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Abstract—

The UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) defines a mathematically
expressive model of time, the Clock Constraint Specification
Language (CCSL), to specify timed annotations on UML di-
agrams and thus provides them with formally defined timed
interpretations. Thanks to its expressive capability, the CCSL
allows for the specification of static and dynamic properties,
of deterministic and non-deterministic behaviors, or of systems
with multiple clock domains. Code generation from such multi-
clocked specifications (for the purpose of synthesizing a simulator,
for instance) is known to be a difficult issue. We address it by
using the approach of controller synthesis. In our framework,
a timed CCSL specification is regarded as a property whose
satisfaction should be enforced for any UML diagram carrying it
as annotation. To do so, CCSL statements are first translated into
dynamical polynomial systems. Such systems can be manipulated
using the model-checker Sigali to synthesize an executable prop-
erty (a controller) which enforces the satisfaction of the specified
timing constraints on the UML diagram with which it is executed.

Index Terms—MARTE; Polychrony; CCSL; GALS; controller
synthesis;

I. INTRODUCTION

Over the past decade, system-level design has been widely

advocated as a way to overcome rising technological complex-

ity of embedded system design and the aggravating factors of

always stronger time-to-market constraints. To this end, high-

level modeling languages, tools, and frameworks have been

proposed to design, simulate and validate embedded systems

with the claims of allowing engineers to gain comprehension

and productivity thanks to the raised design-abstraction level

offered by these models and tools. For instance, the Unified

Modeling Language (UML) [29] has been widely used as a

general purpose modeling and specification language. Its ex-

tension for modeling real-time and embedded (RT/E) systems,

the UML Profile MARTE (for Modeling and Analysis of Real-

Time and Embedded systems) [28], was adopted as an Object

Management Group (OMG) specification. MARTE consists

of necessary extensions to UML with modeling concepts and

semantic disambiguations which make it usable for the formal

specification of RT/E systems.

As importantly as the role time plays in RT/E system

design, MARTE provides a formal model of time to accurately

annotate UML objects with timing information. Inspired by the

Tagged Signal Model [22] and synchronous languages [5], the

CCSL (Clock Constraint Specification Language) [28], [2] is

a specification formalism to express events, clocks and their

relations in a way that supports both synchronous composition,

asynchronous composition, as well as non-determinism, and in

a progressive and compositional manner.

The design, simulation and validation of safety-critical

RT/E systems not only require a high-level of abstraction to

grasp system complexity, but also need to be grounded on a

rigorously defined mathematical framework. Abstraction and

rigor is how synchronous languages [12], [13] were designed

and this is what brought them broad acceptance in the field.

Polychrony [18] is one such framework. It differs in its yet

more abstract model of computation, which is based on timing

relations (rather than timing functions as SCADE defines)

and still comprises a so-called clock calculus to refine such

relational specifications into deterministic, executable ones.

SIGNAL [7] is the kernel design language at the origin

of the Polychrony toolset. SIGNAL is a data-flow language

in which equations describe abstract (timing) and concrete

(causal) relations between discrete input and output streams

of values (signals).

The relational framework of SIGNAL provides the unique

capability to describe systems with multiple clocks (poly-

chronous systems) as relational specifications, including non-

deterministic devices (e.g., a non-deterministic bus) and ex-

ternal processes (e.g., an unsafe car driver). Deterministic

specifications are obtained through a refinement process, aided

by the clock calculus, to generate code for simulation, anal-

ysis, validation and synthesis. The application domains of

Polychrony include software architectures of safety-critical

systems, as found in automotive and avionics.

Nonetheless, it is notorious that code generation from a

timed system with multiple clocks (a polychronous system)

is far from obvious. For instance, SCADE always uses a

reference or master clock (the fastest); all clocks and all

conditions are defined as a functional sampling of this master

clock, from the highest specification down to the lowest

generated code. This is why it is called synchronous.

SIGNAL, on the contrary, enables the specification of

systems with partially related or independent clock domains. A

formally defined refinement process yields to the generation of

(sequential or concurrent) code by the addition of control vari-



ables to get a deterministic behavior satisfying the constraints

and allowing the desired amount of concurrency. The main

advantage of this approach is the construction of deterministic

temporal behavior that can be efficiently implemented on

statically scheduled mono-processors or quasi-synchronous

architectures (such as loosely Time-Triggered Architectures).

The main disadvantage of both approaches is that they are

ad-hoc solutions for generating uni-processor code, making the

exploitation of concurrency and distributed code generation

both difficult and limited [9], [3].

The motivation of our work is still to take advantage

of the formal framework of Polychrony in the context of

a high-level specification formalism, MARTE CCSL. Yet,

our work considers a totally different approach: to generate

executable specifications by considering discrete controller

synthesis (DCS) [32], [23], [25]. Distributed clock constraint

resolution is addressed by DCS, which does not necessarily

require a master clock to address polychronous clocks. In our

approach, multi-clock (CCSL) specifications are translated into

polynomial dynamical systems (PDSs). A PDS represents the

transition system of a specification as well as the constraints

(invariants) it must satisfy. Finally, the generated controller is

synthesized into the original system to complete code genera-

tion via Polychrony. In conclusion, the temporal semantics of

CCSL is mapped onto a polychronous model of computation,

on which effective synthesis is carried out to meet constraint

requirements. This approach provides both a useful mapping

in theory and a flow, which is practical in the generation of

reactive controllers.

DCS is one of the automated techniques that can exploit

PDSs. It consists in constraining or controlling the system

behavior against a given control objective. Using DCS, the

synthesized controller preserves all possible behaviors of the

initially specified system, with respect to the control ob-

jectives, instead of choosing one, ad-hoc, solution, as syn-

chronous language compilers do. As a PDS can express

polychronous systems, the computed result does not need a

master-clock. To implement our DCS approach, we actually

use Sigali, the model-checker and controller synthesis tool of

Polychrony.

Outline. Section II presents some background on modeling

time in reactive systems, using Polychrony and MARTE’s

CCSL. Section III gives a brief introduction to discrete

controller synthesis and its implementation in Sigali. Sec-

tion IV introduces our approach of synthesizing controllers

from CCSL constraints, by describing a translation of CCSL

into Signal and exemplifying it with a case study. Some related

works are addressed in Section V. And the conclusion is drawn

in Section VI.

II. REACTIVE SYSTEMS AND TIME MODELING

Reactive systems [16] are generally embedded systems,

which continuously interact with their environment under

strict timing constraints required by the environment. These

systems are generally safety-critical systems. The synchronous

approach [15], based on the synchronous timing modeling, is

proposed for the design of reactive systems. The evolution of

system is considered as a discrete sequence of non-interleaving

reactions. In each reaction, the input data reading, data com-

puting, internal state updating, and output data writing are

carried out in a short period of time, which is supposed to

be compatible with the timing requirement of the interacting

environment. All operations in a reaction run in parallel while

all data dependency is respected. Reactions are abstracted by

the notion of instant from a temporal view point. A logical

clock, composed of a chain of instants, is then used to express

when reactions occur. The time modeling in the synchronous

approach is very close to synchronous circuits. This modeling

makes it possible to provide a formal behavioral specification

of systems, thus correctness proving of the behavior is possible

and efficient. Synchronous programming languages [15], [5],

compilers [7], formal verification and software synthesis tools

[25] have been developed in the framework of synchronous

approach. In this section, we give, based on synchronous

modeling, a brief introduction to Polychrony and CCSL, and

their corresponding time modeling for reactive systems.

A. The SIGNAL language and Polychrony

SIGNAL, based on the polychronous model of computation

[21], is a synchronous language that allows the specifica-

tion of multi-clock/polychronous systems, in which a process

can be deactivated while other processes are still activated.

In addition, the SIGNAL formal model allows partial and

non-deterministic specifications. Thus, SIGNAL enables the

globally asynchronous locally synchronous (GALS) design for

distributed embedded systems.

In SIGNAL, variables are called signals1. Each signal (e.g.,

x) represents an infinite typed sequence, which is mapped

onto the logical time indexed by natural numbers, i.e., x is

actually (xτ )τ∈N
. The symbol ⊥, which represents the absence

of the signal at certain instant on the logical time, expands

the domain of signal. Each signal is associated with a logical

clock indicating the set of instants when the signal is present

in the reactions. SIGNAL programs are mainly composed of

equations over signals. These equations specify the relations,

including clock and/or value relations, between signals. An

elementary process is defined by an equation that associates

an expression built on operators over signals with a signal.

The arguments of operators can be expressions and signals.

Several main elementary processes are listed in the following:

• Stepwise extensions. Let f be a symbol denoting

a n-ary function JfK on values (e.g., Boolean, arith-

metic or array operation). Then, the SIGNAL expression

y := f(x1,..., xn) defines the process equal to

the set of executions that satisfy: the signals y, x1, ..., xn

are synchronous and they are pure flows [7] that have

same length l and satisfy ∀t ≤ l, yt = JfK(x1t, ..., xnt).

In addition, ˆx
def
⇐⇒ (x = x) returns the clock of x,

where = denotes the stepwise extension of usual equality

operator.

1Signal in capital, i.e., SIGNAL, indicates the language.



• Delay. This operator defines the signal whose t-th el-

ement is the (t-1)-th element of its (pure flow) in-

put, at any instant but the first one, where it takes

an initialization value. Then, the SIGNAL expression

y := x $ 1 init c defines the process equal to

the set of executions that satisfy: y, x are synchronous

and they are pure flows, which have same length l and

satisfy ∀t ≤ l, t > 1 ⇒ yt = xt−1 ∧ t = 1 ⇒ yt = c.

• Sampling. This operator has a data input and a Boolean

control input. When one of the inputs is absent, the

output is also absent; at any logical instant where both

input signals are defined, the output is present and equals

to data input iff the control input holds the value true.

Then, the SIGNAL expression y := x when b im-

plies: y, x, b are extended to the same infinite domain T ,

respectively as yT , xT , bT ; and ∀t ∈ T, (bT
t = true ⇒

yT
t = xT

t ) ∧ (bT
t 6= true ⇒ yT

t =⊥).
• Deterministic merging. The unique output provided by

this operator is defined (i.e., with a value different from

⊥) at any logical instant where at least one of its two

inputs is defined (and non-defined otherwise); a priority

defined on two inputs makes the output deterministic. The

SIGNAL expression is z := x default y. The time

domain T of z is the union of the time domains of x

and y; z, x, y are extended to the same infinite domain

TT ⊇ T , resp. as zz, xx, yy; synchronized flows satisfy

∀t ∈ TT, (xxt 6=⊥⇒ zzt = xxt) ∧ (xxt =⊥⇒ zzt =
yyt). There exists derived operators, such as x1 ˆ+ x2
def
⇐⇒ ˆx1 default ˆx2 (clock union) returns an event

signal that is present iff x1 or x2 is present; x1 ˆ- x2
def
⇐⇒ when ((not ˆx2) default ˆx1) returns an

event signal that is present iff x1 is present and x2 is

absent.

Polychrony [18] is an integrated development environment

based on SIGNAL. It is composed of the SIGNAL batch

compiler, a Graphical User Interface (GUI), and the Sigali

tool, etc. The compiler [7] provides a set of functionalities,

which include program transformations, optimizations, code

generation, etc. The Sigali tool is used to build associated

formal systems for formal verification and controller synthesis

[25], which will be detailed in Section III.

B. Time model in MARTE

MARTE, as a profile of UML, presents a time model in a

more precise and clear manner than UML for the design of

RTE systems. Both discrete and dense times are considered

in MARTE. Clocks, which can be chronometric or logical,

are used to access time structure. A chronometric clock

implicitly refers to physical time, whereas a logical clock

mainly addresses concrete instant ordering. The MARTE time

model allows multiform/polychronous time modeling, which

is inspired by synchronous languages. We only address logical

clocks in this paper, which may be polychronous clocks.

A clock is a finite or infinite set of instants. A clock may

represent a timed event and instants are its occurrences. A

clock has a unit and the instants can have a label. These

instants in a clock are totally ordered for discrete time clocks,

thus they can be indexed by natural numbers. A time structure

is composed of a set of clocks with the precedence relation

between them. Precedence is a binary relation on clocks [1],

and from this relation, we can derive the following new

relations: strict precedence, coincidence, independence, and

exclusion. We can directly find the last three relations in

SIGNAL, whereas strict precedence implies non-deterministic

ordering of instants, thus cannot be directly expressed by

primitive SIGNAL operators. In order to avoid the confusion

of concepts from different languages, we use static relation

to indicate coincidence-based, sampling-based, and (ˆ=, or

ˆ-)-based relations in CCSL and SIGNAL. All other relations

are called dynamical relations, including delay, independence,

exclusion, and precedence-based relations.

MARTE introduces a new stereotype of UML Constraint,

through which a MARTE timed system can be specified.

CCSL is used to express the clock constraints based on

these constraint stereotypes. It is a non normative language

annexed to MARTE (Annex C), and it is independent of any

existing language. A comprehensive informal description of

CCSL has previously been presented in [2] and a formal

semantics for a kernel of CCSL can be found in [1]. A CCSL

specification consists of clock relations and clock expressions.

Subclock, alternatesWith, etc. are examples of clock relations,

while delayedFor and s sample are clock expressions. In this

paper, only main and frequently used constraints are presented,

illustrated, and addressed (details can be found in Section IV).

III. DISCRETE CONTROLLER SYNTHESIS

DCS [32], [23], [25] was originally defined in the frame-

work of language theory, often called supervisory control of

discrete event systems, and is related to game theory. It has

been formulated in terms of labeled transition systems, and in-

volves algorithms that explore symbolically and automatically

the state space similar to model-checking, with complexity

issues and capacities of the same order.

A. An informal introduction to DCS

DCS consists of computing constraints on controllable

events, with regard to current system state and all the pos-

sibility of uncontrollable events, so that control objectives

(specified by some properties) are always satisfied. To achieve

DCS, we need the following preparations at least: make the

system controllable and specify control objectives. The first

preparation is involved in the partition of system behavior

according to its controllability. For instance, the involved

events in the system are partitioned into uncontrollable (Iu)

and controllable ones (Ic), as illustrated in Fig. 1. The un-

controllable events are generally inputs that come from the

system’s environment, while controllable events correspond to

locally produced events in the system. The second preparation

concerns the specification of control objectives: properties to

be always ensured, for instance, invariance and reachability

of some given states of the system, i.e., behaviors are kept



within the safe states, or certain (e.g., termination) states

of the application are always reachable. DCS synthesizes

the resulting constraints, called controllers into the original

system. The controllers are maximally permissive when the

constraints on controllable events are minimal, i.e., system

behaviors are constrained as least as possible while ensuring

control objectives.

Fig. 1. An equational view of a reactive system controlled by h (obtained
by DCS).

In Fig. 1, the function h represents the controller to syn-

thesize. It is automatically computed from the reactive sys-

tem (X, g, f), X being the state of the system, g the transition

function, and f the output function. In a given state X and

given any uncontrollable input Iu, the controller h computes

values of controllable Ic so that the resulting behavior satisfies

the control objectives.

B. Sigali and a symbolic representation

Sigali [11] is a formal verification and controller synthesis

tool associated with Polychrony. It enables to prove the cor-

rectness of the dynamical behavior of a system. Sigali is based

on polynomial dynamical equation systems (PDSs) over Z/3Z

[20], i.e., integers modulo 3: {0,1,-1} = {0,1,2}, as a formal

model to describe the program behavior. Sigali manipulates

the system of equations instead of the sets of solutions, which

avoids the problem of enumerating state spaces, i.e., a set of

states and/or events is represented by a unique polynomial.

Thus, operations are performed on sets, while still remaining in

the domain of polynomial functions, and avoiding to enumer-

ate them. Sigali relies on an implementation of polynomials

by Ternary Decision Diagram (TDD) (for three valued logic)

in the same spirit of Binary Decision Diagram (BDD) [8].

However, the paths in the data structures of TDD are labeled

by values in {1, 0, -1}.

C. Translating SIGNAL into PDS

SIGNAL processes are translated into a system of polyno-

mial equations over Z/3Z [20]. The three possible states of a

Boolean signal X are coded as: present and true → 1, present

and false → -1, and absent → 0). Non-Boolean signals are

only considered by two states: present → 1 and absent →
0. The square of present is 1, i.e., it is present whatever its

value. Hence, the clock of a signal X can be coded by x2

(x is the corresponding variable of X in PDS). Similarly, two

synchronous signals X and Y satisfy the constraint equation:

x2 = y2.

Each primitive process of SIGNAL can be expressed in

a polynomial equation. For instance, C := A when B can

be translated as c = a(−b − b2): the solutions of this

equation represent the set of behaviors of the primitive process

when. The following table shows the translation of all the

primitive SIGNAL operators into polynomial equations. For

the non Boolean expressions, we only translate the synchro-

nization between the signals. For instance, x := y when B

is translated into x2 = y2(−b − b2) and B := U > V into

b2 = u2 = v2.

Event constraints

A ˆ= B a2 = b2

C := A ˆ+ B c = a2 + b2 − a2b2

C := A ˆ* B c = a2b2

Boolean instructions

B := not A b = −a
C := A and B c = ab(ab − a − b − 1)

a2 = b2

C := A or B c = ab(1 − a − b − ab)
a2 = b2

C := A default B c = a + (1 − a2)b
C := A when B c = a(−b − b2)
B := A $1 (init b0 ) x′ = a + (1 − a2)x

b = a2x
x0 = b0

TABLE I
TRANSLATION OF SIGNAL PRIMITIVE OPERATORS.

Any complete SIGNAL specification can be translated into a

set of equations of PDS through the composition of equations

that represent SIGNAL primitive processes. A PDS can be

considered to have three sub-systems of polynomial equations

in the form:

S =











X ′ = P (X, Y, U)

Q(X,Y, U) = 0

Q0(X) = 0

where X and X ′ are vectors of state variables in Z/3Z.

Y is a vector of uncontrollable variables, whereas U is a

vector of controllable variables. The first equation, composed

of all the equations over state variables, is a state transition

equation. It captures the dynamical aspects of the system. The

second equation, called constraint equation, specifies which

event may occur in a given state. The last equation defines the

initial states.

D. Control objective and synthesis

Given a PDS S, a controller is defined by a system of two

equations: C(X,Y, U) = 0 and C0(X) = 0, where the second

equation determines the initial states that satisfy the control

objectives and the first equation decides the instantaneous

controls, i.e., when the controlled system is in state x ∈ X ,

and when an event y ∈ Y occurs, any value u ∈ U such

that Q(x, y, u) = 0 and C(x, y, u) = 0 can be chosen. The

behavior of the system S composed with the controller is

modeled by the system Sc:



Sc =











X ′ = P (X,Y, U)

Q(X, Y, U) = 0 C(X, Y, U) = 0

Q0(X0) = 0 C0(X0) = 0

The frequently-used (but not limited to) control objectives

for which we are able to synthesize a controller include:

the invariance of a set of states, i.e., a set of states E is

invariant if every trajectory initialized in E remains in E;

the (global) reachability of a set of states, i.e., a set E is

(globally) reachable, if starting from any possible state, there

exists a trajectory that reaches E.

More information about Sigali, including examples and

synthesis algorithm, can be found in [26], [14] and [19].

IV. SYNTHESIS CONSIDERING CCSL CONSTRAINTS

Using Polychrony for the validation and synthesis of embed-

ded systems, specified by MARTE CCSL, is not a simple and

direct job due to the following reasons. First, code generation

in synchronous languages is always based on the reference

clock, which is the fastest clock existing in the system or

synthesized by the compiler into the system. This solution to

code generation is efficient for mono-task systems. However,

it is not an adequate solution for multi-task systems or dis-

tributed systems, i.e., the systems that may have independent

clocks. The second reason is related to the deterministic

temporal behavior required by the code generation. Determin-

istic behavior is very useful for the design and verification

of safety-critical systems. However, obtaining deterministic

behavior may be a difficult task for large and complex systems.

SIGNAL code generation may synthesize arbitrary reference

clocks and control scheme in order to obtain deterministic

behavior. Thus it may demand large amount of synchronization

between clocks, which makes the system over-loaded.

Our proposition to this issue, compared to the code gen-

eration for synchronous languages, is based on DCS. The

advantages of using DCS include:

• symbolic representation of system for an efficient system

exploration, including the dynamical behavior, and the

system exploration, similar to model-checking, enables

one-hundred percent coverage;

• seamless connection to synchronous languages that sim-

plifies the translation;

• ensuring constraints and properties, such as safety, reach-

ability, for the purpose of reliable execution of system;

• automatic synthesis of controllers that preserves all pos-

sible solutions while ensuring control objectives.

The main synthesis process of this work is illustrated in

Fig. 2. CCSL clock constraints are first partitioned accord-

ing to the nature of constraints: static or dynamical. Static

constraints can be well handled by compilers of synchronous

languages, while dynamical constraints may lead to non-

deterministic instant ordering in the system, and some of them

could not be solved by synchronous compilers. Hence, we

need a systematic method, DCS in our approach, to analyze

and process these constraints as a complementary technique

to synchronous compiling. We consider these constraints as

control objective in our approach. The generated deterministic

controller ensures the satisfaction of these constraints.

The next step is to translate these constraints into SIGNAL

programs. All static constraints and part of dynamical con-

straints are translated into SIGNAL programs in a direct way

as we can find similar operators in SIGNAL. However, some

of dynamical constraints are translated into specific SIGNAL

processes that meet the constraints. The translations of these

constraints are detailed in Section IV-A. Then all the translated

SIGNAL programs are compiled into dynamical polynomial

systems (Section IV-B). The Sigali tool is used here to carry

out the computing over PDS, and generate new dynamical

polynomial systems in which all the constraints are satisfied.

Fig. 2. The general schema of the polychronous controller synthesis.

A. Translation of CCSL clock constraints into SIGNAL

This work partly relies on the translation of typical CCSL

relations into SIGNAL [24]. We developed a SIGNAL library

for most of the CCSL constraints. Only main constraints

are presented in this paper, which include subclock, equal-

ity, exclusion, union, intersection, difference, alternatesWith,

s sample, and delayedFor. These constraints are frequently

used and typical enough to illustrate our approach. In the

following, we give the definition of these constraints, then

simple examples, followed by their translations into SIGNAL.

Before the presentation of the CCSL translation, several

notations are first introduced for the definition of clock con-

straints. These notations are mainly based on the instant and

clock notion:

• ∼ and ≁ indicate that two instants are synchronous

(coincidence in CCSL, and similar to ˆ= in SIGNAL

for just one instant) and not synchronous (exclusive)

respectively, for instance, a ∼ b implies instants a and

b are synchronous.

• < and ≤ are used to specify the precedence relation

between two instants. For example, a < b means instant

a precedes b, while c ≤ d signifies (c < d) ∨ (c ∼ d).



• c[k], k ∈ N indicates the k-th instant of clock c.

• fn(i, c, k) is a function that returns a k-th instant counted

from the instant of clock c that appears after the instant

i. Note that i can be an instant of clock c, or it can be

an instant of another clock.

• fu(c1, c2) is a function that returns a clock that ticks

whenever c1 or c2 ticks.

In the following, CCSL clock constraints and their transla-

tions into SIGNAL are presented. Please refer to [6] for the

SIGNAL operators that are not presented in this paper.

1) Clock relation subclock, equality and exclusion: the

definitions of these relations are:

Subclock: for two clocks c1 and c2,

c1 isSubClockOf c2 iff ∀i ∈ c1 ∃j ∈ c2, i ∼ j.

Equality, for two clocks c1 and c2,

c1 = c2 iff (c1 isSubClockOf c2)
∧

(c2 isSubClockOf c1)

Exclusion: for two clocks c1 and c2,

c1 # c2 iff ∀i ∈ c1∀j ∈ c2, i ≁ j.

Fig. 3 shows a simple example of subclock and equality.

Fig. 3. An example of clock relation subclock and equality:
A = B ; C isSubClockOf A.

The translation of these clock relations into SIGNAL is

illustrated here:

• isSubClockOf : C1 ˆ< C2;

• equality (=): C1 ˆ= C2;

• exclusion (#): C1 ˆ# C2;

2) Clock expression union, intersection, difference: the

definitions of these expressions are:

Union: for two clocks c1 and c2, c1 clockUnion c2 leads to

the third clock c3, where

(∀i ∈ c3 ∃j ∈ fu(c1, c2), (i ∼ j))
∧

(∀k ∈ fu(c1, c2) ∃n ∈ c3, (k ∼ n)).

Intersection: for two clocks c1 and c2, c1 clockInter c2

results in another clock c3, where

(∀i ∈ c3 ∃j ∈ c1 ∃k ∈ c2, (i ∼ j) ∧ (i ∼ k))
∧

(∀l ∈ c1 ∀m ∈ c2 ∃n ∈ c3, (l ∼ m) ⇒ (n ∼ l) ∧ (n ∼ m)).

Difference: for two clocks c1 and c2, c1 clockDiff c2 leads

to another clock c3, where

(∀i ∈ c3 ∃j ∈ c1, i ∼ j)
∧

(∀k ∈ c2 ∀l ∈ c3, k ≁ l)
∧

(∀m ∈ c1 ∀n ∈ c2 ∃o ∈ c3, (m ≁ n) ⇒ (m ∼ o).

Fig. 4 shows a simple example of clock expression union,

intersection, difference:

Fig. 4. An example of union, intersection, difference.

The following is the translation of these three clock expres-

sions into SIGNAL processes:

• clockUnion: C1 ˆ+ C2;

• clockInter: C1 ˆ* C2;

• clockDiff : C1 ˆ- C2;

3) Clock relation alternatesWith: it indicates the alternate

occurrences of instants from two clocks. More precisely,

C1 alternatesWith C2 signifies the occurrence of first

instant c1 from C1 precedes all occurrences of any instant

from C2, and then C2 alternatesWith C1′ where C1′ is tail

of C1 from the instant c2. In this case, the two clocks C1 and

C2 are asynchronous and constrained by the alternatesWith

relationship. Fig. 5 shows an example of alternatesWith be-

tween the two clocks C1 and C2. There are two forms of

alternatesWith: weak form and strict form. Only strict form is

discussed here.

Definition of alternatesWith: for two clocks c1 and c2,

c1 alternatesWith c2 iff

∀k ∈ N, (c1[k] < c2[k])
∧

(c2[k] < c1[k + 1]).

Fig. 5. An example of alternatesWith: C1 alternatesWith C2.

The translation of alternatesWith into SIGNAL is shown

here:

process alternatesWith =

( ? event C1, C2 ;)

(| altern := not (altern$ init false)

| C1 ˆ= when altern

| C2 ˆ= when not altern

|) where

boolean altern;

end;

4) Clock expression s sample: this expression is based on

sampling. There are two forms of sampling: weak and strict

form, we only consider the strict form (s sample) here. C3
def
⇐⇒ C2 s sample C1 indicates C3 is a subclock of C1 and

each instant of C3 corresponds to an instant of C1 that comes

directly after an instant of C2. i.e., between these two instants

of C1 and C2, there is no other instant of C1. Fig. 6 presents

an example of the s sample relation: C3 is a subclock of C1,

and C1 and C2 are polychronous.

Definition of s sample: for two clocks c1 and c2, c1

s sample c2 defines the clock c3, where



(∀i ∈ c3 ∃j ∈ c1, i ∼ j)
∧

(∀k ∈ c2 ∃l ∈ c3, fn(k, c1, 1) ∼ l)
∧

(∀m ∈ c3 ∃n ∈ c2, fn(n, c1, 1) ∼ m)

.

Fig. 6. An example of s sample: C3
def
⇐⇒ C2 s sample C1.

This is the translation of s sample into SIGNAL process:

process s_sample =

( ? event C2, C1; ! event C3; )

(| c := C2 default false

| zc := c $ init false

| c ˆ= C1 ˆ+ C2

| C3 := (C1 when C2 when zc)

default (when not c when zc)

|)

where

boolean c, zc;

end;

5) Clock expression delayedFor: this expression is used to

obtain delayed signals according to a faster clock. For instance,

C3
def
⇐⇒ C2 delayedFor n on C1 implies, between each

occurrence of an instant from C2 and its delayed occurrence

in C3 (this instant of C3 is synchronous with an instant of

C1), there are n − 1 instants of C1. C2 is not synchronous

with C1, and clock C3 is a subclock of C1 but not C2. Fig. 7

illustrates this relation with an example.

Definition of delayedFor: for two clocks c1 and c2, c1

delayedFor n on c2 results in another clock c3, where

(∀i ∈ c3 ∃j ∈ c1, i ∼ j)
∧

(∀k ∈ c2 ∃l ∈ c3, fn(k, c1, n) ∼ l)
∧

(∀m ∈ c3 ∃h ∈ c2, fn(h, c1, n) ∼ m)
∧

(∀q ∈ c2 ∃p ∈ c1, (q < p) ∧ (p < fn(q, c2, 1)))

.

Fig. 7. An example of delayedFor: C3

def
⇐⇒ C2 delayedFor 3 on C1.

This is the translation of delayedFor into SIGNAL process:

process delayedFor =

{ integer n; }

( ? event C2, C1; ! event C3; )

(| countC2 := C2 count n

| array i to n-1 of

(| countC1[i]:=C1 after (when countC2 = i)

| fullDelay:=(countC1[i]=n) or fullDelay[?]

|)

with fullDelay := false

end

| C3 := when fullDelay

|) where

boolean fullDelay; integer countC2;

[n] integer countC1;

end;

B. Polychronous controller synthesis

All the CCSL constraints, including static and dynamical

relations, can be considered as control objective to be ensured

by the controller to synthesize. In addition, we also need

to specify the controllability of the system, i.e., distinguish

controllable clocks and uncontrollable clocks. In our approach,

we mainly consider the following cases in the control of

controllable clocks: synchronization of clocks and value of

Boolean clocks. How to choose the right clock controllability

can be found in [25]. A concrete example is used for illustra-

tion at the end of this section.

In the compilation process of SIGNAL programs, we can

use the z3z option in order to automatically obtain PDS from

SIGNAL programs. Compared to SIGNAL code generation,

we generate z3z files (PDS) instead of executable files, such as

C or Java files. A big difference between z3z and executable

files is the solution synthesis. The generated executable files

are integrated with an arbitrary solution to the equation system

if it is polychronous, i.e., a deterministic solution is chosen if

multiple (non-deterministic) solutions exist. However, in our

approach, we avoid to exclude possible and valid solutions

under condition that these solutions (non-deterministic) are

not harmful to system safety (specified by control objective).

Actually, no pre-defined solution is chosen and synthesized

in the z3z file. Sigali will be used to analyze the system in

z3z and synthesize controllers according to expected control

objectives.

C. Code generation for simulation within Polychrony

Polychrony is used for the code generation and simulation.

Fig. 8 illustrates the process carried out in Polychrony in order

to perform the simulation:

• Once we obtain the SIGNAL programs Ps that are

translated from CCSL, we need to specify the control

objective COs.

• SIGNAL compiler is then used to obtain z3z files:

P.z3z and P_CMD.z3z. P.z3z contains the polyno-

mial equations, and synthesis commands used in Sigali

are generated in P_CMD.z3z.

• Sigali is used for synthesis with imported P.z3z and

P_CMD.z3z, and the controller is generated and saved

in two files Vt.sim and Vt.res.



Fig. 8. Simulation for the controller synthesis in the framework of
Polychrony.

• Vt.sim and Vt.res are translated to obtain controller

Cs expressed in SIGNAL. These two files will also be

used in the final step for simulation.

• Ps and Cs are composed together to get PUCs. PUCs

represents the SIGNAL program with controller inte-

grated.

• PUCs is compiled by the SIGNAL compiler so that

PUCc is obtained. PUCc is a C code file that corre-

sponds to the system integrated with the controller.

• PUCc is then compiled to obtain executable code, which

is used for simulation, together with Vt.res.

In the following, an example is taken to illustrate our

approach to address asynchronous clock relations with poly-

chronous controller synthesis. Although this example is not

a big one but it is adequate to illustrate the approach. The

controller synthesis we used here adopts the same technique

to calculate fixed-point as model checking, both of them have

the same problem of state space explosion. Modular synthesis

[10] has been proposed to alleviate this problem.

D. Simulation with an example

Fig. 9. An example of three synchronous components and a partial
specification of the asynchronous communication between them.

1) An informal description of the example: This example is

mainly involved in the asynchronous communication between

three components. The three components, A, B, and C,

have their own activation clocks: CA, CB and CC. These

components, together with a partial specification of their com-

munication, are illustrated in Fig. 9. Each of these components

is considered as a synchronous component with reading and

sending data operations. However, each operation can have its

own running clock, which is a subclock of its component’s

activation clock. Clock constraints, including isSubClockOf,

equality and alternatesWith, are specified between the data

I/O operations of these components so that the coherent data

reading and sending is ensured. These constraints are only

partial specifications as the components can have other data

I/O operations running on different clocks, described with

dotted lines.

In this example, the components are expected to execute

in a coherent way according to our partial specification: first,

ai of A reads data from co of C (for the first time, ai reads

the default value); after computing, A sends data to B and C

via bi and ci1 respectively; then B computes and sends data

to C through bo; when C receives all data from A and B

through ci1 and ci2, it computes and sends the results back to

A. Without any specified constraints on data I/O operations of

these components, data reading and sending may be stochastic.

e.g., if CC is faster than CA, ci1 may read several times for

just one sending by ao1.

In the code generation of synchronous languages, a simple

and possible solution is to synthesize a reference clock so that

all the clocks in the system are directly or indirectly synchro-

nized. However, the reference clock is a harsh requirement in a

distributed environment. Furthermore, as this is only a partial

specification, this reference clock may lead to conflicts with

other specifications to add.

2) CCSL specifications and their translation into PDSs:

Three clocks CA, CB, and CC are associated with the three

components A, B, and C respectively. Each data I/O operation

has its own clock, such as ai, ao1, ao2, bi, bo, ci, co1, co2, etc.

These clocks are constrained by the following CCSL relations:

ai isSubClockOf CA

ai = ao1 ai = ao2

bi isSubClockOf CB

bi = bo

co isSubClockOf CC

ci1 = co ci2 = co

ao2 alternatesWith bi

ao1 alternatesWith ci1

bo alternatesWith ci2

If we directly translate these expressions into SIGNAL pro-

grams according to Section IV-A and compile them, the

SIGNAL compiler will prompt information related to clock

constraints2, and code will not be generated. The main reason

of this problem comes from the fact that the compiler failed

to synthesize a reference clock that satisfies all the given

constraints. However, this does not signify there is no solution

for the system. We use DCS to address this issue.

In our synthesis process, the three alternatesWith constraints

are considered as control objective, which will be modified

according to the requirement of Sigali. The result of this

modification and all other constraints are then translated into

2Clock constraints in SIGNAL are generally related to non-deterministic
aspects in the clock relations, sometimes the SIGNAL compiler cannot find
a solution to solve these constraints.



SIGNAL, followed by the compilation into z3z. The clocks

of components, such as CA, CB and CC, are specified as

uncontrollable, and the clocks of reading and sending, such as

ai, ao1, ao2, bi, bo, ci1, ci2 and co, are specified as controllable.

3) Simulation demonstration: After the synthesis by Sigali,

Polychrony is used to carry out the simulation. Fig. 10

illustrates an example of the graphical interface for simulation,

where the evolution of the controllable and uncontrollable

clocks are shown.

Fig. 10. The graphical interface for the simulation of DCS [25].

Fig. 11 illustrates a comparison of the uncontrolled system

and controlled system from a view point of possible execution

trace. The left part of this figure shows the original system

without control, where CA, CB, and CC have their own

clocks. Meanwhile, ai, ao1, ao2, bi, bo, ci1, ci2, and co are

not constrained. In the right part of the figure, CA, CB and

CC still have their own clocks, however, ai, ao1, ao2, bi, bo,

ci1, ci2, and co can only occur considering the satisfaction of

the constraints.

Fig. 11. Illustration of the controller from the view point of execution trace.

V. RELATED WORK

Our work is a major contribution to the code generation

techniques for non-deterministic specifications as used in the

SIGNAL compiler: to synthesize the control of a process,

the compiler takes into account all static invariants; it may

thus reject programs that could avoid states in which those

invariants are violated. It is precisely the improvement brought

by the Sigali DCS to allow a larger and more natural ex-

pression of control objectives to get executable C code. In

general, a reference clock is needed in the code generation for

synchronous languages. For instance, clock calculus [7] is used

to analyze clock relations and to determine the endochrony

property of a timed system specified in SIGNAL. Endochrony

is an important property for the compilation of SIGNAL

programs. An endochronous SIGNAL process can reconstruct

synchronous clock relations from untimed yet ordered input

signals with the help of signal relations and states defined in

the process. [34] introduces an extension to address CCSL

specifications. However, when the system is polychronous,

code generation for SIGNAL requires to endochronize the

system, for instance, integrate a reference clock for synchro-

nization. In our work, we avoid to endochronize the system

when it is polychronous.

As endochrony is not well situated to address issues of com-

positionality [4], asynchronous clock relations [3], etc., weakly

endochronous systems [31] have been proposed for GALS

design. They aim at meeting the requirements of building de-

terministic asynchronous implementations from polychronous

specifications. Weak endochrony enables identical execution of

synchronous specifications in any asynchronous environment.

Weak endochrony enables to address asynchronous composi-

tion while preserving deterministic system behavior. In com-

parison, our work accepts non-deterministic behavior under

condition that the expected properties are always ensured.

[25] presents the general purpose of controller synthesis

for Polychrony. It is a little different from [33], [32] in

the definition and partition of controllable and uncontrollable

events. Based on [25], our approach is mainly dedicated to

addressing asynchronous and/or independent clock relations.

[10] presents the same idea of controller synthesis dedicated to

code generation. The main difference is that it is based on the

endochronous programs and behavior contracts are integrated.

TimeSquare [17] is a software environment dedicated to

the resolution of CCSL constraints and computation of partial

solutions. The simulation of CCSL constraints is based on

local constraint satisfaction, i.e., the constraints are calculated

at each simulation step [1]. In case of multiple solutions in a

step, a pre-defined policy determines the solution to choose.

Thus, TimeSquare provides an active and non-deterministic

constraint solution. Whereas, our controller synthesis is rather

a passive one and all possible solutions are preserved.

From another point of view, our work is similar to partial

order based scheduling, such as [30]. However, in one hand,

we need to extend poset with the notion of synchronization

relation; on the other hand our synchronous reaction simplifies

the execution time computing. Another similar work based on

poset is synchronous structure, presented in [27]. Synchronous

structure provides a theoretical point of view of event structure

with synchronous relations and partial order notion. So it is

interesting to analyze the asynchronous clock relations with

the help of synchronous structure in our approach.



VI. CONCLUSION

We presented an original and effective approach to gener-

ating executable specifications from MARTE’s CCSL timing

constraints by using the controller synthesis framework of the

Polychrony toolset. This approach which, to our knowledge,

was never tried before, is neither based on code generation

techniques for synchronous languages nor on the interpreted

and non-deterministic constraint resolution techniques present

in TimeSquare.

We show that clock constraints can be considered as the

control objectives and that they can be enforced by the

synthesized controller. The computation of the controller itself

is carried out using polynomial dynamical systems (PDS).

CCSL constraints are first translated into PDS using Signal

and Sigali is then used to compute the controller.

Polychronous controller synthesis offers the additional ad-

vantage to enable the simulation of sporadic or asynchronous

clocks. A perspective for future work is to use our technique

to complement code generation techniques presented in the

SIGNAL compiler with one based on controller synthesis, for

the purpose of concurrent simulation, rather than sequential

code generation.

Another perspective would be to extend the present frame-

work with the capability of handling numerical constraints (as

found with the number n used in the delayedFor clock expres-

sion). As a PDS is based on logical (symbolic) equations, one

would need to translate these numbers into Boolean variables

so that they could be processed by Sigali or extend it with

SMT solving capabilities (satisfiability modulo theory).
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