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Plants are challenged by a variety of biotic or abiotic stresses, which can affect their
growth and development, productivity, and geographic distribution. In order to survive
adverse environmental conditions, plants have evolved various adaptive strategies,
among which is the accumulation of metabolites that play protective roles. A well-
established example of the metabolites that are involved in stress responses, or
stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine,
spermidine, and spermine. The critical role of polyamines in stress tolerance is suggested
by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes,
as well as the activities of the corresponding enzymes, are induced by stresses; secondly,
elevation of endogenous polyamine levels by exogenous supply of polyamines, or
overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance;
and thirdly, a reduction of endogenous polyamines is accompanied by compromised
stress tolerance. A number of studies have demonstrated that polyamines function in
stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS)
due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS
production. The transcriptional regulation of polyamine synthesis by transcription factors
is also reviewed here. Meanwhile, future perspectives on polyamine research are also
suggested.
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INTRODUCTION

As sessile organisms, plants are frequently challenged by a variety of adverse biotic or abiotic
environmental factors. Since, unlike animals, plants cannot escape from unfavorable environments,
harsh stresses constitute major factors that limit growth and development, and severely restrict the
production of high-quality agricultural crops. Exposure to the stressful conditions can therefore lead
to a substantial difference in potential and actual crop yields, the size of which largely depends on
the severity and duration of the environmental stresses in question. Abiotic stresses, such as drought,
flooding, extreme temperatures, high salinity, chemical toxicity, nutrient deficiency and others, are
regarded as the predominant causes of crop loss and may account for more than 50% reduction of
the yield of the major annual and perennial crops worldwide (Wang et al., 2003). In this regard,
understanding how plants adapt to, and survive, the abiotic stresses is important for the efficient
exploitation of genetic resources with desirable stress tolerance, and for developing new approaches
to enhance stress tolerance.

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 8271

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00827
https://creativecommons.org/licenses/by/4.0/
mailto:liujihong@mail.hzau.edu.cn
http://dx.doi.org/10.3389/fpls.2015.00827
http://journal.frontiersin.org/article/10.3389/fpls.2015.00827/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00827/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00827/abstract
http://loop.frontiersin.org/people/225039/overview
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.00827&domain=pdf&date_stamp=2015-10-13
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Liu et al. Polyamines in stress tolerance

Plant evolution has been accompanied by the development of
complex and highly coordinated systems that allow adaptation
to the stresses, involving signaling cascades that start with
signal perception, and result in a variety of stress responses.
Recently, significant progresses have been made in elucidating
the molecular and genetic pathways involved in stress responses,
and a number of key components in the stress signaling cascade
events have been identified (Yuan et al., 2013; Wisniewski
et al., 2014; Gehan et al., 2015; Shi et al., 2015). In the signal
transduction pathway, stress signals are perceived by sensors
that are primarily located at the plasma membrane, resulting
in the release or activation of various secondary messengers,
such as calcium (Ca), ROS (reactive oxygen species), and
inositol phosphates, which relay the stress signals and activate
downstream components, such as protein kinases and protein
phosphatases (Nakashima et al., 2009; Danquah et al., 2014;
Liu et al., 2014a; Ma et al., 2015). These proteins orchestrate
the balance of protein phosphorylation and play a key role in
the regulation of transcription factors (TFs), which bind to cis-
acting elements in the promotes of their downstream target genes,
thereby activating their transcription. This signaling cascade
has been shown to be conserved in various plants and allows
the plants to survive under the harsh environments (Liu et al.,
2014a).

Stress responses are manifested by a range of morphological,
physiological, biochemical, andmolecular changes. Among these,
molecular reprogramming plays a pivotal role, and a large
number of studies have described the up- or down-regulation
of a wide spectrum of stress-responsive genes (Seki et al.,
2002; Thomashow, 2010; Liu et al., 2014a). These genes are
generally classified into regulatory or functional types, based
on the function of their products. Regulatory genes, encoding
protein kinases, phospholipases, and TFs, act as master switches
involved in hierarchical signaling cascades, thereby playing
vital roles in transcriptional control of downstream stress-
responsive genes. The functional genes act directly to mitigate
stress-derived injuries via their products, which include a
diverse set of metabolites (Shinozaki and Yamaguchi-Shinozaki,
2007). These protective approaches include the stabilization of
membranes andmacromolecules, alleviation of oxidative stresses,
and maintenance of water status. One well studied group of
metabolites comprises the polyamines, which have long been
suggested to protect and maintain the function and structure of
cellular components in response to stresses. Since the first report
describing the accumulation of the polyamine putrescine as a
result of potassium deficiency (Richards and Coleman, 1952),
a large number of studies have implicated polyamines in plant
responses to a myriad of abiotic stresses, and these have been
reviewed elsewhere (Liu et al., 2007; Kusano et al., 2008; Alcázar
et al., 2010a; Hussain et al., 2011; Minocha et al., 2014; Shi and
Chan, 2014; Tiburcio et al., 2014). Here, we review recent progress
in understanding the association between polyamines and stress
responses, with an emphasis on their role in maintenance of
ROS homeostasis. In addition, recent advances in identifying and
characterizing upstream regulatory genes involved in the stress-
induced transcriptional regulation of polyamine metabolism are
also discussed.

POLYAMINE SYNTHESIS AND
CATABOLISM: CURRENT STATUS

Polyamines (PAs) are low-molecular-weight, aliphatic polycations
that are ubiquitously distributed in all living organisms, including
bacteria, animals, and plants (Hussain et al., 2011). There are
three major PAs in plants, putrescine (Put), spermidine (Spd),
and spermine (Spm), although other types of PAs, such as
cadaverine, can also be present. The plant PA biosynthetic
pathway has been extensively studied (Kusano et al., 2008;
Vera-Sirera et al., 2010; Pegg and Casero, 2011; Gupta et al.,
2013) and differs from that of animals in that it involves two
precursors, l-ornithine and l-arginine, to generate putrescine,
while only l-ornithine is used in animals. In plants, Put is produced
via the catalytic actions of ornithine decarboxylase (ODC, EC
4.1.1.17) and arginine decarboxylase (ADC, EC 4.1.1.19) in
three steps. Put is then converted into Spd by Spd synthase
(SPDS, EC 2.5.1.16), with the addition of an aminopropyl moiety
donated by decarboxylated S-adenosylmethionine (dcSAM).
dcSAM is synthesized from methionine via two sequential
reactions that are catalyzed by methionine adenosyltransferase
(EC 2.5.1.6) and S-adenosylmethionine decarboxylase (SAMDC,
EC 4.1.1.50), respectively. Spd is then converted into Spm
or thermospermine, again using dcSAM as an aminopropyl
donor, in a reaction catalyzed by Spm synthase (SPMS, EC
2.5.1.22) and thermospermine synthase (ACL5, EC 2.5.1.79),
respectively (Figure 1). It should be noted that there is no known
gene encoding ODC in the sequenced genome of model plant
Arabidopsis thaliana (Hanfrey et al., 2001), suggesting that this
species may only produce Put via the ADC pathway. Finally, PA
synthesis may vary between tissues/organs, one example being
that the shoot apical meristem of tobacco (Nicotiana tabacum)
serves as the predominant site of Spd and Spm synthesis, while
Put is mostly synthesized in roots (Moschou et al., 2008).

Apart from their de novo synthesis, PAs have been shown
to undergo catabolism (Figure 1), catalyzed by two classes
of enzymes, copper-containing diamine oxidases (CuAOs) and
FAD-containing polyamine oxidases (PAOs; Cona et al., 2006).
CuAOs mainly catalyze the oxidation of Put and cadaverine
(Cad) at the primary amino groups, producing 4-aminobutanal,
peroxide (H2O2) and ammonia (Alcázar et al., 2010a; Moschou
et al., 2012). Generally, CuAOproteins exhibit high affinity for Put
and Cad than for Spd and Spm (Moschou et al., 2012), although it
has been demonstrated that A. thaliana CuAO enzymes can also
use Spd as a substrate (Planas-Portell et al., 2013). Plant CuAO
proteins are present at high level in dicots, especially in Fabaceous
species, such as pea, chickpea, lentil, and soybean seedlings (Cona
et al., 2006). Until now, CuAO genes have been identified in only
a few plant species, such as A. thaliana (Møller and McPherson,
1998; Planas-Portell et al., 2013) and chickpea (Rea et al., 1998).
In A. thaliana there are at least 10 putative CuAO genes, and
four of these (AtAO1, AtCuAO1, AtCuAO2, and AtCuAO3) have
also been identified (Møller and McPherson, 1998; Planas-Portell
et al., 2013).

In contrast to CuAOs, PAOs are present at high levels in
monocots and have a high affinity for Spd, Spm, and their
derivatives (Alcázar et al., 2010a). Plant PAOs are divided into
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FIGURE 1 | A schematic diagram on synthesis, catabolism, regulation, and action of plant polyamines under abiotic stresses. The enzymes are shown
in red, while the inhibitors of the polyamine biosynthetic enzymes are shown in blue. PAOt indicates the PAO simplicated in terminal metabolism, whereas PAOb is
involved in back conversion. Circles indicate the relevant cis-acting elements within the ADC promoter. ADC coding sequence is boxed, and the promoter is shown
by the horizontal line. X is an unknown transcription factor that regulates the expression of ADC gene. Arrows mean promotion or stimulation, whereas blunted
arrows indicate inhibition, of the related processes. The dashed arrow shows the translation from the ADC gene to ADC protein/enzyme.

two major groups, depending on their potential functions in
polyamine catabolism. The first group catalyzes the terminal
catabolism of Spd and Spm to produce 1,3-diaminopropane
(DAP), H2O2, and N-(3-aminopropyl)-4-aminobutanal (Spm
catabolism), or 4-aminobutanal (Spd catabolism; Cona et al.,
2006; Angelini et al., 2010; Moschou et al., 2012). The second
group is responsible for PA conversions, in which Spm is
converted back to Spd, and Spd to Put (Moschou et al., 2012;
Mo et al., 2015). To date, PAO genes have been identified in
several plant species, including A. thaliana (Fincato et al., 2011),
tobacco (Yoda et al., 2006), rice (Oryza sativa; Ono et al., 2012),
barley (Hordeum vulgare; Cervelli et al., 2001), maize (Zea mays;
Cervelli et al., 2000), poplar (Tuskan et al., 2006), apple (Malus
domestica; Kitashiba et al., 2006), cotton (Gossypium barbadense;
Mo et al., 2015), and sweet orange (Citrus sinensis; Wang and Liu,
2015). Plant PAO proteins are encoded by small gene families, as
revealed by analyses of fully sequences genomes. There are five,
seven, and six PAO genes in A. thaliana, rice, and sweet orange,

respectively. However, only few of the PAO genes belonging to the
first group have been characterized, and to date only ZmPAO and
OsPAO7, from maize and rice, respectively, have been reported to
be involved in PA terminal catabolism (Cona et al., 2006; Liu et al.,
2014b). In contrast, many PAO genes belonging to the second
group have been identified. For example, all five PAO genes from
A. thaliana (AtPAO1–AtPAO5) and four PAO genes from rice
(OsPAO1, OsPAO3, OsPAO4, and OsPAO5) have been shown to
be involved in the back conversion of polyamines (Tavladoraki
et al., 2006; Kamada-Nobusada et al., 2008; Moschou et al., 2008;
Fincato et al., 2011; Ono et al., 2012; Ahou et al., 2014; Liu
et al., 2014b), and recently, a sweet orange PAO gene (CsPAO3)
was added to the list of identified genes from this group (Wang
and Liu, 2015). As PA catabolism gives rise to the production of
H2O2, which may act either as a signaling molecule at low levels
or as a toxic compound when the level is high, the ratio of PA
catabolism to biosynthesis has been considered as a crucial factor
for induction of tolerance responses or plant cell death under
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abiotic stress (Moschou et al., 2008). This suggests that PA-derived
H2O2 may play a key role in themaintenance of ROS homeostasis,
depending on its cellular levels.

INVOLVEMENT OF POLYAMINE
METABOLISM IN STRESS RESPONSE

Change in PA Levels and Transcript Levels
of Genes Involved in Polyamine
Metabolism Under Abiotic Stress
Conditions
Polyamines have been shown to be involved in various processes
associated with plant growth and development, such as
embryogenic competence (Silveira et al., 2013), programmed cell
death (Kim et al., 2013), fruit ripening (Gil-Amado and Gomez-
Jimenez, 2012), xylem differentiation (Tisi et al., 2011), as well
as biofilm formation (Lee et al., 2009). Accumulating evidences
suggest that plant PAs function in adaptive responses to various
environmental stresses, and this is supported by the extensive
variation in polyamine levels under stress conditions. Since
the first report described Put accumulation under potassium
deficiency decades ago (Richards and Coleman, 1952), changes
in PA levels have been universally observed in various plant
species subjected to a range of abiotic stresses, including drought,
high salinity, low and high temperatures, nutrient deficiency,
and others (Liu et al., 2007). In some cases, it has been observed
that the three most abundant PAs, Put, Spd and Spm, show
substantial increases in abundance following abiotic stress (Yang
et al., 2007). However, in most cases, only one type of the three
PAs shows a significant increase. For example, when apple callus
was treated with salt, Put levels increased, while those of Spd
and Spm underwent only minor changes (Liu et al., 2006). In
contrast, sweet orange callus was reported to show predominant
increases in Spd content when exposed to salt and cold stress
conditions (Wang and Liu, 2009), and grape (Vitis vinifera) plants
showed a dramatic accumulation of Spd and Spm following
salt stress (Ikbal et al., 2014). In another study, it was reported
that 18 rice varieties exhibited notable changes in Spm levels
when grown under long-term drought stress (Do et al., 2014).
These findings suggest that PA accumulation is influenced by
different factors, such as plant species in question, stress tolerance
capacity, stress types and conditions, and the physiological status
of the examined tissues/organs. It also indicates the existence
of complicated PA dynamics under abiotic stress, which may
explain why differing or contradictory results have been reported.
The size of PA pool can be correlated with the stress tolerance
capacity, further underlining the significance of PAs in providing
protection against stresses. Generally, tolerant genotypes
accumulate greater amounts of PAs than sensitive genotypes
(Hatmi et al., 2015); however, genotypes with contrasting stress
tolerance have been shown to display different patterns of PA
accumulation under some abiotic stresses. In several studies
tolerant genotypes accumulated more Spd and Spm, while the
sensitive genotypes from the same plants species accumulated
more Put under the same types of stresses (Krishnamurthy and
Bhagwat, 1989; Santa-Cruz et al., 1998; Liu et al., 2004). Although

whether Spd and Spm play more important roles in counteracting
abiotic stress remains to be determined, it is a reasonable
hypothesis, since Spd and Spm contain one and two additional
primary amino groups (−NH2), respectively, compared to Put,
allowing them to be more efficient for executing protective
functions.

The accumulation of PAs under abiotic stress conditions is
largely due to the increased de novo synthesis of free PAs. Since
their synthesis is primarily regulated at the transcriptional level, an
understanding of the expression patterns of the biosynthetic genes
is important for understanding the regulation of PA levels. To this
end, a myriad of studies have been carried out to investigate the
steady-state transcript levels of PA biosynthetic genes. Available
data to date indicate that most of the PA biosynthetic genes,
including ADC, SPDS, SPMS, and SAMDC, are up-regulated by
stresses, despite a difference in the timing and degree of induction
(Liu et al., 2006, 2008, 2009, 2011; Wang et al., 2011b). Of these
genes, ADC is most widely characterized in different plants and
has been demonstrated to be a crucial stress-responsive gene
(Urano et al., 2004; Liu et al., 2006; Wang et al., 2011b). Increased
transcript levels of the PA biosynthetic genes coincide with the
accumulation of free PA in some studies, but inconsistent in others
(Liu et al., 2006;Wang and Liu, 2009). One reason for the disparity
between gene expression profiles and PA accumulation is likely
due to PA catabolism. Notably, the expression patterns of PA
biosynthetic genes have also been shown to be correlated with
stress tolerance (Pillai and Akiyama, 2004). For instance, citrus
genotypes with better salt and cold tolerance displayed earlier
and/or greater induction of SAMDC transcript at the initial stages
of stress treatment (Wang et al., 2010).

Effects of Modulating PA Content on Stress
Tolerance
Polyamine accumulation is usually considered to be a general
plant response to abiotic stresses, but the cause-effect relationship
between PA accumulation and protection remains unclear. An
effective strategy for understanding the roles of PAs in stress
tolerance is to modulate their cellular levels, which has been
accomplished using three approaches, including their exogenous
application, overexpression of their biosynthetic genes and the use
of PA synthesis inhibitors.

Exogenous application of Put, Spd, or Spm at different
concentrations has been shown to confer enhanced tolerance
to various stresses in different plants (Duan et al., 2008). For
example, exogenous application of Put considerably enhanced
salt tolerance in apple callus and thermotolerance of wheat (Liu
et al., 2006; Kumar et al., 2014). A recent study by Zhang et al.
(2015b) demonstrated that damage caused by saline-alkaline
stress to tomato (Solanum lycopersicum) plants was substantially
alleviated when 0.25 mM Spd was applied, and exogenous
Spd supplementation can also alleviate salt stress in sorghum
(Sorghum bicolor) seedlings (Yin et al., 2015). In another study,
Harindra Champa et al. (2015) demonstrated that exogenous
application of 1 mM Spm reduced chilling injury during low
temperature storage of grape berries, leading to maintenance of
fruit quality and shelf life.
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Apart from exogenous PA application, several elegant studies
have shown that the overexpression of PA biosynthetic genes is an
effective strategy to elevate the endogenous PApool and tomodify
stress tolerance. For example, overexpression of ADC genes from
oat (Avena sativa) and Datura stramonium resulted in greater
accumulation of Put in the transgenic plants, which displayed
enhanced drought tolerance when compared with the wild type
(WT) genotypes (Roy andWu, 2001; Capell et al., 2004). Recently,
it was shown that constitutive overexpression of ADC2 in A.
thaliana, oatADC in Lotus tenuis and PtADC of Poncirus trifoliata
in tobacco and tomato noticeably increased drought tolerance in
the transgenic plants (Alcázar et al., 2010b; Wang et al., 2011a;
Espasandin et al., 2014). In addition, other PA biosynthetic genes,
such as ODC, SAMDC, and SPDS, have also been overexpressed
in transgenic plants, resulting in enhanced tolerance to specific
stresses, such as drought and salt (Roy and Wu, 2002; Waie and
Rajam, 2003). In summary, overexpression of a PA biosynthetic
gene has been demonstrated to confer tolerance to various abiotic
stresses (Kasukabe et al., 2004, 2006; Wi et al., 2006; Wang et al.,
2011a,b), indicating that changes in the endogenous PA pool has
a profound influences on stress tolerance.

Several inhibitors have been identified that repress different
PA biosynthetic enzymes, thereby inhibiting endogenous PA
synthesis. Their use has provided useful insights into the role
of PAs in stress tolerance. Specific or non-specific inhibitors
have been used in order to elucidate the role of different PAs.
d-arginine, an inhibitor of ADC, was shown to be effective
in reducing Put synthesis and its application to apple callus
compromised salt tolerance; an effect that was reversed when
exogenous Put was applied, suggesting a role for Put in combating
salt stress (Liu et al., 2006). Moreover, treatment of grape
plants with methylglyoxal-bis(guanylhydrazone) (MGBG), an
inhibitor of SAMDC, which is involved in synthesis of Spd
and Spm, led to a greater deterioration of plant growth under
salt stress than those without MGBG treatment (Ikbal et al.,
2014). Recently, it was shown that treatment of sorghum plants
with dicyclohexylammonium sulphate (DCHA), an inhibitor of
SPDS and SPMS, ameliorated the silicon-induced salt tolerance,
implying the positive role of PA in this process (Yin et al., 2015).

ROLE OF POLYAMINES IN STRESS
TOLERANCE: FROM AN ANTIOXIDANT
PERSPECTIVE

As mentioned above, elevation of endogenous PA levels is
one of the metabolic hallmarks of plants exposed to abiotic
stresses (Kusano et al., 2008), implying that they are important
for protecting plants against harsh environmental conditions.
Nevertheless, in spite of many observations of changes in PA
levels under stresses, the precise physiological and molecular
mechanisms by which they confer protection remain elusive
(Marco et al., 2011). The biological function of the polycationic
PAs were initially associated with their capacity to bind
anionic macromolecules, such as nucleic acids and proteins, a
characteristic that allows PAs to play a role in the regulation of
transcription and translation (Bachrach, 2010; Gill and Tuteja,

2010; Igarashi and Kashiwagi, 2010; Tiburcio et al., 2014). They
have also been suggested to function in maintaining membrane
stability under adverse conditions (Liu et al., 2007; Tiburcio et al.,
2014); however, besides other than these mechanisms, there is
increasing evidence that their role in stress tolerance is associated
with modulating antioxidant systems.

Reactive oxygen species are produced under normal growth
conditions, but their homeostasis is a highly coordinated balance
between generation and detoxification. Under abiotic stresses,
ROS production is elevated, causing excessive ROS accumulation
and oxidative stress, which is toxic to living cells due to lipid
peroxidation and membrane damage, and can finally result in
cell death (Biswas and Mano, 2015). PAs are thought to play a
role in modulating ROS homeostasis in two ways. Firstly, they
may inhibit the auto-oxidation of metals, which in turn impairs
the supply of electrons for the generation of ROS (Shi et al.,
2010). They may also directly act as antioxidants and scavenge
ROS, although there is no evidence for this mechanism at present.
Secondly, PAs may affect antioxidant systems, and a number of
studies have demonstrated that priming of plants with polyamines
led to increases in endogenous PA contents and concomitant
enhanced tolerance to abiotic stresses, such as drought, heat,
and cold. The elevation of stress tolerance is concurrent with
the activation of antioxidant enzymes. For example, exogenous
application of Spm to P. trifoliata led to an elevation of POD,
SOD, and CAT activities, accompanied by a remarkable decrease
in ROS levels under dehydration (Shi et al., 2010). Exogenous
supply of Spd to rice seedlings mitigated heat-induced damages,
and increased activities of antioxidant enzymes and levels of
antioxidant, accompanied by reduced accumulation of H2O2
(Mostofa et al., 2014). Similar findings have been observed using
other plants, such as tobacco, soybean, cucumber, and pistachio
(Xu et al., 2011; Radhakrishnan and Lee, 2013; Shu et al., 2013;
Kamiab et al., 2014). On the other hand, genetic manipulation
of PA biosynthetic genes has been demonstrated to promote
stress tolerance via modulation of antioxidant machineries.
Overexpression ofMdSPDS1 in European pear (Pyrus communis)
resulted in an enhanced tolerance to heavy metals, which was
largely ascribed to the activation of antioxidant enzymes (Wen
et al., 2009). Ectopic expression of PtADC in tobacco and tomato
also conferred enhanced dehydration and drought tolerance,
coincident with a substantial repression of ROS generation in the
transgenic plants (Wang et al., 2011a). Another line of evidence
supporting the role of PAs in modulating ROS homeostasis is
the use of inhibitors of PA biosynthetic enzymes. As an example,
it was shown that the use of D-arginine resulted in a decrease
in endogenous PA levels and a consequent increase in ROS
accumulation (Wang et al., 2011b; Zhang et al., 2015a). These
studies demonstrate that PAs may alleviate the oxidative stress
of the stressed plants through regulation of antioxidant systems,
along with changes in the ROS production and redox status (Shu
et al., 2013; Tanou et al., 2014).

However, a direct link between increased PA levels and
antioxidant enzyme activity has yet to be proven.One possibility is
that the PAs may function as signaling molecules that can activate
the antioxidant enzymes, and indeed Spm has been suggested to
act as a signaling molecule (Mitsuya et al., 2009). Another link
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may be the production of H2O2 by PAO-mediated PA catabolism.
An increase in the endogenous PA levels to a certain threshold
may promote their degradation, generating H2O2. It is known
that H2O2 plays dual roles in plant responses to abiotic stresses,
one being to act as a regulator of signaling cascades at a low
cytosolic concentration, which may contribute to the induction of
antioxidant enzymes (Moschou et al., 2008; Zhang et al., 2015a;
Figure 1). On the other hand, the PAs may influence various
antioxidant enzymes through regulation of their expression.
Higher transcript levels of antioxidant enzyme-encoding genes
have been detected in tissues treated with exogenous PAs or in the
transgenic plants overexpressing PA biosynthetic genes (Tanou
et al., 2014; Zhang et al., 2015b).

TRANSCRIPTIONAL REGULATION OF
POLYAMINE SYNTHESIS UNDER ABIOTIC
STRESS
Earlier studies demonstrated that the PA biosynthetic genes
display disparate expression profiles under abiotic stresses. For
example, PpADC of peach was up-regulated by dehydration, salt,
cold, and cadmium (Liu et al., 2009), but repressed by high
temperature. It has to be pointed out that the PA biosynthetic
genes can be differentially influenced by a particular stress, as
exemplified by MdADC1, which is more responsive to salt stress
than other PA biosynthetic genes (Liu et al., 2006). In addition, the
transcript levels of PA biosynthetic genes can vary significantly
between stress tolerant and stress sensitive genotypes. Such
findings suggest that the PA biosynthetic genesmay be under tight
transcriptional regulation during abiotic stress responses, and so
identification and characterization of the associated upstream
transcriptional regulators will likely be important in connecting
stress responses with PA metabolism.

It has been suggested thatADC acts as an important polyamine
biosynthetic gene in response to abiotic stresses, and it has
been more extensively characterized than other genes in the
pathway. The expression of ADC genes from a number of plant
species has been described; in particular those from several
species, such as A. thaliana, P. trifoliata, have been functionally
characterized (Urano et al., 2004;Wang et al., 2011a,b). Thus,ADC
genes are promising candidates used for identifying potential
transcriptional regulators, such as TFs or protein kinases. The
identification and bioinformatics analysis of promoter sequences
are common first steps toward identifying potential TFs that
regulate a PA biosynthetic gene, prior to the use of yeast one-
hybrid screening of cDNA libraries. This generally involves
characterizing putative cis-acting elements that are present within
the promoters. Recently, Basu et al. (2014) reported that in silico
analysis of the promoter region of rice SamDC gene revealed the
presence of several putative cis-acting elements, such as ABRE,
LTRE, MYBR, and W-box, which have been shown to be closely
associated with various environmental factors, such as drought,
cold, and abscisic acid (ABA) signaling. These findings suggest
that the PA biosynthetic genes may be controlled by a common
set of TFs, or that a given TF may control different genes involved
in PA biosynthesis. This idea is congruent with earlier reports that
PA biosynthetic genes, such as PpADC (Liu et al., 2009) or PtADC

(Wang et al., 2011b), are responsive to different stresses. In
addition, it also suggests that the endogenous PA levels may
be modulated by altering the expression of TFs, either through
overexpression or repression (Huang et al., 2010; Chen et al.,
2015).

MYB proteins are TFs that play important roles in plant
development and stress responses (Dubos et al., 2010). Sun et al.
(2014) reported that a stress-responsive R2R3-type MYB gene of
P. trifoliata, PtsrMYB, regulated its ADC gene, PtADC. Yeast one-
hybrid assay demonstrated that PtsrMYB predominantly interacts
with two regions of the PtADC promoter, indicating the PtADC
may be a target gene of PtsrMYB. Moreover, overexpression of
PtsrMYB led to an increase in mRNA levels of ADC genes in the
transgenic lines when compared withWT plants, concurrent with
increased PA levels. In a recent study, Chen et al. (2015) showed
that overexpression of a cotton MYB TF, GbMYB5, also led to up-
regulation of three polyamine biosynthetic genes in the transgenic
lines. These findings suggest that MYBs might be likely to govern
polyamine synthesis under abiotic stresses through regulating the
relevant genes.

ABF is a key TF involved in the transduction of signals
associated with drought and osmotic stress (Yoshida et al.,
2010, 2015). It is known that under abiotic stress conditions,
synthesis of ABA is typically increased, which in turn triggers
signaling through a network that includes components such as
ABA receptors, protein phosphatases, and SnRK proteins. The
activated SnRK proteins can in turn phosphorylate ABF TFs,
which then regulate downstream target genes (Danquah et al.,
2014; Zhang et al., 2015a). In addition, PA biosynthetic genes,
such as those encoding ADC, SAMDC, SPDS, have been shown
to be induced under drought stress or following ABA treatment,
and this is accompanied by increase in the endogenous PAs.
However, whether the induction of PA genes or the accumulation
of PAs is directly associated with ABA signaling cascades has
not yet been addressed. Recently, PtrABF from P. trifoliata, an
ABF4 homolog, was shown to regulate the expression of an ADC
gene by interacting with the ABRE elements within the ADC
promoter. Overexpression of PtrABF greatly increased the mRNA
levels of ADC, and resulted in an increase in endogenous Put
levels, whereas treatment of the PtrABF-overexpressing lines with
an ADC inhibitor resulted in a decrease of Put contents, and
compromised dehydration tolerance (Huang et al., 2010; Zhang
et al., 2015a). These results provide convincing evidence that
ADC is a candidate target gene of ABF. Characterization of this
regulatory cascade may elucidate the transcriptional regulation of
ADC genes and the associated accumulation of PAs under drought
or osmotic stresses.

WRKY proteins comprise a large family of TFs in plants
and play important roles in regulating the synthesis of several
metabolites, such as lignin, phytoalexins, terpenoid indole
alkaloid (Suttipanta et al., 2011). Recently, Gong et al. (2015)
reported that overexpression of FcWRKY70, a WRKY70 homolog
from Fortunella crassifolia, led to the increased expression
of ADC genes, whereas suppression of FcWRKY70, using an
RNAi approach, down-regulated ADC expression. Put levels
were prominently increased in FcWRKY70-overexpressing lines,
but decreased in the RNAi lines when compared to the WT.
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In addition, FcWRKY70 can interact with the W-box elements
in the ADC promoter. Taken together, these results indicate that
FcWRKY70may also act as a positive regulator ofADC expression
and regulate Put synthesis under abiotic stresses.

The above data suggests that ADC genes may be under the
control of members from different TF families, including ABF,
WRKY, and MYB proteins (Figure 1). However, TFs from other
families may also be involved in the regulation of ADC gene
expression (Huang et al., 2015). Of note, all of the TFs mentioned
above are proposed as positive regulators of PA biosynthesis
and ADC expression, while TFs that may negatively regulate PA
gene expression have not been characterized. In addition, it is
not known whether other PA biosynthetic genes, such as those
encoding SAMDC, SPDS and SPMS proteins, are regulated by the
same TFs mentioned above.

Apart from the TFs, other regulatory proteins may also control
PA biosynthetic gene expression and PA accumulation. One of
these is mitogen-activated protein kinase (MAPK), which has
been shown to play roles in various signaling pathways related
to plant development and stress responses. Huang et al. (2011)
reported that the expression of NtADC1 and NtSAMDC, two
tobacco genes involved in PA biosynthesis, was induced in
transgenic tobacco plants overexpressing PtrMAPK of trifoliate
orange. It can be inferred from this result that MAPK may
phosphorylate the two corresponding proteins, but this needs to
be verified in the future.

PERSPECTIVES AND CONCLUDING
REMARKS

Polyamines are considered to play important roles in protecting
plant cells from stress-associated damages. To date, tremendous
progresses have been made in understanding the significance
of PAs in stress responses. There is accumulating evidence
that PA levels undergo extensive changes in response to a
range of abiotic stresses, and physiological, molecular and
genetic approaches have been used to identify and functionally
characterize PA biosynthetic genes in various plant species.
These efforts underpin our understanding of the role of PAs
in counteracting adverse environmental cues, and provide
valuable information for enhancing stress tolerance through the
modulation of cellular PA levels via exogenous PA application,

or the transgenic manipulation of PA biosynthetic genes.
Nevertheless, many key questions remain unanswered. First, the
causal relationship between PA accumulation and stress tolerance
has not been determined, despite numerous observations of
changes in PA levels in response to abiotic stresses. Second,
the cellular compartmentation and transportation of PAs is not
well understood, although a few PA transporters have been
identified (Fujita et al., 2012; Mulangi et al., 2012). In addition,
the mode of action of PAs in enhancing stress tolerance has
not been definitely established, although several possible models
have been proposed. One example is the scarcity of direct
evidence confirming the involvement of PAs in the activation of
antioxidant enzymes for ROS detoxification. Last, the signaling
cascades linking stress responses and PA genes are still far from
being well defined. To date, TFs regulating ADC genes have
been identified, but those that regulate other PA biosynthetic
genes are unknown. In keeping with these unanswered questions,
there are several promising areas of future study. First, the
sites of PA production and actions in plant cells need to be
identified and to this end, the cellular localization of PAs and their
transporters should be determined. Second, the physiological
and molecular mechanisms concerning the roles of PAs in stress
tolerance need to be elucidated, and in particular, how PAs
contribute to the activation of antioxidant enzymes and ROS
removal should be clearly deciphered. Last but not the least,
the molecular mechanisms underlying the accumulation of PAs
in response to abiotic stresses, including the PA biosynthetic
genes and the transcriptional regulation network associated with
those genes, must be defined. This information will advance
our understanding of PA accumulation and gene expression, and
can be incorporated with physiological, biochemical, molecular
and genetic approaches to better understand the complex
regulation of PA synthesis under abiotic stresses, as well
as the cross talk between different TF-mediated signaling
pathways.
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