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Abstract

Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic
environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from
ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contam-
inants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the
Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range
transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB
composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in
PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related
processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic
rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in
hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB
fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB
exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
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Environmental fate

Background

The Arctic environment and ecosystems are changing. For
example, the Arctic cryosphere—the major feature of the ma-

rine and terrestrial Arctic—is undergoing considerable change
(Olsen et al. 2011) with the marine ice cover during the Arctic
summer recently reaching a record minimum extent in 2012
(AMAP 2017). As a result, the ice-associated ecosystems in
the Arctic are under increasing pressure (Grannas et al. 2013).
The marine pelagic and benthic food webs are changing and
new invasive species are competing with native Arctic species
for food sources (Renaud et al. 2012). Fish stocks previously
observed exclusively in lower latitude waters are moving into
the Arctic marine environment for spawning (Kallenborn et al.
2012). These significant environmental changes are also ex-
pected to influence directly or indirectly the distribution pat-
terns and fate of persistent organic pollutants (POPs) in the
Arctic environment (AMAP 2003; AMAP 2011; UNEP/
AMAP 2011; Kallenborn et al. 2012; Macdonald and
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Bewers 1996; Macdonald et al. 2003; Macdonald et al. 2005;
Pucko et al. 2015).

POPs are among the most investigated anthropogenic pol-
lutants in the global environment. Their impact and hazardous
effects on biotic and abiotic structures of the world’s ecosys-
tems have been documented in thousands of scientific studies
and reports, and the risks of POPs have been well known for
half a century already (Baldassare and Nicolle 1989;
Ballschmiter and Zell 1980; Bowes and Jonkel 1972; Bright
et al. 1995; Carpenter 1998; Jensen et al. 1969; Jones 1988;
Lang 1992; McKinney and Waller 1994; Tanabe et al. 1983;
Zitko and Choi 1972). Several early temporal trend studies
revealed that Northern ecosystems have been exposed to
POPs since the 1960–1970s (Bignert et al. 1998; Braune et
al. 2001; Braune and Simon 2003). In the 1980s, combined
field and modelling studies confirmed that semi-volatile POPs
are transported into the Arctic via a combination of oceanic
and atmospheric transport pathways (Barrie et al. 1992;
Bidleman 1988; Wania and Mackay 1993, 1995, 1996). The
strong bioaccumulation potential of these pollutants, to which
Arctic food webs had already been exposed for several de-
cades, leads to documented high POP concentrations in lipid
tissues of Arctic marine mammals (Braune et al. 2005; Hickie
et al. 2005; Ikonomou and Addison 2008; Kucklick et al.
2002). Marine mammals are the major traditional food source
for indigenous Arctic peoples who rely on the availability and
high nutritional values of this meat (Sharma 2010).
Consequently, from some of the first studies examining
POPs in humans living in the Arctic, elevated POP levels were
identified in Canadian and Greenlandic Inuit living according
to their traditional culture, which includes seasonal hunting of
marine mammals (Bonefeld-Jørgensen 2010; Bonefeld-
Jørgensen and Long 2010; Dewailly et al. 1989; Dewailly et
al. 1994; Hansen 1998; Van Oostdam et al. 2004). An early
alarm signal of elevated polychlorinated biphenyl (PCB)
levels in the Arctic environment published by Dewailly et al.
in Dewailly et al. 1989 alerted Arctic governments to the pres-
ence of long-range transported contaminants in the Arctic.
This led to the eight Arctic countries (Denmark, Iceland,
Sweden, Norway, Finland, Russia, Canada and the USA)
adopting the Arctic Environmental Protection Strategy and
established the Arctic Monitoring and Assessment
Programme (AMAP) to implement this strategy. AMAP was
established as a working group under the Arctic Council
(http://www.amap.no) in 1996 and has a circum-Arctic pollut-
ant monitoring programme that includes more than 25 years of
contaminant monitoring data in all Arctic environmental ma-
trices. Because of their initiation and support of continuous
monitoring and assessment activities, AMAP is today consid-
ered an important contributor to shaping the global and region-
al regulation of POPs within the European Union, under the
UNEP Stockholm Convention on POPs and the Hemispheric
Transport of Air Pollutants (HTAP) Aarhus Protocol, as well

as by many national regulatory bodies. Based on the scientific
evidence of their potential to pose a risk to human health and
the environment in areas remote from sources, the production
of legacy POPs and their usage is now globally regulated
under the UNEP (Stockholm) Convention for the Protection
of Human Health and the Environment from POPs. However,
due to rapid developments and advancements in the technol-
ogies applied for pollutant analysis and toxicology, as well as
ongoing risk assessments, new or ‘emerging’ organic contam-
inants are continuously identified and added to priority lists for
international POPs monitoring (Fang et al. 2015; Magulova
and Priceputu 2016).

Scientific motivation

Arctic long-term monitoring of pollutants, including PCBs,
dates back as far as 40 years for some environmental compart-
ments and cover periods with less rapid environmental chang-
es compared to today (Bonefeld-Jørgensen 2010; Hansen et
al. 2002; Heidam et al. 2004; Hung et al. 2010). Changes in
Arctic environmental conditions are now rapid and dynamic
(Macdonald et al. 2003; Olsen et al. 2011; Parkinson and
Berner 2009; Wöhrnschimmel et al. 2013). Therefore, chang-
es in chemical distribution profiles, uptake rates and degrada-
tion pathways may serve as early warning indicators for direct
and/or indirect effects of the currently observed Arctic envi-
ronmental changes on the presence and impact of POPs in the
Arctic. Knowing this, and having access to several long-term
studies from large circum-Arctic studies, a group of interna-
tional scientists led by AMAP undertook a comprehensive
European research initiative under the European Union’s 7th
Research and Innovation funding programme (FP7) entitled:
‘Arctic Health Risks: Impacts on health in the Arctic and
Europe owing to climate-induced changes in contaminant cy-
cling’ (ArcRisk).

This review highlights the interdisciplinary research and
key findings of ArcRisk on climate-induced changes of POP
cycling in the Arctic environment using PCBs as a useful
example. PCBs were included among the group of pollutants
that was intensively studied in the ArcRisk project and are
among the most well-investigated POPs worldwide (Olsson
et al. 2010). Furthermore, PCBs are probably the best-
understood POPs group in terms of physical-chemical prop-
erties, emissions, pathways and observed concentrations in the
global environment (Beyer and Biziuk 2009; Carpenter 2006;
Faroon and Ruiz 2015; Fernandez-Gonzalez et al. 2015;
Henry 2015; Korrick and Sagiv 2008; Peakall 1972; Ross
2004; Safe 1994). Therefore, they were chosen as a case study
performed within ArcRisk for evaluating the performance of
environmental fate and distribution models and as a bench-
mark for other POP-like substances in a set of climate change
scenarios. Even though PCBs are banned, they are still present
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in large quantities in urban environments as well as the envi-
ronment and they will remain so for at least another century
(Kallenborn et al. 2012). In addition, evidence for new PCB
sources that have the potential to contribute to Arctic environ-
mental pollution have been presented recently (Bogdal et al.
2014; Diamond et al. 2010; Gasic et al. 2010; Hu and
Hornbuckle 2010; Pedersen et al. 2011; Vorkamp 2016).
PCBs comprise of a total of 209 separate congeners and are
therefore discussed in this review as total PCBs, as the sum of
different (but environmentally abundant) congeners (mainly
the ICES PCB7 congeners; PCB-28, 52, 99, 101, 118, 153
and 180) and as individual congeners, depending on available
data. This paper is based on internal, unpublished reports from
the ArcRisk project and on results from peer-reviewed papers
within the project. The aim is to provide an overview of the
research conducted within the ArcRisk project as a whole and
combining results from all scientific areas including model-
ling, empirical investigations and meta-analysis of human
health related to PCB. The present review begins with over-
views of emissions of PCBs and their transport to the Arctic,
followed by their environmental distribution and, finally, the
impact that PCBs have on people living in the Arctic. Where
possible, the aspect of climate change on the fate of PCBs in
the Arctic is taken into account.

Current PCB emissions and pathways
to the Arctic

Emission estimates

PCBs were used extensively during the 1950s to 1970s, most-
ly in industrial applications (such as coolants and insulating
fluids) and as additives and sealants in building materials.
After the 1970s, the production and use of PCBs were gradu-
ally restricted in many countries, and global emissions started
to decrease. However, the decline in emissions lags strongly
behind the rate of phase-out of production, because stocks of
products in-use and materials continue to release PCBs to the
atmosphere throughout their lifetime. Waste dumps,
decommissioning sites as well as in-use stocks represent pri-
mary sources of today (Bogdal et al. 2014; Diamond et al.
2010; Gasic et al. 2010).

Furthermore, PCBs that have accumulated in the abiotic
environment (sediment, water, soil, snow and ice) can be
remobilized and thereafter re-emitted and thus may contribute
to a slower declining rate of PCBs in the global atmosphere.
Re-emissions from secondary sources will eventually become
more important than primary sources in a global long-term
perspective (Armitage et al. 2011; Stemmler and Lammel
2012). Recent review on fate and distribution of PCBs in the
Arctic confirms these model-based results with empirical in-
formation (Hung et al. 2012; Kallenborn et al. 2012; Muir and

de Wit 2010; Sobek and Gustafsson 2014; Villa et al. 2017;
Vorkamp and Riget 2014).

In the modelling studies considered and applied in the
ArcRisk project, the high-end emission scenarios for PCB28
and PCB153 estimated by Breivik et al. (Breivik et al. 2007)
were used (Fig. 1), and the annual emission values were trans-
lated into monthly releases. It is important to note that the
global emission inventory aimed at quantifying the ‘big pic-
ture’ in terms of global historical releases to air. The inventory
may not accurately reflect actual emissions of a specific con-
gener at a specific location or time. Local sources, still present
within the Arctic, such as waste dumps, industrial installations
and old settlements, may thus not be accurately represented in
the global emission scenarios. Recent studies have shown the
impact of these sources on the local environment on, e.g.
Svalbard (Pedersen et al. 2011).

Nevertheless, atmospheric long-range transport is still con-
sidered to be a major route for the global environmental dis-
tribution of PCBs into remote areas. Even today, transport of
contaminated air masses to the Arctic still occurs from regions
in industrialised countries, where PCBs are still emitted from
various sources (Hung et al. 2016). In spite of limited histor-
ical production and use of these chemicals, surprisingly high
concentrations of PCBs were recently reported in some devel-
oping countries, partly attributed to transboundary export
followed by poorly regulated recycling and disposal of rele-
vant wastes (Bogdal et al. 2014; Breivik et al. 2011; Gasic et
al. 2010; Hung et al. 2016; MacLeod et al. 2014).

Spatial variations of PCB concentrations in the Arctic

An overview of atmospheric concentrations of ∑7PCBs at
different sites in European and Arctic areas is available from
www.genasis.cz and www.pops-gmp.org where additional
information can be found (including other compound
groups). Based on this comprehensive data, the highest
atmospheric concentrations of PCB7 are present in central
and eastern Europe where levels higher than 500 pg/m3 can
occur and indicate the presence of ‘hot spots’ areas. The
highest PCB levels at background sites were also found in
central and eastern Europe (Halse et al. 2011). The concentra-
tions in Arctic areas are generally in the range < 5–30 pg/m3

(Hung et al. 2010, 2016).
Levels and long-term time trends of PCBs and other POPs

are monitored on a continuous basis in the Arctic atmosphere
within different national monitoring programmes. The Arctic
sampling sites and the European reference sampling sites used
within the ArcRisk project are shown in Fig. 2. The air mon-
itoring at these stations has been carried out since the early
1990s and quality-controlled data are continuously reported to
the AMAP and the European Monitoring and Evaluation
Programme (EMEP) programmes (Hung et al. 2016; Tørseth
et al. 2012).
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The average PCB concentrations at the four major Arctic
atmospheric monitoring sites of Alert (Canada), Pallas
(Finland), Stórhöfði (Iceland) and Zeppelin (Svalbard/
Norway) may vary due their proximity to sources and sources
and their geographical location (latitude and longitude) but
also due to environmental factors such as marine or continen-
tal influence, altitude and the prevailing meteorology for the
respective stations (e.g. see Hung et al. 2010, 2016).

The yearly average atmospheric concentrations of PCB7 at
the high Arctic stations (Alert; northeast Canada and
Zeppelin; Svalbard) and the European sub-Arctic stations
(Stórhöfði; Iceland and Pallas; northern Finland 60–66° N)
in 2009 are shown in Fig. 3, where also the PCB concentra-
tions from background sites in central Europe (Košetice in the
Czech Republic) and southern Scandinavia (Råö, at the
Swedish west coast) are shown. An obvious decrease in the

Fig. 2 Long-term monitoring
stations for PCBs and other air
pollutants. Red dots indicate
Arctic stations and blue dots
indicate European stations
included in ArcRisk. Pallas and
Zeppelin were directly included
and used in the ArcRisk project
for sampling in the Arctic. Data
from the other Arctic stations was
incorporated, but no own
sampling campaigns were
launched there

Fig. 1 Global primary emissions
scenarios of PCB28 and PCB153
to air (high-end estimate),
according to Breivik et al. (2007)
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PCB concentrations from central Europe and southern
Scandinavia to the Arctic areas is evident. The PCB concen-
trations at Stórhöfði were comparable to levels in southern
Scandinavia (Råö) and the concentrations at Pallas were at
the same level as those at the high Arctic stations (Hung et
al. 2010, 2016).

During 2009, the concentrations of PCBs at the Arctic sta-
tions, Zeppelin (east) and Alert (west) were at the same level,
in contrast to the period 1993 to 2006 for which Hung et al.
(2016) reported a west–east gradient, the eastern stations be-
ing characterised by higher PCB levels.

Time trends and seasonal cycling in atmospheric PCB
patterns

Long-term trends and seasonal cycles of PCBs at different
Arctic atmospheric monitoring stations may reveal the influ-
ence of regional, local and seasonal factors and are thus ex-
pected to give essential information to assess the effectiveness
of control strategies. The ArcRisk work builds on extensive
time series of POPs in the Arctic. Results from these time
series are presented in this chapter, including results that have
not been published elsewhere.

The atmospheric PCB concentrations in the Arctic have
shown a continuous decreasing trend over the past decades,
after the international regulation of PCB production and usage
was enforced (Hung et al. 2016). Hung et al. (2016) showed a
general decline in the concentrations at Pallas, Alert and
Zeppelin over the period 1998–2012. Declining PCB concen-
trations have also been identified at Pallas for the period
1996–2008 (about 3%/year for ∑7PCB), which was similar
to the decline observed in southern Scandinavia earlier
(Backe et al. 2002). The yearly average atmospheric concen-
trations of PCB28 (tri-CB) and PCB153 (hexa-CB) at Pallas,
Alert and Zeppelin between 1997 and 2009 are shown in
Fig. 4. Further details on more comprehensive Arctic

atmospheric monitoring can be found elsewhere (AMAP
2016; Hung et al. 2016).

The concentrations of both PCB28 (tri-CB) and PCB153
(hexa-CB) were generally higher at Zeppelin in comparison to
Pallas and Alert for several of the years, but the difference is
levelling out. For the Zeppelin station, increasing trends for
medium chlorinated (penta- to hexa-chlorinated CBs) were
reported in the period 2004 to 2009 (decreasing PCB levels
after 2009). Occasionally elevated levels during this period
were associated with biomass burning events in Eastern
Europe and boreal forest fires in North America, followed
by transport of contaminated air into the Svalbard region,
which may be seen in the context of a changing climate in
the boreal region (Eckhardt et al. 2007; Kelly et al. 2013). Re-
emission of (lighter) PCBs from oceans and snow caps might
also contribute to increasing PCB concentrations in the Arctic
atmosphere (Hung et al. 2016). Pallas showed a similar trend
as Zeppelin, with increasing concentrations until 2006 follow-
ed by a decreasing trend thereafter. Modelling explained why
the concentration of pollutants in the atmosphere above
Svalbard correlates with the Arctic Oscillation, whereas this
is not the case above Greenland (Octaviani et al. 2015). The
Arctic Oscillation is a regular oscillation of the atmosphere
above the Arctic that creates differences in atmospheric pres-
sure. Pollutant flows from Europe, which correlate positively
with the Arctic Oscillation, maintain the concentrations above
Svalbard. The pollutant concentrations above Greenland,
however, are determined by flows in the Canadian
Archipelago, where air currents are in a reverse relation with
this oscillation.

Atmospheric deposition pathways

Deposition from the atmosphere (both wet and dry deposition)
is the dominant process for the input of PCBs into both ter-
restrial and marine Arctic environments (Garmash et al. 2013;
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Kallenborn et al. 2007; Malmquist et al. 2003). At Pallas,
long-term deposition measurements of PCBs have been car-
ried out since 1997. The results from these measurements are
shown in Fig. 5 where the deposition fluxes from Råö at the
Swedish west coast are included as comparison. Deposition
data from long-term monitoring in the high Arctic are not
available.

The annual average deposition fluxes of the Σ7PCBs
at Pallas ranged from 100 to 300 ng/m2/year in the pe-
riod 1997–2010. The deposition fluxes at Pallas are
about twofold lower than those measured in southern
Scandinavia. The highest deposition fluxes occurred dur-
ing the first measurement years and the lowest, like the
air concentrations, during recent years. However, unlike

Fig. 4 Yearly average
atmospheric concentrations of
PCB28 and PCB153 at Pallas,
Alert and Zeppelin
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for PCB concentrations in air, no decreasing trend was
observed (Fig. 5).

As the PCB levels in air at Pallas and Zeppelin (Hung et al.
2016) are reported in the same order of magnitude, we could
assume that yearly deposition at Zeppelin should be consid-
ered in the same range as for Pallas. However, total atmo-
spheric deposition fluxes are dependent not only on gaseous
and particulate phase concentrations but also on precipitation
type and rate, ambient temperature and atmospheric particu-
late matter concentration and mass size distribution (see also
discussion on PCBs in snowpack in section ‘Emission esti-
mates’). Wet deposition at colder temperatures (e.g. close to
0 °C) is more efficient at scavenging semi-volatile organic
chemicals such as PCBs from the atmosphere, compared to
wet deposition at warmer temperatures (see Lei and Wania
(2004)). The dominance of snowfall in annual precipitation
at more northerly sites may account for the lack of a decline
in observed deposition fluxes (Hansen et al. 2006; Hansson et
al. 2006).

Important inter-compartmental transfer
processes in the Arctic

Processes and pathways in Arctic snow and ice

The extensive usage history of PCBs (documented since the
1920s; Kimbrough and Jensen (1989)) until their global ban
during the 1980s/1990s has resulted in their ubiquitous global
distribution. Atmospheric and chemical processes drive trans-
fer between environmental compartments in the Earth system
including transfer to the Arctic, with these processes continu-
ing long after PCBs have been phased out from usage.
Atmospheric deposition to the extensive sub-Arctic catchment

areas of the larger Arctic-draining rivers has provided consid-
erable PCB loads to the rivers. In combination with point
sources of PCBs located within these catchment areas, the
rivers serve as important sources of PCBs to the Arctic region-
al seas (Carrizo and Gustafsson 2011b; Carroll et al. 2008;
Rawn et al . 2001; Sobek and Gustafsson 2014).
Atmospheric transport and deposition via snow fall have been
identified as important transfer process in the Arctic including
PCB deposition fluxes (Garmash et al. 2013; Hansen et al.
2006; Pavlova et al. 2014). Rapid redistribution processes
during surface snow weathering determine whether the re-
spective contaminant is re-evaporated, released into the soil
or retained in the snowpack throughout the season (Herbert et
al. 2005). However, the contribution of PCBs from melting
snow and sea ice to the total PCB content in the Arctic marine
environment is low compared to input from Arctic rivers.
Nevertheless, rapid thawing processes and the changing
Arctic marine cryosphere in a warmer Arctic could impact
PCB exposure to ice-associated algae and fauna during the
spring algal bloom (Carroll et al. 2008). However, deposition
of PCBs with snowfall and subsequent accumulation in the
seasonal snowpack, as well as accumulation in sea ice and
colder Arctic waters, are still not sufficiently understood and
quantified (Gustafsson et al. 2005; Hansen et al. 2006; Herbert
et al. 2005).

Deposition processes and snow ice interactions of PCBs
have been a research focus in the Canadian Arctic for many
decades (Macdonal et al. 1996). A series of studies have been
conducted to shed light on PCB accumulation and deposition
in the Canadian Arctic. A winter field campaign in the
Canadian Arctic measured PCBs in the surface snowpack
from April through to early June 2008, just prior to ice break-
up as part of a larger campaign to look at contaminant and
nutrient flows associated with ice floes and associated ice

Fig. 5 Yearly atmospheric
deposition fluxes of Σ7PCBs (28,
52, 101, 118, 138, 153, 180) at
Råö and Pallas (bulk deposition)
as reported in the final ArcRisk
report (www.arcrisk.eu)
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leads (Pucko et al. 2015; Grannas et al. 2013). The mean
concentration of ∑29PCB in snow was 256 ± 177 pg/L, al-
though two fresh snowfall layers sampled in May displayed
higher concentrations of 545 and 611 pg/L (Codling 2012).
Excluding these two events, the average concentration in the
snowpack was 185 ± 85 pg/L, which is substantially higher
than PCB concentrations in surface seawater, indicating the
efficiency of the snowpack to scavenge and accumulate semi-
volatile organic chemicals from the overlying atmosphere.
The PCB concentrations in the winter marine snowpack were
lower than PCB concentrations measured previously in sur-
face snow layers in northern Norway by a factor of ~ 2–5
(Herbert et al. 2005) but markedly higher (by 27-fold) than
concentrations previously measured in ice-rafted snow col-
lected in the marginal ice zone of the Barents Sea
(Gustafsson et al. 2005) and distinctly higher than in
Antarctica (Desideri et al. 1994; Vecchiato et al. 2015). The
Barents Sea study was conducted during a Swedish research
expedition in the marginal ice zone during July 2001, when
the snow had already undergone substantial metamorphosis
associated with repeated freeze-thaw cycles resulting in the
likely loss of gaseous PCBs, either through volatilisation or
re-partitioning to particulate matter. Interestingly, in the mar-
ginal ice zone, the particle-bound concentration was 99 pg/L
(based on ∑15PCB measured in a composite snow sample
marked by high levels of particle organic carbon (668 ±
50 mg POC/g)), while a mean concentration of 14.6 ±
11.9 pg/L (∑15PCB) of the particle-bound PCBs was mea-
sured. Thus, this earlier report indicates substantial re-
processing and loss of PCBs during ageing and partial melt
of the marine snowpack.

During the more recent campaign in the Tromsø (North
Norway) area, the vapour-sorbed PCB concentrations in the
snowpack accounted for approximately 80% of the PCB bur-
den with ~ 20% associated with particles. Figure 6 illustrates
the spring time series of PCB52 (tetra-chlorinated PCB) and
PCB153/132 (hexa-chlorinated PCBs) in the marine snow-
pack in Beaufort Sea. Aside from the fresh snowfall event
on 17 May, PCB52 concentrations in snow (white bars) de-
clined over the time series notably once air temperatures
started to exceed 0 °C (for part of each 24-h period). The
heavier PCB153/132 does not show this trend (Brorström-
Lundén et al. 2013). Losses of the lighter PCBs and, hence,
enrichment of the heavier PCBs are due to volatilisation losses
as the snowpack ages and can be attributed to changes in snow
structure (specifically loss of snow surface area as the snow
ages) (Stocker et al. 2007). To assess the role of the snowpack
and first-year sea ice in supplying accumulated contaminants
to the polar mixed layer of the Beaufort Sea, a late season
snowpack and ice column inventory was calculated. The
PCB congeners (AMAP ‘10’; PCB-28, 31, 52, 101, 105,
118, 138, 153, 156 and 180) were selected based on the chem-
ical concentrations measured in the snowpack and sea ice,

assuming full ice cover (and hence an ice-rafted snowpack)
over the entire Beaufort Sea, prior to ice breakup in June. The
∑10PCB burden in both snow and ice is presented in Table 1
and was estimated as 6.17 ± 3.34 kg (Codling 2012). This
value is similar to a recent estimate of the PCB inventory for
the polar mixed surface layer of the Beaufort Sea of 4.47 kg
(Carrizo and Gustafsson 2011a). However, in that study. a
much smaller area of the Beaufort Sea was selected for the
calculations (178,000 km2 and 124 m depth). When this area
is used for ice cover instead, the PCB inventory for snow and
ice becomes ~ 2.5 kg. Assuming minimal ice export from the
Beaufort Sea, then the release of PCBs from the snow/ice
system into surface seawater (i.e. the polar mixed layer ~
40 m depth) during final melt would yield concentrations in
seawater of ~ 0.16–0.53 pg/L or ≈ 5–18% of the PCB concen-
tration present in surface waters of the Beaufort Sea. These
values provide a first quantitative estimate for the role of the
sea ice system in storing and releasing POPs to seawater along
a seasonal temperature and cryosphere extension pattern
(Carrizo and Gustafsson 2011b).

Riverine transport as an Arctic distribution pathway

The Arctic Ocean receives PCBs via deposition from the at-
mosphere, from drainage of the major Arctic-flowing rivers
and through surface ocean currents entering the Arctic from
the Atlantic and Pacific Oceans (Fig. 7). Pan-Arctic riverine
fluxes of PCBs have been estimated based on recent ship-
based campaigns that measured PCBs in the fluvial surface
sediments in the estuaries of the six major Arctic-draining
rivers (Ob, Yenisey, Lena, Indigirka, Kolyma and
Mackenzie) and are currently seen as important PCB distribu-
tion pathways (Carrizo and Gustafsson 2011b; Carroll et al.
2008). Combined, these six rivers contribute on average
1935 km3/year of freshwater discharge to the coastal seas of
the Arctic Ocean, the largest proportion of freshwater flows to
the Arctic Ocean. The Σ13PCB fluxes (kg/year) are presented
in Fig. 7. The highest PCB fluxes occurred for the two major
Russian rivers, Ob and Lena—the rivers with the highest wa-
ter discharge rates and with catchments that extend far to the
south beyond the Arctic. TheΣ13PCB fluxes from these rivers
were estimated to be 183 kg/year for Ob and 113 kg/year for
Lena. As comparison, the Mackenzie and Yenisey rivers have
Σ13PCB fluxes of 60 and 45 kg/year, respectively, followed
by the eastern Siberian rivers of the Kolyma and Indigirka,
with fluxes of 10 and 3.9 kg/year, respectively. These fluxes
are based on estimates made a decade ago, and with continu-
ing climate-induced changes to the Arctic environment, it is
likely that these fluxes will have changed. However, across
these six rivers, the PCB congener composition differed, with
the Russian rivers possessing relatively higher fractions of the
penta- and hexa-chlorinated PCB congeners and the
Mackenzie River (Canada) possessing higher fractions of the
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tri- and tetra-PCB congeners. This difference between the
Russian and Canadian rivers is probably related to the major
Russian technical PCB formulation of ‘Sovol’, which is com-
posed of ~ 50% penta-chlorinated congeners. In order to com-
plement the riverine flux assessment of PCBs, a recent evalu-
ation of PCB concentrations in the Arctic coastal seas has been
undertaken (Carrizo and Gustafsson 2011a). This assessment
included an examination of the PCB congener composition to
understand the influence of different source regions on the
Arctic and the mode of transport, e.g. atmospheric vs. trans-
port in water.

Figure 8 illustrates the spatial distribution of surface sea-
water PCB concentrations for the different geographical re-
gions. Contemporary PCB concentrations across the Arctic
Ocean range from (Σ13PCB) 0.13 to 21 pg/L, with higher
concentrations in the shelf seas than in the central Arctic

Ocean. Tri-chlorinated PCBs contribute about 50% of the total
PCB loading in the surface waters of the eastern Arctic
(Bering, Chukchi and Beaufort seas), suggesting a predomi-
nantly atmospheric source, whereas the hexa-chlorinated
PCBs are more abundant in the western part of the Arctic
(Barents and Greenland seas), suggesting the influence of wa-
terborne transport from regions with previous heavy PCB us-
age such as northern Europe and North America.

The first Pan-Arctic assessment by Carrizo and Gustafsson
provided a comprehensive overview of PCBs in marine sur-
face waters, including a baseline to model the uptake of PCBs
into the marine food webs and also the basis to forecast future
changes in PCB exposure for different regions of the Arctic
(Carrizo and Gustafsson 2011a, b).

Arctic soils

The terrestrial environment has been shown to be of impor-
tance for global POP cycling, and soils and forests in the
northern hemisphere are recognised as storage compartments
with a large capacity for POPs such as PCBs (Meijer et al.
2003; Kallenborn et al. 2012). We applied a global modelling
using a multi-compartment chemistry-transport model for the
decade 2001–2010 (Stemmler and Lammel 2012). This model
forecast that high-chlorinated PCBs such as PCB153 will in-
crease with 0.6%/year in Arctic soils, despite decreasing pri-
mary emissions (since the 1970s) and unlike in other regions.
This feature was not shown for the low-chlorinated congeners.
In comparison to mid-latitudes, the low-medium chlorinated
congeners are enriched in the polar atmosphere as well as in
ground compartments. These results indicate the strong

Fig. 6 Concentrations of PCB52
and PCB153/PCB132 in the ice-
rafted snowpack of the Beaufort
Sea (Arctic Canada) during the
late winter season (April–June
2008) (Codling 2012)

Table 1 Estimated load (kg) of PCBs in the sea ice system of the entire
Beaufort Sea prior to ice breakup

Snowpack Ice

PCB18 0.45 ± 0.21 2.66 ± 1.33

PCB31/28 1.87 ± 0.96 0.25 ± 0.13

PCB52 0.13 ± 0.05 0.07 ± 0.03

PCB99/101 0.29 ± 0.20 0.01 ± 0.007

PCB118 0.03 ± 0.04 NR

PCB153/132 0.22 ± 0.16 0.02 ± 0.01

PCB138 0.17 ± 0.22 NR

Σ7PCB 3.16 ± 1.84 3.01 ± 1.50

Data from Codling (2012)

NR not reported
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significance of secondary sources for the cycling and subse-
quent accumulation of these contaminants in polar ecosystems.

PCB occurrence in biota and trends
in the Arctic

PCBs have been measured in a number of biological matrices
in the Arctic environment. A west-to-east gradient for PCB
levels has been identified, with the highest levels occurring in
the Eastern Arctic (Hobbs et al. 2003; Muir et al. 1992;
Norstrom et al. 1998; Verreault et al. 2005). In particular,
Arctic top-predator animals have accumulated considerable
PCB burdens in their lipid tissues (Bjerregaard-Olesen et al.
2017; Bustnes et al. 2017; Dallaire et al. 2013; Nost et al. 2017;
Pedro et al. 2017a; Ryan et al. 2013); AMAP 2016). During the
past decade, several review papers have summarised informa-
tion about the distribution patterns and ecotoxicology of PCBs
in the Arctic (Derocher et al. 2003; Fisk et al. 2005; Letcher et

al. 2010; Sagerup et al. 2009; Tartu et al. 2014; Tartu et al.
2015; Toft 2014; Verreault et al. 2006; Vijayan et al. 2006).

As documented in national and circum-Arctic monitoring
(Hung et al. 2016; Letcher et al. 2010; Muir and de Wit 2010;
Olsen et al. 2011), PCB concentrations in many environmen-
tal compartments, including biota, have continuously de-
creased over recent decades. Riget et al. (2010) studied time
trends of PCBs in Arctic biota: fish, seabirds, marine mam-
mals and reindeer. They found a decrease in the annual mean
concentrations per year of 1.2 and 1.9% for PCB153 and
∑10PCB, respectively. The authors used 40 (PCB153) and
16 (∑10PCB) time series covering at least 6 years for samples
collected in Canada, Iceland, Greenland, Norway and
Sweden. Around 40% of those time series showed statistically
significant decreasing trends across the Arctic area. However,
in a few cases, a statistically significant increase in concentra-
tions was seen (blue mussels, Iceland; freshwater fish,
Canada; marine mammal population, Faroe Islands) in those
trend studies (AMAP 2016 (Riget et al. 2010).
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A short overview of PCB distribution in biota and its con-
sequences in the Arctic environment, based on the work con-
ducted within ArcRisk, is presented here.

Levels in Arctic biota

Avariety of earlier trend studies are reporting data from North
Atlantic cod (Gadus morhua) in the Arctic (Ballschmiter and
Zell 1980; Cleemann et al. 2000; Foreid et al. 2000; Haukas et
al. 2007; Hellou et al. 1993; Pedro et al. 2017b; Sturludottir et
al. 2014). Letcher et al. (2010) reviewed ∑PCB concentrations
in mammals in the Arctic and found that lipid-normalised con-
centrations (lw) in tissues from whale species varied between
451 and 230,000 ng/g lw. In ringed seal, the mean PCB con-
centrations in blubber ranged between 200 and 1370 ng/g lw
and the blood concentrations in Stellar sea lions between 3692
and 18,000 ng/g lw. Polar bears had PCB concentrations in fat
varying between 1138 and 9100 ng/g lw. Long-term time series
of PCBs in Arctic marine mammals are, in general, decreasing,

although there are exceptions that can be linked to changes in
diet or changes in environmental processes that impact run-off
and re-emissions (McKinney et al. 2011); AMAP 2016).

In the ArcRisk project, several Arctic food products from
Nuuk, Greenland were analysed for PCBs and other POPs
(Carlsson et al. 2014a). ArcRisk results showed that food
products derived from marine mammal species are contami-
nated with a variety of organic contaminants, such as a suite of
perfluorinated alkylated substances (PFAS) as well as conven-
tional legacy POPs that have been included in the Stockholm
Convention for over a decade, such as PCBs. Not surprisingly,
the highest PCB concentrations were found in narwhal mattak
(skin and blubber), with a median concentration of 1147 ng/g
lw. As a comparison, median concentrations of ∑PCB in seal
meat and salmon were 302 and 227 ng/g lw, respectively. All
samples were collected in the local food market in Nuuk,
Greenland. The congeners PCB153 and − 138 were dominant
(30% of the total PCB concentrations) in all samples investi-
gated and even contributed 52% of the PCB load in the seal

Fig. 8 Σ13PCB concentrations (pg/L) (dissolved and particle-bound) in
the surfacewaters (polar mixed layer) of the Arctic Ocean. The colour key
indicates the research campaign; the numbers on the bars are station

numbers. The concentration key is at the upper left. Please note the
figure is reproduced from Carrizo and Gustafsson (2011b)
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meat. PCB153, PCB138, PCB118 and PCB101 together con-
tributed more than 50% of ΣPCB in all samples. The relative
contributions of PCB118 and PCB153 were slightly higher in
fresh salmon compared to smoked salmon, while the relative
contributions of PCB101 and PCB149 were slightly higher in
the smoked salmon. This indicates some influence of food
processing on PCB profiles, although other congeners with a
large relative contribution did not differ much (Carlsson et al.
2014a). The PCB levels (ng/g lw) inGreenlandic fish products
found in this study are comparable to levels found in other
studies from Arctic areas and to PCB levels in fish from
European sites. As a follow-up to this study, a current report
on shrimp and Northern halibut filet from Northern Norway
confirmed the still prominent role of PCBs in the contaminant
profile of marine species commercially exploited as seafood in
the North (Carlsson et al. 2016).

The levels of ΣPCB in the smoked halibut from the Arctic
were in line with levels in halibut from Tromsø (Carlsson et al.
2016) and Greenland (Johansen et al. 2004). However, the
levels of PCBs in fish depend on factors such as trophic level,
age and lipid content, as well as geographical distribution and
the related exposure. Cod, which is a lean fish, will have
higher levels of PCBs on a lipid-weight basis than fatty fishes
like salmon. As an indication, a comparison of average PCB
levels between cod and salmon on a wet weight basis shows
lower levels in cod (3.96 ng/g ww) than in salmon (8–17.9 ng/
g ww) even though cod feeds at a higher trophic level than
salmon (Johansen et al. 2004). PCB concentrations in low
trophic level biota (i.e. amphipods) have been studied and
reported earlier from the Barents Sea (Evenset et al. 2016;
Hallanger et al. 2011a). ΣPCB7 concentrations varied be-
tween 0.4 and 3.2 ng/g lw and are currently considered as
background concentrations in Arctic zooplankton associated
with the marginal ice zone. These studies also showed clear
seasonal POP distribution differences that depend on environ-
mental factors such as ice cover/melting as well as biological
factors, e.g. feeding behaviour (Evenset et al. 2016; Hallanger
et al. 2011b). A comparative study, in which enantiomer-
selective distribution patterns of chlorinated pesticides in
low trophic level organisms were associated with ocean cur-
rent profiles in coastal Svalbard, indicates the influence of
oceanographic and climate variables on the pollutant path-
ways (Carlsson et al. 2014b; Hallanger et al. 2011a). It is, thus,
scientifically confirmed that even low trophic level organisms
bioaccumulate organochlorine contaminants and supports ear-
lier observations (Borga et al. 2005a, b). The transfer of legacy
POPs including PCBs from the lower trophic level organisms
into the top predators of the Arctic (i.e. polar bear, glaucous
gull, polar fox) along a typical marine and/or terrestrial food
web is usually associated with the transfer of lipids (Fisk et al.
2001a; Kleivane et al. 2000). The studies conducted within
ArcRisk showed the importance of understanding how sec-
ondary sources may impact the environmental fate of PCBs in

the food web in the light of a changing climate. Increased
melting and run-off from land will have impacts on the PCB
input and transfer through the food web, beginning at lower
trophic levels and continuing through the food web up to
humans as end consumers.

Contaminant profiles in a changing Arctic
climate

Model-based forecasts of climate change impacts
on PCB transport

Climate change is expected to significantly influence the glob-
al transport pathways and fate of persistent organic pollutants
(Armitage et al. 2011; Bustnes et al. 2010; Dudley et al. 2015;
Friedman et al. 2014; Kallenborn et al. 2012; Kraemer et al.
2005; Macdonald et al. 2005; Octaviani et al. 2015;
Wöhrnschimmel et al. 2013). For PCBs, the forecast increase
in temperature will enhance degradation of PCBs and increase
volatilisation and hence mobilisation from primary sources
and environmental surface media, such as seawater, ice and
soils (Ma et al. 2011). Changes in precipitation patterns are
expected to affect the transfer processes between air and sur-
face (Kallenborn et al. 2012). Melting land and sea ice will
reduce the non-biological available storage capacity and influ-
ence air-surface transfer. Finally, changes in oceanic and at-
mospheric circulation will lead to altered transport pathways
of PCBs. However, the quantitative impact of these processes
is associated with considerable uncertainties. Therefore, a
comprehensive modelling exercise was conducted in the
frame of the ArcRisk project whereby a variety of model ap-
proaches was chosen to examine the influence of climate
change scenarios on PCBs. The modelling expert group ap-
plied the following tools: Berkeley-Trent global contaminant
fate model (BETR Research), Max-Planck Institute—Multi-

Compartmental Chemical Transport Model (MPI-MCTM),
Danish Eulerian Hemispheric Model (DEHM) and coupled

atmosphere-ocean general circulation model (ECHAM5-
MPIOM). ECHAM5-MPIOM also served as input to some
of the other models. Each of these models has been applied
individually to assess and evaluate potential impacts of cli-
mate change on PCBs and other POPs in the Arctic. Specific
results from eachmodel are summarised below. Further details
regarding parameters and sources for the models can be found
in their respective sections below.

BETR Research

BETR Research multimedia contaminant fate model was ap-
plied to model the impact of climate change on concentrations
and distribution of PCBs in the Arctic. The emission history of
PCB28 and − 153, which has been published earlier (Breivik
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et al. 2007), was used for this purpose. Environmental param-
eters were mainly built on the BETR Global defaults
(MacLeod et al. 2011) and the ECHAM5/MPI-OM model
outputs for different IPCC AR4 scenarios (Winton 2006).
The chemical properties of PCBs that were used are described
in (Lamon et al. 2009). Long-term monthly averages from
1980 to 2000 were used for present-day scenarios, while
time-evolving fields were used (Figs. 9, 10, 11, 12 and 13)
for the climate change scenarios.

Climate change is projected to have a larger impact in the
Arctic on PCB153 in seawater compared to atmospheric
PCB153. While the relative increase of PCB153 is projected
to be a factor 1.5 in Europe, it is up to a factor of 3–4 in the
Arctic. These increases are a result of the higher relative at-
mospheric concentrations (a factor of 1.5 higher concentra-
tions in the Arctic and a factor of 2 higher in European atmo-
sphere) in combination with increased deposition into the
Arctic Ocean, which is also facilitated by the decreasing sea
ice cover. PCB28 also shows a relative increase in the model
(a factor of about 2.5–3) in the Arctic Ocean, while it is
projected to decrease in European seawater. However, that
decrease might be within the parameter uncertainties
(Figs. 10 and 12) and so is the climate change impact on
PCB28 in the atmosphere as well (Figs. 9 and 10).

Even though the models projected significantly increased
concentrations compared to the present-day scenario, the ab-
solute concentrations by the end of the twenty-first century

were several orders of magnitude below the present concen-
trations in all scenarios. Temperature and its impact on
volatilisation of PCBs from both primary and secondary
sources are the main driver for the model results. The impact
of climate change versus the reduction of primary emissions
can be considered minor. Environmental degradation of PCB
and especially the international legislations and bans on PCB
production and usage are of major importance for decreased
future PCB concentrations.

MPI-MCTM

Cycling of PCBs in a changing climate (A1B scenario of the
IPCC AR4) was simulated using a multi-compartment chem-
istry-transport model which is based on a coupled
atmosphere-ocean model (MPI-MCTM) (Guglielmo et al.
2009). According to the MPI-MCTM model, the effect of
the changing climate on PCB is enhanced volatilisation from
ice-free surface seawater but also enhanced storage of the
compounds in the areas of the Arctic Ocean that are covered
by ice, except in the Laptev Sea (Fig. 13). The contribution of
precipitation to the substance cycling will also increase. The
total environmental residence time (i.e. persistence; τov) of
PCB153 will be reduced by 40% in the 2090s compared to
the 1990s, mostly due to increased biodegradation in soil and
water. However, due to shifting distribution towards soil and
land ice, τov of the lighter PCB28 will increase in the Arctic. In

PCB153 PCB28

A
rc
�
c

E
u
ro
p
e

Fig. 9 Modelled PCB153 (left column) and PCB28 (right column)
concentrations in the Arctic (upper row) and European (lower row)
atmosphere, with and without climate change. The green middle line
represents no climate change while the brown line indicates what

happens with PCB when climate change is taken into account.
Uncertainties (95% confidence interval) are indicated for PCB153 with
the SRES-A2 scenario by the thinner lines. Please note the figure is
reproduced from Wöhrnschimmel et al. (2013)
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Fig. 10 Modelled relative change of PCB153 (left column) and PCB28
(right column) concentrations in the Arctic (upper row) and European
(lower row) atmosphere. The green middle line represents no climate
change while the brown line indicates what happens with PCB when

climate change is taken into account. Uncertainties (95% confidence
interval) are indicated for PCB153 with the SRES-A2 scenario by the
shaded area. Please note the figure is reproduced fromWöhrnschimmel et
al. (2013)
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Fig. 11 Modelled PCB153 (left column) and PCB28 (right column)
concentrations in Arctic (upper row) and European (lower row)
seawater, with and without climate change. The green middle line
represents no climate change while the brown lines indicate what

happens with PCB when climate change is taken into account.
Uncertainties (95% confidence interval) are indicated for PCB153 with
the SRES-A2 scenario by the thinner lines. Please note the figure is
reproduced from Wöhrnschimmel et al. (2013)
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general, the climate change effect on PCB concentrations in
soil, air and sea ice causes an increase, which, however, is by
far smaller than the effect of decreasing primary emissions.
Meridional long-range atmospheric transport of PCBs into the
Arctic will continue to decline in this century, but the decline
rate will level off (Octaviani et al. 2015).

DEHM

The DEHM was used to model the fate and transport of PCBs
in the environment (Hansen et al. 2008). Two decades were
compared in the forecast: 1990–1999 as a starting point and
2090–2099 as the ‘end point’ and climate data were taken
from a model run of ECHAM5-MPI-OM simulating the
SRES A1B scenario of IPCC AR4 (Semazzi 2003; Winton
2006). The initial conditions for the two time periods that were
compared were the same and the PCB emissions were as-
sumed to be identical to get a clear signal from the impact of
climate change without changing emissions as an additional
factor. Further details on model parameters and input are de-
scribed in Hansen et al. (2008) and Hansen et al. (2015).

For PCBs with two to five chlorine atoms, including
PCB28 and PCB101, modelled concentrations in the 2090–
2099 time period in Arctic air were similar to or slightly lower
in the atmosphere in comparison to the 1990–1999 time peri-
od and modelled concentrations in Arctic Ocean water and

soils were lower by 20–40%. For higher chlorinated PCBs
such as PCB153, modelled concentrations in Arctic air were
higher by about 5% in the 2090–2099 time period (Fig. 14
middle), concentrations in Arctic Ocean water were lower by
about 40% (Fig. 14 right) and concentrations in Arctic soils
were close to identical (not shown). For the highest-
chlorinated PCB congeners that were considered (PCB180
and PCB194), modelled concentrations in Arctic air were
15% higher in the 2090–2099 time period, modelled concen-
trations in Arctic Ocean water were 10% lower and modelled
concentrations in Arctic soils were slightly higher.

ECHAM5-MPIOM

Simulations were made using a multi-compartment chemis-
try-transport model which is consists of one general circula-
tion model for the atmosphere coupled to an ocean general
circulation model (ECHAM5-MPIOM). This model also in-
cludes an ocean-biogeochemistry sub-model (Guglielmo et al.
2012; Hofmann et al. 2012; Stemmler and Lammel 2012).
The results indicate that for the A1B scenario of the IPCC
AR4, more PCB153 will be associated with the particulate
organic matter in water cPOC, in particular the colloidal mass
(‘DOC’) in the multi-phase seawater system. Therefore, bio-
availability of this congener at the bottom of the marine food
chain is expected to increase (Fig. 15).
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Fig. 12 Modelled relative increase of PCB153 (left column) and PCB28
(right column) concentrations in the Arctic (upper row) and European
(lower row) sea water. The green middle line represents no climate
change while the brown lines indicate what happens with PCB when

climate change is taken into account. Uncertainties (95% confidence
interval) are indicated for PCB153 with the SRES-A2 scenario by the
shaded area. Please note the figure is reproduced fromWöhrnschimmel et
al. (2013)
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Fig. 13 Modelled mapped ratio of concentrations of PCB153 in the
winter (DJF) atmosphere (a and b, above) and surface compartments (c
and d, below), with and without climate change (A1B scenario of the

IPCC AR4) for the middle (a and c, 2050s/1990s) and end (b and d,
2090s/1990s) of the century. Values exceeding 1 indicate enhancement
by climate change

Fig. 14 Modelled decadal averaged atmospheric concentrations of PCB153 in the 1990s (left), the change in modelled concentrations in the 2090–2099
time slice under the SRES A1B climate scenario in air (middle) and in ocean water (right)
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Modelling output from the ArcRisk project

All modelling tools used in theArcRisk project agree uponmost
of the expected impacts of climate change on PCB concentra-
tions in the Arctic. Their projected future (climate change sce-
nario, neglecting emission reductions) concentrations are about
a factor of 2 of relative increase compared to the baseline situ-
ation (today). The overall conclusion from the ArcRisk model-
ling studies is that the modelled concentrations of low-
chlorinated PCBs in Arctic air are not as sensitive to climate
change impact as the mid- and high-chlorinated PCBs are.
Higher relative concentrations are expected for the mid-higher
chlorinated PCBs under a climate change scenario (Lamon et
al. 2009; MacLeod et al. 2011; Wöhrnschimmel et al. 2013).

Concentrations of PCBs in Arctic Ocean water are also
higher under a climate change scenario according to BETR
Research and MPI-MCTM results. In model experiments
with DEHM that assumed the same emissions but different
climate scenarios, modelled concentrations of PCBs in
Arctic Ocean water were lower compared to BETR
Research and MPI-MCTM projections under the climate
change scenario.

The models BETR Research and MPI-MCTM suggest a
similar role of global climate change on the atmospheric con-
centrations of highly chlorinated PCBs, e.g. PCB153, in both
the Arctic and in the Baltic Sea region. The model results
suggest increases in the atmospheric concentrations of these
contaminants in the two regions with climate change com-
pared to the present-day. The DEHM models forecast lower
concentrations of high-chlorinated PCBs in seawater in the

two regions, which is in agreement with the forecast of the
multimedia chemical fate model POPCYCLING-Baltic that
was adapted for the Baltic area (Kong et al. 2014). The pattern
of Arctic Ocean water pollution is more heterogeneous in the
MPI-MCTM simulation (Fig. 13) compared to DEHM.

Biota exposure and PCB uptake in a warmer
Arctic

Processes governing bioaccumulation are temperature-depen-
dent. In addition to the physical-chemical and biotransforma-
tion properties of PCB climate change will inevitably affect
the velocity and environmental stability of environmental pol-
lutants (Walters et al. 2016). Thus, changes in magnitude of
relevance for bioavailability can be assumed for several cli-
mate change scenarios. In a changing Arctic environment,
food web structures (including composition, availability of
prey, etc.) are expected to change and these changes within
environmental processes will impact the environmental fate of
pollutants in the Arctic ecosystem (Boonstra 2004; Fisk et al.
2001b; Hallanger et al. 2011a, b; Kallenborn et al. 2012; Riget
et al. 2013).

Bioavailability

Bioavailability can be defined in two distinct ways according
to an earlier comprehensive report (Gobas andMorrison 2000):

Fig. 15 Present-day (annual
mean of 2010) PCB153 mixing
ratio in suspended organic phases,
i.e. sum of dissolved and
particulate organic carbon, and
bulk phytoplankton and
zooplankton (ng PCB/gC) in the
Arctic Ocean
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1. The fraction of the total concentrations, in a specific me-
dium or matrix (e.g. water and sediment) that can be
absorbed by the organisms via a specific route of uptake

2. The rate or the extent to which a chemical is absorbed and
accumulated by the organism

The ArcRisk work was mainly related to point (1).
Bioavailability according to point 1 is largely controlled by
the distribution of POPs between the phases of environmental
matrices. For example, a POP’s bioavailability in water would
be controlled by the distribution between the dissolved, par-
ticulate and dissolved organic matter phases. This distribution
would be influenced by the physical-chemical properties (e.g.
the octanol-water partition coefficient, KOW) of the PCBs, the
particulate concentration in the water column, the properties
of the particulate matter phases (e.g. organic matter content)
and temperature. Temperature changes resulting from global
climate change would therefore have a direct influence on
partitioning of POPs in natural waters. For example, in the
Baltic Sea, the equilibrium partitioning of hydrophobic organ-
ic contaminants between the particulate and dissolved phases
in water decreased by a factor of five with a temperature in-
crease of 20 °C (Smith and McLachlan 2006).

Borgå et al. (2010) used an aquatic bioaccumulation model
to simulate the effect of global climate change on POP bioac-
cumulation in an Arctic marine pelagic food web. In this
modelling approach, it was assumed that climate change
would result in increasing primary productivity in the Arctic
Ocean, resulting in increasing concentrations of particulate
organic carbon (POC) in the water column. Borgå et al.
(2010) also considered the effects of temperature on changing
respiration, consumption and growth rates of species in the
food web studied. Three chemicals were considered: γ-
HCH, PCB52 and PCB153. In each case, a decrease in bioac-
cumulation was predicted because of global climate change.
In the top-predator cod (G. morhua), these changes ranged
from being negligible for γ-HCH to a 50% decrease for
PCB153. These decreases were primarily controlled by re-
duced bioavailability resulting from dilution of the chemical
in the larger mass of POC due to the assumed increase in
primary productivity. Therefore, the effect of increased tem-
perature on partitioning discussed above was offset by the
increase in POC. It should be noted that simulating how global
climate change will affect future primary productivity in the
oceans is highly uncertain (Cousins et al. 2011a, b). For ex-
ample, contrary to the assumption of Borgå et al. (2010),
Boyce et al. (2010) observed a decrease in primary productiv-
ity in the Arctic Ocean and associated this decrease to limited
nutrient supply caused by temperature-driven stratification of
the surface oceans.

We conclude from the above discussion that the major im-
pact of climate change on bioavailability is likely due to
changes in distribution between exposure media due to

increasing temperature or changes in the primary productivity
as opposed to the direct bioenergetic impacts of temperature
on PCB uptake through changes in food consumption or met-
abolic rate. Large uncertainties remain, however, concerning
how primary productivity in the world’s oceans will be affect-
ed by global climate change. This information was developed
in ArcRisk and incorporated into models and experiments dur-
ing the project.

Food web transfer variations in a changing Arctic climate

Climate change can impact environmental processes and the
transfer pathways of POPs within the food web such as bio-
availability (as discussed above), metabolism and trophic
structure. Cousins et al. (2011a, b) and Gouin et al. (2013)
have reviewed the impact of climate change on bioaccumula-
tion of POPs in food webs, and their main conclusions were
that ‘indirect’ effects (e.g. changes in human diets, species
distribution and primary productivity) are likely to be of
higher importance for humans and the environment compared
to ‘direct’ effects (bioenergetic processes, such as consump-
tion rate, metabolism and growth). However, indirect effects
are much more difficult to include in models as well as in
empirical studies. Hence, we need better and more thorough
understanding of trophic interactions and changes within the
food web to fully understand the impact of climate change on
bioaccumulation of PCBs in the future.

Contemporary and future human exposure
scenarios

PCBs and other POPs may enter humans via air, food or
through contact with the skin (Cao et al. 2014; Linares et al.
2010; Lorber 2008; Turyk et al. 2009). Among these entry
routes, the diet is the major source of PCBs, especially fatty
fish, meat and dairy products. PCBs have been detected in a
suite of body tissues and fluids such as maternal and children’s
blood and/or serum, cord blood, foetal adipose tissue, placen-
ta, infant blood, blood from males and breast milk in Arctic
peoples (AMAP 2015; Nøst et al. 2013; Bonefeld-Jørgensen
2004; Donaldson et al. 2010; Dudarev et al. 2004; Hansen
2000; Klopov et al. 1998; Nøst et al. 2013). In the blood of
breast-fed infants, the concentration may be many times
higher than in maternal blood (Boucher et al. 2010). PCBs
have a long half-life in the body and by fitting a population-
level pharmacokinetic model to biomonitoring data for human
blood, half-life estimates of 15.5 years for PCB170, 14.4 years
for PCB153 and 11.5 years for PCB180 were estimated (Ritter
et al. 2011). PCBs that are not bio-transformed are only slowly
excreted, mainly through the faeces, urine and breast milk.
Throughout the past few decades, a variety of more or less
subtle effect endpoints such as activation of the aryl-
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hydrocarbon receptor (AhR) and the pregnane X receptor
(PXR), foetus development and mental development among
children have been identified in the literature, especially based
on Arctic studies (Abass et al. 2013; Bonefeld-Jørgensen
2004; Deutch et al. 2007; Donaldson et al. 2010; Hansen
1998, 2000; Hansen et al. 2002; Hansen et al. 2010; Klopov
et al. 1998; Letcher et al. 2010; Odland and Nieboer 2012).

Toxicokinetic modelling and future risk predications

Several earlier trend studies report PCB levels in Arctic indig-
enous populations (Donaldson et al. 2013; Dudarev 2012;
Gibson et al. 2016; Kruger et al. 2012; Ryan and Rawn
2014; Schaebel et al. 2017; Singh and Chan 2017; Valera et
al. 2013a, b; Veyhe et al. 2015).

PCB153 is among the most prevalent PCB congener found
in human populations and as such has been one of the indica-
tor PCBs for monitoring in biota (Fisk et al. 2005; Gewurtz et
al. 2006; Gomez-Ramirez et al. 2014; Kalinovich et al. 2008;
Letcher et al. 2010; Wolkers et al. 2006; Xu et al. 2013). The
trend of geometric mean concentration (declining for all three
locations) of PCB153 in plasma lipid from pregnant women
during the years 1992–2007 in Inuit women from Disko Bay
and Nuuk (Greenland) and Nunavik (Quebec, Canada) is
shown in Fig. 16. The decreased concentrations of PCB153
in pregnant women from the Disko Bay area may be due to a
decrease in the consumption of traditional food originating

from animals at high trophic levels. There has clearly been a
trend for decreased exposure to PCB153 in Arctic. The lower
concentrations in Nuuk women compared to Disko Bay are
most likely due to lower consumption of traditional diet that is
rich in marine mammals in Nuuk (largest town in Greenland)
compared to the more rural Disko Bay. The geometric mean
concentration of PCB153 (Fig. 16) measured in plasma lipid
has decreased from 111 to 172 μg/kg plasma lipids during the
1990s to 40–79 μg/kg plasma lipids during early 2000s at all
three locations (Abass et al. 2013). The analyses of trends and
data continue after the ArcRisk work as well and can be found
in the recent AMAP assessment (AMAP 2015, p. 2015).

PCB153-associated human health effects and risks were
assessed using data obtained from the AMAP biomonitoring
programme presented above and a one-compartment popula-
tion-based pharmacokinetic model. The aim within ArcRisk

was to extrapolate body burden and exposure to the whole
lifespan of the population. The results of the modelled body
burden are presented in Fig. 17.

A hazard quotient (HQ) is the average daily dose (ADD)
divided by a reference dose (RfD) and gives an estimate of
non-cancer related effects. Abass et al. (2013) used HQ to
estimate the exposure to PCB153 (Fig. 18) during recent de-
cades for Arctic human populations. The 90th population per-
centile during the years 1955–1987 and the 50th population
percentile during 1956–1984 had HQ > 1, which means that
the exposure may cause a potential adverse, non-cancer health

Fig. 16 PCB153 concentration
trends (geometric mean and
range) in plasma lipid (μg/kg)
among pregnant women from
Disko Bay (Greenland), Nuuk
(Greenland) and Nunavik
(Quebec, Canada) in the period
1992–2007. Reprinted (Abass et
al. 2013) with permission of
Elsevier

Environ Sci Pollut Res (2018) 25:22499–22528 22517



effect. Cancer risk related to PCB153 was also estimated with-
in the same study and the range for the 90th percentile was
from 4.6 × 10−5 to 1.8 × 10−6 between 1930 and 2049
(Fig. 19). Further details on methods and results are described
in Abass et al. (2013). This kind of toxicokinetic modelling in
combination with the United States Environmental Protection
Agency Integrated Risk Information System (US-EPA-IRIS)
risk assessment framework proved to be very useful for pre-
diction and assessments of human health risks related to
POPs.

PCBs in Arctic and European populations

As a part of the ArcRisk project, a survey including both
Arctic (Norway) and European cohorts (Spain) was conducted
and the results for PCB153 in blood serum are shown in
Fig. 20. The highest exposure was found among participants

in the Norwegian Fish and Game (NFG) study, while partici-
pants in the Spanish INfancia y Medio Ambiente:
Environment and Childhood (INMA) and the Northern
Norway Mother-and-Child Contaminant Cohort Study
(Norwegian MISA) studies had the lowest exposure.
However, the participants in the NFG study were older (me-
dian, 55 years; range, 21–80 years) than the participants in the
other studies and, hence, higher concentrations could be ex-
pected. Furthermore, participants in the NFG high consumer
group were invited due to high consumption of food that gen-
erally contains higher levels of POPs compared to other food
items. Human PCB exposure is decreasing in several regions
and hence the sampling year should be noticed (Donaldson et
al. 2010). The NFG study samples were from 2003, while the
sampling period and ages are more comparable between birth
cohort mothers from Spain (INMA, sampling years 2004–
2008, except Menorca which was sampled 1997–1999) and

BMDL

1940 1960 1980 2000 2020 2040
0

200

400

600

800

1000

1200

1400

Year

µ
g

/k
g

 p
la

sm
a 

li
p

id
s

th
Concentration in child, 50  percentile

th
Parental concentration history, 50  percentile

th
Maximum concentration of all cohorts, 90  percentile 

BMDL

Fig. 17 Extrapolated concentrations of PCB153 (μg/kg plasma lipids) in
pregnant Inuit women from Nunavik, Disko Bay and Nuuk for different
birth cohorts of 1940, 1950, 1960, 1970, 1980 and 1990. The estimated
concentrations of PCB153 in plasma lipids for the 50th and 90th
population percentiles of birth cohorts are given and shown. Both
estimates, the dotted and solid curve for 50th population percentile

while dashed envelope estimates maximum concentrations of all birth
cohorts for 90th of population percentile. They are based on the curves
of reference daily intake presented in Figs. 18 and 19. The health risk of
PCB153 is estimated by using a benchmark dose level (BMDL) of 300 as
a toxicological cutoff point. Reprinted (Abass et al. 2013) with
permission of Elsevier

Fig. 18 Modelled reference daily intake (ng/kg-bw/day) of PCB153 for an adult (50th and 90th) and production trend of PCB153. Reprinted (Abass et
al. 2013) with permission of Elsevier
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Arctic Norway (MISA, sampling years 2007–2009). The
mean and upper range of exposure (both in maternal and cord
blood) was higher among the INMA participants compared to
the MISA cohorts. Thus, this first comparison indicates that
women of fertile age living in Spain have higher PCB expo-
sure than women in the northern part of Norway (Brorström-
Lundén et al. 2013; Fernandez et al. 2007; Guxens et al. 2012;
Llop et al. 2017; Morales et al. 2013).

A study on POP distribution in the very same Norwegian
men sampled from 1979 to 2007 (Nøst et al. 2013) showed
declining concentrations for all POPs (Fig. 21) except for
chlordanes (e.g. trans-nonachlor). Decreasing trends were ob-
served from 1979 and onwards in concentrations of most
penta- and hexa-chlorinated PCBs. On the contrary, hepta-
chlorinated PCBs increased from 1979 to 1986, before they
began to decline (Fig. 21). Nøst et al. (2013) showed that the
POP concentrations decreased during 1979–2007 in men from
Northern Norway and that the average ΣPOP concentrations
in 2007 were one third of the concentrations measured in
1979. The years 1979 and 1986 had the peak PCB153

concentrations, which confirm that this period was the one
with the highest human exposure. The decreasing trends in
serum concentrations likely reflect declining environmental
concentrations due to reduced emissions during the same time
period.

Scenarios of future of human exposure and potential
health effects of PCBs in the Arctic

Risk assessment studies of pollution-related health effects in
Arctic populations are usually conducted using long-term ret-
rospective epidemiological studies. Even though there is a lot
of existing information on the topic, few studies report rela-
tionships between POP levels and human health or health-
related endpoints. Hence, ArcRisk therefore conducted a com-
prehensive meta-data analysis of results from the Arctic pop-
ulation studies on health effects. Three systematic review ar-
ticles (Candolin et al. 2014; Nieminen et al. 2013a; Nieminen
et al. 2013b) on the association between PCB exposure levels

Fig. 19 Cancer risk probability estimates for the high (cancer slope factor, CSF = 2.0) and low (CSF = 0.04) slope factors for the 90th and the 50th
percentiles of the birth cohorts. The year-axis indicates the time of birth of the cohort. Reprinted (Abass et al. 2013) with permission of Elsevier

Fig. 20 Overview of serum PCB 153 concentration in ArcRisk study groups. NFG = Norwegian Fish and Game study, MISA = Northern Norway
Mother-and-Child Contaminant Cohort Study
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and secondary sex ratios identified the following limitations
with respect to meta-analysis on health effects of PCBs:

1. The number of relevant articles with epidemiological data
is very limited.

2. The findings of epidemiological studies are analysed and
reported in ways that are often not comparable.

3. Results across repeated studies of the same phenomena
are rarely identical due to reasons that include differences
in analytical methods and genetic differences between the
populations studied.

4. Different statistical methods are used in different studies
and publications even though their main aims are identi-
cal, e.g. investigations of the relationship between PCB
exposure levels and health outcomes.

5. The quality of method descriptions also varies: detailed
descriptive statistics of the variables included and stan-
dard error for regression coefficients and/or the mean dif-
ferences were not always reported.

Summary and conclusions

The ArcRisk research team conducted research on long-range
transport, occurrence and fate, exposure and health impacts of
selected contaminants in Europe and the Arctic during a 4-
year period (2009–2013). The ArcRisk research, combined

with results from complementary studies, contributed signifi-
cantly to the current scientific understanding on the influence
of climate change on PCB/pollutant distribution, cycling and
effects in the Arctic. The combined results from models, mea-
surements and studies on health effects have been compiled to
provide an overall picture of PCBs and to describe the links
between emissions and health effects in the Arctic. This re-
view presents a comprehensive overview on PCBs that shows
our current understanding of the complex relationships be-
tween sources, transport, bioaccumulation, exposure and
health impacts of PCBs in relation to climate change, espe-
cially for Arctic environment and human populations.

The most relevant climate parameters that impact transport
pathways of PCBs to the Arctic and environmental processes
in the Arctic environment are changes in temperature, precip-
itation, sea and land ice cover and the global circulation of the
atmosphere and the oceans.

Emissions

Emissions of PCBs still occur from, e.g. buildings and waste
dumps (e.g. primary sources), although at decreasing rates.
Secondary emissions of PCBs accumulated in environmental
reservoirs (sediment, water, soil, snow and ice) are becoming
more important than primary sources. Climate change will
most likely increase primary and secondary emissions relative
to levels that would be expected under current conditions but

Fig. 21 Concentrations (ng/g lipid, y-axis: log scale) of selected POPs
analysed in repeated serum samples of men (N = 51, 51, 45, 48 and 52 in
1979, 1986, 1994, 2001 and 2007, respectively) from Northern Norway.
Parlar 50 represents toxaphenes and t-nonachlor the chlordanes. Boxes
extend from the 25th to the 75th percentile, horizontal bars represent the

median and whiskers extend 1.5 times the length of the interquartile range
(IQR) above and below the 75th and 25th percentiles, respectively; any
outliers are represented as points. *p < 0.05 and **p < 0.001 for
comparisons between pairs of consecutive sampling years. Please note
the figure is reproduced from Nøst et al. (2013)
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not to an extent that the overall decreasing trend of PCBs in
the remote environment will be confounded.

Important pathways to the Arctic

Atmospheric long-range transport is a major route for the
global distribution of PCBs to the Polar Regions and deposi-
tion from the atmosphere is an important pathway of PCBs to
both terrestrial and marine environments in the Arctic.

In addition to long-range transport via the atmosphere,
transport via oceanic currents is also important for the occur-
rence of PCBs in the Arctic. Climate change is likely to affect
all these pathways and their subsequent environmental fate.

The legislation covering PCBs that began in several coun-
tries during the 1970s has had the desired effect. However,
with the large quantities of PCBs used and their persistence,
we still see ongoing emissions of PCBs, and hence they are
present in biotic and abiotic matrices all over the world.
Lessons learnt from studies of trends of PCBs confirm that
legislation in combination with long-term monitoring remains
a very important tool for decreasing the environmental and
human health-related risks associated with persistent, toxic
and bioaccumulating compounds.

Key processes

Precipitation was identified as an important factor for PCBs
present in surface compartments such as the seasonal and
perennial snow pack (the latter associated with ice caps for
example). Climate-related effects such as changes in precipi-
tation patterns and erratic and longer snow-melt periods will
influence the accumulation and release of PCBs from
cryospheric compartments like snow, firn and ice.

PCBs can accumulate in young/single-season sea ice thus
providing a chemical stock for surface marine waters although
it is unclear how the changing nature of sea ice—its compo-
sition (first-year ice vs multi-year ice) and areal cover—will
affect the pathways and mobility of PCBs in surface marine
waters. During pronounced seasonal thaw, accumulated con-
taminants like PCBs will be released to the water thus provid-
ing a focused exposure mechanism for ice-associated organ-
isms at the base of the marine food web.

In total, PCB releases from sea ice and snow do not provide
large inputs to the Arctic oceans in comparison to those fore-
cast for the major pan-Arctic rivers that drain into coastal
Arctic seas.

Impact of climate changes on PCBs in the Arctic

The outcome from the models used in ArcRisk indicated that
PCB concentrations will show a relative increase in the Arctic
Ocean and atmosphere, mostly due to the climate change im-
pact on temperature, which will affect the volatilisation of

PCBs from both primary and secondary emission sources.
Atmospheric PCB concentrations have been decreasing in
the Arctic during the last few decades. Although some of the
modelled concentrations of PCBs were higher under the cli-
mate change scenarios, the absolute concentrations are fore-
cast to be several orders of magnitude below present levels in
all scenarios by the end of the twenty-first century. This is
directly linked to the long-term reductions in primary
emissions.

It is important to remember that the models do not include
all factors that may influence future PCB emissions/transport.
Increased transport (shipping, air traffic, etc.) and tourism in
the Arctic and changes in diet among indigenous peoples are
all examples of factors that can be of high importance for
assessing the future or changing impact of PCBs on human
health and the Arctic environment, but these factors are ex-
tremely difficult to incorporate into a model. Climate change
modelling is complex and indirect effects such as changes in
vegetation cover, animal distribution and land usage are not
included in the total assessment of PCB behaviour.
Nevertheless, ArcRisk has helped to fill knowledge gaps as
well as identify research areas where knowledge on the impact
of environmental pollutants on human and ecosystem health
in the Arctic in a changing climate is needed.

Bioavailability, food web transfer and concentrations
in biota

One of the most important factors that climate change affects
is the temperature, which is a driver for several other environ-
mental processes, including partitioning of PCBs between air,
water, soil and biota. Hence, climate changemay cause chang-
es in PCB distribution and thereby exposure pathways for
biota, e.g. impacts on primary production, which may change
the amounts of particulate or dissolved organic material
(POM/DOM).

Human health

PCB concentrations will decrease over time in humans, main-
ly owing to implementation of international legislation. There
are still knowledge gaps on the risk assessment of PCBs on
human health due to the relatively small number of studies and
difficulties in comparing among studies, although meta-
analysis studies can provide good overviews and data for
these risk assessments. For indigenous peoples, changes in
diet associated with increased consumption of imported proc-
essed foods as well as switches to different species depending
on seasonal abundance and climate-induced changes in spe-
cies composition are likely to have the most marked effect on
PCB exposure in the near future.
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