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Abstract

An updated version of the PNJL model is used to study the thermody-
namics of Nf = 2 quark flavors interacting through chiral four-point couplings
and propagating in a homogeneous Polyakov loop background. Previous PNJL
calculations are extended by introducing explicit diquark degrees of freedom
and an improved effective potential for the Polyakov loop field. The input
is fixed exclusively by selected pure-gauge lattice QCD results and by pion
properties in vacuum. The resulting (T, µ) phase diagram is studied with
special emphasis on the critical point, its dependence on the quark mass and
on Polyakov loop dynamics. We present successful comparisons with lattice
QCD thermodynamics expanded to finite chemical potential µ.

1 Introduction

Reconstructing the phase diagram and thermodynamics of QCD in terms of field
theoretical quasiparticle models is an effort worth pursuing in order to interpret
lattice QCD results [1–7] and extrapolate into regions not accessible by lattice com-
putations. A promising ansatz of this sort is the PNJL model [9–12], a synthesis
of Polyakov loop dynamics with the Nambu & Jona-Lasinio model, combining the
two principal non-perturbative features of low-energy QCD: confinement and sponta-
neous chiral symmetry breaking. This paper extends our previous PNJL calculations
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[11] in several directions. First, diquark degrees of freedom are explicitly included.
Diquark condensation at large quark chemical potential is explored in the presence
of a Polyakov loop background. Secondly, in comparison with our previous work,
the effective potential which controls the thermodynamics of the Polyakov loop field
is improved such that group theoretical constraints are rigorously implemented, fol-
lowing Ref.[9]. The aim of the present paper is to investigate the phase diagram
resulting from this approach. Of special interest is the location of the critical point,
its dependence on the quark mass and the role of the Polyakov loop as indicator
of the deconfinement transition. Predictions for the leading coefficients in a Taylor
expansion of the pressure in powers of the quark chemical potential will turn out to
be remarkably successful in comparison with corresponding lattice QCD results.

2 The PNJL model

The two-flavor PNJL model (now including diquark degrees of freedom) is specified
by the Euclidean action

SE(ψ, ψ†, φ) =

∫ β=1/T

0

dτ

∫

d3x
[

ψ† ∂τ ψ + H(ψ, ψ†, φ)
]

+ δSE(φ, T ) (1)

with the fermionic Hamiltonian density 1:

H = −iψ† (~α · ~∇ + γ4m0 − φ)ψ + V(ψ, ψ†) , (2)

where ψ is the Nf = 2 doublet quark field and m0 = diag(mu, md) is the quark mass
matrix. The quarks move in a background color gauge field φ ≡ A4 = iA0, where
A0 = δµ0 gAµ

a t
a with the SU(3)c gauge fields Aµ

a and the generators ta = λa/2. The
matrix valued, constant field φ relates to the (traced) Polyakov loop as follows:

Φ =
1

Nc
Tr

[

P exp

(

i

∫ β

0

dτA4

)]

=
1

3
Tr eiφ/T , (3)

In a convenient gauge (the so-called Polyakov gauge), the matrix φ is given a diagonal
representation

φ = φ3 λ3 + φ8 λ8 , (4)

which leaves only two independent variables, φ3 and φ8. The piece δSE = −V
T
U

of the action (1) controls the thermodynamics of the Polyakov loop. It will be
specified later in terms of the effective potential, U(Φ, T ), determined such that
the thermodynamics of pure gauge lattice QCD is reproduced for T up to about
twice the critical temperature for deconfinement. At much higher temperatures

1~α = γ0 ~γ and γ4 = iγ0 in terms of the standard Dirac γ matrices.
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where transverse gluons begin to dominate, the PNJL model is not supposed to be
applicable.

The interaction V in Eq. (2) includes chiral SU(2) × SU(2) invariant four-
point couplings of the quarks acting in pseudoscalar-isovector/scalar-isoscalar quark-
antiquark and scalar diquark channels:

V = −G
2

[

(

ψ̄ψ
)2

+
(

ψ̄ iγ5~τ ψ
)2

]

− H

2

[(

ψ̄ Cγ5τ2λ2 ψ̄
T
) (

ψTγ5τ2λ2C ψ
)]

, (5)

where C is the charge conjugation operator. We can think of Eq.(5) as a subset
in the chain of terms generated by Fierz-transforming a local color current-current
interaction between quarks,

Lint = −Gc(ψ̄γµt
aψ)(ψ̄γµtaψ) .

In this case the coupling strengths in the quark-antiquark and diquark sectors are
related by G = 4

3
H , the choice we adopt. The minimal ansatz (5) for V is motivated

by the fact that spontaneous chiral symmetry breaking is driven by the first term
while the second term induces diquark condensation at sufficiently large chemical
potential of the quarks. Additional pieces representing vector and axialvector qq̄
excitations as well as color-octet diquark and qq̄ modes are omitted here. We have
checked that their effects are not important in the present context.

The NJL part of the model involves three parameters: the quark mass which
we take equal for u- and d-quarks, the coupling strength G and a three-momentum
cutoff Λ. We take those from Ref.[11]:

mu,d = 5.5 MeV , G =
4

3
H = 10.1 GeV−2 , Λ = 0.65 GeV ,

which were fixed to reproduce the pion mass and decay constant in vacuum and the
chiral condensate as mπ = 139.3 MeV, fπ = 92.3 MeV and 〈ψ̄uψu〉 = −(251 MeV)3.

The effective potential U(Φ, T ) which controls the dynamics of the Polyakov loop
has the following properties. It must satisfy the Z(3) center symmetry of the pure
gauge QCD Lagrangian. In the low-temperature (confinement) phase U(Φ) has an
absolute minimum at Φ = 0. Above the critical temperature for deconfinement
(T0 ≃ 270 MeV according to pure gauge lattice QCD results) the Z(3) symmetry is
spontaneously broken and the minimum of U(Φ) is shifted to a finite value of Φ. In
the limit T → ∞ we have Φ → 1.

In our previous Ref.[11] the simplest possible polynomial form was chosen for U .
In the present work an improved expression, guided by Ref.[9], replaces the higher
order polynomial terms in Φ,Φ∗ by the logarithm of J(Φ), the Jacobi determinant
which results from integrating out six non-diagonal group elements while keeping
the two diagonal ones, φ3,8, to represent Φ. This suggests the following ansatz for
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Figure 1: Left: Fit to scaled pressure, entropy density and energy density as functions of the
temperature in the pure gauge sector, compared to the corresponding lattice data taken from
Ref. [5]. Right: Resulting effective potential (6) that drives spontaneous Z(3) symmetry breakdown
at T = T0.

U :

U(Φ, T ) = −1

2
a(T ) Φ∗Φ + b(T ) ln

[

1 − 6 Φ∗Φ + 4
(

Φ∗3 + Φ3
)

− 3 (Φ∗Φ)2
]

(6)

with

a(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

, b(T ) = b3

(

T0

T

)3

. (7)

With its logarithmic divergence as Φ,Φ∗ → 1, this ansatz automatically limits the
Polyakov loop Φ to be always smaller than 1, reaching this value asymptotically
only as T → ∞. Following the procedure as in [11], a precision fit of the parame-
ters ai and b3 is performed in order to reproduce lattice data for pure gauge QCD
thermodynamics and for the behaviour of the Polyakov loop as a function of tem-
perature. The results of this combined fit are shown in Figs 1 and 2 (dotted line).
The corresponding parameters are

a0 = 3.51 , a1 = −2.47 , a2 = 15.22 , b3 = −1.75 .

The critical temperature T0 for deconfinement in the pure gauge sector is fixed at
270 MeV in agreement with lattice results.

Next, the PNJL action is bosonized and rewritten in terms of the auxiliary
scalar and pseudoscalar fields (σ, ~π), and diquark fields (∆,∆∗). The thermodynamic
potential of the model is evaluated as follows:

Ω = U (Φ, T ) − T

2

∑

n

∫

d3p

(2π)3
Tr ln

[

βS̃−1 (iωn, ~p )
]

+
σ2

2G
+

∆∗∆

2H
, (8)
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where the sum is taken over Matsubara frequencies ωn = (2n + 1)πT . The inverse
Nambu-Gor’kov propagator including diquarks is:

S̃−1 (iωn, ~p ) =

(

iγ0 ωn − ~γ · ~p−m+ γ0 (µ− iφ) ∆γ5τ2λ2

−∆∗γ5τ2λ2 iγ0 ωn − ~γ · ~p−m− γ0 (µ− iφ)

)

,

(9)
Just as in the standard NJL model, quarks develop a dynamical (constituent) mass
through their interaction with the chiral condensate:

m = m0 − 〈σ〉 = m0 −G〈ψ̄ψ〉. (10)

With the input parameters previously specified one finds m = 325 MeV at T = 0.
Note that introducing diquarks (and anti-diquarks) as explicit degrees of freedom

implies off-diagonal pieces in the inverse propagator (9). As a consequence, the
traced Polyakov loop field Φ and its conjugate Φ∗ can no longer be factored out
when performing the Tr ln = ln det operation in the thermodynamic potential (8),
unlike the simpler case treated in our previous Ref. [11]. The explicit evaluation of
energy eigenvalues now involves φ3 and φ8 as independent fields. The final result
for Ω is then given as:

Ω = U (Φ, T ) +
σ2

2G
+

∆∗∆

2H

− 2Nf

∫

d3p

(2π)3

∑

j

{

T ln
[

1 + e−Ej/T
]

+
1

2
∆Ej

}

. (11)

The quasi-particle energies Ej , denoted by indices j running from 1 to 6, have the

following explicit expressions with ε(~p ) =
√

~p 2 +m2:

E1,2 = ε(~p ) ± µ̃b ,

E3,4 =
√

(ε(~p ) + µ̃r)2 + |∆|2 ± i φ3 ,

E5,6 =
√

(ε(~p ) − µ̃r)2 + |∆|2 ± i φ3 , (12)

with

µ̃b = µ+ 2i
φ8√

3
, µ̃r = µ− i

φ8√
3
. (13)

In Eq.(11), ∆Ej = Ej − ε ± µ is the difference of the quasiparticle energy Ej and
the energy of free fermions (quarks), where the lower sign applies for fermions and
the upper sign for antifermions. It is understood that for three-momenta |~p | above
the cutoff Λ where NJL interactions are ”turned off”, the quantities σ and ∆,∆∗

are set to zero.
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In general, the Euclidean action SE is formally complex in the presence of the
temporal gauge field φ. It is real only at vanishing chemical potential, µ = 0. In this
limiting case charge conjugation symmetry implies that the action, taken as the sum
of SE and its charge conjugate, is real [13]. This is no longer true for non-vanishing
chemical potential. In this case one has, in addition, 〈Φ〉 6= 〈Φ∗〉.

The field configuration that contributes most importantly to the path integral is
the one which minimizes the real part of the Euclidean action or, equivalently, the
real part of the thermodynamic potential. The mean field equations derived from Ω
are therefore of the form

∂ Re Ω

∂ϕ
= 0 (14)

with ϕ = σ,∆, φ3, φ8. At this mean field level, the additional constraint of φi

being real implies that the action is minimized by φ8 = 0. It follows that Φ ∼
Tr exp(iλ3 φ3/T ) is real (i.e. Φ = Φ∗). Fluctuations beyond mean field are at the
origin of 〈Φ〉 6= 〈Φ∗〉 for µ 6= 0. This paper deals with self-consistent solutions and
predictions of the mean-field equations (14). While further extensions including
quantum fluctuations [14] will be subject of a forthcoming presentation [15], we can
already anticipate one of the results, namely that the effects of fluctuations, leading
to 〈Φ〉 6= 〈Φ∗〉 at finite chemical potential, turn out not to be of major qualitative
importance in determining the phase diagram.

3 Results

Solution of the mean-field equations (14) yields the chiral condensate, 〈ψ̄ψ〉 = σ/G,
the color-antitriplet diquark condensate, ∆, and the Polyakov loop exponent φ3 as
functions of T, µ. The resulting prediction for the traced Polyakov loop Φ is shown
in Fig. 2 (continuous line) in comparison with the corresponding lattice data taken
from Ref. [7] (full symbols). The agreement is quite remarkable. In the presence of
quarks, the deconfinement transition is no longer first order as in pure gauge QCD.
It becomes a smooth crossover when quarks couple to the Polyakov loop field. The
critical temperature for deconfinement is now decreased from 270 MeV to a smaller
value around 215 MeV 2 (not evident from Fig. 2 where the results are plotted
as functions of T/Tc). In Fig. 3 we show in addition the predicted temperature
dependence of the two-flavour chiral condensate 〈ψ̄ψ〉 in comparison with lattice
data [8].

2Note that the critical temperature in full lattice QCD reported in [7] is Tc = 202 MeV.
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Figure 2: Using the fit of the Polyakov loop (dotted line) to lattice results taken from Ref. [6]
in the pure gauge sector (empty symbols), the PNJL model predicts the Polyakov loop behaviour
as a function of temperature in the presence of dynamical quarks (solid line). This prediction is
compared lattice data in two flavours (full symbols) taken from Ref. [7].

Figure 3: The spontaneous chiral symmetry breaking mechanism of the PNJL model generates
a temperature dependent chiral condensate

〈

ψ̄ψ
〉

(solid line), which is compared here to lattice
QCD results, with selected (two-flavour) data taken from Ref. [8].
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3.1 Finite chemical potential

Lattice results at finite quark chemical potential are obtained as Taylor expansions of
the thermodynamical quantities in the parameter µ/T around zero chemical poten-
tial. Here we perform the same kind of expansion in the PNJL model and compare
with Taylor coefficients deduced from lattice data. Examples are the coefficients in
the expansion of the pressure p = −Ω:

p(T, µ)

T 4
=

∞
∑

n=0

cn(T )
(µ

T

)n

with cn(T ) =
1

n!

∂(p(T, µ)/T 4)

∂(µ/T )n

∣

∣

∣

∣

∣

µ=0

(15)

and even n. Specifically:

c2 =
1

2

∂2(p/T 4)

∂(µ/T )2

∣

∣

∣

∣

µ=0

, c4 =
1

24

∂4(p/T 4)

∂(µ/T )4

∣

∣

∣

∣

µ=0

,

c6 =
1

720

∂6(p/T 4)

∂(µ/T )6

∣

∣

∣

∣

µ=0

, c8 =
1

40320

∂8(p/T 4)

∂(µ/T )8

∣

∣

∣

∣

µ=0

. (16)

Results for these coefficients are shown in Fig. 4. We notice in particular the re-
markably good agreement between the calculated ”susceptibility” c4 and the lattice
data. This quantity has recently been computed in Ref. [16] using the previous ver-
sion of our PNJL model, Ref. [11], with a less satisfactory outcome. Now, with the
improved effective potential U as described in Eq.(6), the agreement is significantly
better.

3.2 Phase diagram

We now turn to the phase diagram in the (T, µ) plane as derived from this updated
version of the PNJL model. The left panel of Fig. 5 shows the phase diagrams
in the (T, µ)-plane computed using the PNJL model in comparison with the NJL
model (the limiting case in which Φ ≡ 1). Of particular interest is the location of
the critical endpoint at which the chiral and deconfinement crossover transitions at
lower µ turn into a first-order phase transition above some critical µ. The crossover
is not a phase transition. Therefore there exist several ways to locate the position
of a crossover transition. In the present calculations the crossover line is determined
using the order parameters in the chiral limit (the chiral condensate) and the pure
gauge theory (the Polyakov loop) respectively. Since these order parameters show
their strongest changes as functions of temperature along the crossover transition
lines, we determine their position by local maxima of dσ/dT and dΦ/dT 3.

3Other frequently used and closely related criteria for the definition of crossover transition lines
involve chiral or Polyakov loop susceptibilities. This does not lead to any significant differences for
the phase diagram in comparison with the method applied here.
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Figure 4: Second, fourth, sixth and eighth moment of the pressure difference with respect to the
chemical potential, plotted as functions of the temperature. (Note that the temperature scales of
the upper and lower graphs are different.) We compare to lattice data (diamonds with errorbars)
taken from Ref. [4]
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The crossover transition lines fixed by either the susceptibilities of σ and Φ
or by maximal changes with temperature, i.e. zeros of d2σ/dT 2 or d2Φ/dT 2, do
coincide with the critical point for our PNJL model in the absence diquarks (see
lower panel of Fig. 5). This is a consequence of the divergences in these quantities
at the critical point. However, when including diquarks, a coincidence of critical
point and crossover transition line is not guaranteed.

One finds that the critical endpoint depends sensitively on the degrees of freedom
involved. From its position in the restricted NJL case (see also [17]) this point
is shifted to higher T by both, the effective Polyakov loop potential, and by the
presence of diquark degrees of freedom. Near the critical endpoint not including
diquarks, dσ

dT
diverges together with the chiral susceptibility. This extreme behaviour

is not observed in the case with inclusion of diquarks. The region where this critical
behaviour would appear is now already located in the diquark dominated phase.

Thus there is a qualitative difference of the critical endpoints in these two com-
pared cases: not including diquarks the critical endpoint lies on top of the merging
chiral and deconfinement crossover transition lines, while in the case including di-
quarks the critical endpoint is shifted away from this line. The critical endpoint now
lies on the second order transition line bordering the diquark dominated phase (see
lower panel of Fig. 5). I. e. the endpoint is not at the junction of all three transition
lines and therefore is not a tri-critical point but still a critical point.

Next we use the PNJL model including diquark degrees of freedom to study the
dependence of the position of the critical endpoint on the bare (current) quark mass.
The upper right panel of Fig. 5 shows phase diagrams in the chiral limit, for current
quark masses m0 = 5.5 MeV and m0 = 50 MeV. The change of the critical endpoint
with varying quark mass mainly reflects the dependence of the critical chemical
potential on the quark mass. The presence of the diquark dominated phase appears
to stabilize the temperature of the critical endpoint at rather high values.

Generally, the PNJL model generates the critical endpoint at a temperature
which is significantly higher than the one found with the standard NJL model, i. e.
ignoring Polyakov loop dynamics. The reason is that the diquark phase as well as
the chiral phase is stabilized by the confinement emulation via the effective Polyakov
loop potential. The size of the gap ∆ is strongly influenced by the Polyakov loop.
The detailed dependence of the gap on the Polyakov loop is displayed in Fig. 6.
The systematics of this effect becomes evident when the Polyakov loop is held at
fixed values and varied. The gap resulting from this calculation is then compared
to the gap in the PNJL model (with self-consistent determination of Φ) and in the
NJL model. The case where the Polyakov loop is fixed to Φ = 1 (i. e. complete
deconfinement) coincides with the NJL calculation.

The presence of the Polyakov loop restricts the phase space available for quarks
in the vincinity of their Fermi surface where Cooper pair condensation takes place.
Hence a larger temperature is effectively required to break the pairs. This is the
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Figure 5: Upper left panel: comparison of the phase diagrams of NJL and PNJL model. The
cross-over of the chiral condensate is drawn solid, first order lines are dashed and second order lines
dotted. Upper right panel: comparison of the phase diagram at different current quark masses
with inclusion of diquark degrees of freedom. (Note the scale on the temperature axis.) Lower
panel: comparison of the PNJL model with and without inclusion of diquarks.

11



Figure 6: Dependence of the gap ∆ on the presence of the Polyakov loop. The solid lines are the
solutions to the self consistency equations of the NJL and the PNJL model at T = 0.4 GeV. The
dashed lines are obtained by enforcing fixed values for the Polyakov loop. Note that the PNJL
model with the Polyakov loop fixed at Φ = 1 (deconfinement) coincides with the self consistent
solution of the NJL model.

primary reason for the difference in behavior of the gap ∆ when comparing NJL and
PNJL results in Fig. 6.

3.3 Speed of sound

The velocity of sound vs, determined by

v2

s = − 1

CV

∂Ω

∂T

∣

∣

∣

∣

V

(17)

with the specific heat CV = −T (∂2Ω/∂T 2)V , shows a pronounced dip near the chi-
ral and the deconfinement transition. This local minimum of the speed of sound
becomes deeper in the vicinity of the critical endpoint of the first order phase tran-
sition line, separating the chiral phase at low chemical potential (µ . 1.5 Tc) from
the diquark phase at high chemical potential (µ & 1.5 Tc). When neglecting diquark
degrees of freedom the speed of sound vanishes at the critical endpoint (solid curve
in the central panel of Fig. 7).

Correspondingly, the specific heat diverges at this point. When diquark degrees
of freedom are included in the calculation the critical endpoint is shifted such that
the region of vanishing speed of sound would already be placed within the diquark
dominated phase. This is why a vanishing speed of sound is not observed in the
model including explicitly diquark degrees freedom (dashed curve in the central panel
of Fig. 7). The discontinuity at higher temperatures is generated by the second order
phase transition separating the diquark dominated phase from the high temperature
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Figure 7: Left panel: Squared speed of sound (dashed) and ratio p

ε
(solid), and their dependence

on the temperature at vanishing chemical potential. The two panels to the right: Studies of the
sound velocity in the vincinity of the critical endpoint in the PNJL model without diquarks (at
chemical potential µ = µCEP). The PNJL model without diquarks is drawn with solid lines, the
PNJL model with diquarks with dashed lines. Center panel: square of the velocity of sound. Right
panel: pressure over energy density p

ε
.

phase. Above this transition the two versions of the PNJL model (with and without
explicit diquarks) become equivalent.

4 Concluding remarks and outlook

We have pointed out that an updated version of the PNJL model over and beyond
the one used in [11, 16] leads to significantly better agreement with lattice data [4, 7],
especially when extrapolating to finite chemical potential µ. The combination of only
two principal ingredients: chiral symmetry restoration and an effective potential
ansatz for the confinement order parameter, appears to be sufficient to reproduce
the available full QCD lattice computations to an astonishingly high accuracy, at
least for temperatures T up to about 2Tc. The improvements shown in this paper
in comparison with previous results [11, 16] originate in a better representation of
the Polyakov loop part of the PNJL model. Taking into account the proper SU(3)
constraints is crucial for an effective description of the thermodynamical implications
of confinement.

Incorporating explicit diquark degrees of freedom influences the position and the
nature of the critical endpoint in the (T, µ) phase diagram. The critical endpoint in
the presence of diquarks is the connecting point between the chiral crossover tran-
sition line and the second order transition bordering the diquark dominated phase,
while in the absence of diquarks it is the junction point of the chiral and decon-
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finement crossover transition. The critical point in the PNJL-model with diquarks
turns out not to coincide with the critical (diverging) behaviour of susceptibilities
related to the chiral condensate and the Polyakov loop.

Further developments now aim for an extension of the present framework toNf =
3 in order to explore the rich structure of colour superconducting (diquark) phases
with three quark flavours and the additional effects of Polyakov loop dynamics.
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[15] S. Rößner, C. Ratti, W. Weise, in preparation.

[16] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa and R. Ray, Phys. Rev. D 73

(2006) 114007.

[17] M. Buballa, Phys. Reports 407 (2005) 205.

15


