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POLYCONICS 1. POLYELLIPSES AND OPTIMIZATION*
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Z. A. MELZAK anp J. S. FORSYTH

University of British Columbia, Vancouver

A. Introduction. 1. Ellipses and hyperbolas may be defined as plane curves consisting
of all points the sum, or the difference, of whose distances from two fixed points F, and Fj,
the foci, is constant. This generalizes at once to a provisional definition of a polyconic with
n foci Fy, ---, F, in the plane: a plane locus consisting of all points the sum of whose
signed distances to F,, ..., F, is constant, the signatures being +1 or —1. If all n
signatures are +1 the polyconic is a polyellipse or, more specifically, an n-ellipse. Thus a
circle in this terminology is a I-ellipse and an ordinary ellipse becomes a 2-ellipse.

Why bother with polyconics? There is the possible intrinsic interest, novelty, and
educational value. Then, certain properties of conics themselves appear to be easier and
more natural in this generalized context; for instance, the radius of curvature of a
polyellipse is easier to get from first principles than is that of an ellipse. Also, the
numerical and graphical treatment of polyconics introduces early, simply and naturally
certain important techniques of numerical analysis, such as e.g. the variable step-length
procedures. However, the most important reasons for working with polyconics appear to
us to be two: a) polyconics may help to revive interest in the neglected subject of geometry,
b) polyconics, and especially polyellipses, arise naturally in the treatment of an important
class of ‘optimization problems.

2. We formulate now several of these optimization problems, starting with some very
simple ones, and building up by means of various generalizations. Each problem is
supplied with a codified description which is supposed to reflect something of its structure.

Problem | —P,(F,, - - ., F,)—how may we produce the point(s) in the Euclidean plane
which would minimize the sum of n distances to n given points F, , - - -, F, in the plane?

Next, we rephrase the problem and add a simple geometrical constraint.

Problem 2—P,(F,, --., F,; R)—let n points F, --., F, in the plane represent n
locations to be supplied from a central depot whose position X is a point in the plane of
the F;s. For technical reasons X must be confined to a region R of the plane. Where must X
lie in R in order to minimize the sum of the n distances, ¥ ,*| XF;|?

The tentative answer here might be obtained as follows. Suppose that we know how to
solve Problem 1. Let us determine first the point which minimizes the sum of the n
distances unconditionally. If it lies in R we are finished. If not, we produce the polyellipse

with the foci F, , - - -, F, which is externally tangent to R. Now the point of tangency is the
desired optimal location. ‘

Problem 3—P,(F,, ..., Fy; w,,---, w,; R)—let the n points F,, --., F, be as in
Problem 2, and let a positive weight w; be associated with the ith location F, ,i=1, .. -, n.

* Received August 4, 1976.
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Where must X lie in R so as to minimize the weighted distance sum X,"w;| XF,|?

This is a generalization of the so-called generalized Weber problem in spatial econom-
ics, dealing with the optimal location of industries. For some references to the consid-
erable literature on Weber’s problem, especially in its economic ramifications, see [1, 2, 3].
The generalization from Problems 1 and 2 to 3 suggests that we extend our provisional
definition of polyconics. The loci of constant sum of signed distances, which we have
introduced before as polyconics, will be called simple polyconics. In addition, we shall
have the loci of constant weighted sum of signed distances

{X: >+ w|XF| = C};

1
these will be called general polyconics. The weights themselves shall be always taken as
positive. Since several foci of a polyconic may coincide it ought to be observed that there is
no real difference between simple polyconics and general ones, and we shall often leave out
the specification. With the extension of simple polyellipses to general ones, our Problem 3
may be treated just as Problem 2 before.

For the formulation of our next problem the locations F,, instead of being given in
advance, are now to be selected from » disjoint plane regions R, , - - -, R,. In other words,
instead of connecting n points F, , - - -, F, by 2a minimal-length network as in Problem I,
we now wish to connect so the n set-terminals R, , - - -, R,. This leads to

Problem 4—P.(R,, - - -, R,)—how may we produce the point minimizing the sum of n
distances to n given sets R, , - - ., R, in the plane?

There are analogous extensions of the above to the case of minimizing with constraint
as in Problem 2, and to the case of weighted sum as in Problem 3. We observe that our
Problem 4 suggests a still further generalization of polyconics in which the n point-foci
Fy, ---, F, are replaced by n disjoint plane sets R, , - .-, R, . Note that parabolas are
now included among simple polyconics: we take n = 2, the signatures are +1 and —1, and
R, is a point while R, is a straight line.

The next problem arises by an iterated generalization; it might be called the problem of
hierarchical network minimization. The idea is to replace n points, to be optimally
connected, by n clumps of points, to be optimally connected in two stages: first over each
clump separately, then all the local clump networks together.

Problem 5—P,2(F;; ;w;; ;w,)—let n finite clumps of points, F;; , be given in the plane.
Here j is the clump index so thatj = I, ..., n, whilei = 1, ... i(j) enumerates the i(j)
points of the jth clump. Together with the points F;; go the positive weights w;; indexed in
the same way. As before, we suppose that the points of the jth clump represent locations to
be supplied from a local depot X,, for j = 1, ..., n. In addition, the local depots are
themselves to be supplied from a central depot X, and we are given positive weights w, ,
-+, w, corresponding to, say, the costs of connecting together the local depots X, , - - .,
X,. Under these conditions we have our hierarchical network minimization problem: how
may we locate the n+1 points X, , - -, X,,, X in the plane so as to minimize the weighted
sum of distances

n igj})
s Lwixx + 8wl
j=1

j i=1

Of course, we could now introduce a three-level problem P,3, we could extend to set-
terminals and put constraints on local depots, etc. An interesting variant arises when we
do not specify n in advance but just take the N = ¥ ,_,*(j) points, and make some
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reasonable provision for the weights. The problem arises now of producing the optimal
two-stage network without being given in advance the clumping specification. That is, we
consider all the distinct set-partitions of the collection of N signed points F, , - - -, Fy into
the separate nonempty sets, and we wish to determine the set-partition leading to the
minimum of our weighted sum of distances.

3. This is the first article of a projected series treating the elementary geometrical,
computational, and graphical properties and uses of polyconics. The interest in this first
part will be to develop sufficient elementary apparatus for a geometrical overview of
polyellipses, to justify the relevance of polyellipses to our optimization problems, and to
start producing practicable solutions of the simpler of those problems. It is expected that
succeeding parts will be addressed to algorithmic details of the optimization, to the
developing of methods for solving the hierarchical types of optimization, and to further
general geometry of polyconics.

B. Distance-perturbation formula. 1. We obtain first a simple distance-perturbation
formula which will be quite crucial in our work. Its use will amount to applying Taylor’s
theorem with terms up to and including the quadratic ones. The formula we need could
actually be obtained by an appeal to Taylor’s theorem for a function of two variables, but
it will be simpler and faster to proceed directly.

Let X be a point on a line L and F a point off L, let b be the distance | XF| and 4 the
angle that XF makes with L. Perturb X to X, by giving it a small displacement ¢ along L
and a small displacement n at right angles to L. A positive sense is defined on L and at
right angles to L so that e and 5 can be positive or negative, independently; this also
removes the ambiguity in the determination of 6. If b + Ab is the perturbed distance | X, F|
then by Pythagoras’ theorem

b+ Ab=((bcosf — €)* + (bsin § — n)?)!2 =b(l - %cos@— %sinﬁ-% %)1/2.
On applying to the last radical the binomial theorem in the form
1—x=1—%x+ wf—%ﬂx?+0(x3) (x small)
we obtain
Ab = —ccosf —nsind + g sir;:(? +1772 0015720 . sint‘}bcosﬁ+ )
Next, the same thing is done for n points F,, ..., F,, the angles 6,,---, 8, being
determined in a consistent way, and the » distances from X to the F,’s being b, , .- -_b,.

Using (1) and summing over { we obtain the perturbation Ac in the sum of distances

n

c= 2 |XF| =b+ - +b, (2)

i=1

resulting from the (e, n) shift of X:

Ac = —¢ z cosf, —n Z sin 8, +

1 1

L z €2 S’: sin%4, +r L, cos® b,
- .

+ higher-order terms. 3)
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This is the formula we need. Let P be the n-ellipse passing through the point X and having
the foci F,, - - -, F, ; we apply our formula to finding the tangent 7to P at X. Weletyn =0
in (3) and we suppose that L is the tangent 7. For best linear fit to P we must have Ac =
O(€?) so that from (3)

n

Z cos 8, = 0. 4)
1
This can be restated in vector terms: if X is not a focus F; we have
. 2 XF,
fa= i i
i Z TXF] then T 1 @ (5)

This simple geometrical construction produces the tangent to P at any point X other than
a focus F,. The discussion of what happens when X is a focus F, will be deferred for the
moment, but at all other points a polyellipse P is smooth, i.e. has a unique tangent. An
easy additional argument could be supplied to show that in fact P is then real-analytic, but
we shall not use this. It is noted that (5) generalizes the standard properties of circles and
ellipses: the tangent to a circle is at right angles to the radius through the tangency point,
the tangent to an ellipse makes equal angles with the radii joining the tangency point to the
foci.

The preceding exploits the first-order osculation and the best /inear fit; the second-
order osculation and the best circular fit are considered next. For this purpose ¢ and 5 are
arranged so that the perturbation of X to X, is along a circle C tangent to both P and T at
X, and of radius R, say. Therefore

- £ L o)
"= 2R

so that (3) becomes

n 2 n in2 n
de=—¢ 5o+ 55 kL3 ins) + o)
1 2 b R4

1

If C is to be the circle of best fit to P, so that R is the radius of curvature of P at X, then we
must have Ac = O(e®). Hence

R=3 sin o,/ 3 (6)
i

1 1

Accordingly, R is well defined at all points of a polyellipse P except where this P happens
to pass through one of its foci. For in that case one of the focal distances b, is 0 so R is,
formally, undefined through an easy argument shows that R is then 0. We may therefore
expect that the focus crossed by P is a cusp point for P. Only quantities sin 8, enter into R
in (6), obviating the need for distinguishing between 6, and = ~ 8, . Generally, (6) shows
that a polyellipse turns slowly at its points which are far away from a focus, and fast when
it passes close to a focus. This can be seen on the elementary example of the family of
confocal ellipses with the foci F, and F,; we recall that this family includes the degenerate
ellipse consisting of the segment F,F, described twice; here F, and F, are the cusps, with
cusp angle 0.

2. The preceding section applies to simple polyellipses, but there is no difficulty
whatever in extending the results on tangents and curvature to general polyellipses. We
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replace accordingly (2) by

¢ = i W,IXFll (7)

1

and we trace the corresponding changes in (3). These result in replacing (4) by

n

> wicosf =0 (8)
1
and (5) by
7= 3 w,.l—g% then T L4 )

1

Similarly, the radius of curvature R of a general polyellipse is given by

n n in?é,;
R=73 w,.sine,./ Y wi (10)
1 i

1

On prefacing the weights w; in (9) and (10) by suitable plus and minus signs we get
formulas valid for any polyconic.

C. Confocal polyellipses. 1. We consider now the elementary geometry of the family
of all confocal n-ellipses with n fixed foci F, ,- - -, F,. The curves are the loci P(c) given by

&vglmw=$ or &nn:g(u—mf+@—nm”=$ (11)
where ¢ varies over its entire allowed range: ¢, < ¢. There is the obvious modification—
introduction of weights—for generalized polyellipses. As a guide and for comparison we
may take the family of all concentric circles (n = 1) or of all confocal ellipses (n = 2). In
either case there is one degenerate locus associated with the minimum sum ¢, of the n
distances: for n = 1 ¢, = 0 and the O-radius circle F,, forn = 2, ¢, = | F,F,| and the collapsed
ellipse F,F,.

In the general case of arbitrary n there is also one degenerate locus D = P(c,)
corresponding the the minimum value ¢, of ¢ in (11). An attempt to find ¢,, that is to say to
solve our Problem 1, by calculus leads to the equations

3 X~ X _ 3 Yy = W _
DR oo Ry e T A D ey ey sy A LR

or in vector form

n X/’E
== = 0.
2 TXF]
That is, the sum of n distances to the foci F, - - -, F, is minimized at the point D where the

n unit vectors toward the F;s add up to 0. This allows us to find D approximately by
mechanical analogues used on balancing the forces in strings with attached equal weights
(or, for general polyellipses, with unequal weights). However, the straightforward attempt
to find D by solving the above Eqs. (12) bogs down on account of boundary extrema and
discontinuity of derivatives even more than through the formal complexity of system (12)
for n of any size.

In general, we have
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PropPOSITION 1. The degenerate locus D is a point if not all F;s are collinear.

If the n foci F; are distinct points on a line and n is odd then D is again a point: the
middle one of the foci. If n is even then D is the whole central segment F;F,. The latter case
corresponds to and generalizes the collapsed ellipse F\F; for n = 2. There are obvious
generalizations of the foregoing for the general case when we have weights w, ,. -+, w,.
Further,

PROPOSITION 2. For ¢ > ¢, the polyellipse P(c) is a closed strictly convex curve. If ¢ >
¢, 2 ¢, then P(c) contains P(c,) in its interior.

The proofs of Propositions 1 and 2 follow from some simple convexity considerations.
Take a line L and let X be a moving point on L, parametrized by its distance s from an
arbitrary origin on L. Let F, be the ith focus of the polyellipse and let b, = b,(s) be the
distance | XF,|. If F; is on L then b,(s) is a piecewise linear convex function of s. If Fiis off L
then b;(s) is a strictly convex function of s. Here we define a function to be convex if its
second derivative is always > 0, and strictly convex if it is always >0. The second
derivative is allowed to be undefined at a finite number of points. Since the second
derivative of a sum is the sum of second derivatives it follows that

b) = 3 bis) = 3 IXF|

is a strictly convex function of s if not all foci F, are collinear. Now the proofs of
Propositions 1 and 2 are immediate. We add as a formal statement the obviously true
ProrosITION 3, Through any point of the plane there passes exactly one polyellipse
P(c).
Propositions 1-3 begin to give us some idea of the general appearance of our family of
confocal polyellipses. It is to be noted that these propositions hold for general polyellipses
as well as for the simple ones.

2. We continue with the question of finding the degenerate locus D = P(c,). Forn =
3 there are two cases. If the triangle F,F,F, has an angle >120° then D is the vertex F; of
that angle and we have a boundary extremum. Otherwise, D is the unique Steiner point of
our triangle at which all three sides subtend the angle 120°. This will be shown at once by
exploiting external tangencies of circles and ellipses; the same technique will be applied
later in our optimization problems: external tangency of polyellipses. In our simple case of
three foci it is enough to observe that the 2-ellipse through D with the foci F;, F; must be
externally tangent at D to the l-ellipse through D with the focus F,, for any one of the
three choices of Fj.

An easy geometrical construction will yield us the point D [4]: if equilateral triangles
are built outward on the sides of the triangle F,F,F; and their third vertices are F,, , Fy; ,
Fg; (in obvious enumeration), then the straight segments F\,F,, F,F,, FyF, are con-
current in D. Moreover, these three segments are of equal length:

d=FD+ F,D + F,D.

For n = 4 there are also two cases. If F,, F,, F,, F, are the vertices of a convex
quadrilateral then D is the intersection of the diagonals, say F,F; and F,F,. This is clear
since for any point X other than D

|F.X| + |XFy| = |F\Fd|, |FX| + |XF) > |F,F,|

with at least one strict inequality so that by adding



POLYCONICS 1 245

4 4
S \FX| > 3 |FD| = |F.F)| +|FF).
1 1

If one of the Fis lies inside, or on the periphery of, the triangle formed by the other
three, then it itself is D. We observe the consistency of the ‘intersection of the diagonals’
with the ‘middle segment’ case of four collinear points mentioned earlier. This consistency
is seen by collapsing the convex quadrilateral onto a line.

We have gone over these simple matters in some detail in order to emphasize the
essential difference between the cases n< 4 and n > 4. This has considerable analogy to the
classic result of Ruffini-Abel-Galois on the solvability of general polynomial equations
with integer coefficients: we can solve such equations by standard algebraic processes, i.e.
by radicals, if and only if their degree is <4. It turns out that for n = § there is in general
no Euclidean geometrical construction to yield the point D minimizing the sum of
distances from F, ,- - ., F,. This is proved in [5] as an exercise in computing certain Galois
groups. Specifically, it is shown there that no Euclidean construction will produce the
point D(x, 0) minimizing the sum of distances to (0, 1), (0, 0), (0, —1), (3, 3), (3, =3). This
difference between the cases n < 4 and n > 4 is yet another reason, a technical and not an a
priori obvious one, for considering polyellipses in connexion with distance minimization
problems.

3. Wetake up now the matter of cusps of polyellipses. Let P(c) be the n-ellipse through
a point X, with the foci F, ,- - -, F,,. We suppose that the F,’s are not collinear, in particular
n > 3. Using the distance-perturbation formula (3) with # = 0 and demanding that Ac =
0(e?), we have found for the tangent T to P(c) at X the formula (5) for simple polyellipses
and (9) for general ones. Suppose, however, that X itself is a focus, say F;; this means that

n
¢ = Z |F1Fk|~
o

Now (3) no longer applies and we have instead

Ac= e —¢€ Y, cosfy+ O(?), esmall, n=0. (13)
k=1

kAL

What happens to P(c) at and near X? The polyellipse P(c) is still a strictly convex curve,
and so instead of one tangent we have two one-sided tangents to P(c) at X, which itself is a
cusp. The two signs in (13) correspond precisely to those two one-sided tangents. To find
them we put Ac = O(€?) in (13), getting two equations

> cosf =1, cosb, = —1 (14)
k=1 k=1
k#i k#iQ

which replace (4). Equivalently, proceeding in vector terms, we get the following modifica-
tion of the recipe (5): from F; as origin draw the vector

= kz FiFk/lFlel, (15)
=)
ki

from the tip of #, draw the two tangents to the unit circle about F;, touching that circle at 4
and B, say; then the directions of the two one-sided cusp tangents to P(c) at F; are F;4 and
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F.:B. If || < 1 then we have the case of a boundary minimum and F, is the singular locus
D = P(c,).

The case of |#,| = 1 means that either F, is the singular locus D or else it is a 0-angle
cusp of the polyellipse P(c). The latter case is excluded since P(c) is strictly convex, and the
F;’s are not collinear. Since there is exactly one singular locus D it follows that at most one
focus F; can be D. We have therefore proved the following proposition which is independ-
ent of the context of polyellipses:

PROPOSITION 4. Let F, .-, F, be any n noncollinear points in the plane. At each F;
let & be the sum of the n — | unit vectors toward the other Fs. Then of the n vectors
i, -, I, at most one is of the length <1,

From the point of view of solving the simple optimization problem 1 — P,
(Fy,- -, F,)—this has the important consequence of enabling us to decide, by a simple
test and in advance, when there will be a boundary minimum, and if there is one, giving us
that minimum.

We observe that introducing weight w;, produces formulas valid for general poly-
ellipses. Eq. (4) is replaced by

n n
D wrcosly, = w;, D wycos b= —w, (16)
ki ¥
and the vectors &, in (15) are replaced by
< F/F, .
-—wlkzl SVIAR i=1,-,n (17)
kAL
In place of Proposition 4 we have its generalization:

PrOPOSITION 5. Let F,,---, F, be any n noncollinear points in the plane, and let
positive weights w, , - .-, w, be associated with the F’s. Let it; be as in (17); then of the n
vectors u; ,- - -, 4, at most one is of length <1.

Computation with polyellipses showed that we may want to know in advance when a
polyellipse for n given foci F; ,- - -, F,, may have several cusps. There is a simple test based
on examining the n(n — 1)/2 interfocal distances. Let

n
=Z|FiF}' j—__la”‘7n;
i)

if the n numbers D, are pairwise different, then all polyellipses P(c) are smooth except only
when ¢ equals one of the D,. The polyellipse P(D,) has exactly one cusp, at F;, and is
otherwise smooth. If D, ,- .., D, are not all distinct, let the distinct ones among them be
dy,- - -, d, where d; is taken up with the multiplicity m;, (so that Zmg; = n). Now the only
polyellipses with cusps are P(d,), - - -, P(d,), and P(d;) has exactly m, cusps. These occur
at the foci F; for the m, indices i such that D, = d,.

The cusp-angles of an n-ellipse are easily computed for the special casen = 3. Let 4, B,
C be the three foci of a 3-ellipse and let 4 denote the angle of the triangle 4BC as well as
the vertex. Let a be the cusp-angle of the 3-ellipse passing through 4. Then an application
of (14) shows that

cos 4 0s 2 = L
5y Cos 3 = 3.
In particular, @ has a real value if and only if 4 < 120°. This is in complete accord with the

previously mentioned problem of minimizing the sum |4X| + |BX| + |CX|: if an angle of
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the triangle ABC is >120° then its vertex is the minimizing X and we have a boundary
minimum. Qur Proposition 4 gives us a simple test for such a boundary minimum for
general value n. This enabled us to run some Monte-Carlo tests for the probability of
occurrence of such a boundary minimum, when n points are taken independently and
uniformly at random in the square. Such tests were run for 5000 sets of r points; the
frequencies f, of occurrence of the minimum at one of the n points were found to be

n = 3 4 5 6 10 20 40
fo = 4012 .3036 2214 .1848 .1042 .0568 .0258.

This suggests strongly that for large n f, — 0 and (much less strongly) that f, ~ 1/n
approximately.

4. As we might expect, for ¢ large enough any polyellipse P(c) is approximately
circular. More precisely, we have

PROPOSITION 6. Let F,, -- -, F,, be the foci and w, , - - -, w, the weights of the general
polyellipse P(c). If ¢ is large enough then P(c) is contained between two concentric circles
whose radii differ by an arbitrarily small amount.

To prove this we introduce polar coordinates with an origin to be specified later, and
an arbitrary initial direction. Let «;, r; be the polar coordinates of F;, i = 1, - - ., n, and let
X = (8, r) be a point on the polyellipse P(c), with r large. Then

|FiX| = (© — 2rricos (0 — o) + r2)2

2
= r— [rcosa; cosf + r;sin a; sin ] + %r- sin? (6 — o) + 0< %2) . (18)

The polyellipse P(c) is given by
2 Wy |F¢X| = C,

using (18) we rewrite this as

ryw— [cos 0> wiricosa; +sin 6 wr, sin al]
+L2w-r~2sin2(6’—a-)+0<—l—> = (19)
2r v ! P '

We now choose our origin so as to make vanish the two sums in the square brackets; this
means that the origin is the weighted centre of mass of the foci:

iw,‘/\/—lri/zn: wW; .
1

1
As a consequence, (19) becomes

Wr+§+ o(1/P) = ¢

where K is a positive constant and W = Zw,. Therefore there exists another positive
constant K, such that

< K <
W . <R<W. g.e.d.
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What happens to the polyellipses P(c) at the other extreme, when c is close to its
minimum value ¢,, can be similarly determined. We use now the Cartesian coordinates
Fi(x; , y;), and let (x, , y,) be the singular locus D corresponding to the minimum sum ¢! of
the distances to the F;s. Let ¢ £ ¢! where ¢ — ¢! is small; to find the approximate shape of
the polyellipse P(c)

ZIFX| = ¢
we let X = (x, y) be a point on P(c). Hence

X=Xt &y =y t1 £ and » small;

the polyellipse in Cartesian coordinates is

o+ E-—x)+ (0ot —p)=c

Using some elementary expansions and recalling that
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b)

F1G. 1. 3-ellipses.

Xo — Xy _ Yo = Wi _
Z:((Xo —xF + (o — y)?)~? ) ((xo = X + (o — ¥ P2 0

by the definition of ¢,, we find eventually that the approximate equation of P(c¢), in terms
of the &, n coordinates, is

A — 2BEn + Cp* = D

where
A = ZWo — y)¥/[(xo— x:)* + (o— y:1)*IP3,
B = Z(x, — x;) o — y)/[(x0 — x:)* + (o — y)*F%,
C = Z(xo — x)*/[(x0 — x1)0 + o — y.)°17, (20)
D =2 — ¢).

It follows that for ¢ close to ¢ the polyellipse P(c) is approximately an ellipse whose
eccentricity, size, and position are easily computed. The only change for a general
polyellipse is that weights w, appear in the first three sums in (20).

D. Numerical and graphical work. 1. The formulas (9) and (10) gave us the tangent
and the radius of curvature, at a point X, of a general polyellipse P(c) with known foci and
weights. These formulas lead to a simple and practical method of drawing the whole of
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P(c). The idea is to replace locally P(c) by an arc of its circle of curvature at X, go along
that arc so as to turn through a fixed angle ¢,, then get back onto P(c) and repeat the
procedure till the return to X. Thus P(c) is approximated by a sequence of 360° /¢, circular
arcs and we adjust the angle ¢, so as to make the approximation adequate. In practice it
was found that ¢, = 5° makes the gap between the approximating arcs sufficiently much
thinner than the thickness of the drawing line.

There is no difficulty in starting the procedure at X; we compute first the weighted sum
of distances to the foci. Then, by means of the formulas (9) and (10) we find the center of
curvature of P(c) at X and we produce the circle of curvature. Let XX, be an arc of it,
turning through the angle ¢,. Then XX, and P(c) have a contact of order >1 at X but X,
will in general lie off P(c). That is, the weighted sum of distances from X, to the foci (which
we compute) is not equal to ¢. We therefore determine a new point X, , possibly close to X,
at which the weighted sum of distances to the foci has the same value as at X. This X, can
be found in a variety of ways, all based on interpolating from the data which are the sums
of distances computed at several points; one of these is, of course, the point X, itself. Now
we repeat the procedure at X, and we continue till our return to X after 360°/¢, steps. The
distance between the starting point X and the finishing point, which ideally should be 0,
may serve as an overall check on the procedure.
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b)
F1G. 2. 4-ellipses.

One considerable advantage of our method will be clear at once: it is a variable step-
length method and the length of the step is automatically self-adjusting. That is, each of
our approximating circular arcs turns through the same angle ¢, ; hence, where the
polyellipse curves strongly the approximating arc is short, and where it turns slowly the
arc is long, which is just as it should be. In practice it has been found that computing the
coordinates and preparing for mechanical plotting of a family of 6-9 confocal general
ellipses with given weights and 2-6 foci takes several seconds (2-10) on a reasonably large
and fast modern computer.

2. We describe briefly another method of plotting polyellipses, adapted to manual
rather than machine computing. We start with a square grid, for instance the centimeter
grid of Fig. 1a. The three foci F,, F,, F; are as shown in the figure. Suppose that the
simple 3-ellipse P(20) is to be drawn. For any point X let f{X) stand for the sum of its
distances to F, , F; , Fs ; since {X) will be needed only for grid points X, it can be obtained
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F1G. 3. A 9-ellipse family.

as sum of three square roots of sums of squares of integers, and is therefore simply
calculated by a reference to a table of square roots. We determine, by trial and error, two
neighbouring points of our grid, 4 and B, such that

f4) > 20 > fiB).

Then, exploiting of course the convexity of our polyellipses, we determine a chain of grid-
neighboring points along which the function {X) — 20 changes signs: 4, B, C, D, E, F,
G, - -+ . Now, by a straightforward linear interpolation along AB, BC, CD, DE, FG, - - - .
we determine approximately the points of intersection of those segments and the poly-
ellipse P(20), and we joint them. The 10 confocal 3-ellipses of Fig. 1a were all obtained in
this way; S is the Steiner point, i.e. the singular locus.

All the other graphs shown were obtained by the first method and were drawn by the
machine. Fig. |b shows a similar family of confocal simple 3-ellipses but drawn for the
boundary-extermum case, when one of the angles of the triangle with the foci as vertices
exceeds 120°. The next figure shows the two possibilities for simple 4-ellipses: in Fig. 2a
the four foci are the vertices of a convex quadrilaterial, in Fig. 2b one of the four lies inside
the triangle given by the other three. A family of confocal simple 9-ellipses with nine
randomly determined points for foci is shown in Fig. 3.

The next figure shows the effects of different weights. Figs. 4a, b, ¢, d show the families
of confocal 2-ellipses with weights 9:1, 8:2, 7:3, 6:4,
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a)

3. We finish this installment with some preliminary remarks on the graph-min-
imization problems. Suppose that n points F, , - - - F, in the plane are given, together with
corresponding positive weights, and the weighted sum of distances

n

ZIZ wi| F.X]

is to be minimized. This is, in effect, the generalized Weber problem. We determine first an
initial approximation X, to the minimum X, for instance as follows. To guard against the
possibility of a boundary minimum, i.e. of X coinciding with an F, , we apply the criterion
of Proposition 5 to check whether a vector u, exists, of length <1. If it does we are finished:
there is a boundary minimum F; and we have found it. If not, the vector u, of shortest
length determines the focus F, which we use for X,.

Next, since we know how to draw general polyellipses, we draw the polyellipse P,
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FI1G. 4. General 2-ellipses with different weights.

corresponding to our foci and weights and passing through X,. The true minimizing point
X, i.e. the singular locus, lies inside P,. We now produce the next approximation stage and
take X, to be the ‘center’ of P,; several possibilities exist, and are currently considered, for
such a ‘center’. Now the procedure is repeated on X, as the starting point. Two fundamen-
tal questions arise:

A) does our procedure converge?
B) if so, how fast?

With respect to (A), let us suppose that for any polyellipse P our method of ‘centering’
gives us a ‘center’ which is a point of a subset Q of P, such that

diam @/ diam P < X <1.

Then an application of the contraction mapping principle shows that our procedure
indeed converges: X,, X,, X,, --- tend to the unique limit X. With respect to (B), it
would therefore appear that the speed of convergence is exponential:

| X2X| ~ KA" n large.

However, suppose that our ‘centering’ method is nonuniform: the smaller P and the closer
it is to being an ellipse (as suggested by C.4), the smaller the region Q, relative to P. Now
the speed of convergence will be faster than exponential, perhaps something like Newton’s
method for roots of equations. It is proposed to consider these matters in a future paper.
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