Polyacetylene Glycosides from Gymnaster koraiensis

JinYoung PARK,^{*a*} ByungSun MIN,^{*b*} HyunJu JUNG,^{*a*} YoungHo KIM,^{*a*} HyeongKyu LEE,^{*b*} and KiHwan BAE^{*,*a*}

^a College of Pharmacy, Chungnam National University; Taejon 305–764, Korea: and ^b Immunomodulator Research Laboratory, Korea Research Institute of Bioscience & Biotechnology; P.O. Box 115, Yusong, Taejon 305–333, Korea. Received December 13, 2001; accepted February 5, 2002

Two polyacetylene glycosides, gymnasterkoreasides A and B, were isolated from the roots of *Gymnaster ko-raiensis*. Their structures were elucidated to be (3R)-8-decene-4,6-diyne-1,3-diol 1-O- β -D-glucopyraside and (3R)-8-decene-4,6-diyne-1,3-diol 1-O- β -D-apiofuranosyl- $(1\rightarrow 6)$ - β -D-glucopyraside on the basis of spectroscopic analysis including COSY, HMQC, and HMBC experiments, as well as chemical methods, which confirmed the determination of a chiral center by the modified Mosher's method.

Key words Gymnaster koraiensis; polyacetylene glycoside; modified Mosher's method

Gymnaster koraiensis (NAKAI) KITAMURA (Compositae) is an endemic species in Korea. Earlier and more recently, we isolated eight polyacetylenes from a CH_2Cl_2 -soluble fraction of the roots of this plant, which showed significant cytotoxicity against L1210 tumor cells with ED_{50} values of 0.12— 3.28 µg/ml.¹⁾ As part of our continuing research to find pharmacologically active constituents from *G. koraiensis*, we have isolated two new polyacetylene glycosides, called gymnasterkoreasides A (1) and B (2), from a BuOH-soluble fraction of the roots of this plant. This paper describes the isolation and structure elucidation of two new C_{10} -acetylenic glycosides isolated from *G. koraiensis*.

Results and Discussion

The BuOH-soluble fraction of 80% ethanol extract of the roots of *G. koraiensis* was subjected to repeated column chromatography on silica gel, Sephadex LH-20, and preparative HPLC to give two compounds (1, 2) (Chart 1).

Gymnasterkoreaside A (1), bright yellow oil, has the molecular formula C₁₆H₂₂O₇ based on high-resolution fast atom bombardment mass spectrometry (HR-FAB-MS) with a molecular ion peak at m/z 349.1260 [M+Na]⁺. The UV spectrum showed typical absorptions at λ_{max} 239, 252, 266, and 281 nm for an ene-diyne chromophore.²⁾ The IR spectrum of 1 showed the presence of a conjugated triple bond (2245 cm^{-1}), a conjugated double bond (1660 cm^{-1}), and one or more hydroxyl groups (3350 cm^{-1}) . The proton nuclear magnetic resonance (¹H-NMR) spectrum showed signals for a methyl at δ 1.80 (dd, J=6.8, 1.8 Hz), an oxymethylene at δ 4.64 (t, J=6.7 Hz), an anomeric proton at δ 4.26 (d, J=7.8 Hz), and two olefinic protons at δ 6.31 (dq, J=15.8, 6.8 Hz) and 5.57 (dq, J=15.8, 1.8 Hz) (Table 1). The ¹³C-NMR measurements, aided by distortionless enhancement by polarization transfer (DEPT) and ¹H-detected multiple quantum coherence (HMQC) spectra, revealed the presence of one methyl at δ 18.9, two olefinic carbons at δ 145.1 and 110.5, four quaternary carbons at δ 83.7, 78.1, 72.4, and 69.7, and an anomeric carbon at δ 104.5.

Analysis of the ¹H–¹H shift correlation spectroscopy (COSY), HMQC, and heteronuclear multiple-bond correlations (HMBC) spectra of **1** allowed its structural fragments to be determined. In the COSY spectrum, two terminal spin systems began with a methyl at δ 1.80 and hydroxymethylene at δ 3.73 and 3.98, respectively. The former proton cou-

pled to an olefinic proton (δ 6.31) that was further coupled to an other olefinic proton (δ 5.57). The latter protons correlated to methylene protons (δ 1.96) and an oxymethylene (δ 4.64), indicating the end of the spin system (Chart 1). In addition, partial structures were linked in the HMBC experiments. Long-range correlations among $\delta_{\rm H}$ 4.64 (H-3) and $\delta_{\rm C}$ 83.7 (C-4)/69.7 (C-5), $\delta_{\rm H}$ 5.57 (H-8) and $\delta_{\rm C}$ 72.4 (C-6), and $\delta_{\rm H}$ 6.31 (H-9) and $\delta_{\rm C}$ 78.1 (C-7) confirmed that a conjugated diyne was connected to C-3 and C-8. The C-8,9 double bond was found to be *E*, as evidenced by their vicinal coupling constant ($J_{8,9}$ =15.8 Hz). From these data, the aglycone was determined to be 8-decene-4,6-diyne-1,3-diol.

The presence of glucose in **1** was confirmed by the signals of anomeric proton at δ 4.26 in the ¹H-NMR spectrum and six carbon signals at δ 104.54, 75.06, 78.09, 71.56, 77.90, and 62.70 in the ¹³C-NMR spectrum.³⁾ The anomeric configuration of the glucose moiety was determined to be β on the basis of the $J_{\rm H-H}$ value (7.8 Hz) of the anomeric proton in the ¹H-NMR spectrum. Acid hydrolysis of **1** with 4 N HCl–diox-

Chart 1. Structures of Compounds Isolated from the Roots of *G. koraien*sis

Fig. 1. Chemical Shift Difference for the (S)-MTPA Ester (1c) and (R)-MTPA Ester (1b) in ppm

ane produced a sugar component, which was determined to be D-glucose by GLC of its pertrimethylsilated L-cysteine methyl ester derivative.⁴⁾ The linkage of glucose was determined by HMBC, which showed a correlation between the signals at $\delta_{\rm H}$ 3.73/3.98 (H₂-1 of the aglycone) and $\delta_{\rm C}$ 104.54 (Glc-C-1'), indicating glycosylation at C-1.

Determination of the absolute configuration at C-3 of **1** was examined with the modified Mosher's method.⁵⁻⁷⁾ Compound **1a**, obtained by enzyme hydrolysis of **1**, was treated with (+)- and (-)- α -methoxy- α -trifluoromethylphenylacetate (MTPA) chlorides in the presence of 4-dimethylaminopyridine (DMPA) to give (*R*)- and (*S*)-MTPA esters (**1b**, **c**). In the ¹H-NMR spectrum of (*S*)-MTPA ester (**1c**), proton signals assigned to H₂-1 and H₂-2 were observed at a lower field than those in the (*R*)-MTPA ester (**1b**), while signals due to H-8 and H-9 in the former ester were shifted to a higher field than those in the latter ester (Fig. 1). Therefore the absolute configuration at C-3 was concluded to be 3*R*. On the basis of the above findings, gymnasterkoreaside A (**1**) was determined to be (3*R*)-8-decene-4,6-diyne-1,3-diol 1-*O*- β -D-glucopyranoside.

Gymnasterkoreaside B (2) was isolated as optically active oil, $[\alpha]_D - 78^\circ$, and its molecular formula was established to be $C_{21}H_{30}O_{11}$ by HR-FAB-MS. On acid hydrolysis, 2 yielded glucose and apiose. Its UV spectrum was similar to that of 1, indicating the presence of a conjugated diyne. The ¹H- and ¹³C-NMR spectra were similar to those of **1**, except for the signals of sugar components. In its ¹H-NMR spectrum, 2 exhibited signals for two anomeric protons at δ 4.25 (d, J=7.7 Hz) and 4.99 (d, J=2.3 Hz). Detailed analysis of the 2D-NMR (COSY, HMQC, and HMBC) revealed that its aglycone was the same as that of 1. Long-range correlation between the anomeric proton at δ 4.99 and the carbon signal at δ 68.49 (C-6') of the glucose observed in the HMBC spectrum suggested the second sugar moiety to be an ether-linked one at C-6'. This was confirmed by comparing the ¹³C-NMR spectrum of 2 with that of 1, in which a downfield shift of the C-6' (5.8 ppm) signal due to glucose moiety was observed. The ether-linked sugar was determined to be D-apiose by acid hydrolysis of 2 followed by GLC analysis of its sugar derivative (see Experimental). By comparing the NMR spectra of 2 with those of 1 and analysis of its 2D-NMR, the ¹H- and ¹³C-NMR signals were assigned as shown in Table 1. The structure of 2 therefore was confirmed to be (3R)-8-decene-4,6diyne-1,3-diol 1-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside.

Experimental

Optical rotations were measured with a JASCO DIP-370 Digital polarimeter. UV spectra were recorded on a Milton Roy Spectronic 3000 spectrophotometer. IR spectra were determined on an IR Report-100 spectropho-

Table 1. ¹H- and ¹³C-NMR Spectral Data of 1 and 2 in MeOH- d_4

	1		2	
-	${}^{1}\mathrm{H}^{a)}$	¹³ C ^{b)}	$^{1}\mathrm{H}^{a)}$	${}^{13}C^{b)}$
1a	3.73 (dd, 10.1, 6.3)	66.8	3.73 (dd, 6.6, 4.0)	67.0
1b	3.98 (dd, 10.1, 6.3)		3.95 (dd, 6.6, 4.0)	
2	1.96 (m)	38.9	1.96 (m)	39.0
3	4.64 (t, 6.7)	60.2	4.64 (t, 6.7)	60.2
4		83.7		83.7
5		69.7		69.7
6		72.4		72.0
7		78.1		78.1
8	5.57 (qd, 15.8, 1.8)	110.5	5.58 (qd, 15.8, 1.7)	110.5
9	6.31 (qd, 15.8, 6.8)	145.1	6.33 (qd, 15.8, 6.9)	145.1
10	1.80 (dd, 6.8, 1.8)	18.9	1.81 (dd, 6.9, 1.7)	18.8
glc-1'	4.26 (d, 7.8)	104.5	4.25 (d, 7.7)	104.6
-2'	3.16 (dd, 8.9, 7.8)	75.1	3.16 (dd, 8.9, 7.9)	75.1
-3'	3.34 (t, 8.9)	78.9	3.32 (t, 8.9)	78.0
-4′	3.29 (t, 8.9)	71.6	3.28 (t, 8.9)	71.6
-5′	3.26 (m)	77.9	3.39 (m)	76.8
-6′a	3.67 (dd, 12.4, 5.8)	62.7	3.62 (dd, 11.6, 5.9)	68.5
-6′b	3.98 (dd, 12.4, 5.8)		3.98 (dd, 11.6, 5.8)	
api-1″			4.99 (d, 2.3)	111.0
-2"			3.90 (d, 2.3)	78.0
-3″				80.6
-4″a			3.76 (d, 9.7)	75.0
-4″b			3.96 (d, 9.7)	
-5″			3.60 (s)	65.7

a) 300 MHz. b) 75 MHz.

tometer (JASCO). FAB-MS spectra were measured on an Autospec Mass spectrometer (Micromass). NMR spectra were recorded on a Bruker NMR DRX300, 600 spectrometer, with the chemical shift being represented in parts per million with tetramethylsilane as an internal standard. Preparative HPLC was performed on Shimadzu LC-10AD pump, CTO-10A column oven, and SPD-10AV UV-detector. GC-MS was carried out on a Shimadzu GC-17A and JEOL Automass system II mass detector.

Plants Materials Roots of *G. koraiensis* (NAKAI) KITAMURA were collected in May 1997 at Gurae, Chunnam province, Korea. A voucher specimen (CNU96003) is deposited in the herbarium of the College of Pharmacy, Chungnam National University, Taejon, Korea.

Extraction and Isolation The dried root (4.8 kg) was extracted with 80% aqueous EtOH (700 g). The EtOH extract was suspended in H₂O and extracted with CH₂Cl₂ and BuOH successively to give the CH₂Cl₂-soluble fraction (140 g) and BuOH-soluble fraction (123 g). The BuOH-soluble fraction was chromatographed on a silica gel column with a stepwise gradient of CHCl₃ and MeOH as eluent to give eight fractions (Fr. 1—8). Repeated column chromatography of Fr. 6 on silica gel (CHCl₃/MeOH/H₂O, 5:1:0:0.5) and RP-C₁₈ column chromatography (58% aq. MeOH) afforded 1 (160 mg). Column chromatography of Fr. 7 using silica gel (CHCl₃/MeOH/H₂O, 5:1:0.5) on RP-C18 (250×10 mm, 45% aq. MeOH), flow rate 1.5 ml/min) gave 2 (20 mg, retention time 17.9 min).

Compound 1: Bright yellow oil. $[\alpha]_{20}^{20} - 28^{\circ} (c=1, \text{ MeOH})$; UV λ_{max} nm (MeOH, log ε): 239 (0.92), 252 (1.17), 266 (1.32), 281 (1.21); IR (KBr) v_{max} cm⁻¹: 3350 (OH), 2930, 2245 (C=C), 1660 (C=C), 1080 (C-O); HR-FAB-MS *m/z*: 349.1260 [M+Na]⁺ (Calcd for $[C_{16}H_{22}O_7+Na]^+$ 349.1264); ¹H- and ¹³C-NMR spectral data: see Table 1.

Compound **2**: Bright yellow oil. $[\alpha]_D^{20} - 78^{\circ}$ (*c*=1, MeOH); UV λ_{max} nm (MeOH, log ε): 239 (0.12), 252 (0.39), 266 (0.54), 281 (0.47); IR (KBr) v_{max} cm⁻¹: 3380 (OH), 2345 (C=C), 1650 (C=C), 1060 (C–O); HR-FAB-MS *m/z*: 481.1682 [M+Na]⁺ (Calcd for $[C_{21}H_{30}O_{11}+Na]^+$ 481.1686); ¹H- and ¹³C-NMR spectral data: see Table 1.

Enzymatic Hydrolysis of 1 Naringinase (200 mg) was added to a suspension of **1** (30 mg) in 50 mM acetate buffer (pH 5.5) and the mixture was stirred at 37 °C for 5 h. The reaction mixture was extracted with EtOAc (10 ml×3) and the organic layer was evaporated to dryness. The residue was chromatographed on silica gel eluted with hexane–acetone (3:1) to give 8-decene-4,6-diyne-1,3-diol (**1a**, 8 mg) as bright yellow oil. ¹H-NMR (CHCl₃): δ 6.30 (1H, dq, *J*=15.8, 6.9 Hz, H-2), 5.50 (1H, dq, *J*=15.8, 1.7 Hz, H-3),

4.68 (1H, t, *J*=6.3 Hz, H-8), 3.79 (2H, t, *J*=5.6 Hz, H-10), 1.94 (2H, m, H-9), 1.77 (3H, dd, *J*=6.9, 1.7 Hz, H-1).

(*R*)-MTPA Ester of 1a (+)-MTPA chloride (15 mg) and DMAP (10 mg) in pyridine (0.2 ml) was added to a solution of 1a (2.0 mg) in CCl₄ (0.2 ml). After stirring at room temperature for 12 h, the mixture was poured into water (10 ml) and extracted with CHCl₃ (10 ml×2). The CHCl₃ extract was concentrated *in vacuo* and purified with preparative thin-layer chromatography (hexane/acetone, 5:1) to give an (*R*)-MTPA ester (1b, 1.5 mg) as a colorless oil. ¹H-NMR (CHCl₃): δ 6.38 (1H, m, H-9), 5.58 (1H, t, J=6.9 Hz, H-3), 5.52 (1H, ddd, J=15.8, 1.8, 0.7 Hz, H-8), 4.46 (1H, m, H-1a), 4.35 (1H, m, H-1b), 3.51 (3H, d, J=1.2 Hz, MTPA–OCH₃), 3.52 (3H, d, J=1.0 Hz, MTPA–OCH₃), 2.26 (2H, m, H-2), 1.84 (3H, dd, J=6.9, 1.8 Hz, H-10).

(S)-MTPA Ester of 1a (-)-MTPA chloride (15 mg) and DMAP (10 mg) in pyridine (0.2 ml) was added to a solution of 1a (2.0 mg) in CCl₄ (0.2 ml). Work-up as described above gave an (S)-MTPA ester (1c, 1.5 mg) as a colorless oil. ¹H-NMR (CHCl₃): δ 6.39 (1H, m, H-9), 5.61 (1H, t, J=6.9 Hz, H-3), 5.53 (1H, ddd, J=15.8, 1.8, 0.7 Hz, H-8), 4.34 (1H, m, H-1a), 4.20 (1H, m, H-1b), 3.57 (3H, d, J=1.2 Hz, MTPA–OCH₃), 3.53 (3H, d, J=1.0 Hz, MTPA–OCH₃), 2.20 (2H, m, H-2), 1.84 (3H, dd, J=6.9, 1.8 Hz, H-10).

Determination of Sugars in 1 and 2 Each sample (2 mg) was refluxed with 4 N HCl–dioxane (1:1, 2 ml) for 2 h. The mixture was extracted with EtOAc $(5 \text{ ml} \times 3)$. The residual water layer was neutralized with Amberlite MB-3 and dried to give a residue. The residue was dissolved with pyridine (1 ml), to which 0.1 M L-cysteine methyl ester hydrochloride in pyridine (2 ml) was added. The mixture was stored at 60 °C for 1.5 h. After the reac-

tion mixture was dried *in vacuo*, the residue was trimethylsilylated with hexamethyldisilazane–trimethylchlorosilane (0.1 ml) at 60 °C for 1 h. The mixture was partitioned between hexane and H_2O (0.3 ml each), and the hexane extract was analyzed by GC-MS. In the acid hydrolysate of 1 and 2, D-glucose and D-apiose were confirmed by comparison of the retention times of their derivatives with those of D-glucose, L-glucose, and D-apiose derivatives prepared in a similar way, which showed retention times of 21.30, 22.00, and 17.30 min, respectively.

Acknowledgments This work has been partially supported by a grant from the KOSEF (R01-1999-00155) in Korea. We are grateful to KBSI for ¹H- and ¹³C-NMR spectral measurements.

References

- 1) Jung H., Min B., Park J., Kim Y., Lee H., Bae K., J. Nat. Prod., in press (2002).
- Tsukamoto S., Kato H., Hirota H., Fusetani N., J. Nat. Prod., 60, 126–130 (1997).
- 3) Wang C. Z., Yu D. Q., Phytochemistry, 48, 711-717 (1998).
- Min B. S., Nakamura N., Miyashiro H., Kim Y. H., Hattori M., Chem. Pharm. Bull., 48, 194–200 (2000).
- 5) Dale J. A., Mosher H. S., J. Am. Chem. Soc., 95, 512-519 (1973).
- Ohitani I., Kusumi T., Kashman Y., Kakisawa H., J. Am. Chem. Soc., 113, 4092–4096 (1991).
- Min B. S., Gao J. J., Nakamura N., Hattori M., Chem. Pharm. Bull., 48, 1026–1033 (2000).