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Polychromatic dynamic localization in curved

photonic lattices

Alexander Szameit1*, Ivan L. Garanovich2, Matthias Heinrich1, Andrey A. Sukhorukov2,

Felix Dreisow1, Thomas Pertsch1, Stefan Nolte1, Andreas Tünnermann1 and Yuri S. Kivshar2

Dynamic localization is the suppression of the broadening of
a charged-particle wave packet as it moves along a periodic
potential in an a.c. electric field1–3. The same effect occurs for
optical beams in curved photonic lattices, where the lattice
bending has the role of the driving field, and leads to the
cancellation of diffraction4–8. Dynamic localization was also
observed for Bose–Einstein condensates9, and could have a
role in the spin dynamics of molecular magnets10. It has
been predicated that dynamic localization will occur in multi-
dimensional lattices at a series of resonances between lattice,
particle and driving-field parameters1. However, only the first
dynamic localization resonance in one-dimensional lattices has
been observed in any physical system6–9. Here, we report on the
experimental observation of higher-order and mixed dynamic
localization resonances in both one- and two-dimensional
photonic lattices. New features such as spectral broadening of
the dynamic localization resonances and localization-induced
transformation of the lattice symmetry are demonstrated.
These phenomena could be used to shape polychromatic beams
emitted by supercontinuum light sources11,12.

In optics, the effect of an external electric field on the motion
of charged particles in periodic potentials can be mimicked by the
propagation of a laser beam in an array of curved waveguides13.
A schematic diagram of a one-dimensional waveguide array is
shown in Fig. 1a. In such a structure, light propagation is governed
by coupling between the modes of neighbouring waveguides,
similar to wave dynamics in discrete lattices14. Constant waveguide
curvature corresponds to a d.c. field, and in this case the beam
experiences Bloch oscillations13, which have also been observed in
straight optical latticeswith transverselymodulated parameters15–18.
Dynamic localization due to a.c. fields can then be observed in
arrays of periodically curved optical waveguides with alternating
curvature5,6,8. A zigzag bending leads to similar behaviour4, and
arrays with optimized discontinuous waveguide curvature also
enable us to compensate for the long-range coupling between
the non-nearest waveguide modes7. In straight waveguide arrays,
optical beams experience broadening due to discrete diffraction14,
whereas in the regime of Bloch oscillations or dynamic localization
a periodic reconstruction of the initial light distribution occurs.
Whereas the effective d.c. driving field always leads to Bloch
oscillations with a period proportional to the inverse driving
amplitude, dynamic localization is a resonant effect that occurs
only for certain relations between the a.c. field profiles and the
wave-particle parameters. By adjusting the detuning from the
dynamic localization resonance, it becomes possible to control the
rate of wave transport. For light propagating in curved waveguide
arrays, the detuning depends on the wavelength, and application
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Figure 1 | Polychromatic light in modulated photonic lattices.

a, Schematic diagram of a one-dimensional periodically curved waveguide

array, in which a white-light supercontinuum is launched. b, Schematic

diagram of the femtosecond writing procedure. Insets: The resulting

waveguide refractive index modulation1n (bottom) and mode (top)

profiles. c, The broadband supercontinuum spectrum spanning the entire

visible region.

of this effect for optical filtering has been suggested19. By exploring
the shaping of polychromatic light, we identify and characterize
different dynamic localization resonances in lattices of various
geometries and dimensionalities.

For our experiments, we use the laser direct-writing method
in fused-silica glass (see the schematic diagram of the writing
set-up in Fig. 1b) to fabricate one- and two-dimensional
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Figure 2 |Dynamic localization of white light. a, Diffraction in a straight waveguide array. b, First-order dynamic localization at the wavelength

λ= 550 nm. c, Second-order dynamic localization at the wavelength λ= 550 nm. d, Broadband dynamic localization in the spectral region 450–730 nm in

a two-segment curved array. First column: waveguide axes bending profiles. Second and third columns: numerical simulations of the polychromatic beam

propagation and corresponding fluorescent images measured at the wavelength λ=633 nm. Fourth and fifth columns: numerically calculated and

experimentally measured spectrally resolved output beam profiles. e, Effective couplings in the curved arrays shown in b–d as a function of the wavelength.
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Figure 3 |Hexagonal lattice. a, Microscope image of the fabricated

hexagonal lattice. b, Output diffraction pattern observed in the straight

hexagonal array at λ= 543 nm.

waveguide arrays with required bending profiles. To characterize
comprehensively light propagation in the fabricated arrays, we
use two complementary methods: (1) direct visualization of the
laser beam propagation at λ = 633 nm through fluorescence
imaging, and (2) spectrally resolved imaging of the output optical
field distribution for the broadband supercontinuum excitation
that spans over the entire visible (λ= 450–800 nm) (see Fig. 1c).
First, we measure beam evolution in straight waveguide arrays
(see Fig. 2a). The beam propagation calculated theoretically for
the supercontinuum light and registered experimentally for the
wavelength λ= 633 nm is shown in the second and third columns,
respectively. In the fourth and fifth columns, we present the
calculated and measured spectrally resolved output beam profiles,
respectively. Note that diffraction increases at longer wavelengths,
in agreement with previous studies20,21.
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Figure 4 | Spatial–spectral beam shaping in a two-dimensional lattice. a, Schematic diagram of the effective couplings in the modulated hexagonal

lattice. b, Wavelength dependence of the effective couplings. c–e, Output diffraction profiles of light beams measured experimentally (top) and calculated

numerically (bottom) in the same modulated hexagonal lattice at three different wavelengths: 543 nm (c), 594 nm (d) and 633 nm (e).

To provide a link with the classical dynamic localization effect in
one-dimensional lattices, we consider planar arrays with harmonic
waveguide bending profiles. Then, after each bending period the
beam diffraction in the periodically curved waveguide array is
characterized by the effective coupling coefficient between the
neighbouring waveguides Ceff =C(λ)J0(ξ/λ), where λ is the optical
wavelength, C(λ) is the coupling coefficient between straight
waveguides, J0 is the Bessel function and ξ is a parameter that
depends only on the lattice geometry. Dynamic localization occurs
when the effective coupling is reduced to zero, which happens at
a series of resonances between the wavelength of light and the
lattice parameters: ξ/λ= ρn, where ρn are the roots of the Bessel
function6 (see the Methods section for details). Accordingly, for a
given structure, dynamic localization is possible only for specific
colours of light. The first-order dynamic localization was previously
observed experimentally6, yet higher-order resonances were not
explored. Below, we demonstrate that by accessing higher-order
dynamic localization and introducingmixed resonances, it becomes
possible to realize a new regime of dynamic localization with
strongly broadened response.

We create two sets of waveguide arrays with the same parameters
except for different bending amplitudes, which are chosen to
satisfy the first- and second-order dynamic localization resonance
condition at the wavelength of λ0 = 550 nm. The corresponding
results are presented in Fig. 2b and c, respectively. We observe
that, in both structures, the frequency components in a narrow
spectral region around λ0 return to a single waveguide at the
output, whereas significant diffractive broadening occurs for other
wavelengths. This is in sharp contrast to the light propagation
in the same straight waveguide array without bending, where all
spectral components experience strong diffraction (see Fig. 2a).
To understand the difference between the dynamic localization of
different orders, we present in Fig. 2e wavelength dependencies
of the corresponding effective coupling coefficients. For the first-
order dynamic localization, Ceff changes sign from negative to
positive at the resonance when we move from shorter to longer
wavelengths, corresponding to the transition from anomalous
to normal discrete diffraction. In contrast, the sign changes
from positive to negative around the second-order dynamic
localization resonance.
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The difference between dynamic localization of different
orders for polychromatic light suggests that multi-colour beams
can be manipulated through a combination of several dyn-
amic localization resonances22. Specifically, we find that it is
possible to achieve approximate dynamic localization in an
extremely broad spectral region by combining two successive
segments of the curved waveguide array that are tuned to
the first- and second-order dynamic localization at the same
wavelength (see the corresponding waveguide bending profile
in Fig. 2d).

Then, although different colours detuned from the exact
dynamic localization wavelength exhibit non-zero diffraction after
the propagation in the first segment, the input beam profile is
restored through the reversed diffraction in the second segment.
The overall effective coupling in the two-segment structure almost
completely vanishes in a very broad spectral region around the
dynamic localization resonance wavelength (Fig. 2e, red line). In
Fig. 2d, light propagation and output beam profiles are shown
for the two-segment curved waveguide array. We observe that
all spectral components, from λ = 450 to 730 nm, are localized
in a single waveguide at the array output (Fig. 2d, fourth
and fifth columns), despite the highly non-trivial evolution of
different spectral components inside the structure (Fig. 2d, second
and third columns).

Next, we explore new features of the dynamic localization
effect that arise in higher dimensions. Although dynamic local-
ization was predicted for three-dimensional electronic systems1,
only one-dimensional dynamic localization has been observed
experimentally so far6,7. Using the laser direct-writing technique,
we can create arbitrary two-dimensional lattices. As an example,
we consider a hexagonal lattice (see the microscope image of the
fabricated structure in Fig. 3a). In a straight lattice, the diffraction
pattern has the six-fold symmetry according to the underlying
lattice, see Fig. 3b. To compare the results with one-dimensional
lattices, we consider the simple harmonic bending profile in the
x–z plane: x0(z) = Acos[2πz/L], where A and L are the bending
amplitude and period, respectively, and x0(z) is the lattice transverse
shift along the x axis. Although the waveguides are modulated
in one plane, this affects coupling between the neighbouring
waveguides along different directions, defined by the coefficients
C

(1)
eff , C

(2)
eff and C

(3)
eff as shown in Fig. 4a. The effective coupling

coefficients can be expressed as follows23: C
(1)
eff = C(λ)J0(ξ/λ),

C
(2)
eff =C

(3)
eff =C(λ)J0(ξ/2λ), and their wavelength dependencies for

the fabricated array are presented in Fig. 4b. We see that the hor-
izontal and diagonal coupling coefficients may vanish at different
wavelengths, corresponding to partial dynamic localization along
particular lattice directions. In the fabricated hexagonal lattice, the
diagonal couplings are suppressed at the wavelength λ= 633 nm
(see the red line in Fig. 4b). In this spectral region, light effectively
experiences one-dimensional diffraction, see Fig. 4e. On the other
hand, for λ = 583 nm, all three couplings are reduced simulta-
neously by the same factor −0.1, and the diffraction symmetry
of the original hexagonal lattice is preserved. Output diffraction
profiles at the closely tuned wavelength λ= 594 nm are shown in
Fig. 4d, where a pronounced hexagonal diffraction pattern is visible
(corresponding effective couplings are marked with the yellow
line in Fig. 4b). Finally, at λ= 550 nm the horizontal coupling is
cancelled (C

(1)
eff = 0). At this wavelength, the beam can still spread

across the whole lattice, yet the diffraction pattern is similar to
those of square or rectangular lattices where each lattice site is
coupled to its four immediate neighbours (see Fig. 4c). Effective
couplings at the wavelength λ = 543 nm are marked with the
green line in Fig. 4b.

Our results demonstrate novel fundamental features of the
effect of dynamic localization based on higher-order and mixed
resonances in one- and two-dimensional lattices. Polychromatic

dynamic localization and localization-induced transformation of
lattice geometry, which we observe for the first time to our
knowledge, open up new avenues for applications of the dynamic
localization effect in various physical contexts. In particular, our
work suggests new approaches for flexible shaping of polychromatic
light with ultrabroadband or supercontinuum spectra11,12, which
can be enhanced further through the introduction of structure
tunability and optical nonlinearities.

Methods
Theory of dynamic localization in curved waveguides. To understand the origins
of the dynamic localization effect, we note that light propagation in an array of
weakly coupled waveguides can be considered as effectively discretized14, and it is
primarily characterized by coupling due to the overlap between the fundamental
modes of the nearest-neighbouring waveguides. Second-order coupling between
non-nearest neighbours is weak under our experimental conditions and is
not taken into account. In a one-dimensional array, light propagation can
be described by a set of equations for the mode amplitudes ψm(z) (ref. 6),
idψm/dz+C(λ)[ψm+1 +ψm−1] = (2πn0d/λ)ẍ0(z)mψm. Here, z is the propagation
distance along the waveguides, m is the waveguide number, the coefficient C(λ)
defines the coupling strength between the neighbouring waveguides that depends
on the wavelength λ, n0 is the refractive index of the medium, d is the waveguide
spacing, the function x0(z) describes periodic waveguide bending in a curved
array and dots stand for the derivatives. By the substitution z → t , the spatial
light evolution in a curved optical waveguide array becomes fully analogous to
the temporal evolution of a quantum particle in an externally driven periodic
potential, whereψm(t ) have the role of the probability amplitudes, C(λ) is replaced
by the nearest-neighbour transfer-matrix element and the driving force x0(t ) is
determined by the external electric field1.

In a straight waveguide array (with x0(z)≡ 0), the dispersion relation
reads kz = 2C(λ)cos(kxd), where kz and kx are longitudinal and transverse
components of the wave vector, respectively4. Accordingly, the diffraction
strength for a broad beam is determined as D= ∂2kz/∂k

2
x = −2C(λ)d2 cos(kxd)

(ref. 4). In a periodically curved array, wave diffraction after each bending
period (z → z + L) can be described by a similar relation where C(λ) is
replaced by the effective coupling, which is a functional of a specific bending
profile6, Ceff = C(λ)L−1

∫ L

0
cos[2πn0dẋ0(ζ )/λ]dζ . For a harmonic bending

profile x0(z)=Acos[2πz/L] with bending amplitude A, the effective coupling
reads Ceff =C(λ)J0(ξ/λ), where ξ = 4π2n0dA/L. Thus, when ξ/λ= ρn, where
ρn ≃ 2.40,5.52,... is the n th root of the Bessel function J0, the effective coupling
vanishes, Ceff = 0. This regime corresponds to the periodic diffraction cancellation,
Deff = −2Ceffd

2 cos(kxd)= 0, which is called dynamic localization1,6. Note that
the dynamic localization resonances do not depend on the dispersion of the
coupling coefficient C(λ). The effective coupling method can also be generalized
to higher dimensions1,23.

In our numerical simulations, we use a continuous (1+ 1)- and
(2+ 1)-dimensional finite-difference beam propagation method to model
light propagation in one- and two-dimensional waveguide arrays, respectively22,23

(the numbers in brackets denote the number of transverse and longitudinal spatial
dimensions, respectively). For polychromatic beams, we use a superposition of 50
frequency components with an equidistant flat spectrum from 450 to 730 nm as
input. Slight differences between the theoretical and experimental results appear
for the one-dimensional arrays because in numerical modelling we do not account
for the two-dimensional mode reshaping. Nevertheless, this has no effect on the
position of dynamic localization resonances, as they do not depend on the mode
overlaps as detailed above.

Laser writing. Our samples are fabricated in fused silica using the femtosecond
laser direct-writing technique24. When ultrashort laser pulses are tightly focused
into a transparent bulk material, nonlinear absorption takes place leading to optical
breakdown and the formation of a microplasma, which induces a permanent
change in the molecular structure of the material. In the case of silica glass, the
density is locally increased. By moving the sample transversely with respect to the
beam, a continuous modification of the refractive index is obtained enabling light
guiding (see the schematic diagram in Fig. 1b). This technique can be used to create
large waveguiding structures with almost arbitrary three-dimensional topology25.
Details of the fabrication technique can be found elsewhere26. All of our samples
are 105 mm long with the waveguide spacing d = 26 µm. Laser-written waveguides
possess an elliptical transverse cross-section of approximately 4×13 µm2. The
profiles of the waveguide refractive index distribution and the corresponding mode
measured at λ= 633 nm are shown as insets in Fig. 1b. To study one-dimensional
dynamic localization, we created three curved waveguide arrays consisting of 19
waveguides each. Curved arrays for the first- and second-order dynamic localization
contain one full bending period equal to the sample length (L= 105mm), and
have bending amplitudes A= 93 and 214 µm, respectively. The curved array
for the broadband dynamic localization consists of two successive segments of
length L1 = 63mm and L2 = 42mm with bending amplitudes A1 = 56 µm and
A2 = 86 µm, respectively. To study dynamic localization in two-dimensional
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lattices, we created a curved hexagonal array with a bending period L= 105mm
and bending amplitude A= 215 µm (see the microscope image of the fabricated
array in Fig. 3a). To characterize the diffraction strength in our samples, we also
fabricated one- and two-dimensional straight arrays (see the measured diffraction
patterns in the straight arrays in Figs 2a and 3b).

Fluorescence imaging. To directly observe the light propagation within our
one-dimensional arrays (see Fig. 2, third column), we use a fluorescence
technique27. For the fabrication of the waveguides, we use fused silica with a
high content of hydroxide. This leads to a massive formation of non-bridging
oxygen hole centres during the writing process, resulting in a homogeneous
spatial distribution of these colour centres along the waveguides. When launching
light from a HeNe laser at λ= 633 nm into the waveguides, the non-bridging
oxygen hole centres are excited and the resulting fluorescence (λ= 650 nm)
can be directly observed8. As the colour centres are formed exclusively inside
the waveguides, this technique yields a high signal-to-noise ratio. In contrast to
fluorescent polymers (see, for example, ref. 28), the bulk material causes almost no
background noise in our case.

Supercontinuum characterization. A white-light continuum was generated using
a 25-cm-long photonic-crystal fibre (PCF NL-1.7-650, Crystal Fibre). Ultrashort
laser pulses with a length of 1 ps from a Ti:sapphire oscillator (Spectra Physics)
were coupled into the photonic-crystal fibre. Owing to the high peak power of these
pulses, supercontinuum radiation was generated with a spectrum shown in Fig. 1c.
This white light is coupled into the central waveguide of the arrays using a ×10
microscope objective (numerical aperture: 0.25). The output facet is imaged onto a
CCD (charge-coupled device) camera by a ×10 microscope objective; the spectral
resolution is achieved by a prism placed between the objective and the camera.
Owing to the chromatic dispersion, the output spatial profiles are resolved at the
individual wavelengths29,30 (see Fig. 2, fifth column).
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