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The polyamines are ubiquitous polycationic compounds. Over the past 40 yr, investigation has shown that some of
these, namely spermine, spermidine, and putrescine, are essential to male and female reproductive processes and
to embryo/fetal development. Indeed, their absence is characterized by infertility and arrest in embryogenesis.
Mammals synthesize polyamines de novo from amino acids or import these compounds from the diet. Information
collected recently has shown that polyamines are essential regulators of cell growth and gene expression, and they
have been implicated in both mitosis and meiosis. In male reproduction, polyamine expression correlates with stages
of spermatogenesis, and polyamines appear to function in promoting sperm motility. There is evidence for poly-
amine involvement in ovarian follicle development and ovulation in female mammals, and polyamine synthesis is
required for steroidogenesis in the ovary. Studies of the embryo indicate a polyamine requirement that can be met
from maternal sources before implantation, whereas elimination of polyamine synthesis abrogates embryo devel-
opmentatgastrulation.Polyaminesplayroles inembryoimplantation, indecidualization,andinplacentalformation
and function, and polyamine privation during gestation results in intrauterine growth retardation. Emerging in-
formation implicates dietary arginine and dietary polyamines as nutritional regulators of fertility. The mechanisms
by which polyamines regulate these multiple and diverse processes are not yet well explored; thus, there is fertile
ground for further productive investigation. (Endocrine Reviews 32: 694–712, 2011)
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I. Introduction

The polyamines, namely spermine and spermidine, were
discovered in human semen. Remarkably, although

they were first isolated by van Leeuwenhoek (1), they were

not synthesized until 1927 (2–4). Polyamines are now
known to be essential for the success of diverse mamma-
lian reproductive functions. They play an important role
in spermatogenesis and are actively implicated in oogen-
esis, embryogenesis, implantation, placentation, and, to a
great extent, in parturition, lactation, and postnatal de-
velopment. Although numerous studies on the occurrence
and function of polyamines in mammalian pregnancy
have been published over the past 40 yr, the single review
dealing with the significance of polyamines to reproduc-
tion appeared more than 30 yr ago (5). Since then, exten-
sive progress has been made in dissecting the multiple,
essential functions of polyamines across the spectrum of
reproductive biology. We believe that an up-to-date syn-
thesis highlighting the involvement of the polyamines in
mammalian reproductive events is merited. Although a
number of molecular functions have been ascribed to poly-
amines, the mechanisms by which they modulate the re-
productive process are mostly unknown, rendering mech-
anistic interpretations speculative. After a brief summary
of general cellular and molecular functions of polyamines,
we examine the effects of polyamines in gametogenesis,

ISSN Print 0021-972X ISSN Online 1945-7197
Printed in U.S.A.
Copyright © 2011 by The Endocrine Society
doi: 10.1210/er.2011-0012 Received March 7, 2011. Accepted June 28, 2011.
First Published Online July 26, 2011

Abbreviations: AZI, Antizyme; AZIN, AZI inhibitor; DFMO, �-difluoromethylornithine;
eCG, equine chorionic gonadotropin; eIF5A, eukaryotic translation initiation factor 5A;
hCG, human chorionic gonadotropin; IUGR, intrauterine growth retardation; ODC1,
ornithine decarboxylase 1; SAMDC, S-adenosylmethionine decarboxylase; SAT1, sper-
midine/spermine N1-acetyltransferase.

R E V I E W

694 edrv.endojournals.org Endocrine Reviews, October 2011, 32(5):694–712

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/5/694/2354766 by guest on 20 August 2022



both spermatogenesis and oogenesis, in embryonic devel-
opment, in implantation and postimplantation formation
of the placenta.

A. Polyamines: structure and diversity
Polyamines are low molecular weight aliphatic com-

pounds composed of carbon chains of variable length with
two or more primary amino groups (6). Their chemical
structures are depicted in Fig. 1A. They are ubiquitous in
living species. In mammals, four different polyamine mol-
ecules have been identified: spermine, spermidine, pu-
trescine, and cadaverine (6, 7). Spermine and spermidine
were initially discovered in human semen as the volatile
compounds responsible for the typical odor of semen,
whereas putrescine and cadaverine can result from bacte-
rial decomposition and emit the odor of putrefying flesh of
cadavers (7). In mammalian cells, polyamines are synthe-
sized de novo from amino acids such as arginine, proline,
and methionine (6, 8, 9), directly imported from the diet
(10, 11), or produced by the intestinal microflora (12).

After intestinal absorption, polyamines
are released into blood circulation (13)
and are known to reach peripheral tis-
sues such as the intestine, thymus, and
liver (10). In addition, both de novo
synthesized and imported putrescine,
spermidine, and spermine can be inter-
converted by interdependent enzyme re-
actions (Fig. 1B).

B. Polyamine synthesis and regulation
of the intracellular polyamine pool

Endogenously produced polyamines
are synthesized from the amino acids
L-arginine or L-proline through L-
ornithine (14) and/or L-methionine,
via decarboxylated S-adenosylmethio-
nine (15) (Fig. 1B). Ornithine decarbox-
ylase (ODC1), the rate-limiting enzyme
ofpolyaminebiosynthesisandamongthe
most highly regulated of eukaryotic en-
zymes, catalyzes the decarboxylation of
L-ornithine to yield putrescine. Pu-
trescine combines with decarboxylated
S-adenosylmethionine and is then trans-
formed into spermidine and spermine by
spermidine synthase and spermine syn-
thase,respectively.Polyaminecatabolism
principally functions by back conversion
mechanisms. Spermine can be back-con-
verted into spermidine and, spermidine
into putrescine by the combination of
spermidine/spermine N1-acetyltrans-

ferase (SAT1) and polyamine oxidase (16). This reversal
leads to intermediate acetylated polyamines, namely
N1-acetylspermidine and N1-acetylspermine. Spermine
oxidase induces a direct reconversion of spermine into
spermidine (17).

Polyamine levels have been associated with cell prolif-
eration and tissue growth; thus, it is not unexpected that
intracellular polyamine homeostasis is under dynamic reg-
ulation (7). In addition, toxic metabolites result from
deamination of polyamines (18), rendering intracellular
regulation of polyamine abundance essential. Polyamine
homeostasis is achieved by a combination of balance be-
tween synthesis and catabolism and by transport of poly-
amines between intra- and extracellular environments
employing multiple, complementary mechanisms (19)
(Fig. 2). Synthesis is regulated by the expression of, and
consequently the activity of ODC1, modulated by the
presence of antizymes (AZI) and the AZI inhibitors
(AZIN) (20) (Fig. 3). The AZI family, which comprises

FIG. 1. A, Molecular structure of the major polyamines—putrescine, spermidine, and
spermine. B, De novo polyamine biosynthesis. Polyamines are synthesized from L-
arginine or L-proline through L-ornithine (157) and L-methionine via decarboxylated
S-adenosylmethionine, the decarboxylated product formed by SAMDC (8). Ornithine
decarboxylase catalyzes the decarboxylation of L-ornithine to yield putrescine.
Putrescine combined with decarboxylated S-adenosylmethionine is then transformed
into spermidine and spermine via spermidine synthase and spermine synthase,
respectively, and through the formation of methylthioadenosine. Spermidine can be
converted back into putrescine and spermine into spermidine by the combination of
SAT1 and the polyamine oxidase (16). This back conversion leads to intermediate
acetylated polyamines, namely N1-acetylspermidine and N1-acetylspermine.
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three paralogs, AZI1, AZI2, and AZI3, bind and direct
ODC1 to degradation by the 26S proteasome without
ubiquitination (20). Although AZI1 and AZI2 are ubiq-
uitously expressed, AZI3 is testis-specific (20, 21). The
AZIN that prevent ODC1 degradation are ODC1-related
proteins that lack decarboxylase activity. They interact
with AZI with higher affinity than ODC1 and conse-
quently rescue ODC1 from degradation (20). Two forms
of AZIN have been identified, AZIN1 and AZIN2, and
each binds to all three forms of AZI with the same affinity
(20). Specificity is achieved by the cellular site of expres-
sion, e.g., AZIN2 is specifically expressed in brain and

testis (22). This multifaceted control of degradation of
ODC1 protein by the complex AZI-AZIN results in a
rapid turnover and short half-life (10–30 min) of ODC1,
with the consequence that ODC1 is the rate-limiting en-
zyme for polyamine biosynthesis (20). In addition, poly-
amines can moderate their own synthesis because negative
feedback by polyamines reduces translation of the poly-
amine-related enzymes ODC1, S-adenosylmethionine de-
carboxylase (SAMDC), spermine synthase, SAT1, and
AZIN (23). Promoter sequences of the polyamine-regula-
tory genes (ODC1, AZI, and AZIN) are polyamine-re-
sponsive, and polyamines stimulate AZI translation (23),
indicating that mechanisms of synthesis and degradation
are complemented by autoregulation of polyamines at the
transcriptional and translational levels.

As noted above, import-export between the intra- and
extracellular environments is an important means of
maintenance of appropriate intracellular polyamine pools
(19). Uptake and release do not share common membrane
transport systems (24). Two mechanisms have been pro-
posed for importation, one is based on the binding prop-
erties of polyamines, specifically spermine, to heparan sul-
fate on glypican-1 molecules, which are then subjected to
receptor-mediated endocytosis (25). The latter process in-
volves a caveolar-dependent endocytic mechanism and re-
sults in polyamine sequestration into secretory vesicles
(25, 26). This process is time-, temperature-, and concen-
tration-dependent; requires energy; and is saturable (27).
The second mechanism proposed is based on passage
through a postulated membrane transporter or channel
that requires an electronegative membrane potential (26).
Exportation of N1-acetylpolyamines and putrescine from
cytoplasm substantially contributes to regulation of the
intracellular pool of free polyamines (28, 29). One mech-
anism that has been proposed is via the export solute car-
rier SLC3A2, which facilitates putrescine export (30). Al-
ternatively, or concurrently, passive transport via a
plasma membrane exporter may contribute to movement
of polyamines from inside to outside of the cells (26).

Interestingly, regulation of polyamine transport has
been reported to be dependent on the equilibrium between
AZI-AZIN (20). AZI decrease polyamine importation
(31), whereas AZIN stimulate polyamine uptake by coun-
teracting the negative effects of AZI (20, 22). Although
mechanisms by which AZI-induced inhibition of poly-
amine uptake is achieved are obscure, a recent study im-
plicates AZIN2 in the regulation of intracellular endocytic
absorption of polyamines mechanism (32).

C. Molecular mechanisms of polyamine action on
cellular processes

Because polyamines are fully protonated at physiolog-
ical pH, they are considered to be supercations that have

FIG. 3. Regulation of ODC1 activity by the AZI/AZIN tandem.
Degradation of the rate-limiting enzyme of polyamine
biosynthesis, ODC1 protein, is closely regulated by the AZI/AZIN
tandem. The AZI binds and directs ODC1 to degradation,
therefore reducing the rate of polyamine biosynthesis, whereas
the AZIN, which is highly homologous to ODC1, may replace
ODC1 and prevents ODC1 degradation, thus maintaining or
increasing the rate of polyamine biosynthesis.

FIG. 2. Regulation of intracellular polyamine homeostasis. The
intracellular pool of polyamines is tightly regulated at different
levels, such as polyamine biosynthesis and polyamine transport
across the plasma membrane. Degradation of the rate-limiting
enzyme of polyamine biosynthesis, ornithine decarboxylase 1
(ODC1), is controlled by the AZI-AZIN tandem. Expression of
genes encoding for enzymes implicated in polyamine
biosynthesis, such as ODC1, SAMDC, SAT1, AZI, and AZIN, may
also be induced or repressed by polyamines themselves in an
autoregulatory mechanism. Equilibrium between polyamine
biosynthesis and polyamine transport controls intracellular levels
of polyamines and, therefore, polyamine homeostasis, which is
essential for cell proliferation and survival.

696 Lefèvre et al. Polyamines and Reproduction Endocrine Reviews, October 2011, 32(5):694–712

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/5/694/2354766 by guest on 20 August 2022



the capacity to strongly interact with polyanionic macro-
molecules such as nucleic acids, proteins, and phospho-
lipids (4). They therefore play multiple and diverse roles in
cellular function (Table 1). It has been reported that a large
proportion of cellular polyamine content (�90%) is
bound to RNA and DNA in cardiac tissue (33). Through
these molecular interactions, polyamines are known to
stabilize DNA structure, induce chromatin remodeling,
and thereby regulate gene expression (4, 34). A recent
study has provided the novel hypothesis that polyamines
bind to charged sites on protein interfaces, thereby affect-
ing electrostatic protein-protein interactions (35). A series
of investigations revealed that, by this mechanism, poly-
amines potentiate neurotransmitter receptors, specifically
the glutamate receptor, N-methyl-D-aspartate receptor
(36). By binding to protein interfaces, polyamines are be-
lieved to affect the polyinositol phosphate signal trans-
duction system (37). In the polyinositol phosphate con-
text, it is hypothesized that both spermine and spermidine
modulate ion channel functions and affect actin cytoskel-
eton reorganization (37).

Polyamines appear to play essential roles in cell prolif-
eration, with intracellular increases occurring during the
G0/G1 and G2/M transitions (38). Polyamines are also im-
plicated in programmed cell death (39) and in epigenetic
modifications of chromatin (40–43). These multiple and
varied roles indicate that precise regulation of intracellular
polyamine homeostasis by mechanisms described above is
essential to cell survival. Indeed, dysregulation of poly-
amine biosynthesis leading to increased intracellular con-
centrations of polyamines has been correlated unequivo-
cally with the development of forms of cancer in several
cell types (44, 45). For this reason, targeting of polyamine
metabolism has been proposed as a strategy for antipro-

liferative therapy. The polyamine analog �-difluorometh-
ylornithine (DFMO), a potent irreversible inhibitor of
ODC1 (46), has been studied as a potential chemothera-
peutic agent (47). DFMO has also been employed
widely to evaluate the roles of polyamine in reproduc-
tive function.

II. Polyamines and Gametogenesis

A. Polyamines in male reproduction

1. Polyamines in somatic cells of the testis
Polyamines are present in and synthesized by germ, Ser-

toli, and Leydig cells of the testis. Polyamine concentra-
tions increase in both Sertoli and germ cells through pu-
berty in the rat (48). ODC1 is abundantly expressed in
proliferating Sertoli cells as well as in interstitial Leydig
cells in immature rats, and its activity is substantially
higher in adults (49, 50). The most abundant expression of
both ODC1 activity and AZIN2 is in Leydig cells (50, 51).
Gonadotropins modulate polyamine synthesis in Leydig
cells (50, 51), and it has been shown that injections of FSH
and LH increase testicular ODC1 activity in Sertoli cells of
immature and hypophysectomized rats (49, 52). ODC1
activity is enhanced by FSH supplementation to the cul-
ture medium in decapsulated testes from immature rats in
vitro (52). Cultured Sertoli cells from immature rat and
bovine testes treated with FSH displayed increased ODC1
activity, along with elevations in spermine and putrescine
content (53, 54). There is evidence to indicate that the
classic protein kinase A pathway is an effector of the go-
nadotropin signal because cAMP elevates ODC1 activity
in Sertoli cells, mimicking the response to FSH (54). One
study has shown that treatment with testosterone de-
creased ODC1 activity and its expression in Sertoli cells in
vitro (55, 56), indicating a potential paracrine regulation
complementing the gonadotropin effects.

Polyamines appear to be necessary for the function of
Leydig and Sertoli cells. It has been shown that inhibition
of ODC1 reduces steroid synthesis in rodent testis by an as
yet undetermined pathway, suggesting a polyamine re-
quirement for steroidogenesis (51). Treatment of hamster
Sertoli cells in vitro with spermine or FSH increases con-
centrations of lactate and metabolic enzymes, suggesting
a role of polyamines in the function of this cell type (57).

2. Polyamines and spermatogenesis
Evidence for the occurrence of polyamines and for

polyamine action indicates that they may play an impor-
tant role in testicular development and spermatogenesis.
Expression of Odc1 is detectable in, and specific to, the
spermatogonia of prepubertal mice (58) and rats (59, 60).

TABLE 1. Summary of binding sites of polyamines and
molecular mechanisms and processes in which
polyamines are involved

Binding
site

Molecular
mechanisms Molecular process

DNA DNA binding (200) DNA replication (206)
Polyamine acetylation

(43, 201–205)
Histone acetylation

(43, 203–205)

DNA transcription (23)
DNA stabilization (200)
DNA protection (207–209)

RNA Ribosome binding and
ribosomal frame
shifting (23)

RNA translation (210)
Initiation of mRNA translation

(211, 212)
Protein Posttranslational

protein
modifications,
protein
phosphorylation
(213), binding to
cytoskeleton (37)

Cell cycle (206)
Signaling (214, 215)
Translation (133, 210)
Mitosis (38)
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Its expression and activity follow a well-defined temporal
and spatial pattern in which there is substantial elevation
of Odc1 during the first wave of spermatogenesis, prin-
cipally in pachytene spermatocytes during meiotic pro-
phase and in round spermatids and residual bodies (58–
60). ODC1 protein can be localized to the cytoplasm of
freshly isolated epididymal spermatozoa and to the acro-
somal region of round spermatids (50). Polyamines, or at
least spermine, are also essential to completion of sper-
matogenesis because transgenic mice with an inactivating
mutation of spermine synthase are infertile, with an arrest
of spermatogenesis at the spermatogonia and primary
spermatocyte stages, as revealed by reduction of meiotic
and postmeiotic cell number (61, 62). This is consistent
with a role in the cell division, given the two peaks of ODC
activity during the cell cycle (63). Interference with syn-
thesis in cells in the G0/G1-phase delays or prevents the
S-phase of the cycle (38). It is therefore reasonable to spec-
ulate that ODC1 activity is essential for the first meiotic
division in primary spermatocytes. Together, these find-
ings argue for a role for polyamines in meiosis, and, al-
though definitive confirmation in the testis is lacking, in-
formation supporting this concept has been derived from
studies of the frog oocyte (see Section II.B.3).

Although polyamines are essential to spermatogenesis,
an excess is detrimental to the process. Transgenic mice
overexpressing the human ODC1 gene display a 20- to
80-fold increase in testicular ODC1 activity and a conse-
quent increase in putrescine abundance (64, 65). Relative
to wild-type controls, males from the first generation dis-
play reduced reproductive performance and exhibit an in-
crease in spermatogonial DNA synthesis and a reduction
in DNA synthesis in spermatocytes during spermatogen-
esis (65). Second-generation male offspring are infertile
and have extremely high ODC1 activity in the testis, hy-
poplastic germinal epithelium, and no spermatogenesis
(64, 66).

Temporal patterns of changes in testicular ODC1 ac-
tivity and gene expression are inversely correlated. Al-
though ODC1 transcript abundance increases during
spermatogenesis and reaches its maximum during sper-
miogenesis, maximal testicular ODC1 activity is restricted
to the prepubertal period in the rat (67). This effect ap-
pears to be under paracrine control because coincubation
of testicular cytosolic extracts from prepubertal rats with
extracts from mature males resulted in inhibition of
ODC1 activity in prepubertal samples (67).

AZI3, which inactivates ODC1 activity and inhibits
intracellular polyamine uptake, is specifically expressed in
spermatids and spermatozoa in the human and rodent tes-
tis from early spermiogenesis to the late spermatid phase
(21, 68). Because AZI3 expression follows the ODC1

gene expression pattern, it has been hypothesized that
AZI3 abolishes ODC1 activity to avoid detrimental effects
of putrescine overproduction during spermiogenesis (22).
Recently, AZI3 knockout mice were found to have dis-
rupted spermatogenesis, characterized by aberrant sper-
matozoa, with consequent loss of fertilizing capacity (69).
Furthermore, the testis-specific AZIN2, which abrogates
the inhibitory effects of the AZI on ODC1 activity and
polyamine uptake, is abundant in haploid germ cells in
human and mouse testis and following the temporal and
spatial expression patterns of AZI3 and ODC1 (70–74).
The ODC1 gene is expressed during spermiogenesis, but
its activity, along with polyamine transport and intracel-
lular polyamine levels, appears to be regulated by the equi-
librium between AZI3 and AZIN2 in haploid germ cells.
A role for AZIN2 in the process of intracellular vesicle
trafficking underlying polyamine transport was recently
reported (32) and may indicate a potential involvement of
AZIN2 in intracellular redistribution of polyamines dur-
ing spermiogenesis.

3. Polyamines, reproductive fluids, sperm motility,
and fertilization

As noted in Section I, spermine and spermidine are the
oldest known organic constituents of human prostatic se-
cretions (1), and they appear essential to male gamete
function. Human and rat seminal plasma contains higher
levels of spermine than any other body fluid or tissue (75).
As with the testis, polyamine synthesis is hormone-depen-
dent in the accessory glands; in this case, it is regulated by
androgens. In the rat, castration induces a significant re-
duction in both ODC1 and SAMDC activity and a con-
comitant decrease in concentrations of polyamines in the
ventral prostate (60, 76, 77), epididymis (78), and seminal
vesicles (60, 77). The repression of polyamine production
in response to castration correlates with a reduction in
total RNA and DNA synthesis in the seminal vesicle and
the ventral prostate (77). Testosterone treatment reverses
castration-induced inhibitory effects on ODC1 activity
in all three of the accessory glands (60, 76, 77, 79).
Further evidence for the importance of androgens
comes from studies where androgen effects were coun-
teracted by DFMO in the ventral prostate and the sem-
inal vesicles (77, 80).

Levels of spermidine and spermine are markedly lower
in seminal plasma of infertile men compared with their
normospermic counterparts (81, 82). Treatment of men
with oligospermia with S-adenosylmethionine increases
polyamine content and enhances sperm count and motility
(83). A positive correlation between concentrations of
spermidine and spermine and motility of ejaculated sper-
matozoa has also been demonstrated in rams (84). The
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effect appears direct because addition of polyamines or
L-arginine to human spermatozoa with reduced or no mo-
tility (asthenozoospermia) increased sperm motility (85).
Indeed, inception of motility in immotile mouse, rat,
guinea pig, and rabbit spermatozoa from the vas deferens,
which have not yet been in contact with polyamines from
the prostatic fluid, can be induced by spermine (6). The
effects transcend motility alone because higher frequency
of success in in vitro fertilization was obtained when ep-
ididymal spermatozoa employed for fertilization were
preincubated with spermine (86). Spermine and spermi-
dine concentrations in in vitro fertilization supernatants
also associate with improvement in pregnancy success in
mice (87) and humans (88).

The mechanisms by which polyamines affect motility
are unknown, but in vitro assays reveal a number of pos-
sibilities related to intracellular signaling and energy me-
tabolism. The presence of spermidine, spermine, or pu-
trescine in the culture medium of mature spermatozoa
collected from the rat epididymis enhances glycolysis (89),
stimulates adenylate cyclase activity in bovine and human
spermatozoa (90, 91), and reduces the activity of phos-
phodiesterase, an inhibitor of the cAMP signaling path-
way in human spermatozoa (90).

Progress has been made in understanding the effects of
polyamines on fertilizing capability. In the ram, spermine
localizes mainly in the acrosome of the spermatozoid (92),
and spermine dissociation from spermatozoa is facilitated
by heparin, an oviductal factor known to be implicated in
sperm capacitation and the acrosome reaction in the fe-
male reproductive tract (93). The acrosome reaction can
be induced in capacitated bovine spermatozoa by expo-
sure to low concentrations of spermine, whereas higher
concentrations inhibited this effect (94). Thus, spermine
appears to be a decapacitating factor in seminal fluid that
may prevent both premature capacitation and the acro-
some reaction.

B. Polyamines in ovarian function

1. Polyamines, onset of puberty, and folliculogenesis
Parallels exist between ovary and the testis, in that poly-

amine synthesis, under endocrine influence, appears nec-
essary for function and differentiation of the somatic cell
component of the gonad. ODC1 activity is elevated during
the prepubertal period in rabbit and mouse ovaries (95,
96). In the immature rat ovary, ODC1 activity is induced
by both FSH and LH and by the placental gonadotropins
equine chorionic gonadotropin (eCG) and human chori-
onic gonadotropin (hCG), which have the same respective
biological effects (97–99). Similar observations have been
made in hamster (100) and mouse ovaries (96). The ovar-
ian distribution of ODC1 is interesting because the protein

localizes to the theca interna of preantral and antral fol-
licles (101, 102), a pattern of expression similar to the
LH/choriogonadotropin receptor. In the prepubertal rat
ovary, the stimulation of ODC1 by hCG is specific to the
thecal layer of follicles and to the interstitial glands (103).
Stimulation with eCG (and presumably FSH) induces
ODC1 mRNA and protein expression and ODC1 activity
in granulosa cells (104, 105). Increases in ODC1 activity
specific to granulosa cells of antral follicles follow admin-
istration of ovulatory doses of LH or hCG to adult female
mice (106), hamsters (100), and rats (101, 107, 108).
These findings are in keeping with the known distribution
of LH and FSH receptors in theca and granulosa cells, in
follicles, and the follicle stage-dependent responses of
these tissues to gonadotropins (109).

The DFMO paradigm has been employed to investigate
the overall significance of polyamines to the ovary. Treat-
ment of immature female mice with DFMO inhibits ovar-
ian growth, antral follicle formation, and the onset of pu-
berty (96). The overall responses can be attributed, at least
in part, to effects on the central nervous system. Treatment
of rat females with DFMO during the first 10 d of life
interferes with normal brain development, resulting in ab-
errant, prolonged high FSH serum levels and a delay in the
onset of puberty without affecting later fertility (110). In
addition, there is evidence for direct effects on the ovary
because acute treatment with DFMO counteracts the stim-
ulatory effects of eCG and hCG on follicle development in
both adult and immature mice (96).

As with the testis, concentrations of specific polyamines
are essential for follicular development, and excesses are
detrimental. Transgenic overexpression of SAT1 in the
mouse results in distortion of cellular polyamine pools,
including large accumulation of putrescine, accompanied
by decreases in intracellular spermine and spermidine
(111). The consequence is an infertile phenotype charac-
terized by an arrest of folliculogenesis at the secondary
follicle stage (111). Whether the excess of putrescine or
lack of spermine/spermidine is responsible for these effects
is unclear at this time. Because folliculogenesis is essen-
tially a somatic cell event (109), the sum of the results
argues for a local requirement for polyamines in appro-
priate quantities for theca and granulosa cell replication
and differentiation.

2. Polyamines in ovulation and luteinization
In the adult cycling mouse (96), hamster (102), and rat

(101, 107), ovarian ODC1 activity is elevated during late
proestrus, the time when the LH surge initiates the ovu-
latory process. Because LH administration was more ef-
fective in inducing ovarian ODC1 activity than FSH (96),
it was hypothesized that polyamines are necessary for peri-
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ovulatory maturation of the follicle. In female rats, ad-
ministration of DFMO immediately before proestrus was
associated with a decrease in plasma LH and in prolactin
levels, a reduction of polyamine content in the pituitary
gland, and a decline in the number of ovulated oocytes and
in circulating progesterone concentrations (112, 113). Be-
cause pituitary gonadotropin contents were unaffected by
DFMO treatment, it was suggested that polyamine depri-
vation was not disrupting gonadotropin production but
was rather affecting its release (113). Similar effects
induced by DFMO were noted in ovariectomized rats
treated with progesterone and estradiol, thus showing that
the reduced plasma LH concentration is not a consequence
of a disrupted ovarian feedback on the pituitary gland, but
rather of interference with gonadotropin secretion (113).

Some contradictory evidence exists because another
study has revealed that inhibition of ODC1 activity by
DFMO treatment on the day of proestrus in the rat re-
sulted in a near doubling in the number of ovulated eggs
(114). Perhaps this may be attributed to the finding that
DFMO treatment increases FSH levels (113), thereby in-
creasing recruitment of preovulatory follicles. The short
half-life of DFMO in circulation (115) may have allowed
sufficient clearance of the inhibitor to permit normal pre-
ovulatory LH secretion, and thus ovulation. These results
are puzzling because local polyamine synthesis in ovarian
somatic cells is necessary for ovulation and luteinization.
Indeed, acute DFMO treatment interdicts gonadotropin-
induced expression of genes essential to steroidogenesis,
thus indicating that polyamines are locally necessary for
steroid hormone synthesis and, consequently, establish-
ment of the plasma progesterone levels associated with
luteinization (96).

Other studies have shown that exogenous LH, the com-
bination of LH and FSH, but not FSH alone, induce ovar-
ian ODC1 activity (96). ODC1 localizes to the bovine
corpus luteum during pregnancy (116). Recently, AZIN2,
which prevents ODC1 degradation directed by AZI, was
localized in the theca lutein cells of the human corpus
luteum (51). Although no evidence is available to indicate
hormonal regulation of this inhibitor, its occurrence in the
theca-derived component of the corpus luteum suggests a
role in polyamine regulation at the ovarian cellular level.
Mechanisms have not yet been explored in detail. Clearly,
cAMP signaling and transcription of steroidogenic genes
are candidates for investigation.

3. Polyamines, oogenesis, and oocyte meiotic maturation
There appears to be little information on the role of

polyamines in oogenesis in mammals. Correlative studies
have revealed that an increase in ODC1 activity in neo-
natal rabbit ovaries is associated with the onset of meiotic

prophase (95). Furthermore, increases in ODC1 immu-
noreactivity in the cytoplasm of oocytes of antral follicles
have been observed after the preovulatory resumption of
meiosis in adult mouse ovaries (96).

More detailed information linking polyamine synthesis
to meiosis in oocytes comes from investigations of the
amphibian, Xenopus laevis (117). In this species, induc-
tion of meiotic maturation in vitro either in follicles con-
taining oocytes or in follicle cell-free oocytes can be in-
duced by progesterone or hCG treatment (118, 119). This
maturation is both preceded by and accompanied by in-
creases in ODC1 activity in oocytes (118, 119). Up-regu-
lation of ODC1 activity occurs before germinal vesicle
breakdown and the extrusion of the first polar body, a
temporal sequence that suggests cause and effect. DFMO
treatment results in the blockage of meiotic maturation of
oocytes contained in mature follicles and in in vitro culture
of frog ovarian fragments (119). In the latter case, exog-
enous replacement with putrescine counteracts DFMO in-
hibition, and meiotic arrest can be overcome. In contrast,
a single study indicates that germinal vesicle breakdown in
follicle cell-free oocytes is not disrupted by DFMO treat-
ment (118). This contradiction is puzzling, given that frog
oocytes are not released from meiotic arrest by liberation
from the follicle, as are mammalian oocytes. It suggests
that ODC1 activity and polyamine biosynthesis act on
follicular cells in support of meiotic maturation rather
than on the oocyte itself. Nonetheless, changes in Ca2�

transients associated with resumption of meiotic matura-
tion in oocytes (120) are consistent with effects of poly-
amines on ion channels (37). Thus, a mechanism exists for
direct regulation of meiosis in the oocyte by polyamines.

The physiological role of the increase in expression of
ODC1 in Xenopus oocytes during maturation was re-
cently investigated using an antisense morpholino oligo-
nucleotide strategy to inhibit ODC1 translation (63). Al-
though ODC1 antisense-injected oocytes appeared to
undergo complete meiotic maturation, the metaphase II
oocytes exhibited high levels of reactive oxygen species
and were apoptotic. When transferred to host frogs and
subsequently ovulated, these eggs could be fertilized but
exhibited embryo fragmentation and did not survive. This
novel investigation indicates that polyamines are essential
for cytoplasmic maturation of the oocyte and to protect it
at the metaphase II stage from reactive oxygen species-
induced apoptosis.

III. Polyamines in Embryogenesis
and Gestation

A. The polyamine requirement for early embryogenesis
Evidence for a role for polyamines in early embryogen-

esis comes primarily from the detection of increases in
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transcription of Odc1 in mouse two-cell embryos and in
embryonic expression that increases through the blasto-
cyst stage in this species (121). ODC1 activity in the em-
bryo likewise increases between the two-cell and early
blastocyst stages in the mouse (122, 123). Similar in-
creases in pig (124) and Xenopus (117, 125) embryos have
been recorded. If there is a requirement for polyamines in
the very early embryo, it appears to be met by maternal
sources because null mutation of Odc1 is not lethal until
the gastrulation stage of embryogenesis (126). There is a
requirement for later embryogenesis because embryos of
the Odc1�/� genotype collected during the late morula/
early blastocyst stage cannot survive in vitro due to apo-
ptotic cell loss in the inner cell mass (126). Provision of
putrescine in drinking water of the dam can rescue embryo
development to the early implantation stage, but not be-
yond in this mouse model (126). Other investigations have
shown a requirement for spermine and spermidine in early
embryogenesis in the mouse because transgenic deletion of
SAMDC is followed by demise of embryos between d 3.5
and 6.5 post coitum (127). In addition, incubation of
eight-cell embryos with an inhibitor of SAMDC, methyl-
glyoxal-bis(guanylhydrazone) inhibits blastocyst forma-
tion in vitro, an effect that could be reversed by adding
either spermine or spermidine to culture media (128).

Polyamines appear to enhance embryo development
and survival in vitro. In the mouse, in vitro-fertilized
oocytes incubated with polyamines showed a higher rate
of development to blastocysts and the more frequent oc-
currence of trophoblast outgrowths relative to untreated
embryos (129). Similar increases in developmental success
were observed in studies of pig parthenotes generated in
vitro and incubated with polyamines (124).

A potential mechanism for spermidine and spermine
effects on normal embryo proliferation can be found in the
cellular requirement for these polyamines in synthesis of
hypusine, a modified lysine that is unique to the eukaryotic
translation initiation factor 5A (eIF5A) (130, 131). This
factor regulates cell proliferation (132). Deletion of an
isoform of elF5A1 in mice was accompanied by infertility
(so far unexplored) (133), adding support to the hypoth-
esis. This notwithstanding, there is evidence from a mam-
mary carcinoma cell line to indicate that EIF5A and poly-
amines have independent effects on proliferation (134).

B. Polyamines and embryonic diapause
Delayed implantation, also known as embryonic dia-

pause, is a reversible arrest in embryo development at the
blastocyst stage before implantation (135, 136). It can be
obligate (present in each gestation) or facultative (induced
by lactational or other stress) (135). In the mink, a species
that exhibits obligate delayed implantation as a normal

aspect of its embryo development, polyamine-related
genes, such as ODC1, SAT1, and AZI, and uterine poly-
amine contents are significantly up-regulated in the uterus
during the early stages of embryo reactivation (137, 138).
ODC1 protein was also found to be up-regulated in the
uterine luminal and glandular epithelium at the time of
embryo reactivation (138). Inhibition of polyamine bio-
synthesis by DFMO during embryo reactivation re-
turned the mink blastocyst to a diapause-like state by
repressing cell proliferation. This treatment further de-
layed implantation, without any detrimental effect on
pregnancy (138).

In facultative diapause in the mouse, the polyamine-
related genes Odc1, Sat1, Samdc, Azi, spermidine syn-
thase (Sms) and spermine oxidase (Smox) are substantially
up-regulated in the uterine subluminal stroma at the time
of estrogen-induced reactivation of the embryo from fac-
ultative diapause (139). No sign of reactivation in mouse
blastocysts in diapause, as indicated by trophoblast out-
growths, occurred when embryos were cultured in the
presence of DFMO and/or the SAMDC inhibitor, methylg-
lyoxal-bis(guanylhydrazone) (140).Nonetheless,whenblas-
tocysts were washed and incubated in an inhibitor-free me-
dium, they attached to culture dishes, and the expected
trophoblastic outgrowths were observed. These findings are
consistent with the report that removal of arginine, the or-
nithine precursor, from culture media prevents trophoblast
outgrowth and attachment of mouse blastocysts (141). Em-
bryos deprived of ornithine remained arrested in free-float-
ing conditions up to 5 d, and reactivation was only observed
when the embryos were transferred to a complete culture
medium. The observations of both facultative and obligate
diapause support the hypothesis that privation of poly-
amines is a factor in the developmental arrest that defines
delayed implantation.

C. Control of polyamine biosynthesis by steroid
hormones in the uterus

Polyamine abundance in intracellular pools in the re-
productive tract is modulated by extracellular signals, in
particular by steroid hormones. Estrogen and catechol-
estrogens administered to immature rats increases ODC1
activity as measured in the uterine horns (142). In the
ovariectomized mouse, estrogen, rather than progester-
one, stimulates uterine Odc1 and Azi gene expression
(139). Uterine ODC1 and SAMDC activities are elevated
within a few hours in response to estradiol-17� injection
in both immature and nonpregnant adult rats (143–145)
and in pseudopregnant rat females undergoing artificially
induced decidualization (146–149). Coadministration of
cycloheximide, to inhibit protein synthesis, prevents the
rise of uterine ODC1 activity induced by estradiol-17�,
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indicating that ODC1 expression is the estrogen-regulated
process (143). Further support for this view comes from
administration of estrogen antagonists, a treatment that
reduces Odc1 gene expression in mouse and the rat uteri
(139, 150, 151). The effects are not limited to rodents
because ODC1 activity is substantially higher in human
endometrium during the estrogen-dominated follicular
phase than in the progesterone-dominated secretory phase
(152). Uterine Odc1 gene expression is up-regulated at
implantation sites in the mouse uterus after estrogen in-
duction of nidation (139). Although the above informa-
tion suggests that estrogens are the principal stimulants,
the response may vary between species and timing in ges-
tation. For instance, porcine uterine SAT1 gene expression
is more responsive to progesterone than to estrogen during
conceptus elongation (153). These variations notwith-
standing, the sum of available information indicates that
uterine polyamine-related gene expression is modulated
by steroid hormones.

Paracrine or autocrine signals may also regulate poly-
amine synthesis in the pregnant uterus. When ODC1 ac-
tivity was measured in pregnant rat uterine horns on the
day before implantation, it proved to be elevated relative to
activity in pseudopregnant uterine horns, despite similar cir-
culating steroid profiles (154). The same author demon-
strated that inductionofdecidualization resulted in increases
of large magnitude in ODC1 activity. This indicates that lo-
cal embryonic messages may alter polyamine synthesis. The
nature of these signals remains undiscovered.

D. Polyamine production during implantation and
postimplantation development

In Eutherian mammals, the consequence of embryo im-
plantation is the formation of the placenta to provide the
fetomaternal interactions essential for successful intra-
uterine fetal development (136). The ancestral form of the
placenta is believed to be a discoid structure, endothelio-
chorial in invasiveness of the trophoblast and character-
ized by terminal differentiation of endometrial stromal
cells to form the deciduum (155). The models that have
been most studied are evolutionary derivations of the an-
cestral form with either greater or less invasiveness. In
hoofed animals, the most common form is the epithelio-
chorial placenta where little or no trophoblast invasion
occurs, whereas in rodents and most primates, the highly
invasive hemochorial placental form dominates (155).
Polyamine biosynthesis is a feature of both noninvasive
and invasive implantation types, and observations suggest
highly conserved roles for polyamines during implanta-
tion and placentation across the spectrum of mammalian
diversity.

1. Polyamines and embryo attachment in species with
noninvasive placentation

In ruminants, the diffuse, cotyledonary placenta with
minor invasion of the maternal epithelium by bi- and tri-
nucleate trophoblast cells is common. In pigs, the tropho-
blast attaches to the endometrial epithelium with no in-
vasion taking place. In species from both phylogenetic
orders, polyamines have been reported to be produced by
the conceptus and the dam around the time of conceptus
elongation. The principal site of synthesis appears to be
the endometrium, rather than the embryo itself. In pigs,
concentrations of spermidine, spermine, and putrescine in
uterine luminal fluids are at their maximal levels on d 12
of pregnancy, the time when estrogen secretion from the
conceptus signals the presence of the embryos (156). At
this moment, uterine SAT1 gene expression is substan-
tially elevated in the endometrium of the pregnant pig
compared with the cyclic endometrium, and the protein
for this gene localizes to the luminal epithelium (156).
ODC1 activity and concentrations of ornithine and poly-
amines are also elevated during the period of attachment
of the pig trophectoderm to the luminal epithelium, be-
tween d 20 and 40 of pregnancy, coinciding with forma-
tion of the porcine placenta (157). Concentrations de-
creased thereafter (158). In culture of porcine uterine
glandular epithelium and stroma cells, exogenous pu-
trescine and spermidine increased the rate of DNA syn-
thesis, whereas spermine stimulated DNA synthesis only
in stromal cell lines (156). In porcine allantoic fluid, the
abundance of the ornithine precursor and the polyamine
products increases between d 40 and 60 of gestation, when
placental development is maximal (157, 159).

Ruminants follow a similar pattern. In the ewe, ODC1
gene and protein expression are elevated in the uterine
luminal and superficial glandular epithelium before at-
tachment of the trophoblast (160). Gao et al. (160) dem-
onstrated that ovine fetal ODC1 expression localizes to
the trophectoderm. Between d 30 and 60 of gestation, the
rapid growth of the ovine placenta is accompanied by
large increases in ornithine, arginine, and polyamine con-
centrations in the uterus (161). Concurrently, ODC1 and
arginase activities increase to a peak at d 40 of gestation in
placentomes, intercarunculary endometrium, and amni-
otic and allantoic fluids (161).

2. Polyamines and invasive implantation
Polyamine biosynthesis appears to take place in both

the maternal and fetal compartments during the early
stages of invasive implantation. Elevated uterine ODC1
and SAMDC activities are present on the day of embryo
implantation (d 5) in the rat (162). Increases in activity of
ODC1 and polyamine contents occur at implantation sites
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on the day of implantation in the mouse (163), in the rat
(148, 154, 164, 165), in the rabbit (165), and in the ham-
ster (166, 167). At early implantation (again at d 5 post co-
itum), polyamine-related genes such as Odc1, Sat1, Samdc,
Azi, Smz, and Somx are up-regulated in the mouse uterine
subluminal stroma, specifically at implantation sites (139).

In many species with invasive placenta, the endome-
trium undergoes proliferation, followed by terminal dif-
ferentiation of stromal cells to form the decidual tissue. In
rodents, the presence of the embryo evokes this response,
whereas in primates, it is a normal event of the menstrual
cycle and the decidualized tissue is lost at menstruation.
The process appears to be essential to successful postim-
plantation gestation because mouse models with absent or
aberrant decidualization are unable to successfully main-
tain pregnancy (168).

In the decidualized uterus, both embryo and decidua
contribute to polyamine biosynthesis, and no differences
could be detected in the level of the ODC1 activity between
maternal and embryonic tissues (169). Polyamines appear
to play a role in decidualization because ODC1 activity
increases dramatically as this differentiation process pro-
gresses in the rat uterus (154). Moreover, high doses of
DFMO administered to hamsters on the day of implan-
tation compromise the normal course of decidual func-
tion, resulting in failure of pregnancy (167). The mecha-
nism of polyamine action in decidualization includes new
gene transcription because treatment of nuclei of stromal
cells isolated from rat decidual tissue with spermine or
spermidine stimulates the rate of RNA synthesis (148).
There is also evidence for polyamine induction of the
S-phase of the cell cycle because ODC1 activity increases
in striking parallel to total uterine synthesis of DNA and
DNA at implantation sites (154). This finding is consistent
with the known phenomenon of endometrial stromal pro-
liferation that accompanies decidualization (168).

It is possible to deplete intracellular polyamine pools by
inhibition of downstream enzymes in polyamine meta-
bolic pathways. One such compound, MDL-725227DA,
inhibits spermine oxidase and acetylpolyamine oxidase
(45). In pregnant female mice and hamsters, administra-
tion of MDL-725227DA at the time of or soon after im-
plantation induces embryo loss, and this effect is dose-
dependent (170). Histological analysis revealed complete
absence of decidualization accompanied by an elevated
occurrence of fetal resorption in the treated females. In
vitro, trophoblast cells displayed consistent dose-depen-
dent responses to the presence of MDL-725227DA in cul-
ture media, ranging from reduction of cell proliferation to
degeneration (170).

Nonetheless, low doses of DFMO administered in drink-
ing water to female mice and rats did not affect uterine de-

cidualization because weight of the decidualized horn, as
well as the rate of RNA, DNA, and protein synthesis at im-
plantation sites were normal after this treatment (145, 163,
165, 171). Histological analyses of mouse implantation sites
after polyamine deprivation indicated that embryo implan-
tation occurs normally without apparent decidual deficiency
(163). Fozard et al. (163) suggest that the low-dose DFMO
employedeliminatedthedecidual increases inODC1activity
in the mouse uterus, but it remains possible that polyamine
synthesis was not abolished by this treatment.

In the mouse conceptus (including the decidua and the
embryo), the amount of ODC1 protein and the rate of
ODC1 activity are reported to be maximal on d 8 of ges-
tation (172). Spermidine and polyamine oxidase concen-
trations are elevated on d 8 of pregnancy in the mouse
uterus (170), when robust trophoblast proliferation takes
place to develop the ectoplacental cone, a preplacental
organelle (173). This finding can perhaps be extended to
other species because concentrations of polyamine oxidase
increase during human pregnancy (174), whereas low con-
centrations of serum polyamine oxidase are present in
women that experience spontaneous abortion (175).

3. Polyamines and placentation
ODC1 activity and putrescine concentration were

found to be higher in the fetal relative to the maternal
compartment of placental tissue after d 15 of pregnancy in
the rat and in the mouse (162, 172). Polyamines appear
necessary for placental formation. In addition, ODC1 ac-
tivity was lower in fetal tissues, compared with the pla-
centa, but polyamine content was higher in the fetus and
yolk sac relative to the placental compartment (172). This
indicates that fetal and extraembryonic membrane re-
quirements may be met by transfer of polyamines from the
placenta.

Histological analysis revealed that polyamine depriva-
tion induced by DFMO is associated with abnormal de-
velopment of the extraembryonic structures, the yolk sac,
and the placenta (169) with multiple nefarious conse-
quences. In the yolk sac of the mouse, the first site of fetal
hematopoeisis (176), DFMO treatment reduced both the
number of blood islands and the expression of genes en-
coding for embryonic globins (172).

ODC1 protein localizes consistently and specifically to
the labyrinthine zone of the placenta (169), and develop-
ment of this zone and of the spongiotrophoblast layer are
abnormal when embryo development is arrested by poly-
amine deprivation (169). This is consistent with observa-
tions in other species showing that a reduction in arginine
precursors results in reduced placental angiogenesis (re-
viewed in Ref. 177). There appear to be direct effects of
polyamine deprivation on the trophoblast because expres-

Endocrine Reviews, October 2011, 32(5):694–712 edrv.endojournals.org 703

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/5/694/2354766 by guest on 20 August 2022



sion of markers of trophoblastic lineage, such as tropho-
blast specific protein-�, placental specific protein 1,
reproductive homeobox 6, Cbp/p300-interacting transacti-
vator, integrin �4, and eomesodermin, are down-regulated
in response to polyamine deprivation (172). In addition,
plasma progesterone is reduced in DFMO-treated females,
and the expression of genes encoding for steroidogenic en-
zymes and proteins, steroidogenic acute regulatory protein,
3�-hydroxydehydrogenase IV, and 17-�-steroid hydrolase
in the placenta is compromised. Because expression of these
same steroidogenic proteins in the ovary was not affected by
DFMOtreatment, itwassuggestedthatalterations inplasma
progesterone concentrations resulted from a placental rather
than an ovarian deficiency (169).

4. Polyamines and postimplantation embryo development
Specific inhibitors of polyamine biosynthesis have been

employed to investigate polyamine function and effects
during pregnancy. Administration of DFMO by multiple
means (in drinking water, by gavage, or sc, intrauterine, or
ip injection) during the periimplantation period unequiv-
ocally provoked embryo developmental arrest soon after
implantation in the mouse (165), the rat (171, 178), the
rabbit (163), the hamster (167), and the mink (138). This
detrimental effect is specific to the early postimplantation
period because polyamine deprivation by DFMO before
and after this critical period was not correlated with ab-
normal pregnancy in the mouse (163, 167, 169, 178). The
direct effects of polyamines in inducing cessation of post-
implantation embryo development were demonstrated by
reversal of DFMO-induced arrest by putrescine administra-
tion in both the hamster and the rat (167, 171). Similarly,
administration of two putrescine analogs, 1,3-diaminopro-
pane and 1,6-diaminohexane, to pregnant female mice dur-
ing the time of maximal fetal ODC1 activity (d 10–14 of
gestation) inhibits fetal ODC1 activity and causes a reduc-
tion of the fetal weight on d 18 of gestation (179). Clearly, an
adequate level of polyamines appears to be essential for the
postimplantation development of the fetus.

Detailed studies have been undertaken to evaluate the
developmental effects of an increasing range of orally ad-
ministered DFMO during the postimplantation period in
rodents (167, 180–182). The severity of maternal and fe-
tal detrimental effects in response to DFMO treatment is
dose-dependent. Low doses provoked an increase of post-
implantation losses due to embryo resorption, a reduction
of fetal and placental weight, and a decrease of the rate of
DNA synthesis in the placenta. Nonetheless, viable fetuses
did not show any external, visceral, or skeletal abnormal-
ities at any treatment dose (180, 181). Because polyamine
deprivation induces defects on fetal development that are
comparable to those observed in a case of intrauterine

growth retardation (IUGR) in the rat (182), it may be that
the maternal environment is compromised by low doses of
DFMO to the point that it is not optimal to sustain fetal
development. More drastic effects on fetal survival and
maternal health can be provoked by administration of
higher doses of DFMO. As suggested above, many of these
effects may be the result of placental abnormality and in-
sufficiency under conditions of reduced or absent poly-
amines. Nonetheless, these doses of DFMO have effects on
the dam, resulting in diminished maternal food and water
consumption and consequent reduction of body and uter-
ine weights (181).

E. Regulation of polyamine homeostasis in the
fetoplacental unit

Because polyamines are unequivocally required for
postimplantation embryo development, the intracellular
polyamine pool must be maintained, implying regulation
of polyamine metabolism and catabolism and polyamine
transport in both fetal and maternal compartment of im-
plantation sites. This is achieved by multiple mechanisms.
In the short term, interconversion between polyamine spe-
cies provides a mechanism to maintain the levels of specific
polyamines. Mouse females subjected to DFMO treat-
ment during postimplantation displayed a decline in uter-
ine ODC1 activity but an increase in SAMDC gene ex-
pression and activity and in spermine concentration at
implantation sites (139, 163). The addition of DFMO to
culture media of mouse uterine stromal or epithelial cells
inhibits ODC1 activity but stimulates Samdc gene expres-
sion (139). Conversely, ODC1 gene overexpression in
those cells resulted in the down-regulation of Samdc ex-
pression (139). Gene expression of SAT1 can be up-reg-
ulated by exogenous supplementation of spermidine and
spermine to culture media of porcine and mouse uterine
stroma and epithelial cells (139, 156). These results sup-
port the concept that the compensatory mechanisms to
maintain the optimal level of the intracellular polyamine
pool during pregnancy are triggered when the rate of poly-
amine biosynthesis is experimentally manipulated.

As noted above, gene expression of Az1 and Azi2 is
elevated at the implantation site after postimplantation in
the mouse (139, 172). In the mouse conceptus, Azin2 was
significantly up-regulated in response to DFMO treatment
(172). Odc1 gene overexpression in the mouse uterine
stromal and epithelial cells induces an increase in Azi1
gene expression (139). Modulation of polyamine trans-
port by AZI1 and AZIN2 in response to inhibition or
stimulation of ODC1 activity may therefore indicate the
presence of a further compensatory mechanism to ensure
the maintenance of homeostasis of intracellular pools of
polyamines. This autoregulatory circuit of polyamine bio-

704 Lefèvre et al. Polyamines and Reproduction Endocrine Reviews, October 2011, 32(5):694–712

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/5/694/2354766 by guest on 20 August 2022



synthesis, implicating the AZI-AZIN tandem (Fig. 3), also
plays an important role during organogenesis because
both ODC1 and AZI proteins follow a spatiotemporal
expression pattern during the fetal development (183).
Moreover, the Azin1 knockout mouse is not viable after
parturition, exhibiting abnormal liver morphology, a high
rate of ODC1 degradation, and reduced putrescine and
spermidine production (184). This confirms the require-
ment for the autoregulatory circuit of polyamine biosyn-
thesis for organogenesis during fetal development.

1. Contribution of maternal diet to polyamine content
As indicated in Section I, polyamines are synthesized

from arginine, proline, methionine, and/or ornithine (6,
158), and a major source is importation from the diet (10,
11). Because substrate availability has an impact on poly-
amine synthesis, reproductive events, and reproductive
success are expected to be related to the quality and quan-
tity of amino acid nutrition (for review, see Ref. 185). The
link between maternal substrate intake, polyamine bio-
synthesis, placentation, and/or embryo/fetal development
has been investigated primarily in large animals (186,
187). In sows, deficiency in maternal dietary protein is
associated with IUGR, characterized by a decrease of pla-
cental and fetal growth and lower birth fetal weight (188,
189). In the latter case, IUGR associates with reduced
ODC1 activity and with reduced concentrations of argi-
nine, ornithine, and polyamines in the endometrium and
placenta between d 40 and 60 of gestation (14, 157). In
sheep, IUGR also results from maternal undernutrition
(188). Nutritional restriction markedly reduces arginine
and polyamine concentrations not only in maternal and
fetal plasma, but also in allantoic and amniotic fluids dur-
ing mid and late gestation (190). Surprisingly, the reduc-
tion in amino acids and polyamine concentrations can be
reversed in all of these compartments by realimentation
with sufficient diet, and this treatment prevents IUGR
(190).

In the rat, dietary arginine supplementation to pregnant
females during the first 7 d or throughout gestation ele-
vates circulating ornithine and arginine concentrations
and results in a 30% increase in litter size at birth (191).
Similarly, arginine supplementation of pregnant gilts be-
tween d 30 and 114 of gestation increased litter size at
birth by 22% and weight of live-born piglets by 24%
(192). The effects are specific to the later periods of ges-
tation because supplementation with L-arginine between d 1
and 25 of porcine pregnancy reduces fetal survival due to
effectsontheovaryandthe formationofcorpora lutea (193).

Deprivation of polyamines has pernicious effects on
gestational success. It has been shown that low birth
weight, delayed embryo development, and fetal or mater-

nal death occur in pregnant females affected by diabetes
mellitus (194). This delayed embryo development in dia-
betic rat females correlates with a reduction of embryonic
ODC1 activity on d 11 of gestation and with a decline of
embryo DNA and polyamine content (195). Administra-
tion of arginine or polyamines on d 5 of pregnancy in
diabetic females reverses the delay in development (196).

The question that arises is whether the beneficial effect
of supplementation of arginine, a treatment that clearly
increases gestational success, is mediated solely by in-
creased polyamine synthesis, or whether the amino acid
acts directly or through other pathways. Arginine is
known to affect angiogenesis and placentation in the pig,
but it appears not to be important as a substrate for or-
nithine and, consequently, polyamine synthesis (158).
Other effects of arginine, such as the stimulation of intra-
cellular signaling pathways in isolated ovine trophoblast,
have been reported (197, 198), and these effects may be
independent of polyamine biosynthesis.

IV. Perspectives and Future Directions

When in 1678, van Leeuwenhoek depicted the presence of
the “three-sided crystals” in human semen (1), he could
not have suspected that he was the first witness to a phe-
nomenon as significant to reproduction as polyamines
have proven to be (Fig. 4). The polyamines are implicated
in gametogenesis, where they participate in both male and
female meiotic maturation of haploid germ cells and have
effects on the somatic cells, including the Sertoli, Leydig,
and granulosa cells, all essential to sustaining gametogen-
esis. Polyamines regulate ovarian steroidogenesis during

FIG. 4. Summary of polyamine implications in reproductive
functions. Reproductive functions noted in bold are supported
by experimental studies, whereas others are hypotheses
resulting from descriptive analysis and remain to be validated.
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the estrous cycle and pregnancy and appear to be indis-
pensable for early embryogenesis, consequent embryo im-
plantation, and postimplantation development. Several
studies support the hypothesis that polyamines are re-
quired for development of the placenta, a critical step in
pregnancy because it allows the fetomaternal communica-
tions that sustain fetal development. Moreover, polyamine
actions in both invasive and noninvasive implantation types
suggest that the role of polyamines in pregnancy has been
highly conserved among mammalian species, which further
reflects their significance to reproductive function.

The Odc1 null mutant mouse embryo does not survive
beyond the blastocyst stage; thus, the common paradigm
for polyamine deprivation has not been the knockout
mouse model. Rather, inhibitors of polyamine-related en-
zymes have been widely used to induce polyamine depri-
vation and to reveal major defects during gametogenesis
and embryogenesis. The generalized effects of inhibition
of polyamine synthesis may confound interpretation.
Therefore, further experimental tools are needed to target
inhibition of polyamine synthesis specifically in reproduc-
tive tissues. For instance, tissue-specific gene ablation as
has been employed successfully for many other genes in
mice (199) and the suppression of specific polyamine-re-
lated gene expression in reproductive organs could dis-
criminate local effects from global effects of polyamine
deprivation on the reproductive functions. Furthermore,
ovary-, testis-, embryo-, or uterus-specific gene deletion
will provide a better window into understanding poly-
amine regulation of reproduction than emerges from stud-
ies of inhibitors of polyamine synthesis. Given the plethora
of actions of polyamines on molecular processes, intensive
investigation is required to elucidate the mechanisms by
which these unique and interesting molecules function.

In conclusion, the present review provides strong clues
for the sine qua non requirement of polyamines in repro-
ductive function, adds to the understanding of various
aspects of the reproductive processes, and sheds light on
the role of polyamines in the reproductive landscape.
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706 Lefèvre et al. Polyamines and Reproduction Endocrine Reviews, October 2011, 32(5):694–712

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/5/694/2354766 by guest on 20 August 2022
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64. Halmekytö M, Hyttinen JM, Sinervirta R, Utriainen M,
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