S - 1 -

Electronic Supplementary Information belonging to the paper:

Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments

Clément Padié,^a Maria Maszewska,^b Kinga Majchrzak,^b Barbara Nawrot,^{*b} Anne-Marie Caminade,^{*a} and Jean-Pierre Majoral^{*a}

^a Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France. Fax: + 33 561 55 30 03; E-mail: <u>caminade@lcc-toulouse.fr</u>; majoral@lcc-toulouse.fr

^b Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland, Fax:48-42-6815483; E-mail: bnawrot@bio.cbmm.lodz.pl

I. ³¹P NMR spectra of dendrimers on AC200 Bruker NMR instrument. Chemical shift of 85% H₃PO₄ in water was taken as a reference.

B									
P31G	15.001								
DATE	15-3-4								
TIME	15:21								
SF	81.015								
SY	81.0100000								
O1	5000.000								
SI	16384								
TD	16384								
SW	23809.524								
HZ/P	T 2.906								
PW RD AG RS TE	4.0 .100 .344 800 174 298								
FW	29800								
02	3300.000								
DP	24H BB								
LB GCX CY F2/C HZ/C PPM/ SR	1.000 0.0 35.00 81.118P 5.421P M 175.217 CM 2.163 4773.00								

 $\sim \sim$

(e) = (e) + (e)

71.9702

70.0

65.0

60.0

55.0

50.0

45.0 PPM

40.0

35.0

30.0

25.0

20.0 15.0

10.0

0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 PPM

15.0

S - 4 -

 $(PN)_{3} \left(O - \left(\bigcup_{i=1}^{Me} - (V - M_{i})_{2} \right)_{6} \right)_{6}$

11.4850

	The second s	Tall and the second test					and the second state of the second state		A DESCRIPTION OF A DESC	والبوابية والتقاوية للماسات أربع ويتقاندها	الشيبيين أسجابين ويتقفا مربوبها فنك	والاستيافية المتحدية والمستادية	بطيب بطريب والمتحد والمتحد	ana
75.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0 PPM	35.0	30.0	25.0	20.0	15.0	10.0	5.0

-

S - 5 -

CDCL3

Supplementary Material (ESI) for New Journal of Chemistry

S - 6 -

45.0 PPM

40.0

50.0

60.0

65.0

55.0

30.0

35.0

25.0

20.0

15.0

10.0

This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

80.0

75.0

70.0

20.0 15.0 10.0 40.0 35.0 30.0 25.0 45.0 PPM 65.0 60.0 55.0 50.0 80.0 75.0 70.0

80.0 75.0 70.0 65.0 60.0 45.0 PPM 55.0 50.0 40.0 35.0 30.0 25.0 20.0

45.0 PPM 80.0 75.0 70.0 65.0 60.0 55.0 50.0 40.0 35.0 25.0 30.0 20.0 15.0 10.0

II. Transfection experiments

Transfection experiments

of GFP-coding plasmid in HEK 293, HeLa, and Huvec cells,

using various dendrimers with a concentration of 10 and 20 μ g/mL, detected by fluorescence.

The doted lines indicate the threshold for DMEM cells medium (left black bar) or OPTI-MEM medium (left grey bar) alone.

S - 11 -

S - 12 -

Chemical reaction used in MTT assay experiments.

