws. Then,
we denote by ¢n_s(b;t) the p.g.f. of the conditional distribution of the numbers
of balls whose labels belong to the subsets Bj, By which are drawn within (n —¢)
draws. Then, we have the following system of the equations;

(2.4) Gn—e(b;t1,t2) = (%I + b D+ 2 b Sty + |—b—|t1 2) Gn—e—1(b;t1,t2),
(=0,1,...,n—1,
(2.5) do(byt1,t2) = 1.
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Under an initial urn composition by = (a1, ag2, a3, ap4), we get

ap1 | Qo2 Q3 Qo4 "
2. n y U1, = .
(2.6) &n(bos 1, t2) (!bol + |b0ft1 + |b0|t2 + |b0|t1t2>

In this example, if the labels 1, 2, 3, 4 are regarded as (0,0), (1,0), (0,1),
(1,1), respectively, the equation (2.6) is the p.g.f. of joint distribution of the
number of balls with the first label 1 and the number of balls with the second

label 1 which are drawn within n draws. The distribution is called the bivariate
binomial distribution (see Kocherlakota (1989), Marshall and Olkin (1985)).

2.2. The Pdlya urn model containing 2 different labels

As a special case, for m = 2, we study the Pélya urn model containing 2
different labels. Assume that B = {1,2}, B = {2} and 4 = (aj;) i,j = 1,2.
Let Y, = > 7L, Ip,(Z;). Suppose that we have an urn composition b = (ay, ay)
after £ (¢ = 0,1,...,n) draws. Then, we denote by v, _,(b;t,) the p.g.f. of the
conditional distribution of the number of balls labeled 2 which are drawn within
(n — £) draws. From Theorem 2.1, we have the following Corollary 2.1.

COROLLARY 2.1. From the definitions of ¢n_e(bjt;) (¢ = 0,1,...,n), we
have the following system of the equations;

(2.7) Yn(byt1) = %wn—l(b+al;t1) + %tl¢n—l(b+02;tl)7

(2.8) Yn—e(byt1) = %llwn—e—ﬂbﬁL ai;t) + %t1¢n—e—1(b+az; t1),
(=12, . n—1,

(2.9) Yo(byty) = 1. O

We will solve the system of the equations (2.7), (2.8) and (2.9) under an
initial urn composition by = (a1, @p2). First, we note that the above equation
(2.7) can be written in matrix form as

o"

Q01 02
4y) = — 0L aiit) + ——2 b1 (bo + @i t1),
Y (bo; t1) a01+a021/)n 1(bo +ay;t1) + o1 + oa 1Yn—1(bo + az;t1)

_ < Qg1 02 h) (Z/)n—l(bo +a1;t1)>

o1 + ap2 o1 + agpe Yn—1(bo + az; t;)
- Cl (tl)wn—l(tl)v (Sa‘y)‘
Next, for £ = 1, we write the equation (2.8) as

o1 + a1
- +a;;t) =
Yn-1(bo it ao1 + o2 + ai1 + aro

Qo2 + @12
aor + o2 + a1 + ag

ao1 + a9
—o(bop+ a1 +as;t
a01+a02+a21+022¢n ( ! 2it1)

Qo2 + ag2
ao1 + a2 + a1 + age

Yn—2(bo + 2a1;t)

t1¥n—2(bo + a1 + as;t1),

Yn—1(bp + az;t1) =

t1¥n—2(bo + 2a9; t1),

NII-Electronic Library Service



198 J. JAPAN STATIST. SOC.  Vol.31 No.2 2001

or, equivalently,

(?/)n—l(bo +01;t1))
Yn-1(bp + a2; t1)
ao1 + an o2 + a1 t 0
— | @1 + a2 +ann + a2 a1 + ap2 + ai + aiz
Qo1 + Q21 Qo2 + a2

0 13}
ap1 + ap2 +ag1 +az o + ap2 + a1 + aa

Yn—o(by + 2a1;t1)
Yn—o(bo + a1 + az; 1)
Yn—o(bo + 2a2;t1)

We write 9,,_1(t1) = C2(t1)%,,_»(t1). For non-negative integers ¢;, ¢2 such that
b1+ 4y =1, let

Yn—e(bo + fay;t1) \
Yr—e(bo + (£ — 1)a; + az;t1)
1/)n—e(bo + (f — 2)(11 + 2ao; tl)

wn——ﬁ(tl) = .
Un—e(bo + €101 + faas;t1)

Yn—e(bo + Laz; t1) )

Then, the system of the equations (2.7), (2.8) and (2.9) can be written in ma-
trix form as ¥,,_,. 1 (t1) = Ce(t1)¥, _o(t1) (£ = 1,...,n), and Pu(t1) = Lpir) =
(1,1,...,1), where, 1(,41) denotes the (n + 1) x 1 column vector whose com-
ponents are all unity and Cy(t;) denotes the ¢ x (¢ + 1) matrix whose (i, j)-th
component is given by,

( apr + (€ —i)ayr + (i — L)aa

ao1 + g2 + (£ —i)(a11 + a12) + (2 —1)(ao + agg)’
j=ii=1,...,¢,

o2 + (€ —i)aja + (i — 1)ag

- - t1,
agr + age + (€ —i)(a11 + a12) + (i — 1)(a21 + a22) !
j=i+1,i=1,...,¢

(2.10) Cij (f, tl) =

0,
\ otherwise.

PROPOSITION 2.1. The probability generating function ¥, (bo;t1), the exact
distribution of Yy, and its expected value are given by

Un(bo;t1) = C1(t1)Ca(tr) - - Cn(t1)1ins1y = [ [ Cilt1) Lin1),s

1=1

NII-Electronic Library Service



POLYA URN MODELS UNDER GENERAL REPLACEMENT SCHEMES 199

P(Y = y) = Z CI(O)CH1(O)Cny(O) "'Cn(o)l(n+l)a
1<n1<~-<ny<n
YnabO ch(l ) "'Cn(l)l(n—f—l)a where,
> de(tl) dC@j(k‘, t1)>
- t ot —_— .
Ck(t1) dt; < dt; O
In a similar way, under an initial urn composition by = (g1, ago, . . ., Qom), We

can solve the system of the equations in Theorem 2.1 by virtue of their linearity
and obtain the p.g.f.. However, we do not write it due to lack of space.

Remark 1. In this Pélya urn model, Kotz et al. (2000) derived the exact
distribution of Y;, by another approach, and derived the recurrence relation for
the expected value. They also reported that the expected value can be derived
from the recurrence relation in a case that the constraint is imposed, whereas
the expected value can not be derived from it in a case that the constraint is not
imposed. Then, we present a useful recurrence for the expected values, as will
be shown later.

3. Methods for computation

In this section, we present two methods for the exact analysis, which are
very simple and suitable for computation by computer algebra systems. One is
a recurrence for obtaining the expected values for all n. The other is a method
for obtaining p.g.f.’s.

3.1. The recurrences for the expected values

THEOREM 3.1. (The Pélya urn model containing m different labels)
The expected values of X,(f) (1=0,1,...,71), E[X,(f);b] say, satisfy the recur-
rences;
(31)  EXY:b = Z“i,l(IB G+ EXV5b+a]), n>1, i=1,...r
]:
32) EXPb =0, i=1,...,r

PROOF. It is easy to check the equation (3.2). The equation (3.1) is ob-
tained by differentiating both sides of the equation (2.1) with respect to t;
(¢ = 1,...,r) and then setting t; = --- = ¢, = 1. The proof is completed. O

?
As a special case, for m = 2, we consider the Pélya urn model containing

2 different labels treated in Section 2.2. Then, from Theorem 3.1, we have the
following Corollary 3.1.
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COROLLARY 3.1. (The Pélya urn model containing 2 different labels)
The expected value of Yy, E[Yn;b] say, satisfies the recurrence;

a
, nz=l,
|b] |b] [

(34) E[Yo;b] = 0. a

(3.3) E[Yn;b] = E[Yn 1,b+a1]+ 2 E[Yp_1;b+as] +

3.2. The double generating functions

Until now, our results are derived from the p.g.f. directly. The most of this
section will be devoted to the double variable generating functions. First, we will
begin by considering the Pélya urn model containing 2 different labels treated in
Section 2.2. We define

o0
= Z wn(b; tl)z".
n=0
Then, the equations (2.7) and (2.9) in Corollary 2.1 lead to
(3.5) Ub) =1+ = b M B(b+ar)+ ?;fl 2 U(b+ ay).

Given an initial urn composition by = (a1, ®o2), we have

(3.6) U(by) = 1+ 2z (by +a1) + oo 2t U(by + az).

Ibol !bol

We will show that the truncated generating function of ¥(by), say W (by), can
be obtained in a polynomial form of z up to the arbitrary order by using the
equation (3.5) for the right-hand side of the equation (3.6) recursively. The idea
of truncation is also illustrated. From the equation (3.5), we have

(3.7) (b +a1) =1+ %-ll—lzqf(bo +2a1) + u;f i ‘“f 2410 (bo + a1 + a2),
1 a)
(3.8) W(by+as) =1+ Hzm(m tar+as)+ |£02 * a2|2 2019 (by + 2as).

Substituting (3.7) and (3.8) into the right-hand side of (3.6), we have

(3.9) ¥(bo)

ap1 + ar Qo2 t+ a12
—14 20 <1+ 2 (by + 2a; +*———zt1\Il bp+a;+a )
|bo| bo + 1] )+ Ty ay VB0t a)
+ aoy 002+a22
zt 1+—01————z\11b0+a +a —  “2t1W(by + 2a )
o (1 a7+ o o) Wb + 200

Setting W(by + 2a,) = U(by + a1 + az) = ¥(bo + 2a2) = 0 in the right-hand side
of (3.9) (if we need W(by) up to the first order), we obtain

\if _ Q01 @
(o) =1+ <’b0| + |b0|t )
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Thus, the above substitution enables us to obtain ¥(by) up to the first order.
Hence, 1o(bo; t1) and 91 (by; t1) are obtained. If we need W(by) up to the second
order, we should use the equation (3.5) again. Similarly, by substituting the
equation (3.5) into the terms W(by +2a1), ¥ (by +a; +ay), ¥(by+ 2a;) in the right-
hand side of (3.9), respectively, and then setting (b +3a;) = ¥(by+2a; +a3) =
U(by + a1 + 2a2) = V(by + 3a2) = 0, we have \i/(bo) up to the second order.
Therefore, 1o (bo;t1), 11(bo;t1) and o(bp; 1) are obtained. Since we can repeat
the above substitution a sufficient number of times, we can obtain the truncated
generating function \il(bo) up to the arbitrary order and obtain all the p.g.f.’s
Yn(bo;t1) (n =0,1,...). A parameter of a non-negative integer u is introduced
into the generating function ¥(b), denoted by ¥(b; ). From the equations (3.5)
and (3.6), we have

(3.10) U(bo;0) =1+ Wzlll(bo +ap;1) + |b0|

LoUb+aut 1)+ -

Ztl\Il(bO + Qas; )

(3.11) Uu)=1 +2 221 U(b+ ag; u + 1).

b] W

By using the equation (3.11) for the right-hand side of the equation (3.10) recur-
sively, we can obtain the truncated generating function of ¥(by;0), say \i/(bo; 0),
in a polynomial form up to the arbitrary order. For the truncation parameter
of a non-negative integer ug, the following Propositiou 3.1 gives the method for
obtaining the p.g.f.’s 1;(bp;t1) (i =0, ..., ug).

PROPOSITION 3.1. (The Pélya urn model containing 2 different labels)

For any non-negative integer ug, the following system of the equations leads
to the truncated generating function of U(by;0), \if(bo;()) say, which is in a poly-
nomual form of z up to the ug-th order, so that v;(bo;t1) (i = 0,...,ug) are
obtained.

(3.12) B (by; 0) = 1 + 22 o (by +ar; 1) + o2 =2t 0 (by + ag; 1),

Ibo! lbol

(3.13) U(b;u) =1 +2 —2U(b+a;u+ 1) + & 2ot U(b+ay;u+ 1),

|b| |b]
for 0 <wu < ug,

(3.14) U(bu) =0, for u> up.

PrROOF. We continue to substitute the equation (3.11) into the right-hand
side of the equation (3.10) until all the parameters in the generating functions
in the right-hand side of the equation (3.10) are equal to up + 1. Then, ¥(bg;0)
takes the following form:;

ug+1
(3.15)  W(bo;0) = Y gu(t1)z" ™ W(by +vas + (uo + 1 — v)ag; ug + 1) + fup(2),
v=0

where, g,(t1) is a polynomial of ¢;, and f,,(z) is a polynomial of z up to the
uo-th order. Setting W(by + va; + (uo + 1 — v)ag;ug + 1) = 0 for all v such that
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0 < v < ug+ 1 in the right-hand side of (3.15), we can obtain the truncated
generating function ¥(by;0) in a polynomial form up to the up-th order. Notice
that the order of the vanished terms is greater than ug. The proof is completed. 0O

It is easy to extend this result to the general case. Similarly, the parameter
of the non-negative integer u is introduced into the generating function ®(b), say
®(b;u), where, ®(b) = ®(b;u) = > 72y Pn(b;t)2z". From the following equations,

(3.16) @ (by; 0) —1+zZ ﬁ)& t18Od(by +a;; 1),
(3.17) ®(b; u) ~*1+zzmt13 ®(b+ai;u+ 1),

we can obtain the truncated generating function of ®(by;0), say ®(by;0).

THEOREM 3.2. (The Pdlya urn model containing m different labels)

For any non-negative integer uo, the following system of the equations leads
to the truncated generating function of ®(by;0), ®(by; 0) say, which is in a polyno-
mial form of z up to the ug-th order, so that ¢;(bo;t) (i =0, ...,ug) are obtained.

(3.18)  ®(b;0) =1+ 2 Zﬁiﬁ] t 18 by + a;; 1),

(3.19) =1+ zz IbltIB(’)fb(b—i—al,u +1), for 0<u< ug,

{Bl(l)tIBz( i) tiBT(i).

(3.20) é’(b; u) =0, for w > wug, where,t Is(i) — ¢ O

4. Numerical examples
In this section, we illustrate how to obtain the distributions and the expected
values by using computer algebra systems.

Ezxample 4.1. The Pdlya urn model containing 4 different labels
Assume that by = (1,2,1,2), B = {1,2,3,4}, B; = {2,4}, B> = {3,4} and

1011
A= (1)(1)?(1) . Let X7(1i) =i 118,(Z;) (1 = 1,2). For n =3, the p.g.f. is
1101
palbor b ty) N I 73, 269, 3209tt+269
B0 P20 7 708 3564 1T 2376 2 7920 35640 12" 7920
L, 3361t2t+3191”2+1t +269t3t
20 23760 1 27 35640 ' T80 % 1980 ' ?
4951 , 5, 269tt3+ﬁ 73,
35640 1 2 T 11880 '* T 594 ! 2" 2376+
1
#1353,
+271 2
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Figure 1. The exact joint probability function of (Xﬂ)),ng)) in the Example 4.1, given
bo = (1,2,1,2) and the addition matrix A.

Table 1. The exact joint probability function of (X:gl), Xéz)), given by = (1,2, 1,2).

xPD=0 xP=1 xP=2 x{V=3
XD =0 0009259 0.020482 0.033965 0.0
x{? =1 0030724 0.090039 0.141456  0.135859
x{» =2 0033965 0.089534 0.138917  0.122896
x{P =3 00125 0022643 0.030724  0.037037

For n = 10, we give Fig. 1, which is the three-dimensional plot of the exact joint
probability function of (X %), X %g)), given by = (1,2, 1,2) and the addition matrix
A.

Marshall and Olkin (1990) discussed this model in case that the addition
matrix is the identity matrix. So far as we know, it was first proposed by Kaiser
and Stefansky (1972).

Ezample 4.2. The Pélya urn model containing 2 different labels
Assume that by = (2,3), B = {1,2}, B = {2} and A = (§}). Let Yo =
Y=l B,(Z;). For n = 10, the p.g.f. and the expected value are, respectively,

1 125291 4404557 | , 52734593 4

Y10(boit1) = 57 + 3753750 + 50450400 T 367567200 "
8659858873  , 985104707 5 195631373

+ 16313267200 T 5028319296 1197218880 "
8913571  ; 16000 , 4 10240 4 1536

+ Ra651820°" T 323323 676030°" T §76039°!

11750459755829

E[Yi0;bo] = %10(bp; 1) = 5F20873 145800 — 4.644683381.

We give Fig. 2, which is the two-dimensional plot of the exact expected values of
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Figure 2. The exact expected values of Y., given three initial urn compositions

bo = (1,1),(2,3),(5,1) and the addition matrix A in Example 4.2. Value [, II, III are, re-
spectively, the values given initial urn compositions bo = (1, 1), (2, 3), (5, 1).

Y,,, given three initial urn compositions by = (1,1),(2,3), (5,1) and the addition
matrix A.

Remark 2. In this example, Kotz et al. (2000) suggested that the fixed
values of the initial condition will be asymptotically negligible with regard to Y;
for large n and E[Y,] ~ n/lnn, as n — oo. By calculating the exact expected
values of Y, given three initial conditions, we observe that their values depend
on the initial conditions when n is small.

However, when n comes to 250, it seems that the exact expected values of
Y,, still heavily depend on their initial conditions. Therefore, we think that the

exact analysis is important.
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