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The balance between accumulation of stress-induced polyamines and reactive oxygen

species (ROS) is arguably a critical factor in plant tolerance to salt stress. Polyamines

are compounds, which accumulate in plants under salt stress and help maintain cellular

ROS homeostasis. In this review we first outline the role of polyamines in mediating salt

stress responses through their modulation of redox homeostasis. The two proposed

roles of polyamines in regulating ROS—as antioxidative molecules and source of ROS

synthesis—are discussed and exemplified with recent studies. Second, the proposed

function of polyamines as modulators of ion transport is discussed in the context

of plant salt stress. Finally, we highlight the apparent connection between polyamine

accumulation and programmed cell death induction during stress. Thus, polyamines have

a complex functional role in regulating cellular signaling and metabolism during stress.

By focusing future efforts on how polyamine accumulation and turnover is regulated,

research in this area may provide novel targets for developing stress tolerance.

Keywords: polyamine signaling, ROS, plant abiotic stress, salinity stress, redox homeostasis

Introduction

Global climate change and agronomic practices have contributed to increased soil salinity, which
currently affects an estimated 45 million hectares of irrigated land (Rengasamy, 2010). Salt stress
limits crop productivity and is imposed by an accumulation of cations (Na+, K+, Mg2+, Ca2+)
and anions (Cl−, SO2−

4 , HCO−

3 ) originating from water-soluble salts such as Na2SO4, NaHCO3,
NaCl, and MgCl2 as well as less water-soluble salts including CaSO4, MgSO4, and CaCO3.These
salts accumulate due to factors such as mineral erosion and crop irrigation with mineralized water
or ocean water (Todorova et al., 2013).

High salt concentrations in soil cause both hyperionic and hyperosmotic stress in the intracel-
lular environment. During the initial stages of salt stress, the high external solute concentration
decreases the cellular water potential, which eventually imposes turgor loss and pleiotropic physio-
logical responses including stomatal closure, growth inhibition, reduced pollen viability, inhibition
of photosynthetic enzyme activity, sucrose accumulation, and inactivation of photosynthetic elec-
tron transport (Munns and Tester, 2008; Chaves et al., 2009; Biswal et al., 2011; Silva et al., 2011;
Mittal et al., 2012; Shu et al., 2012; Jajoo, 2013). Long-term salt stress results in hyperaccumula-
tion of Na+ leading to suppression of enzymatic activity, increased H2O2 and lipid peroxidation
that ultimately causes leaf senescence (Sairam et al., 2002; Chinnusamy and Zhu, 2003; Allu et al.,
2014).

Under normal conditions, the cytosol contains 100–200mM of K+ and 1–10mM of Na+ (Taiz
and Zeiger, 2002). Excess NaCl is the most common cause of salt stress in plants and induces
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overaccumulation of Na+ and Cl− and depletion of K+ ions in
the cell. This imbalance in the Na+:K+ ratio is a result of the
competition between the ions for transport into the cell and is
thought to produce detrimental effects due to changes in osmotic
potential, nutrient limitation and ionic toxicity. Plants counter-
act these effects using multiple strategies including: (i) producing
osmolytes like soluble sugars, organic acids, free amino acids, and
accumulating potassium ions (Ahmad and Sharma, 2008; Ahmad
et al., 2012), (ii) activating transporters that export sodium from
the cell, (iii) limiting Na+ uptake into roots and leaves, (iv)
sequestering Na+ ions into subcellular compartments, (v) alter-
ing photosynthetic rates, (vi) changing membrane structure, (vii)
inducing antioxidative enzymes, and (viii) decreasing stomatal
conductance (Jithesh et al., 2006; Ozgur et al., 2013). In addi-
tion, plant cells rapidly accumulate reactive oxygen species (ROS)
in response to salt and other stresses, a response widely known
as the “oxidative burst” (Mittler, 2002; Miller et al., 2008). The
oxidative burst has an important role in inducing signaling events
and is dependent on enzymes located in several subcellular com-
partments (Foyer and Noctor, 2005; Baxter et al., 2014). How-
ever, it is essential that ROS production be regulated, as excess
ROS accumulation results in membrane lipid peroxidation, DNA
damage, protein denaturation, carbohydrate oxidation, pigment
breakdown, and ultimately leads to cell death (Scandalios, 1993;
Noctor and Foyer, 1998). To counteract the potentially damag-
ing effects of the oxidative burst, plants produce a diverse set of
antioxidants whose regulation is not yet fully understood. While
the interplay between ROS turnover and antioxidant accumula-
tion during stress is quite complex, it is essential to understand
how this system works for its potential in enhancing plant stress
tolerance (Noctor and Foyer, 1998).

Mechanisms of ROS Production During Salt
Stress
ROS are highly reactive forms of molecular oxygen and include
the hydroxyl radical (HO.), superoxide (O2.−), hydrogen perox-
ide (H2O2), and singlet oxygen (1O2) (Dowling and Simmons,
2009; Shapiguzov et al., 2012). The reactivity and half-life of dif-
ferent ROS species are correlated to their mobility and diffusion
distance in the cellular space. Among the ROS species present in
plants, hydrogen peroxide is the most stable having a half-life
of 1ms, whereas singlet oxygen (1O2), superoxide (O2

.−) and
hydroxyl radicals (OH•) are short-lived species with half-lives
of 1–4µs to 1 nanosecond (Gechev et al., 2006; Moller et al.,
2007). Although numerous subcellular compartments contribute
to ROS production, the major sites of ROS generation include
the chloroplast, mitochondria, and peroxisome (Figure 1) (Foyer
et al., 2003; Mittler et al., 2004; Asada, 2006; Rhoads et al., 2006).

The chloroplast produces the highest levels of ROS under
both normal conditions and salt stress. ROS generation occurs
within both Photosystem I (PSI) and Photosystem II (PSII) reac-
tion centers in the thylakoid membrane. During salt stress, ROS
production is enhanced due to changes in membrane fluidity
and protein complex formation, blocking the electron transfer
from water to PSII (Chaves et al., 2009; Biswal et al., 2011; Silva
et al., 2011; Jajoo, 2013). Another important site for ROS pro-
duction is the mitochondria. During salt stress, mitochondrial

respiration is disrupted; over-reduction of the ubiquinone pool
facilitate the leakage of electrons from complexes I and III of
the mitochondrial electron transport chain to molecular oxygen,
resulting in O·−

2 production (Noctor et al., 2007; Miller et al.,
2010). Excess O2in the cell also increases the photorespiration
rate, which produces O·−

2 and 1O2 as by products (Allakhverdiev
et al., 2002; Foyer and Noctor, 2003). Peroxisomes, which cater as
a site for numerousmetabolic processes such as photorespiration,
β-oxidation of fatty acid, flavin oxidase pathway, dismutation of
superoxide radicals and polyamine catabolism, also contribute
significantly to ROS accumulation in plants subjected to salin-
ity stress (Moschou et al., 2008a,b; Mohapatra et al., 2009). The
effects of salt stress on peroxisomes and chloroplasts are intercon-
nected. Reduced water availability and stomatal closure during
salt stress causes reduction in the CO2 to O2 ratio in mesophyll
cells. This facilitates the affinity of Rubisco to O2, thus increasing
photorespiration and production of glycolate in chloroplasts. The
end product of chloroplasts (glycolate) is oxidized by glycolate-
oxidase in peroxisomes—a major pathway of H2O2 produc-
tion (Noctor et al., 2002; Karpinski et al., 2003). In addition to
organelles, enzymes localized in other cellular compartments,
including the cytosolic polyamine oxidase (PAO) and diamine
oxidase (DAO), plasma membrane NADPH oxidases, cell wall-
associated peroxidases (POXs) and oxalate oxidases participate
in ROS synthesis and may play a minor role in ROS production
during salt stress (Kawano, 2003; Parida and Das, 2005; Ahmad
and Sharma, 2008).

Enzymatic and Non-Enzymatic Regulation of
ROS in Plants
High levels of ROS can damage the cell by inactivating enzymes,
initiating lipid oxidation of membranes, and breaking DNA
strands (Van Breusegem et al., 2001; Halliwell, 2006). Plants
modulate ROS accumulation during salinity stress via enzymatic
and non-enzymatic pathways. The cytosolic enzymatic antiox-
idants include superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), glutathione reductase (GR), and
enzymes that participate in the ascorbate-glutathione cycle
(Figure 2). Non-enzymatic antioxidants include the lipid-soluble
membrane-associated α-tocopherol, and β-carotene, which are
products of lipid peroxidation. Polyamines belong to the cat-
egory of water-soluble compounds with antioxidative proper-
ties alongside glutathione (GSH), ascorbate (ASC), polyphenols
(flavonoids, tannins, and anthocyanins), proteinaceous thiols,
proline, and glycine-betaine (Mittler, 2002; Ozgur et al., 2013;
Todorova et al., 2013). Glycine-betaine is a key regulator in ROS
homeostasis, which stabilizes PSII by preventing high salt (Na+

and Cl−)-induced dissociation of the regulatory extrinsic pro-
teins (Papageorgiou and Murata, 1995). Some plants also use
the alternative oxidase enzyme (AOX) to remove electrons from
the ubiquinone pool and transfer them to oxygen to form water,
thus preventing the over-reduction of ubiquinones and result-
ing in decrease of salt-induced ROS production in mitochondria
(Smith et al., 2009; Miller et al., 2010). Unlike metazoans, plant
cells do not have a mechanism to detoxify OH· enzymatically
and to regulate the accumulation of OH·, rely on non-enzymatic
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FIGURE 1 | Location of ROS and polyamine production in the cell.

AOX, Alternative oxidase; ADC, Arginine decarboxylase; ASC, Ascorbate;
APX, Ascorbate peroxidase; CAT, Catalase; DAO, Diamine oxidases; ETS,

Electron transport chain; GSH, Glutathione; ODC, Ornithine decarboxylase;
PA, Polyamine; PAO, Polyamine oxidases; SPDS, Spermidine synthase;
SPMS, Spermine synthase; SOD, Superoxide dismutase.

antioxidants, and various mechanisms to prevent OH· formation
(Bose et al., 2014).

Numerous studies have shown a correlation between antioxi-
dant accumulation and plant salt stress tolerance; however recent
evidence hints that this relationship is more complex than pre-
viously thought. Several polyols accumulating during salt stress
(sorbitol, mannitol, myo-inositol, pinitol, and others) may be
involved in scavenging hydroxyl radicals (Williamson et al.,
2002). In particular, the osmolyte proline seems to be asso-
ciated with the activation of ROS-scavenging enzymes during
salt stress (Saradhi and Mohanty, 1997; Szabados and Savouré,
2010; Gupta and Huang, 2014). For example, exogenous appli-
cation of proline improves salt tolerance in melon, and was
associated with increased chlorophyll content, photosynthetic
rate, reduced O·−

2 , and H2O2 accumulation, and increased lev-
els of antioxidants (SOD, POD, CAT, APX, DHAR, and GR)
(Yan et al., 2011). In addition, heightened levels of proline
were observed in salt-tolerant transgenic rice overexpressing
the DEAD-box helicase PDH45 which correlated with increased
activation of antioxidant enzymes including SOD, APX, GPX,
and GR under salt stress (Gill et al., 2013). It has also been

shown that exogenous application of compatible solutes like
glycine betaine, proline, mannitol, trehalose or myo-inositol,
considerably reduced OH·− generated K+ efflux during salt
stress through an unknown mechanism (Cuin and Shabala,
2007).

Thus, ROS production and detoxification during salt stress
appears to involve multiple cellular locations and molecular
mechanisms. While polyamines are only one of several com-
pounds with antioxidative properties that accumulate in stressed
plants, they seem to play a significant role in regulating stress
tolerance as outlined below.

Polyamines

Overview
Polyamines, small aliphatic amines with proposed antioxidant
effect, are ubiquitous across all living organisms (Hussain et al.,
2011; Gupta et al., 2013). Endogenous levels of polyamines
increase during exposure to abiotic stresses such as drought,
salinity, chilling, heat, hypoxia, ozone, UV, and heavy metal
exposure and are ubiquitously produced in all cells and tissues
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FIGURE 2 | ROS detoxification mediated by ASC-GSHcycle. ASC,
Ascorbate; APX, Ascorbate peroxidase; CAT, Catalase; DHA,
Dehydroascorbate; GSH, Glutathione; GR, Glutathione reductase;

GSSG, glutathione disulphide; MDHA, Monodehydroascorbate;
MDHAR, NAD(P)H-dependent oxido-reductase; SOD, Superoxide
dismutase.

(Alcázar et al., 2010; Gill and Tuteja, 2010). The most abundant
plant polyamines include putrescine (Put, 1, 4- diaminobutane),
spermidine (Spd, N -3-aminopropyl-1, 4-diaminobutane) and
spermine (Spm, bis (N -3-aminopropyl)-1,4-diaminobutane).
Beside these, cadaverine (Cad, 1, 5-diaminopentane) has also
been detected in several plant species, in particular inGramineae,
Leguminoseae and Solanaceae (Lutts et al., 2013). Another
polyamine, thermospermine—a structural isomer of spermine—
is synthesized by the action of thermospermine synthase (Takano
et al., 2012). Putrescine (Put) is primarily synthesized by
ornithine decarboxylase using ornithine as a substrate (Figure 1).
Another alternative pathway for Put synthesis occurs through
the action of arginine decarboxylase (ADC) followed by two suc-
cessive steps catalyzed by agmatine iminohydrolase (AIH) and
N-carbamoyl-Put amidohydrolase (CPA) (Fuell et al., 2010). Put
can be used as a substrate to generate Spd by spermidine synthase
(SPDS) and Spd can then converted to Spm by spermine synthase
(SPMS). Other polyamine oxidation products include hydrogen
peroxide and γ-aminobutyric acid, which are involved in plant
development and stress responses (Tiburcio et al., 2014). The

unique polycationic structure of polyamines suggest that they
may be free radical scavengers, in line with some observations
that their accumulation correlates with plant tolerance to biotic
and abiotic stresses (Mehta et al., 2002; Walters, 2003; Groppa
and Benavides, 2008; Gill and Tuteja, 2010; Gupta et al., 2013).

The interactions between polyamines, ROS and antioxidants
are complex and induce diverse and apparently contradictory
physiological effects during stress (Bhattacharjee, 2005; Gill and
Tuteja, 2010; Pottosin et al., 2012, 2014; Velarde-Buendia et al.,
2012). In particular, increased levels of cellular polyamines dur-
ing abiotic stress (e.g., salinity) have shown dual effects. On
one hand, exogenous polyamine application was correlated with
higher plant tolerance to abiotic stress, partly due to the increased
ability to inactivate oxidative radicals. On the other hand,
polyamines were reported to decrease plant’s capacity to with-
stand stress, possibly due to the increased levels of H2O2 resulted
from polyamines’ catabolism (Minocha et al., 2014). Indeed, both
the anabolism and catabolism of the polyamine species were
reported to increase during abiotic stress, with the net effect of
raised cellular levels of ROS as well as antioxidant enzymes and
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metabolites (Pottosin et al., 2012, 2014; Minocha et al., 2014). In
this review we have attempted to clarify the complex relationship
between polyamines and ROS, focusing on the potential role of
polyamine as a redox homeostasis manager during plant abiotic
stress response.

Polyamines: One of the Prominent Regulators in
ROS Homeostasis during Salt Stress
Plant polyamines are thought to contribute to cellular responses
during salt stress through modulation of ROS homeostasis via
two distinct mechanisms (Takahashi and Kakehi, 2010). First,
polyamines promote ROS degradation by scavenging free radi-
cals and activating antioxidant enzymes during stress conditions
(Gupta et al., 2013). Free polyamines are responsible for the
detoxification of superoxide anions and hydrogen peroxide, while
the conjugated polyamines are involved in scavenging other
ROS (Langebartels et al., 1991; Kubis, 2005). Kuznetsov and
Shevyakova (2007) have reported that conjugated polyamines
show more antioxidant ability than free polyamines. Sec-
ond, polyamines promote ROS production through polyamine
catabolism in the apoplast (Yoda et al., 2006; Marina et al.,
2008; Mohapatra et al., 2009; Campestre et al., 2011). While
it is difficult to determine which of these mechanisms is most
important during salt stress, manipulation of the polyamine
biosynthetic pathways is correlated to abiotic stress resistance
in several studies. For example, impaired expression of ADC1
or ADC2 significantly decreased Put levels and increased sus-
ceptibility to salt stress (Urano et al., 2004). When mouse
ornithine decarboxylase (ODC) was introduced in Nicotiana
tabacum, free polyamine content increased by 2-4 fold and ger-
mination increased by 33–45% on high salt medium (Kum-
ria and Rajam, 2002). Transgenic Nicotiana tabacum plants
overexpressing a S-adenosylmethionine decarboxylase (SAMDC)
gene also demonstrated enhanced of soluble polyamines as
well as increased seed weight, photosynthetic rate and expres-
sion of antioxidant enzymes (APX, MnSOD, and glutathione
S-transferase) relative to untransformed lines (Wi et al., 2006).
Increased polyamine accumulation (4–7%) was also observed in
tobacco plants expressing the S-adenosylmethionine synthetase
(SsSAMS2) gene, which supported up to 20% higher photosyn-
thetic rates and biomass accumulation compared to the control
(Qi et al., 2010). Similarly, introduction of SAMDC cDNA from
Tritordeum into Oryza sativa produced higher free polyamine
content (Put, Spd, Spm), and a reduction in salt-induced shoot
growth repression compared to non-transgenic rice plants (Roy
and Wu, 2002). Ectopic expression of SPDS orthologs from dif-
ferent source plants also improved growth and survival of young
plants in Arabidopsis, European pear (Pyrus communis L.) and
tomato suggesting the importance of this enzyme to cope up
with saline environmental condition across diverse plant species
(Kasukabe et al., 2004; Wen et al., 2008; Neily et al., 2011). Exoge-
nous application of polyamines has also been shown to have a sig-
nificant effect on the plant, and has been suggested to be a poten-
tial strategy to increase plant survival during salt stress. For exam-
ple, Spm application promoted osmotic and salt stress tolerance
in Arabidopsis and rice, which was thought to be due to enhanced
polyphenol accumulation, CAT, and SOD enzyme activities

(Sreenivasulu et al., 2000; Cheruiyot et al., 2007; Roychoudhury
et al., 2011; Zrig et al., 2011; Radhakrishnan and Lee, 2013). In
cucumber, Spm treatment enhanced salt tolerance (growth, pho-
tosynthetic rates) in a salt-sensitive cultivar, which was correlated
to higher antioxidative enzyme activity and proline accumula-
tion (Duan et al., 2008). Put application also increased the activ-
ity of antioxidant enzymes and carotenoids in leaf tissues of salt
stressed Brassica juncea seedlings and enhanced seedling growth
relative to the untreated controls (Verma and Mishra, 2005).
Together, these studies indicate that altering polyamine accumu-
lation through manipulation of biosynthetic pathways or direct
application could have an effect on physiological responses to salt
stress.Table 1 summarizes the effect of endogenously formed and
exogenously applied polyamines in alleviating salt resistance via
the modulation of cellular antioxidative components (enzymatic
or non-enzymatic).

Engineering consistent polyamine accumulation may not be
so simple however, as plants also exhibit increased polyamine
degradation during salt stress and thus polyamine turnover
appears to be highly regulated. During salt stress, intracellular
polyamines are exported from the cytosol to the apoplast, against
the electrochemical gradient, and oxidized by DAO and/or PAO
to generate hydrogen peroxide that is further converted to OH.

via the Fenton reaction (Pottosin et al., 2014). For example,
polyamine degradation occurs through oxidative deamination
catalyzed by aminooxidases such as the copper-containing DAO
and flavoprotein-containing PAO. DAO exhibits high affinity
for diamines, while PAO oxidizes secondary amine groups from
Spd and Spm (Alcazar et al., 2006). While dicotyledonous plants
predominantly accumulate DAO, monocotyledonous plants usu-
ally accumulate more PAO than DAO (Šebela et al., 2001; Cona
et al., 2006). The oxidative deamination of Put produces 1 1-
pyrroline, H2O2, and NH3 by DAO whereas activity of PAO
resulted in the formation of 11–pyrroline (from Spd oxidation)
or 1-(3-aminopropyl)-pyrroline (from Spm oxidation), along
with 1, 3-diaminopropane and H2O2 (Federico and Angelini,
1991). Both DAO and PAO are localized to the cytoplasm and
cell wall and are involved in production of the hydrogen peroxide
required for cell wall stiffening (Cona et al., 2003; Kuznetsov and
Shevyakova, 2007) (Figure 1). These enzymes seem to contribute
to changes in growth during salt stress since increased PAO
accumulation in the expansion zone of maize leaves enhanced
both ROS accumulation and elongation (Rodríguez et al., 2009;
Shoresh et al., 2011). Moreover, high salt (400mMNaCl) or ROS
application induces DAO activity in the leaves and roots of the
halophyte Mesembryanthemum crystallinum further implicating
that these enzymes play a role in salt stress (Shevyakova et al.,
2006).

Polyamines as Modulators of Ion Homeostasis
Polyamines are also hypothesized to promote salt stress tol-
erance through their direct or indirect effects on ion trans-
port (Figure 3) (Demidchik and Maathuis, 2007; Pandolfi et al.,
2010; Bose et al., 2011). For instance, polyamines including Spd,
Spm, and Put affect ion transport indirectly by interacting with
plasma membrane phospholipids and enhancing membrane sta-
bility. Polyamine-enhanced membrane stability has been shown
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TABLE 1 | Effect of polyamines in the regulation of various enzymatic and non-enzymatic antioxidant components in salt stressed plants.

Polyamines Transgenic gene name Traits studied References

Spd, Spm – GPX, CAT, APX Roychoudhury et al., 2011

Put – GPX, CAT, GR Ghosh et al., 2012

Put, Spd, Spm Spermidine synthase SOD, APX, MDHAR, GR He et al., 2008

Put, Spd, Spm S-adenosylmethionine decarboxylase APX, MnSOD, GST Wi et al., 2006

Spd Spermidine synthase 1 APX Neily et al., 2011

Cadaverine – Peroxidase Kuznetsov et al., 2007

Put – SOD, CAT, POD, APX, GR Verma and Mishra, 2005

Spd – SOD, POD, CAT Duan et al., 2008

Put, Spd, Spm – APX, GR, SOD Tang and Newton, 2005

Spm – APX, DHAR, MDAR, GR, POD, SOD Shu et al., 2013

Put, Spd, Spm – SOD, POD, CAT, GR, MDHAR, DHAR, APX Tanou et al., 2013

Spm – Proline, CAT, MDA, POX, GR Chai et al., 2010

Put – CAT, POX, SOD, APX, GR, DHAR Sheokand et al., 2008

Put – POD, CAT, Proline Öztürk and Demir, 2003

Spd – CAT, POD, superoxide, reduced glutathione, total polyphenol content Radhakrishnan and Lee, 2014

Put, Spd, Spm – Mn-SOD, CAT, APX Sudhakar et al., 2015

Put – SOD, POX, CAT Fariduddin et al., 2014

Put, Spd – SOD, POX, CAT Ghahremani et al., 2014

to have a significant effect on both H+/ATPase and Ca2+/ATPase
transporters during salinity stress (Roy et al., 2005; Pottosin and
Shabala, 2014). Ca2+ channel regulation mediated by polyamines
and H2O2 in response to salt stress leads to the rapid rise in the
intracellular concentration of Ca2+ that, subsequently, enforces
a positive feedback on the ROS production via the membrane-
localized NADPH-oxidase (Takeda et al., 2008; Bose et al., 2014).
Sudden exposure to salt stress is reflected in the alterations of tur-
gor that is sensed by rapid increase in cellular cGMP, produced
by the action of receptor kinase cyclase. This in turn activates
the root-localized cyclic nucleotide-gated channels allowing the
inward flow of Ca2+, thus cGMP signal is converted to Ca2+

signal during salinity (Demidchik and Maathuis, 2007). On the
other hand, a rise in cGMP can directly inactivate root voltage-
independent non-selective cation channels (VI-NSCC) by reduc-
ing the influx of toxic Na+ (Rubio et al., 2003). Salt-stress elicited
Ca2+ signals activate signaling molecules including the SOS3
calcium-binding protein and the serine/threonine protein kinase
SOS2 which in turn activate the membrane Na+/H+ antiporter
SOS1 leading to Na+ efflux (Zhu, 2003). If we consider the above
mentioned reports, one can easily observe an indirect cumu-
lative effect of polyamines and ROS in regulating the cellular
Ca2+ that is important for salt response. In contrast, Spm may
directly affect ion transport during salt stress by blocking inward-
rectifying K+ channels (KIRC) and non-selective cation channels
(NSCCs), limitingNa+ influx, and K+ efflux (Liu et al., 2000; Sha-
bala et al., 2007; Zhao et al., 2007; Zepeda-Jazo et al., 2008). Put
and Spm have shown strong potential in reducing the hydroxyl
radical-induced K(+) efflux and the respective non-selective cur-
rent. This synergistic effect between ROS and polyamines was
much more pronounced in a salt-sensitive barley variety than

salt-tolerant one (Velarde-Buendia et al., 2012). Subsequently,
an increased external [Ca2+] activated depolarization-activated
NSCCs (DA-NSCCs), inhibited Na+ -induced K+ efflux, thus
ameliorating Na+ toxicity in plants (Shabala et al., 2006). Dur-
ing salinity, exogenous application of spermidine has been found
to block VI-NSCC reducing the inward flow of Ca2+ and Na+

and the outward flow of K+ in barley seedlings (Zhao et al.,
2007). It has been reported that polyamine accumulation under
salt stress has a tendency to make the overall tonoplast cation
conductance more K+ selective, thus considered to lead to higher
vacuolar Na+ sequestration and an improved cytosolic K+/Na+

homeostasis (Zepeda-Jazo et al., 2008). Absence of Spm causes an
imbalance in Ca2+ homeostasis in the Arabidopsis mutant plant
and showed hypersensitivity to salinity, suggesting its involve-
ment inmodulating the activity of certain Ca2+- permeable chan-
nels and changes in Ca2+ allocation compared to unstressed state,
which may prevent Na+ and K+ entry into the cytosol, enhance
Na+ and K+ influx into the vacuole, or suppress Na+ and K+

release from the vacuole (Yamaguchi et al., 2006). Moreover,
vacuolar Cation/H+ Exchangers (CAX) are found to be over-
expressed and both FV and SV channels (FV, fact-activating vac-
uolar channel; SV, slow-activating vacuolar channel) suppressed
during salinity, resulting into an overall increase in vacuolar Ca2+

(Cheng et al., 2004; Pottosin et al., 2004). Dobrovinskaya et al.
(1999) reported that cellular polyamines strongly inhibited FV
and SV channels whose reduced activity is essential for confer-
ring salinity tolerance in the facultative halophyte Chenopodium
quinoa (Bonales-Alatorre et al., 2013). However, more research
is required to understand this interaction as well as the putative
interactions between polyamines and vacuolar transport systems
(Pottosin and Shabala, 2014).
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FIGURE 3 | Relationship between polyamines and ROS during salinity

in the context of ion transport regulation at plasma membrane and

vacuole. ANN, Annexin-formed channel; CAX, Cation/H+ exchangers;
CNGCs, Cyclic nucleotide-gated channels; cGMP, cyclic guanyl cyclase;
DA-NSCCs, Depolarization-activated NSCCs; DAO, Diamine oxidases; FV,
Fast vacuolar channel; HACC, Hyperpolarization-activated Ca2+ influx

channel; KIRC, K+ inward-rectifying; KORC, K+ outward rectifying; VK,
K+-selective channels; ROSIC, Non-selective voltage-independent
conductance; NHX, Na+/H+ antiporters; PA, Polyamine; PAO, Polyamine
oxidases; ROS-NSCC, ROS activated Non-selective cation channel; SOS1,
SOS2, SOS3, respectively, Salt overly sensitive 1,2,3; SV, Slow vacuolar
channel; VI-NSCCs, Voltage-independent nonselective cation channels.

Cross Talk between Polyamines, ROS, NO, and
ABA
Plants employ multi-level signal transduction to induce stress
responses. The coordinated actions of hormones such as abscisic
acid (ABA), ethylene, jasmonate, and auxin along with other sig-
naling molecules like Ca2+, cyclic nucleotides, ROS and reac-
tive nitrogen species such as NO form a complex signaling
network (Neill et al., 2003; Tuteja and Sopory, 2008). Inter-
estingly, ABA was found to be involved in regulating both
biosynthetic and catabolic pathways for polyamines in Ara-
bidopsis (Urano et al., 2004; Hussain et al., 2011). For example,
exogenous application of ABA has been found to modu-
late the transcription and biosynthesis of polyamine metabolic
enzymes such as ADC2, SPDS, and SPMS during stress (Alcazar
et al., 2006; Hussain et al., 2011). On the other hand Put
has been found to serve as a modulator of indispensable ABA
increase under cold stress thus representing and reciprocal
relationship between Put and ABA biosynthesis during the
period of stress in order to increase plant adaptive potential
(Cuevas et al., 2008, 2009; Urano et al., 2009). The transgenic

tobacco plants overexpressing the ABA-biosynthetic enzyme
9-cis-epoxycarotenoid dioxygenase is associated with the ABA-
induced production of H2O2, NO, and the subsequent induc-
tion of antioxidant enzymes conferring salt tolerance (Zhang
et al., 2009). Recently, it has been shown that polyamines can
induce the production of NO that serves as a signal-inducing
salt resistance by increasing the K+ to Na+ ratio by stimulat-
ing the expression of the plasma membrane H+-ATPase and
Na+/H+ antiport in the tonoplast (Zhao et al., 2004; Tun et al.,
2006; Yamasaki and Cohen, 2006; Zhang et al., 2006). It was
suggested that NO production induced by polyamines could
be mediated either by H2O2, one reaction product of oxida-
tion of polyamines by DAO and PAO, or by unknown mecha-
nisms involving polyamines, DAO and PAO (Wimalasekera et al.,
2011). Pre-treatment with H2O2 or sodium nitroprusside (NO
donor) induced major antioxidant defense (SOD, catalase, APX,
and GR), reduced protein carbonylation and accumulated leaf
S-nitrosylated proteins, suggesting an overlap relation between
NO and H2O2 signaling pathways in salinity acclimation (Tanou
et al., 2009a,b).
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In the light of these observations we have made an attempt to
explore the interconnection(s) between polyamines, NO, ABA,
and ROS as potential mediator(s) of stress responses. More
research is needed to determine the exact nature of these intricate
connections in the context of salt stress.

Polyamines and Programmed Cell Death
Plant cells employ dynamic activation of ROS production to
regulate defense responses during stress. When ROS accumu-
lation crosses a threshold value, cells enter into a genetically
programmed necrotic process that leads to cellular suicide,
which restricts the oxidative damage to a controlled number
of cells and triggers pathways for nutrient recycling (de Pinto
et al., 2006; Stowe and Camara, 2009). The key regulator of
the switch between the cellular endurance and programmed
cell death (PCD) under salt stress could be controlled by the
interplay between polyamine and ROS homeostasis; specifi-
cally, the precise modulation of polyamine levels by the shift
between polyamine anabolism and catabolism may result a lower

polyamine concentration which, in turn may facilitate PCD
(Moschou et al., 2008a; Toumi et al., 2010).

We have already discussed in our previous section that
polyamines act as important regulators of ion homeostasis
during salt stress. Modulation of the cellular K+ and Ca2+

concentrations regulate stress-related PCD pathways in plants
(Moschou and Roubelakis-Angelakis, 2014). Plant polyamines
are found to affect intracellular dynamics of both ions, thus
suggesting their direct involvement in PCD (Wu et al., 2010;
Zepeda-Jazo et al., 2011). Low cellular concentrations of K+ were
shown to increase the activity of metacaspases and nucleases,
thus promoting ROS- and salt-induced PCD (Demidchik et al.,
2010). Salt stress led to high cytosolic [Ca2+] which promoted
the opening of mitochondrial permeability transition pore
(MPTP) and PCD induction in tobacco protoplasts (Lin et al.,
2005). Mitochondrial depolarization and cytochrome-c release
is a hallmark event during the PCD (Logan, 2008; Andronis
and Roubelakis-Angelakis, 2010). Takahashi’s group showed
that 0.5mM Spm pretreatment of tobacco leaf discs induced
expression of the Salicylic acid (SA)-induced Protein Kinase

FIGURE 4 | Schematic diagram showing the role of endogenous and exogenous polyamines in maintaining redox homeostasis during salinity stress.
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(SIPK) and Wound-Induced Protein Kinase (WIPK) and caused
mitochondrial dysfunction similar to the one observed during
PCD in tobacco leaves (Takahashi et al., 2003).

Accumulation of metabolic derivatives of polyamines may
also indirectly control PCD pathways (Moschou and Roubelakis-
Angelakis, 2014). For example, tobacco plants with reduced
or increased PAO expression demonstrated increased salt tol-
erance or PCD depending on the availability of intracellu-
lar polyamines (Moschou et al., 2008c). Expression of the
Spm Oxidase (SMO) can also be linked to hydrogen perox-
ide production and PCD, providing additional support to the
above presented view of PAO-induced PCD (Moschou and
Roubelakis-Angelakis, 2014). It has also been reported that over-
expression of PAO activates mitogen-activated protein kinases
(MAPK)-mediated pathways during biotic stress (Moschou et al.,
2009).

In sum, a connection between polyamine metabolism
and PCD can be inferred, but more work is needed to
determine the molecular mechanisms underlying this
relationship.

Conclusions and Future Prospects

This review outlines our current understanding of polyamines
and their contributions to ROS homeostasis during salt stress,
summarized in Figure 4. The figure depicts the possible cellular
pathways by which polyamines modulate ROS homeostasis dur-
ing salinity and the probable mode of action of endogenous and
exogenous PAs into a single frame, so that one can easily view the
current state of the field.

Our literature review suggests that the regulation of polyamine
metabolism is a complex process where the exact roles of
polyamines in regulating ROS, ion transport and PCD are still to
be discovered. For the field to progress there is a need to address
several important aspects: (i) The identity of the cellular compo-
nents thatmediate the link between ROS synthesis, ROS signaling
and polyamines; (ii) The mechanisms that these mediator com-
ponents employ; and (iii) The potential organ- or tissue-specific
differences in the composition and regulation of polyamine-ROS
networks.

To solve these questions one should focus on several rele-
vant processes including polyamine biosynthesis, transport and
catabolism in parallel with the tissue-, species-, and salt stress
dependent expression of various ion channels and transporters.
Additionally, one should consider the nature of various ROS and
polyamine species that accumulate in plants under stress and
the sites of their subcellular synthesis, alongside changes in the
polyamine and ROS scavenging systems.

Salt stress constitutes a serious challenge to overcome in the
quest of global increase in crop productivity. Understanding the
underlying molecular mechanism of salt stress adaptation is the
key to successful crop biotechnology.
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