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Abstract 

Fuel cladding and structural components made of zirconium alloys, used in light and heavy water 

nuclear reactors, exhibit, during normal operation, significant in-reactor deformation. Fast Fourier 

Transform (FFT) simulations have been conducted on large grain aggregates to simulate the in-

reactor behavior of recrystallized Zircaloy-4. Original constitutive equations have been proposed to 

account, at the microscopic scale, for thermal creep, irradiation creep and irradiation induced 

growth. The evolution of irradiation defects with irradiation is taken into account, especially to 

deduce the local growth strain. A good description of the in-reactor behavior is obtained with 

irradiation defects evolution consistent with Transmission Electron Microscopy observations. The FFT 

simulations are compared to a self-consistent model. A good agreement is obtained when the 

behavior is linear (irradiation creep and growth) while the nonlinear response (thermal creep) is 

underestimated by the self-consistent model. The FFT simulations are also compared to the lower-

bound model which neglects the interactions between grains. The lower-bound model 

underestimates the growth strain proving the importance of using an accurate polycrystalline model 

to predict the growth strain from the knowledge of the irradiation defect evolution.  

 

1-Introduction 

Zirconium alloys are widely used in the nuclear industry because of their low absorption cross-

section for thermal neutrons (Onimus et al., 2020b). Furthermore, thanks to alloying elements and 

careful microstructure control, optimized zirconium alloys exhibit a very good corrosion resistance 

(Allen et al., 2020; Tewari et al., 2020). They are therefore very well suited as cladding tubes or 

structure components in light or heavy water nuclear reactors. In the case of pressurized water 

reactors, these materials are used as fuel cladding tubes, for the grids of the fuel assembly and as 

guide-tubes of the control rods. As described in (Franklin and Adamson, 1988), in-reactor, these 

components exhibit significant deformation. For instance, the cladding tube exhibit a creep down 

toward the pellet and an axial elongation. Concerning the guide tubes, they also exhibit an axial 

elongation or even a bowing. These deformations are due to simultaneous neutron irradiation and 

complex mechanical loading. They must be well characterized and predicted for safe and efficient in-

reactor operation.  

Three different phenomena explain the in-reactor deformation of zirconium alloys : the thermal 

creep, the irradiation creep and the irradiation induced growth (Adamson et al., 2019; Carpenter et 

al., 1988; Fidleris, 1988; Holt, 2008; Onimus et al., 2020b; Rogerson, 1988). The thermal creep is the 

usual creep deformation that occurs out of irradiation. The irradiation creep is a specific deformation 

phenomenon which occurs under an applied stress and is activated by the fast neutron flux (Onimus 



et al., 2020c). Finally, irradiation induced growth is a special deformation phenomenon since it occurs 

without any applied stress under fast neutron flux (Carpenter et al., 1988; Griffiths, 2020). 

Several authors (Christodoulou et al., 1996; Limbäck and Andersson, 1996) have proposed empirical 

macroscopic models to account for in-reactor deformation of zirconium alloys. In this type of model, 

the polycrystalline nature of the material is not taken into account and additivity of the three 

irreversible strain components is assumed at the macroscopic scale. However, it was early recognized 

(Woo, 1985) that the polycrystalline character of the material and the interactions between grains 

can play a significant role on the macroscopic behavior of the material. Especially, because growth 

strain depends on the grain orientation, strain incompatibilities arise between the grains of the 

polycrystal thus inducing internal stresses that superimpose upon those due to the external load, and 

the local stress is relaxed by creep at the grain scale. It is through this mechanism that creep and 

growth couple at the polycrystal level. This is the reason why polycrystalline models have been 

developed and in-reactor deformation of zirconium alloys has become a textbook case for 

homogenization of polycrystals (Kocks et al., 1998). 

Because of their industrial relevance and their significant plastic anisotropy, zirconium alloys have 

been an important topic of interest since the seminal work of Woo (Woo, 1985). This early paper was 

then followed by a large body of articles treating of deformation under irradiation of zirconium 

alloys, and especially irradiation creep and growth (Causey et al., 1988; Lebensohn and Tomé, 1993; 

Turner and Tomé, 1993; Tomé et al., 1993; Turner et al., 1994; Tomé et al., 1996; Turner et al., 1999; 

Tomé and Christodoulou, 2000; Patra et al., 2017; Montgomery et al., 2017).  

It must be mentioned that other research teams have proposed similar approaches (Brenner et al., 

2002b, 2002a) but only applied to thermal creep of zirconium alloys. Another very different, and 

pragmatic, approach has also been proposed for the homogenization of the behavior of polycrystals 

(Cailletaud, 1992; Cailletaud and Pilvin, 1994). This method has been applied to zirconium alloys after 

irradiation (Onimus et al., 2020a; Onimus and Béchade, 2009) but has not been applied to in-reactor 

deformation of zirconium alloys in the open literature. 

During the last twenty years, Finite Element Method has also been used to compute the local stress 

and strain fields in large grain aggregates. Although this type of calculation contains a large amount 

of detailed information, it can be used to deduce a single property which is the overall macroscopic 

behavior of the grain aggregate. This method is also a homogenization method and it can be referred 

to as a full-field method, as opposed to a mean-field method. As the computing power increased, the 

number of grains in the aggregate also increased giving access to more and more accurate 

homogenized response of polycrystals (Barbe et al., 2001; Delannay et al., 2006; Diard et al., 2005; 

Erinosho and Dunne, 2015; Raabe et al., 2001; Roters et al., 2010). In the past ten years a 

breakthrough occurred in the field of numerical homogenization thanks to the development of Fast 

Fourier Transform (FFT) method applied to mechanics of continuum medium (Michel et al., 2001; 

Moulinec and Suquet, 1998). This is a powerful and computationally efficient method, especially 

when combined to massively parallel implementation, when periodic boundary conditions can be 

applied to the structure. Recently, several authors have used FFT simulations with crystal plasticity to 

predict the mechanical fields in polycrystals considering various local behaviors (Lebensohn et al., 

2012; Nagra et al., 2017; Paramatmuni and Kanjarla, 2019). 

 

The present work is really a continuation of the thorough and long lasting effort to model in-reactor 

deformation of zirconium alloys. Many ideas used here are inspired by the early work of Woo (Woo, 



1985) followed by Turner and Tomé (Turner and Tomé, 1993), Tomé, So and Woo (Tomé et al., 1993) 

and Turner, Tomé and Woo (Turner et al., 1994). 

Two different homogenization methods have been used, and compared, in this study. First we have 

used the full-field homogenization tool developed by Gélébart and coworkers (Gélébart and 

Mondon-Cancel, 2013; Gélébart and Ouaki, 2015; Marano et al., 2019; Marano and Gélébart, 2020) 

which is based on the Fast Fourier Transform method. This method has been applied, for the first 

time, to in-reactor deformation of zirconium alloys. Only the homogenized behavior has been 

considered in detail, although all the stress and strain fields are computed with this technique, as 

illustrated in Appendix A. Then, we have adapted and used the mean-field self-consistent 

polycrystalline model developed by Brenner and coworkers (Brenner et al., 2002a). The results of this 

self-consistent model are compared with Fast Fourier transform simulations. 

Furthermore, there has been only few attempts (Griffiths et al., 1989) to relate quantitatively the 

irradiation induced growth to the microstructure evolution observed by Transmission Electron 

Microscopy (TEM) after irradiation. Correlation between <c> loop density and growth strains have 

remained largely qualitative (Bossis et al., 2009; Doriot et al., 2018, 2014; Yagnik et al., 2018). Several 

authors have proposed numerical approaches to deduce the growth strain rate from the 

microstructure evolution under irradiation. These numerical approaches are based on solving rate 

theory equations (Barashev et al., 2015) or cluster dynamics modeling (Christien and Barbu, 2009). 

Recently, several authors (Montgomery et al., 2017; Patra et al., 2017) have introduced these rate 

theory equations into a self-consistent model to deduce the growth strain at the polycrystalline scale 

and not only at the grain scale. 

In this work, we propose an original approach to deduce the growth strain from the microstructure 

observed by TEM. Furthermore, we give a complete set of constitutive equations for the grain 

behavior, taking into account thermal creep, the effect of irradiation on thermal creep and also 

irradiation creep and growth. Finally, we have gathered a valuable experimental data base for 

recrystallized Zy-4, on which the proposed model is adjusted.  

In the following section, referred to as section 2, the two homogenization methods are first 

presented. Then, in section 3, the material is presented and the two procedures to take into account 

the crystallographic texture of the material are described. In section 4, the local intra-granular 

behavior is presented in detail. In section 5, the experimental data base, the parameter identification 

and the simulation results obtained at the macroscopic scale using the FFT simulations are described. 

Then, in section 6, a sensitivity study of the FFT simulations is provided. Eventually, the results of the 

FFT simulations are compared, in section 7, with the results of the self-consistent model. Finally, the 

results of the simulations are discussed in section 8. The influence of irradiation creep on the growth 

behavior is particularly analyzed by comparing the self-consistent model with the lower-bound 

model. 

 

2-Homogenization methods 

2-1. Full-field homogenization using Fast Fourrier Transform method 

Briefly, full-field homogenization consists of three steps: i) extraction of a subset, i.e. unit-cell, from a 

microstructural representation of the material, ii) numerical simulation of the unit-cell submitted to 

an applied load, iii) post-treatment of the numerical solution to determine average quantities. The 

quality of the result depends on both the unit-cell (size and discretization) and the boundary 



conditions (BC) used in numerical simulations. Using periodic BC provides a better estimate 

compared to kinematic uniform or stress uniform BC (Kanit et al., 2003), leading respectively to stiff 

and soft estimates (upper and lower bounds in the linear case (Huet, 1990)). In that context, the FFT-

based code AMITEX_FFTP (“AMITEX software,” n.d.), that applies periodic BC and enables efficient 

and large scale simulations with its parallel implementation, is well-suited to provide reference 

results for comparison with self-consistent estimates. The FFT-based solver relies on the fix point 

algorithm (Moulinec and Suquet, 1998) accelerated with an Anderson acceleration technique (Chen 

et al., 2019). The discrete Green operator used in the solver is built on a finite difference 

approximation of differential operators (Gélébart, 2020; Willot, 2015), equivalent to linear hexaedral 

finite elements with reduced integration (Schneider et al., 2016). 

The microstructure of the polycrystal is represented by a Voronoï tessellation built on a random 

uniform distribution of seeds. Voronoï cells represent grains whose crystallographic orientations 

must be consistent with the crystallographic texture measured experimentally. For the unit-cell 

definition, to avoid non-realistic grain boundaries resulting from periodic BC, the microstructure is 

periodized. In addition, the random orientations in the unit-cell are constrained to satisfy 

experimental Kearns factors, as explained in section 3.2. For the simulation, the unit-cell is 

discretized in cubic elements, called voxels (3D equivalent of pixels in 2D images). In order to analyse 

the quality of the results, the following points have been considered: 

- the unit-cell size, given by the number of grains within the unit-cell (  ) (with  =3, 5, 7, 9, 

13, 17, 21 used in section 6), 

- the spatial discretization, given by the average number of voxels per grain (  ) (i.e. the unit-

cell contains      voxels, with  =3, 5, 7, 9 used in section 6), 

- the random choice of Voronoï seeds: for a given (  ), three random unit-cells have been 

generated with different grain shapes (see figure 1), 

- the choice of crystallographic orientations: for a given (  ), up to five different sampling 

have been used. 

Finally, an extreme case with one voxel per grain has also been considered. This simple unit cell 

allows very efficient simulations while providing a rather precise estimate, as it will be shown in the 

following.  

 

Figure 1: three random unit-cells with 213 grains and 53 voxels per grain in average (more than 106 

voxels). 

 

2-2. Mean-field self-consistent model 



By contrast with unit-cell computations, mean-field homogenization relies on a statistical description 

of the microstructure and an approximate resolution of the set of field equations (constitutive 

equation, equilibrium and compatibility). In the case of a polycrystalline microstructure, the self-

consistent model is known to provide relevant estimates for linear elastic or viscous behaviours 

(Lebensohn et al., 2005, 2004). It is based on the auxiliary problem of an inclusion embedded in an 

infinite medium. The constitutive heterogeneity, represented by the inclusion, is the crystalline 

orientation, or crystallographic phase.  

In the present study, we have used an elasto-viscoplastic self-consistent model to simulate the 

transient and steady-state responses of zirconium alloys submitted to neutron irradiation and overall 

creep loading. The approach makes use of the correspondence principle with an efficient 

approximation of the inverse Laplace-Carson transform which allows to perform the resolution in the 

time domain (Brenner et al., 2002b). Linear (irradiation) and nonlinear (thermal) creep deformation 

mechanisms are considered at the local scale with an affine linearization of the thermal creep 

contribution (Masson and Zaoui, 1999). The irradiation growth mechanism is taken into account as 

an eigenstrain (stress-free strain) (Turner and Tomé, 1993). In the steady-state regime, this model is 

close to the widely-used VPSC model for moderate non-linearity and remains distinct from the lower-

bound for high nonlinearity (Masson et al., 2000). It has been previously used to study the thermal 

creep of Zr-Nb-O alloys (Brenner et al., 2002a).  

 

3-Introduction of the grain orientations or crystallographic phase orientations 

3-1. Material and crystallographic texture analysis 

The material studied is a zirconium alloy referred to as recrystallized Zy-4. Its chemical composition is 

given in Table 1.  

Table 1: Chemical content (in weight %) 

Sn Fe Cr O Zr 
1.30 0.21 0.10-0.12 0.125-0.128 Bal. 

 

Thin tubes are considered in this study, either guide tubes, with typical thickness of 0.4 mm and 

typical external diameter of 12 mm, or cladding tubes with typical thickness of 0.6 mm and typical 

external diameter of 9.5 mm.  

First, the texture of a guide tube made of recrystallized Zy-4 has been analyzed using X-ray 

diffraction. The principle of sample preparation has been described in (Baron et al., 1990). The 

experimental data are analyzed using the Arbitrary Defined Cell method described in (Pawlik, 1986) 

leading to the computation of the Orientation Distribution Function (ODF). The {0002} and {     } 

pole figures are shown on Fig. 2. The material reference frame is defined with respect to the tube by 

three orthogonal directions: (1) axial direction (  ), (2) hoop direction (  ), (3) radial direction (  ). 

  



 

Figure 2: {0002} and         pole figures obtained from the XRD texture analysis of the recrystallized 

Zircaloy-4 guide tube. 

 

3.2. Introduction of the crystallographic texture in the FFT simulation tool 

From the computation of the ODF, it is possible, using the LaboTex software (“LABOTEX software,” 

n.d.), to create a Single Orientation file containing an arbitrary large number of crystallographic 

orientations (defined by three Euler’s angles) that are representative of the texture of the material. It 

has been chosen to use a file containing 105 orientations as reference file. Within this reference file, 

   orientations, one orientation per grain of the unit cell (see section 2.2), are chosen randomly. 

Because the reference file contains orientations representative of the texture, a random choice of 

orientations extracted from this file should also be representative of the texture. However, in order 

to guaranty that the output file, containing only    orientations, is sufficiently representative of the 

texture of the material, a criterion on the Kearns factor values is added to accept or reject the 

random choice of crystallographic orientations. The three Kearns factors, computed using the file 

containing 105 orientations are :       =0.103,       =0.292,        =0.604 where the subscripts are 

1= , 2=  and 3= . The criterion used can be written, with i=1, 2, 3, as: 

                             

Five orientation files are selected for each   value. Simulations have been done using these five 

different samplings in order to check the influence of the sampling. In the following, the simulations 

are conducted with the sampling #1, associated to each   value, if not specified differently. 

 

3.3 Introduction of the crystallographic texture in the mean-field self-consistent polycrystalline 

model 

From the computation of the ODF, done using the Labotex software (“LABOTEX software,” n.d.), a file 

containing 2527 orientations (every 10° for the 3 Euler’s angles,                             

        ) is generated. Each crystallographic orientation is defined by three Euler’s angles. For each 

crystallographic orientation, the corresponding volume fraction is computed from the ODF value 

(Cho et al., 2004; Kocks et al., 1998). The Kearns factors computed from this file are the following: 

  =0.104,   =0.293,   =0.604, in very good agreement with the reference file containing 105 single 



orientations. The two input orientation files, containing either 2527 orientations with volume 

fractions or 105 single orientations, are given in supplementary materials. 

 

4-Intragranular constitutive behavior: 

The intragranular constitutive behavior is defined, in the framework of an elasto-visco-plastic 

behavior, by a set of equations relating the local strain rate (either at the voxel scale, in the FFT 

computation, or at the crystallographic phase scale for the self-consistent model) and the applied 

stress. First, the total strain rate at the local scale (  ) (the voxel scale for the FFT simulation or the 

considered crystallographic orientation for the self-consistent model) is the sum of the elastic strain 

rate (   ) and the irreversible strain rate (denoted here     ). This last quantity includes the creep 

strain and the growth strain. The local elastic strain is related to the local stress by the Hooke’s law 

(       or        with   the anisotropic elastic moduli tensor and   the anisotropic elastic 

compliance tensor). The total local strain rate is then expressed as Eq. 1. 

                 

The irreversible strain rate (    ) is the result of the thermal creep, irradiation creep and irradiation 

induced growth that occur at the local scale. It is assumed that these three phenomena are not 

coupled at the local scale. The irreversible strain rate can thus be written as Eq. 2, where           is 

the thermal creep strain rate,            is the irradiation creep strain rate and          is the growth 

strain rate. 

                                       

The assumption of three uncoupled phenomena is a strong approximation since at the local scale 

growth and irradiation creep are both the result of point defect diffusion. Furthermore, in the case of 

zirconium it is often considered that irradiation creep results from a dislocation climb enhanced glide 

phenomenon and that thermal creep results from dislocation glide. Therefore, these two phenomena 

are probably also coupled. It is worth mentioning that small strain is assumed for this model. In the 

following, the macroscopic stress and strain tensors are noted   and  . 

 

4.1 Anisotropic elasticity of zirconium single crystal 

In this model, the anisotropic elasticity of zirconium single crystal is taken into account at the local 

scale. The elastic moduli given by Fisher and Renken (Fisher and Renken, 1964) at a temperature of 

350°C are used. The moduli of the fourth order elastic stiffness tensor expressed in the usual Voigt 

notation are given in Table 2. The order of the index   of the     matrix, representing the two indices 

   in the Voigt notation is   =11, 22, 33, 23, 31, 12. 

Table 2: Anisotropic elastic moduli (in GPa) for zirconium at 350°C from (Fisher and Renken, 1964). 

                                      

    
       

 
       

                      

 



  



4.2 Modelling of thermal creep without irradiation at grain scale 

It is considered that the thermal creep behaviour is governed by dislocation glide in specific planes of 

the crystalline grains. This is taken into account by using classical crystal plasticity models. 

The crystalline structure of zirconium is hexagonal close packed at room temperature. The lattice 

parameter are   0.323 nm and     1.593. There are four slip system families in the hcp lattice:  

 Three prismatic slip systems for dislocations with <a> Burgers vector gliding in the        

planes.  

 Six pyramidal <a> slip systems for dislocations with <a> Burgers vector gliding in the        

planes.  

 Six basal slip systems for dislocations with <a> slip systems gliding in the        plane.  

 Twelve pyramidal <c+a> slip systems for dislocations with <c+a> slip systems gliding in the 

       planes. 

For each slip system, referred to with the subscript  , the constitutive behaviour must be defined 

with coefficients specific for each slip system family. First, it is considered, as it is usually done for 

classical crystal plasticity modelling, that the slip systems obey the Schmid’s law (Eq. 3). 

            

In this equation,   is the local stress,    is the orientation tensor of the slip system   and    is the 

resolved shear stress. The orientation tensor is computed as Eq. 4. 

   
 

 
                  

With    the normal of the considered slip system and    its slip direction, parallel to the Burgers 

vector.    and    are unit vectors. 

A simple constitutive behavior is assumed for each slip system (Eq. 5). The flow rule, which relates 

the shear strain rate to the resolved shear stress, is a power law, with a Norton coefficient    and 

with a constant reference stress on the denominator,   
 . With such a simple model, only secondary 

creep can be correctly modeled. A transient primary creep cannot be correctly reproduced. 

        
    

  
  

  

             

Finally, from the knowledge of all the shear strain rates for each slip systems at the local scale, the 

overall thermal creep strain rate can be deduced from Eq. 6. 

              
 

       

These simple constitutive equations for thermal creep have only eight adjustable coefficients: one 

stress exponent    and one reference shear stress   
  for each slip system family. Associated to the 

reference shear stresses, an arbitrary reference shear strain rate (   ) is introduced. The value of this 

coefficient of    =2.5      s-1 is adopted for all systems. 

  



4.3 Modelling of the effect of irradiation on thermal creep at grain scale 

In this model, it is important to account for the radiation-induced hardening because this 

phenomenon decreases significantly the thermal creep strain rate. This thus leads to a reduced 

thermal creep under irradiation. In zirconium alloys, the radiation-induced hardening is due to the 

formation of numerous and small <a> dislocation loops under irradiation. These loops act as 

obstacles against dislocation glide. The stress required to make dislocation move is thus increased. 

This effect is taken into account, for each slip system, by using the classical Dispersed Barrier 

Hardening model. In this model, a population of loops with mean diameter    and number density 

   (in m-3) is considered. It can be shown, using dislocation theory, that the increase in critical 

resolved shear stress (   ) due to the presence of loops intersecting the dislocation glide plane is 

inversely proportional to the mean distance between pinning points in the glide plane ( ). Since, the 

mean distance between loops intersecting the dislocation glide plane is related to the mean loop 

diameter and to the loop number density (          ), the increase in critical resolved shear 

stress is expressed as Eq. 7, where   is the shear modulus and   is a coefficient characteristic of the 

strength of the interaction between dislocations and loops. This coefficient is smaller than unity.    is 

the Burgers vector of <a> dislocations and it is equal to   =0.323 nm. 

        
 

 
                

The use of the shear modulus   assumes elastic isotropy. Because anisotropic elasticity is considered 

here, the effective shear modulus on a polycrystal with isotropic texture using the Voigt average 

procedure has been computed. In this procedure, homogeneous strain is assumed on the polycrystal 

(Tromans, 2011). The value obtained for the shear modulus is  = 29157 MPa. Considering the 

relatively low anisotropic elasticity of zirconium this choice has only a minor impact on the results. 

Furthermore, this coefficient is multiplied by the coefficient   which is a fitting parameter. 

Because dislocations, gliding in various planes, can be affected in different ways by the presence of 

loops, different values for the coefficient characteristic of the strength of the interaction ( ) have 

been introduced for each slip system. These coefficients are noted   . Furthermore, we have defined 

the quantity    as         which corresponds to a linear density of dislocation loops (in m-2).  

In the thermal creep model, we then consider that the reference stresses, which appear in the flow 

law, are affected by the presence of irradiation induced loops in the same way as the critical resolved 

shear stress in the Dispersed Barrier Hardening model (Eq. 8). 

  
    

                

Under irradiation, <a> loops rapidly form and the number density and diameter saturate to typical 

values of 3×1022 m-3 and 7 nm (Northwood, 1977). In order to describe this evolution with fluence 

(  , where   is the mean fast neutron flux (E> 1 MeV) in n.m-2.s-1 and   the irradiation duration in s), 

Eq. 9 has been adopted.  

          
                    

This evolution law has only two parameters that are adjusted on the microstructural experimental 

data provided by Northwood et al. (Northwood, 1977). The values obtained for these coefficients 

are:   
   2      m-2 and   = 2     ×10-18 n-1.m2). 



 

Figure 3: <a>-loop linear density evolution with fluence, from Northwood et al. (Northwood, 1977).  

 

4.3 Modelling of irradiation creep at grain scale 

It is usually considered that climb enhanced glide can explain irradiation creep of zirconium alloys. 

However, mass-transport mechanisms based on point defect diffusion could also play a significant 

role, especially when the grains are small enough. Because, irradiation creep mechanisms remain not 

fully understood (Onimus et al., 2020b, 2020c) we have preferred to adopt an empirical approach at 

the local scale, for irradiation creep deformation. Following the work of Turner et al. (Turner et al., 

1999, 1994; Turner and Tomé, 1993) and Tomé et al. (Tomé et al., 1993), we have adopted a linear 

behavior for irradiation creep (Eq. 10). The quantity    corresponds to the local irradiation creep 

compliance tensor (with   the fast neutron flux in n.m-2.s-1). 

                    

For the sake of simplicity, we have decided to adopt an irradiation creep compliance tensor of the 

same form as the one obtained by Turner et al. (Turner et al., 1999), referred to as        , 

established for Zr-2.5Nb pressure tube material and for a fast neutron flux of         0.2×1018 n.m-

2.s-1. A single proportionality coefficient,   , is introduced to adjust the simulated creep strain rate on 

the experimental behavior of the recrystallized Zy-4 (Eq. 11). 

                 
 

       
              

The irradiation creep compliance tensor,        , has only three independent coefficients,   ,    

and   , as shown by Woo et al. (Woo, 1985) and Turner et al. (Turner et al., 1999). This tensor 

presents a transverse isotropy in the basal plane. It can be expressed as Eq. 12, where the fourth 

order is expressed in the usual Voigt notation. The order of the indices   (same for  ) is the following: 

  =11, 22, 33, 23, 31, 12. 



          

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  
 

  
 
 
  
 

 
   
 

   

  
 
 
  
 

  
 
 
  
 

 
   
 

   

 
   
 

 
   
 

   
 

   

   
  
 

  

    
  
 

 

     
  
  
 
 
 
 
 
 
 
 
 
 
 
 

      

 

The coefficients    are given in Table 3. Only one coefficient,   , remains to be adjusted on the 

macroscopic behavior. 

Table 3: Coefficients of the irradiation creep compliance tensor. 

   Value in GPa-1.h-1 Value in MPa-1.s-1 

   0.32×10-6  8.9×10-14 
   8.00×10-6  2.2×10-12 
   3.20×10-6  8.9×10-13 

 

4.4 Modelling of irradiation induced growth at grain scale 

Irradiation growth of zirconium single-crystal consists of a shrinkage along the <c> axis and an 

elongation along the basal plane. The possible volume change (referred to as swelling) has been 

measured by various authors (Fidleris, 1988; Holt and Causey, 2004; Yagnik et al., 2018). This volume 

change is usually found to be small. In the following we assume, as it was done by Turner et al. 

(Turner et al., 1999, 1994; Turner and Tomé, 1993) and Tomé et al. (Tomé et al., 1993), that there is 

no volume change (no swelling). The growth strain tensor is therefore fully deviatoric and can be 

written as Eq. 13, where the two order tensor also presents a tranverse isotropy. 

                      
     
     
    

       

The scalar quantity         corresponds to the absolute value of the strain rate along the <c>-axis, or 

twice of the strain rate along the <a>-axis (Eq. 14) 

            
           

            

As described earlier the growth behaviour exhibits first a rapid transient and a stationary growth 

rate. Then for higher fluences, a growth acceleration or breakaway occurs. We have therefore 

described the growth rate as the sum of two components: one corresponding to the two first parts 

(   ) and one corresponding to the growth acceleration (   ) (Eq. 15).  

                               

  



4.4.1 Transient and stationary growth 

The microscopic origin of the first transient and stationary growth remains not fully understood. One 

explanation, referred to as the Difference in Anisotropic Diffusion model (Woo, 1988), is that the 

diffusion of self-interstitial atoms is more rapid in the basal plane than along the <c>-axis, whereas 

vacancy diffusion is nearly isotropic. The highest interstitial flux toward grain boundaries 

perpendicular to the basal plane (with the plane normal in the basal plane) results in a positive strain 

in the basal plane. From the mass-balance a resulting shrinkage along the <c>-axis occurs. Then, as 

the interstitial and vacancy <a>-loops develop, they become the dominant sinks. The growth strain 

tends to saturates since the same amount of vacancy and interstitial <a>-loops has been observed. 

However, this model is currently being questioned since the Difference in Anisotropic Diffusion has 

not been proven by the latest advanced atomistic modelling method. Because there is no commonly 

acknowledged model, we have preferred to use a simple empirical model at the local scale (Eq. 16). 

                              

The coefficient    is equal to the inverse of the fluence at which the growth strain saturates. The 

coefficient    corresponds to the stationary growth strain. These two coefficients,    and   , must 

be adjusted on the growth behaviour before breakaway. 

 

4.4.2 Irradiation induced growth acceleration or breakaway 

On the other hand, it has been clearly established by many authors (Fidleris, 1988; Griffiths et al., 

1989; Holt and Gilbert, 1986) that the growth acceleration is associated with the appearance of <c>-

component loops. However, there has been rather few attempts to quantitatively correlate the <c> 

loop size and density measured by TEM to the growth strain (Griffiths et al., 1989; Yagnik et al., 

2018). A simple model to compute the growth strain due to the formation and growth of vacancy 

<c>-component loops in the basal plane of the HCP grains can be obtained by considering that the 

<c> loops induce a shrinkage of c/2 along the <c> axis, their Burgers vector being equal to 
 

 
        

(Christien and Barbu, 2009; Griffiths et al., 1989). Knowing the mean loop diameter    (in m) and the 

loop number density    (in m-3), the strain along the c-axis can be computed, by using the mean-size 

approximation (Barashev et al., 2015), as Eq. 17. 

  
        

 

 

   
 

 
        

 

Figure 4: Schematic explaining the origin of the strain along the <c> axis during growth acceleration.  



In order to account for the mass balance, if a shrinkage occurs along the c-axis, an expansion must 

occur along the basal plane:   
          

        . This can either be the result of the higher 

growth of interstitial <a>-loops than vacancy <a>-loops, or this can be due to diffusion towards grain 

boundaries perpendicular to the basal plane (containing the c-axis). 

Because the <c>-component loops are usually larger than the thin foil thickness ( ) used for TEM 

observations, the loops are truncated by the foil surfaces. The diameter and number density cannot 

therefore be accurately measured. Instead, it is preferred to measure, on the TEM picture, the sum 

of the length of all segments (  ), corresponding to <c>-loops intersection with the thin foil, observed 

edge-on (when the diffraction vector g=0002 is used), divided by the surface of the area studied by 

TEM ( ) and divided by the foil thickness ( ). This quantity will be referred to as    (in m-2) and is 

computed as Eq. 18. 

   
 

  
         

The relationship between this quantity measured on TEM pictures and mean loop diameter and 

number density can be calculated by considering a random population of <c> loops with mean 

diameter    intersecting a thin foil of thickness  , in the frame of the mean-size approximation. This 

relationship, derived in the Appendix C (assuming that the loop disc can always be observed even 

though the loop is truncated by the two surfaces of the foil), is given in Eq. 19. 

     
  
 
   

   
 
       

Using this last relationship, the growth strain along the <c> axis can be computed as a function of    

using Eq. 20 and 21. 

  
                        

With  

         
 

 

 

 
 
 
  

  
     

 

Only few authors have measured the quantity    by TEM. It is Doriot et al. (Doriot et al., 2014) who 

give the most extensive data base for <c> loop density measurements for various zirconium alloys in 

PWR condition. Yagnik et al. (Yagnik et al., 2018) also provide results obtained in fast neutron 

material testing reactor. In the case of recrystallized Zy-4, Doriot et al. (Doriot et al., 2014) give three 

measurements obtained at three different fluences, starting from 9.5×1025 n/m2 up to 21.1×1025 

n/m2. For these measurements, the thin foil thickness is considered to be   150 nm. No value for 

lower fluence is provided. In order to have a more complete view of the <c> loop density evolution, 

we have chosen to analyze the TEM pictures provided by Griffiths et al. (Griffiths et al., 1995). These 

authors have observed <c> loops in recrystallized Zy-4 guide tubes irradiated in PWR at 307°C from 

0.5×1025 n/m2 up to 8.0×1025 n/m2. The foil thickness is considered to be equal to 150 nm. The 

evolution of the <c> loop linear density when observed edge-on is given on Fig. 5. 



 

Figure 5: Experimental measurements of <c>-loop density evolution from (Doriot et al., 2018) (filled 

red circles) and from (Griffiths et al., 1995) (empty blue circles) and comparison with <c>-loop linear 

density evolution law.  

 

An empirical evolution equation is proposed for the <c>-loop linear density (viewed edge-on),    (Eq. 

22). 

   
  

 
   

              
      

This equation has three fitting coefficients:   ,    and   . The coefficient    is not really a fitting 

coefficient since it must be high enough so that at the beginning the loop growth rate is zero. This 

coefficient is chosen as        . The coefficient    gives the fluence when <c> loops appear. The 

coefficient    corresponds to the slope of the increase of <c> loop density with fluence. These two 

coefficients have been adjusted on the measured <c> loop density:            ×10-18 n-1.m2 and 

           ×10-18 n-1. The empirical evolution equation is plotted on Fig. 5 with the 

experimental values.  

 

Once these coefficients are adjusted on the <c> loop evolution, the absolute value of the growth 

strain rate along the <c> axis, in the accelerated regime, can be computed thanks to the following 

relationship (Eq. 23). 

      
   
  

      

Unfortunately, only knowing the foil thickness   and the measure of    is not sufficient to deduce the 

growth strain. A measure of the mean <c> loop diameter (  ) is needed. This measure must be 

obtained thanks to additional TEM observations where the full circle of the <c> loop is observed. 

Griffiths et al. (Griffiths et al., 1989) show <c> loops in Zircaloy-4 irradiated at 307°C to a fluence of 

8×1025 n/m2 and annealed for 1 hour at 600°C. On this picture, typical <c> loop diameters range 

between 100 nm up to 440 nm, the mean loop diameter being around 250 nm. Harte et al. (Harte et 

al., 2017) also provide pictures of circular <c> loops after proton irradiation of fully recrystallized Zy-2 

samples. The mean loop diameter of the loops measured on the picture is also close to 250 nm. 



Recently, <c>-loops have been observed after annealing in a Zr-1%Nb-O zirconium alloy (shown in 

Appendix C). Large circular <c> loops are observed in that case and they have typical diameter of the 

order of 300 nm (200 to 350 nm depending on the method used). In the following, we have adopted 

a constant value of    300 nm and a thickness of the foil used for the measurement of t 150 nm, 

leading to a value for    equal to                m2. This approach is clearly simplified since 

under irradiation <c> loops must grow with increasing irradiation dose. Nevertheless, as explained 

above, this evolution has not been yet measured because of experimental limitations. 

 

5-Data base, parameter identification and simulation results: 

5.1 Mechanical tests data base 

The data base used for parameters refinement comes from various sources. First, the non irradiated 

recrystallized Zy-4 results of long term creep tests conducted with an axial tensile applied stress or an 

internal pressure have been performed at CEA. Two tests have been conducted on guide-tubes 

samples with axial tensile applied stress of 90 MPa and 100 MPa at 350°C. The gauge length of the 

specimen was 82 mm. The tube was regularly removed from the machine. The axial strain was 

obtained by measuring at room temperature, before and after test, the length between two prints 

initially situated at ±20 mm from the middle of the tube. Using the same procedure, the diameter is 

measured, before and after test. Before testing, the initial thickness is also measured for all 

specimens. 

One test has been conducted using a pre-pressurized tube installed in a furnace at 350°C, leading to a 

hoop stress of 130 MPa. The tube was 106 mm long and the prints used for axial measurements are 

situated at ±25 mm from the middle of the tube. The tube was regularly removed from the furnace 

and the diameter and the length of the tube were also measured at room temperature. From the 

difference between the current diameter and the initial diameter, the creep strain was computed. It 

should be pointed out that applying an internal pressure induces a biaxial stress state, with the axial 

stress equal to approximately half of the hoop stress (Onimus et al., 2020a). 

Concerning the behavior after irradiation of recrystallized Zy-4, only one result has been found for 

creep tests done at 350°C. This mechanical test has been conducted at CEA, in hot cell on a cladding 

tube irradiated in power reactor up to a fluence of 0.5×1025 n/m2. This tube was tested at 350°C 

under a hoop stress of 200 MPa. In that case the diameter was measured using extensometers all 

along the test allowing the measurement of the total strain. 

The data concerning the creep behavior under irradiation of recrystallized Zy-4 at 350°C comes from 

the work of Soniak et al. (Soniak et al., 2002). These authors have conducted two irradiation creep 

tests under internal pressure in the CEA material testing reactors Siloé and Osiris using pre-

pressurized cladding tube specimens leading to hoop stresses of 90 MPa and 120 MPa. The fast 

neutron (E > 1 MeV) flux was equal to   1.75×1018 n/m2. The creep samples had a length of 82.6 

mm, outer diameter of 9.5 mm and wall thickness of 0.6 mm. As for the test conducted on the non-

irradiated sample, the initial diameter, length and thickness are measured before irradiation and the 

diameter and length of the samples are regularly measured in hot-cell by taking the samples out of 

the reactor. 

The data concerning the growth under irradiation of recrystallized Zy-4 at 350°C comes mainly from 

the work of Gilbon et al. (Gilbon et al., 2000) and from the work of Soniak et al. (Soniak et al., 2002) 

where results obtained on the same specimens brought up to higher fluences are also given.  



In addition to this CEA data base, which is limited to rather low irradiation fluences, other irradiation 

growth tests have been used. Rogerson (Rogerson, 1988) provides growth data for recrystallized Zy-2 

(with grain size of 20 µm and axial Kearns factor of 0.1) at 280°C under a neutron flux between 4.1 

and 10.8×1017 n.m-2.s-1 in the DIDO reactor. Garzarolli et al. (Garzarolli et al., 1989) provide growth 

data for recrystallized Zy-4 (grain size 7 µm, axial Kearns factor 0.046) at 295°C in a PWR under a 

typical neutron flux of 6 to 10×1017 n.m-2.s-1. Finally, Holt and Gilbert (Holt and Gilbert, 1986) and 

Griffiths et al. (Griffiths et al., 1995) provide other data obtained on guide-tubes made of 

recrystallized Zy-4 at temperatures ranging from 287°C to 311°C under a typical flux of 6 to 10×1017 

n.m-2.s-1 in PWR reactors, with similar grain size and Kearns factors. 

 

5.1 Simulation results of thermal creep tests 

First, the three tests conducted on non-irradiated specimens are simulated using the self-consistent 

model. For axial creep test, a uniaxial stress tensor is applied and for internal pressure tests a biaxial 

stress tensor is applied with the axial stress equal to half of the hoop stress (              

      ). An automatic fitting procedure, based on the minimization of a cost function is used to 

obtain the best set for the eight parameters (  
  ,   ), the coefficient     remaining equal to 

   =2.5      s-1. Some constraints must be added to the minimization procedure to ensure that the 

prismatic slip remains the easiest slip system and the pyramidal <c+a> remains the most difficult slip 

system. Then, the three tests are simulated using FFT calculations with few grains and a coarse 

spatial discretization for accelerated procedure. The reference shear stresses are then progressively 

manually adjusted to obtain adequate simulation of the creep strain and creep anisotropy. The 

number of grains and the spatial discretization is then increased. The final coefficient set is given in 

Table 4. The FFT simulations done with Voronoi’s grains, using    grains, with  =21, a refinement of 

 =5, with shape sampling #1 and grain orientation sampling #1, are shown, as continuous lines, on 

the Fig. 6. These simulations results are compared with experimental results shown as circles. The 

hoop strain is shown in blue and the axial strain is shown in red. It can be noticed that a good 

agreement is obtained between simulation and experiments, at least for this limited stress range, 

although the creep model used here is particularly simple. Especially, a good agreement concerning 

the thermal creep anisotropy and the stationary creep rate is achieved. 

 

Table 4: Values of the coefficients of the thermal creep constitutive equations. 

Slip system      
   (MPa)    

Prismatic 5.9 55 0.47 

Pyramidal <a> 9.4 75 0.47 

Basal 6.5 66 0.19 

Pyramidal <c+a> 6.5 140 0.47 

 

Table 5: Values of the coefficients used to model the effect of irradiation on the thermal creep. 

Parameter Value Unit 
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Figure 6: FFT simulations (using Voronoi grains with N=21, r=5) compared to experimental results of thermal creep tests 

conducted at 350°C on non-irradiated RXA Zy-4 a) with an axial applied stress of 90 MPa and 100 MPa and b) with an 

internal pressure leading to an applied hoop stress of 130 MPa. Both axial and hoop creep strain (total strain minus elastic 

strain) are plotted (in red and blue respectively). 

 

In a second step, the parameters characteristic of the radiation induced hardening are adjusted. In 

order to simulate the post-irradiation creep behavior, the neutron flux is set to zero, and the <a> 

loop density is set at its saturation value   
  . This takes into account that after irradiation the <a> 

loop density is high and act as obstacle against dislocation glide. However, this approach neglects the 

possible loop recovery during post-irradiation creep at 350°C or the possible loop clearing during 

dislocation glide. Then the parameters    are adjusted to obtain an adequate simulation of the creep 

test conducted with internal pressure under a hoop stress of 200 MPa. Since it has been shown that 

dislocations gliding in the basal planes are less pinned by loops than dislocations gliding in other 

planes, a coefficient   =0.19 has been adopted for basal slip, whereas a value of   =0.47 (with 

   ) has been adopted for all the other three slip system families. It can be seen on Fig. 7, that a 

good description of the creep rate after irradiation is obtained, for this single test. The other 

parameters are recalled in Table 4 and 5. 

 



 

Figure 7: FFT simulations (using Voronoi grains with N=21, r=5) compared to experimental results of a post-irradiation creep 

test conducted at 350°C on RXA Zy-4, under internal pressure, with applied hoop stress of 200 MPa. The total hoop strain is 

shown as a function of time. 

 

5.3 Simulation results of irradiation creep tests 

Concerning irradiation creep, two internal pressure tests are simulated, with a hoop stress of 90 MPa 

and 120 MPa. The neutron flux is set at  =1.75×1018 n/m2.s-1. As pointed out in (Soniak et al., 2002), 

the growth strain is negligible in the hoop direction. This allows a separate fitting of parameters 

governing irradiation creep and parameters governing growth. In this very simple approach, there is 

only one fitting parameter for irradiation creep (  ). The value for this coefficient is found to be 

  =0.35, showing that the irradiation creep of recrystallized Zy-4 is significantly lower than for 

Zr2.5Nb pressure tube material. A correct description of stationary irradiation creep for a hoop stress 

of 90 MPa is obtained (Fig. 8). Furthermore, its anisotropy is also well reproduced. However the 

simulated creep strain for a hoop stress of 120 MPa is lower than the experimental creep strain, 

suggesting that the stress exponent for irradiation creep of recrystallized Zy-4 is slightly higher than 

unity. This was already discussed by Soniak et al. (Soniak et al., 2002) who obtained a macroscopic 

stress exponent of 1.43.  

It is worth pointing out that the introduction of the progressive hardening of thermal creep with 

irradiation is not able to reproduce the primary creep observed experimentally. The primary creep 

observed must therefore have another origin than the progressive retarded thermal creep due to 

radiation hardening. 

The hoop strain and hoop stress distribution in the grain aggregate computed during the simulation 

of the in-reactor creep with hoop stress of 90 MPa, are given in Appendix A. 



 

Figure 8: FFT simulations (using Voronoi grains with N=21 and r=5) compared to experimental results of internal pressure 

creep tests conducted on RXA Zy-4 under irradiation at 350°C in materials testing reactor (Soniak et al., 2002). Two tests are 

reported with an applied hoop stress respectively of 90 MPa and 120 MPa. For the test conducted with an applied hoop 

stress of 90 MPa, both axial and hoop strain are given (resp. in red and blue). 

 

5.4 Simulation results of irradiation induced growth tests 

Concerning irradiation growth, there are only two fitting parameters (  ,   ) for the first transient 

and stationary growth. After fitting, the coefficients obtained are   =        ,   =        ×10-

18 n-1.m2. Concerning growth acceleration, there is no additional fitting parameters, since the 

coefficients have already been adjusted on microscopic data. The simulation results are shown on 

Fig. 9. A very good agreement is obtained for axial growth strain as well as for the strain along the 

hoop direction. From the parameters used in the model, it is interesting to plot the growth strain 

occurring at the local scale for recrystallized Zy-4. This is shown on Fig. 15. Furthermore, the axial 

strain and axial stress distribution in the grain aggregate computed during the simulation of the in-

reactor creep growth, are given in Appendix A. 

 

 

Figure 9: FFT simulations (using Voronoi grains with N=21 and r=5) of irradiation induced growth tests compared with the 

full experimental data base, (b) the simulation is compared with the experimental results obtained on RXA Zy-4 at 350°C 

provided by (Gilbon et al., 2000; Soniak et al., 2002). Soniak et al. (Gilbon et al., 2000) provide measurements of the hoop 

strain growth strain (in blue). Axial strain is shown in red and hoop strain is shown in blue.  

 



To summarize, the growth model requires 6 input parameters. Some of them have been obtained 

from fitting on microstructure data and some of them have been deduced by fitting on the 

macroscopic mechanical behavior. All these parameters are recalled in Table 6. 

 

Table 6: Parameters for the transient, stationary and accelerated growth. 

Parameter Value Unit 
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6. Sensitivity study of the FFT simulations 

The FFT numerical simulations performed in this work are sensitive to spatial discretization, grain 

number, grain orientation sampling or seed choice of Voronoi’s grains. In order to evaluate the 

influence of these choices on the numerical results, a sensitivity study has been conducted.  

For this sensitivity study, only the thermal creep test on the non-irradiated material under an axial 

stress of 100 MPa has been computed. The total axial strain at the end of the creep test ( =4×106 s) 

has been recorded for each simulation and compared. It has been chosen to compare the total strain 

instead of the creep (visco-plastic) strain only, because the elasticity is heterogeneous (anisotropic 

elasticity at the local scale). For different choices of grain aggregates, the macroscopic elastic strain 

must therefore be different. Voronoi’s shape grains have always been used, except when the grains 

contain only one voxel. In that case the grains are obviously cubic.  

First, the influence of the choice of the number of grains (  ) has been studied. Six values for   have 

been chosen: 3, 5, 9, 13, 17, 21. For each   value,    orientations have been chosen randomly in the 

file containing 105 grains orientations representative of the texture. As described earlier, only the 

samplings that have the correct Kearns factors have been selected. Five different grain orientation 

samplings have been selected for every   value. Then, these 30 different simulations have been 

performed on unit-cells containing    Voronoi grains with a spatial discretization always equal to 

 =5. The results are plotted on Fig. 10. For a small number of grains, there are significant 

discrepancies between the various results. As the number of grains increases the final strain tends to 

be the same for the various samplings. For  =21, the discrepancies are very small. This   value thus 

leads to a converged final strain. The average final total strain over the five different samplings (  ) 

for  =21 has been computed and the relative absolute value of the maximum deviation from this 

value (              ) has been calculated for each   value. For  =3, the maximum deviation is 

close to 16% and it drops rapidly below 2% for  =9. For  =21 it is equal to 0.5%, showing the very 

low dispersion obtained for this high number of grains. 



 

Figure 10: Sensitivity study for Voronoi grains (using a refinement parameter r=5), showing the influence of the grain 

orientation sampling and the influence of the number of grains N, a) on the final total strain and b) on the corresponding 

maximum deviation. The average on the various sampling for N=21 is shown.  

 

The influence of the spatial discretization, or refinement ( ), has also been studied, by choosing only 

 =21 (213 grains) and using the grain sampling #1. The refinement parameters has been increased 

from  =1 (cubic grains with one voxel only) to  =9 (93 voxels per grains, on average). Five simulations 

have been done (Figure 11). When the refinement parameter increases the final strain tends to 

slightly increase but converges to a constant value for  =9. The maximum deviation has also been 

computed, considering that the reference value is the converged value for  =9. For  =5, the 

maximum deviation is below 1% from the reference value and is therefore considered to be a good 

enough approximation. 

 

Figure 11: Sensitivity study for Voronoi grains (using N=21) showing the influence of the refinement parameter, r, (using the 

grain orientation sampling #1), on (a) the final strain and on (b) the corresponding maximum deviation. 

 

Finally, the influence of the random position of the seeds of the Voronoi grains has been studied. 

Previously, only the grain seed sampling was tested for each grain orientation sampling. Now, only 

one grain-orientation sampling is used (orientation sampling #1) and three different grain seed 

samplings are used for each   value (Fig. 12). For the lower   value, the discrepancy between 

various final strain values is higher and decreases as the number of grains increases. For  =21, the 

three simulated final strain values are nearly the same. The average value is thus computed for  =21 

and the maximum deviation from this reference value is computed for each   value. For  =5, the 

maximum deviation is around 3% and decreases down to 0.1% for  =21.  



  

Figure 12: Sensitivity study for Voronoi shape grains, showing the influence of the sampling of the grain shape (or choice of 

seeds for Voronoi grains) and the influence of the number of grains (with refinement parameter r=5)  (a) on the final total 

strain and (b) on the corresponding maximum deviation.  

 

Because the maximum deviation is below 1% for grain orientation sampling and also for grain seed 

sampling when  =21, it is thus required to use a grain aggregate with 213 grains for accurate 

simulation. Nevertheless, a simulation with only 93 grains would lead to a maximum deviation of only 

2%. Furthermore, to obtain accurate results it is required to use Voronoi grains with a spatial 

refinement equals to  =5. However, it is remarkable that a simulation with cubic grains with only one 

voxel per grain ( =1) leads to values only 3% away from the reference simulation ( =5) obtained on a 

problem size 125 times higher. Using such a simplified microstructure could allow fast computations 

needed for parameters fitting or even for a coupling with Finite Element method simulations of 

structure component. 

 

7. Comparison with the self-consistent model 

The same simulations have been conducted with the self-consistent model using the orientation file 

containing 2527 orientations representative of the texture of the material. For the non irradiated 

material, the internal pressure test with 130 MPa hoop stress and the axial creep with 100 MPa axial 

stress have been simulated and compared with the FFT simulations conducted with  =21 and  =5 

(Fig. 13). The strain simulated with the self-consistent model is systematically lower than the strain 

obtained from FFT simulations. The relative discrepancy between the self-consistent model and the 

FFT simulations are respectively 14% and 19%, for internal pressure test and axial test, when 

comparing the total strain (at t=4×106 s). This discrepancy increases up to 19% and 24% when 

comparing the creep strain only.  

 



 (a)  (b) 

 (c)  (d) 

Figure 13: Simulations done with the self-consistent model compared with the FFT simulations (using Voronoi grains with 

 =21 and  =5). (a) internal pressure thermal creep test with 130 MPa hoop stress, (b) axial thermal creep test with 100 

MPa axial stress, (c) internal pressure in-reactor creep test with 90 MPa hoop stress, (d) in-reactor growth test. On (d) the 

growth strains obtained with the lower-bound model are also shown.  

 

The same comparison can be done by comparing the simulated hoop creep strain for the internal 

pressure test under irradiation with 90 MPa hoop stress and the axial growth strain. The creep strain 

simulated by the self-consistent model is 12% lower (for a fluence of   =8×1025 n.m-2) than the strain 

obtained from FFT simulations. When considering growth, the axial strain is only 5% lower (for a 

fluence of   =1.75×1026 n.m-2) than the strain simulated with the FFT tool. 

The fact that the self-consistent model predicts lower strain values than the FFT simulations can be 

explained by the non-linearity of the thermal creep constitutive law. The self-consistent model 

requires the linearization of the non-linear constitutive law. This linearization is done using the affine 

procedure. It has been shown by Lebensohn et al. (Lebensohn et al., 2004) that linearizing the non-

linear constitutive law using the secant, tangent or even the affine procedure amounts to neglect the 

intra-phase heterogeneity. This then leads to a too stiff model. On the other hand, by using the FFT 

numerical tool, the intraphase heterogeneity is taken into account since many grains with similar 

orientations are considered and furthermore, inside each grains, various voxels are considered. This 

thus induces a softer response. 

For creep and growth tests under irradiation, the discrepancies between the self-consistent model 

and the FFT simulations are lower. This can be explained by a lower contribution of the non-linear 

thermal creep. To confirm this, the same simulations have been conducted without the non-linear 

thermal creep (using ad-hoc high reference resolved shear stresses).  



For irradiation creep (Figure 14a) the discrepancy is now of only 2% (for a fluence of   =8×1025 n.m-

2), which is remarkable considering the two very different homogenization methods, the difference in 

the crystallographic orientation file, the influence of the grain shape and also all the possible 

numerical errors associated with each method. This discrepancy decreases below 1% when exactly 

the same orientation file is used for both calculations. 

Concerning growth (Figure 14b), the discrepancy between the self-consistent model and the FFT 

simulation remains equal to 4% without thermal creep (for a fluence of   =1.75×1026 n.m-2).  

   

Figure 14: Self-consistent model and FFT simulations without thermal creep for (a) the in-reactor creep test (internal 

pressure) under irradiation with 90 MPa hoop stress and (b) irradiation induced growth test. FFT simulations conducted 

with N=21
 
and r=5 (continuous lines), and Self-consistent model, with 2527 orientations (dotted lines), are compared.  

 

8. Discussions 

8.1 Discussion on the importance of thermal creep during in-reactor deformation 

By comparing the FFT simulations with and without thermal creep, it is possible to evaluate the 

contribution of thermal creep during in-reactor creep test. At 350°C and under an internal pressure 

leading to 90 MPa applied hoop stress, the thermal creep strain is equal to 19% of the overall creep 

strain (for a fluence of   =8×1025 n.m-2). However, because of the non-linear evolution with stress of 

thermal creep, this proportion increases as the stress increases. For an applied hoop stress of 120 

MPa, the contribution of thermal creep becomes equal to 46% (for a fluence of   =1.4×1025 n.m-2). 

This analysis shows that although the contribution of thermal creep is generally considered to be 

small in-reactor, its contribution must not be neglected when the stress increases up to 120 MPa. On 

the other hand during growth test, the contribution of thermal creep is negligible. 

 

8.2 Comparison between the simulated growth strain and the lower-bound model 

It is interesting to compare the simulated growth strain with the classical approach based on the 

Kearns factors which is also called the lower-bound model. The lower bound model assumes 

homogeneous stress in the polycrystal. In the case of stress free growth (zero macroscopic applied 

stress), the local stress is equal to zero for each grain. Each grain behaves as an independent single 

crystal and the macroscopic strain is just the average of the strain in each grain (or each 

crystallographic phase). Because growth is considered to occur with constant volume, it can be 

shown that the macroscopic growth strain (   ) along the direction   is: 



           
  
      

 
        

 

 
          

            

Where    is the growth strain along the <c>-axis,   
       is the growth strain along the <c>-axis 

(  
           

      ) and    is the Kearns factor along   which describes the resolved volume 

fraction of basal poles along the direction   (Adamson et al., 2019; Fong, 2013; Griffiths, 2020; Gruber 

et al., 2011; Kearns, 2014; Kocks et al., 1998; Murty and Charit, 2006). More details concerning the 

lower-bound model and the Kearns factor are given in Appendix B. The growth strain along the axial 

direction of the tube can then be calculated by using the appropriate Kearns factor (      =0.103) 

and the strain evolution along the <c> axis. This calculation is compared with FFT and self-consistent 

model simulations on Fig. 13. 

It can be seen on Fig. 13 that using the lower-bound model, the axial growth strain is more than 51% 

lower (for a fluence of   =1.75×1026 n.m-2) than the axial growth strain computed by the FFT 

simulations or the self-consistent model. The lower bound model thus significantly underestimates 

the axial growth strain. This shows that it is necessary to use a polycrystalline model to compute 

adequately the growth strain. This is particularly true when we want to introduce at the local scale, 

some microstructural internal variables, such as the <c> loop density, such that these quantities are 

consistent with TEM observations. 

The fact that the growth strain computed by the FFT simulations is higher than the lower bound 

model shows the importance of the viscous interactions between grains during growth and thus the 

occurrence of irradiation creep at the local scale. As shown by Tomé et al. (Tomé et al., 1993) the 

effective macroscopic growth rate depends on both the crystallographic texture of the polycrystal 

and also, to a lesser extent, on the local anisotropic viscous behavior. With the crystallographic 

texture chosen and also the irradiation creep compliance chosen, the macroscopic growth strain rate 

along the axial direction is higher than with the lower-bound model. This is consistent with the early 

results published by Turner and Tomé (Turner and Tomé, 1993) although this point was not 

emphasized in this previous work. 

It is worth mentioning that we have checked that, using exactly the same coefficients and the same 

constitutive equations as the ones used in (Turner and Tomé, 1993) and also using a very similar 

texture file, a good agreement is obtained between our simulation and the results obtained by 

Turner and Tomé (Turner and Tomé, 1993). 

 

8.4 Discussion on the role of irradiation creep on stress free growth 

The previous simulations show that there is an effect of the irradiation creep behavior on the stress 

free growth, as it was pointed out in the early study by Woo (Woo, 1985). As stated by Woo, “if the 

creep compliance of two specimens differ, their steady state growth behaviors will defer, even if the 

growth mechanism is the same”. In other words, if an alloy exhibits a high irradiation creep 

resistance, the growth strain should be lower, even with the same amount of <c> loops created 

under irradiation. In order to study this effect, the growth behavior has been computed with a lower 

irradiation creep rate. This is achieved by reducing the coefficient C4 by a factor of 10. The new 

coefficient is C’4=0.035. However, the thermal creep can still be activated in this simulation. The 

stationary axial growth rate is 16% lower than the reference growth strain. From this computation, it 

can be noticed that there is only a moderate effect of the irradiation creep resistance on irradiation 

growth. 

 



8.5 Discussion on the correlation between <c>-loop microstructure and growth strain 

There has been very few attempts to correlate quantitatively the macroscopic growth strain and the 

<c>-loop microstructure. The most extensive work is reported by Yagnik et al. (Yagnik et al., 2018) 

where the average <c>-loop linear density (   in m-2) is plotted as a function of the macroscopic 

irradiation induced growth strain along the axial direction (  ) for various alloys irradiated up to high 

doses. All these alloys have a Kearns factor along the axial direction (  ) close to 0.1. For low <c>-

loop density, below 1014 m-2 a linear correlation is noticed (       ) with a proportionality 

coefficient close to 5×10-17 m2. From our simulation, and neglecting the transient and stationary 

growth strain, this proportionality coefficient is found to be equal to 2.3×10-17 m2 for a fluence of 

1.5×1026 n.m-2. This shows that there is a correct agreement between the data used in our model and 

the correlation found in the results provided by (Yagnik et al., 2018). For <c>-loop density higher than 

1014 m-2 the proportionality coefficient progressively increases in the plot given by Yagnik et al. 

(Yagnik et al., 2018), showing a non-linear behavior. This is explained by the increase in <c>-loop 

diameter that cut the surfaces of the thin foil, in agreement with Eq. 21. Furthermore, when the loop 

is large enough to cut both surfaces, the loop contrast may be divided into two segments which 

further explains the progressive increase of the proportionality coefficient    with dose observed in 

(Yagnik et al., 2018). The coalescence of loops as they may also affect this proportionality coefficient. 

This shows that in order to simulate high dose irradiation growth, it is required, in future prospect, to 

take into account the fact that the loop contrast may be divided into two segments and the fact that 

the <c>-loop diameter increases with irradiation dose.  

 

Conclusion 

This study is a continuation of the long lasting effort to model in-reactor behavior of zirconium alloys. 

First, constitutive equations have been proposed to describe thermal creep and especially irradiation 

effect on thermal creep. Irradiation creep has been accounted for in a simple way following earlier 

works. An original approach is proposed to take into account the contribution of vacancy <c> 

component loops on the accelerated growth strain. These constitutive equations have been 

introduced into two homogenization models: Fast-Fourier Transform simulations and a self-

consistent polycrystalline model. This was done to simulate an experimental data base obtained on 

recrystallized Zy-4 thin tubes during out-of-reactor and in-reactor tests. 

Fast Fourier transform simulations on large grain aggregates have been applied for the first time to 

in-reactor deformation of zirconium alloys. A good description of thermal creep, in-reactor creep and 

in-reactor growth is obtained with microstructural inputs consistent with microscopic observations, 

such as <a> and <c> loop microstructures. These reference simulations have been compared with the 

self-consistent polycrystalline model. There is a good agreement between the two approaches when 

the behavior is linear with stress. For non-linear behavior, the affine self-consistent model is no more 

in agreement with FFT simulations. The FFT simulations have also been compared to the lower bound 

model which neglects interactions between grains. It is noticed that the lower-bound model 

underestimates the growth strain rate. The underestimation of the growth strain rate by the lower-

bound model is explained by the importance of the viscous interactions between grains during 

growth and thus the occurrence of irradiation creep at the local scale. This shows that it is necessary 

to use a polycrystalline model, which takes into account the irradiation creep at the grain scale, to 

compute adequately the growth strain from the measurement of the <c> loop density.  
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Appendix A: Strain and stress distribution computed by FFT simulations 

In this study, FFT simulations are used to deduce the macroscopic response of a large grain 

aggregate. However, during these simulations the detailed stress and strain fields are computed and 

are not analyzed. In this Appendix, some stress and strain fields are shown to illustrate the 

heterogeneous distribution of these fields throughout the polycrystal. 

On the Fig. A-1(a) and (b) are shown the total axial strain and the axial stress fields at the end of 

irradiation growth (for a fluence of 1.75×1026 n/m2). The simulations have been done using the unit-

cell with Voronoi grains (seed choice #1) with N=21 and r=5. The local minimum value for axial strain 

is -0.85% and the maximum value is 2%. By using a color scale going from -0.5% up to 2% the 

heterogeneous strain field is clearly observed. Concerning the axial stress field, the minimum value is 

-80 MPa and the maximum value is 200 MPa. Using a color scale going from -50 MPa up to 150 MPa, 

the heterogeneous stress field can be clearly observed. 

 (a) (b) 

Figure A-1: FFT simulation of the axial strain and axial stress distribution during irradiation induced 

growth. 

On Fig. A-2(a) and (b) are shown the hoop strain and stress fields at the end of irradiation creep test 

(for a fluence of 8×1025 n/m2). The creep test is conducted under biaxial stress condition, with a hoop 

stress of 90 MPa and an axial stress of 45 MPa. The local minimum value for hoop strain is -0.2% and 

the maximum value is 2.1%. By using a color scale going from 0% up to 2% the heterogeneous strain 

field is clearly observed. Concerning the axial stress field, the minimum value is -66 MPa and the 

maximum value is 260 MPa. Using a color scale going from -25 MPa up to 200 MPa, the 

heterogeneous stress field can be clearly observed. 

 



 (a) (b) 

Figure A-2: FFT simulation of the hoop strain and hoop stress distribution during irradiation creep 

test under biaxial stress condition, with a hoop stress of 90 MPa and an axial stress of 45 MPa. 

 

Appendix B: Lower-bound model and Kearns factors 

The lower-bound model, or Reuss model, assumes homogeneous stress throughout the polycrystal. 

During stress free growth, no macroscopic stress is applied leading to a local zero stress in the frame 

of the lower-bound model. The local elastic strain is thus equal to zero everywhere in the polycrystal, 

furthermore no creep occurs at the local scale. Thus, the overall macroscopic strain is just the 

weighted average of all the local growth strain (Eq. B-1). 

       
      

 

       

In Eq. B-1,   is the macroscopic strain tensor,   
      

 is the local growth strain tensor of the 

crystallographic phase, noted  , but written in the specimen frame and    is the volume fraction of 

the crystallographic phase  . In the crystal frame, the growth strain tensor is the same for every 

crystallographic phases and can be written as Eq. B-2, with        . 

      
      

  

    
    
    

        

The growth strain tensor can be written in the specimen frame as a function of the growth strain in 

the crystal frame by using the Euler rotation matrix   , with angles           as Eq. B-2. The angle 

  corresponds to the angle between the c-axis and the direction Z (or 3) of the specimen frame. 

  
      

   
       

      
         

Using the usual Euler rotation matrix, the strain component along the Z-axis for each crystallographic 

phase can easily be computed as Eq. B-4. 

   
      

 
  

      
         

          

The macroscopic strain, averaged over the polycrystal, along the Z-axis is thus given by Eq. B-5, since 

the volume fraction of crystallographic phases is normalized to one. 



          
      

 
  

 

                    

In Eq. B-5,    corresponds to the Kearns factor along the Z-direction. It is computed as Eq. B-6. 

      
 

             

Using the fact that         for growth strain, we obtain the classical relationship given in Eq. B-7. 

                    

The Kearns texture factors are very useful, and thus widely used, to simply characterize the 

crystallographic texture of hexagonal polycrystals. These factors describe the effective volume 

fraction of crystallites with the basal pole aligned along three orthogonal sample directions, usually 

Rolling Direction (RD), Transverse Direction (TD) and Normal Direction (ND) for plates, with 

             .  

 

Appendix C: Relationship between <c> loop number density and mean diameter and the <c> loops 

as observed edge-on by TEM. 

TEM observations of <c> component loops are usually done using the diffraction vector g=0002. In 

these conditions, all the numerous <a>-loops are invisible, leading to an easy observation of <c>-

loops. Because of the limited tilt angle in the TEM, this means that the <c>-axis of the analyzed grain 

is close to the thin foil plane. Because the <c>-loop habit plane is the basal plane, the <c>-loops are 

thus observed edge-on. The foil thickness needed for conventional TEM observations is small, usually 

around 150 nm depending on the material and on the objects analyzed. If the loops are small enough 

they are fully contained in the thin foil and the mean loop diameter and density can be accurately 

characterized. Only few loops, close to the surface may be cut. However, when the loops are large 

they are cut by the surfaces of the thin foil. Using a simple geometrical analysis, we have derived the 

formula which gives the mean length of the intersection between the loop plane, for a loop 

population with mean diameter    and a thin foil of thickness  . 

Let’s consider a loop population with the same diameter    or radius   (     ) (Hypothesis 1) and 

a thin foil of thickness  . The loop centre can be located, with equal probability, at various height ( ) 

with respect to the middle of the foil. Let’s consider that the loop habit plane is perpendicular to the 

surfaces of the thin foil (hypothesis 2). The upper surface of the thin foil is located at  =0, the middle 

of the thin foil is located at       . Let’s first consider a single loop. The center of the <c> loop is 

located at the elevation  . Only loops with        are considered since the system is symmetric 

with respect to the middle of the foil. The maximum length,     , of the intersection between the 

loop plane and the foil, which is what is observed by TEM, for all possible locations of the loop centre 

with respect to the foil can be calculated. In this approach, it is assumed that the loop plane can 

always be observed, even when the loop is cut by the two surfaces (hypothesis 3). This is a strong 

assumption since in that case only the stacking fault is present between the two surfaces. It is thus 

possible that the resulting contrast leads to the observation of only two segments on both sides of 

the loop. This would decrease further the apparent dislocation length in the thin foil, compared to 

the real dislocation loop diameter. More investigations are needed to elucidate this point. 



 

Figure C-1: Schematic showing the maximum length of the intersection between the loop plane and 

the foil. 

For     then        

For       then              , with   the angle between the z-axis and the radius shown on 

Fig. C-1. 

For          then         

The average of this maximum length,    , can be computed by considering only the upper half of 

the thin foil thickness. The average of the maximum length of the intersection between the loop 

plane and the foil is thus equal to: 

    
 

  
 
 

       
 

 
 
 

 
 

  
 
 

        
 

 
 
 

        
 

 

  
 

  
 
 

    
   

 
        

By replacing      , we obtain: 

    
  

    
   

   
 
        

Knowing the loop number density of loops,   , the number of loops intersecting the thin foil can be 

calculated as          . Then the quantity    can be computed according to its definition, given in 

Eq. 18 

   
 

  
    

 

  
               

  
 
   

   
 
        

From Eq. 20 and 21, it can be noticed that the strain along the c-axis    is related to both the quantity 

   and the loop mean diameter   . By measuring only    it is not possible to deduce the strain along 

the c-axis. A measure of the loop mean diameter    is also needed. As reported in the core of this 

article, several authors show c-loops observed edge-on. However, very few authors show c-loops 

observed in the foil plane. In the following two pictures of the same material are given for c-loops 

observed edge-on (Fig. C-2(a)) or observed in the foil plane (Fig. C-2(b)). The material is a Zr-1%Nb-O 

recrystallized zirconium alloy irradiated in a PWR reactor. After irradiation the material has been 

annealed at 450°C during 40 days. From the “in-foil” picture (Fig. C-2(b)), it is noticed that c-loops 



have diameters ranging from 130 nm up to 300 nm. The mean diameter being 220 nm. The c-loops 

are not very sensitive to annealing and have probably not significantly evolved compared with as 

irradiated samples. 

 

  (a)    (b) 

Figure C-2: (a) c-loops observed “edge-on” with diffraction vector g=0002, (b) c-loops observed “in-

foil” with diffraction vector g=      .  
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