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M
ore than 65% of the globally produced energy is lost 
as waste heat1. Thermoelectric power generators are 
semiconductor-based electronic devices that can turn 

such waste heat into electricity through the Seebeck effect2. This 
conversion process is free of motion or moving parts, thus can be an 
eco-friendly solution to recovering and using enormous amounts 
of waste heat to create electricity. The efficiency of thermoelectric 
semiconductors is assessed by the dimensionless figure of merit 
ZT = S2σT/κtot (refs. 2–4), where S is the Seebeck coefficient, σ is the 
electrical conductivity, T is the absolute temperature and κtot is the 
total thermal conductivity from the electrical (κele) and lattice vibra-
tion contribution (κlat)3.

ZT values have been substantially improved by developing 
various strategies for increasing power factor (the product S2σ) or 
suppressing κlat in the past decade. They have been individually or 
multiply applied to representative thermoelectric systems such as 
lead chalcogenides5, skutterudites6 and half-Heusler compounds7. 
For example, an unusually high ZT roughly 2.2–2.5 around 920 K 
was achieved in PbTe–SrTe systems by applying multiple strate-
gies of band engineering, endotaxial nanostructuring, hierarchical 
architecturing and non-equilibrium processing8. However, among 
the state-of-the-art thermoelectric systems, the most surprising 
and promising is the discovery of tin selenide (SnSe) as a top ther-
moelectric material9–11. This material combines two very desirable 
attributes: (1) highly effective inherent ultralow thermal conductiv-
ity and (2) very favourable electronic band structure with multiple 
bands contributing to the charge transport, thereby contributing to 

the ultrahigh power factor9–11. The innate strongly anisotropic and 
anharmonic crystal chemistry gives rise to intrinsically ultralow 
κlat of roughly 0.20 W m–1 K–1. As a result, its p-type pristine crys-
tals exhibit a ZT of 2.6 at 913 K along the b axis9, and the Br-doped 
n-type crystals show a ZT of 2.8 at 773 K along the a axis11.

However, these extraordinarily high thermoelectric properties 
have been only observable in single-crystal SnSe samples while the 
polycrystalline versions show much poorer figure of merit12–14. In 
fact, many research groups have observed much higher thermal 
conductivity κlat values in polycrystalline SnSe samples than those 
reported for the single-crystal samples, despite the expected pres-
ence of additional phonon scattering mechanism from the grain 
boundaries (GBs)15,16. Accordingly, ZT values of the polycrystalline 
SnSe materials have been much lower than those of the single crys-
tals. This has led to controversy regarding the ultralow κlat of SnSe 
as an intrinsic property and whether the exceptional ZT values of 
the single-crystal SnSe can ever be achieved in polycrystalline SnSe 
samples15. Indeed, given the high cost, lengthy and labour-intensive 
production, poor mechanical brittleness and high cleavability of 
the single-crystal SnSe samples, it is the polycrystalline samples 
that have a realistic chance to achieve mass production and com-
mercial applications. Consequently, it has been a huge challenge 
to realize comparable or even higher thermoelectric performance 
in polycrystalline SnSe samples. Indeed, matching single-crystal 
thermoelectric performance in polycrystalline SnSe would be a 
major development; not only because of both maximum and aver-
age ZT during operating temperature range, but also due to the  
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relative abundance of Sn and Se (in comparison to Te) as well as the 
lead-free nature of the compound.

Recently, we have revealed that this apparently higher κlat reported 
for polycrystalline SnSe samples is attributed to the presence of sur-
face tin oxides (SnOx) on SnSe powders12. SnO2 has approximately 
140 times higher κlat than SnSe16. When the SnSe powders covered 
with SnOx thin films are compacted into dense pellets, high ther-
mal conductivity SnOx present at GBs provides natural percolation 
pathway for heat transport. In this case, the thermal conductivity is 
greatly enhanced, contrary to the general expectation that polycrys-
talline samples should have lower thermal conductivity than that 
of their single-crystal counterpart due to expected extensive GB 
phonon scattering. In fact, high thermal conductivity SnOx phases 
can also easily grow on the surfaces of the single crystals, thereby 
often complicating the studies of the thermal transport properties. 
Further, the surface SnOx can strongly scatter charge carriers, con-
sequentially affecting both thermal and charge transport proper-
ties adversely, and as a result severely curtailing the promise of a 
cost-effective, eco-friendly, widely deployable thermoelectric mate-
rial such as SnSe. Indeed, polycrystalline SnSe with minimal GB and 
surface phase of SnOx would be a major advance in this context.

To initially mitigate this problem, we developed a postprocess 
of ball milling combined with chemical reduction for polycrystal-
line SnSe-based materials. This approach effectively removes SnOx 
phase from surfaces and subsequent interfaces to reveal the excep-
tionally low κlat of roughly 0.11 W m–1 K–1 and near-single-crystal ZT 
of roughly 2.5 at 773 K (ref. 12). However, despite this great progress 
these samples still show higher κlat of roughly 0.84–0.32 W m–1 K–1 
than the single-crystal SnSe with 0.47–0.24 W m–1 K–1 in the nearly 
entire temperature range 300–673 K suggesting the presence of per-
sistent and pervasive presence of SnOx in the samples. This contin-
ues to obscure the intrinsic thermal and charge-carrier transport 
properties of SnSe and, as a result, the true thermoelectric proper-
ties of SnSe have hitherto not yet been realized in polycrystalline 
samples of SnSe.

Herein, we report that the tin (Sn) metal starting reagent, despite 
its 99.999% purity, is the culprit behind the formation of surface 
SnOx in polycrystalline SnSe-based materials. To remedy this fur-
ther, we have developed a facile and more efficient two-step pro-
cess to remove the deleterious oxygen and minimize the presence 
of SnOx. Collectively, this further reduces the thermal conductivity 
and increases the power factor, thereby uncovering the extraordi-
narily high thermoelectric performance of polycrystalline SnSe, 

which reaches a ZT of roughly 3.1 at 783 K. A schematic illustration 
of this process is shown in Fig. 1.

Purification process for SnSe
As-received elemental tin (Sn) reagent must be purified before use. 
Note that we use 99.999% purity Sn chunks, showing a characteristic 
silvery lustre. This was chemically reduced by a 4% H2/Ar flow for 
6 h at 473 K, near the melting point of Sn, showing no visible change 
in surface colour and lustre afterwards. The metal was subsequently 
heated at 1,223 K in an evacuated ampule. This caused ash-like black 
residues to form at the top and entire surface of the resulting Sn 
ingot and it was unambiguously identified as SnOx by far-infrared 
spectroscopy17 and atom probe tomography (APT) (Supplementary 
Figs. 1–3). After removing these residues, the melting-purification 
process was repeated until the ash-like black SnOx residues were no 
more visible. The purified Sn reagent was confirmed to be nearly 
oxygen-free according to the APT analysis (Supplementary Fig. 3). 
We found that the purification of elemental selenium (Se) reagent 
had a negligible influence on thermoelectric properties of SnSe. 
After the purification of Sn, the synthesized SnSe samples were pul-
verized and further purified under a 4% H2/96% Ar flow at 613 K for 
6 h. For the sake of the discussion, samples prepared by this two-step 
purification process are referred to as ‘purified’, while those not pre-
pared by this process are denoted as ‘untreated’.

Analysis of surface SnOx in untreated and purified SnSe. The 
facile formation of surface SnOx in polycrystalline SnSe samples 
is supported by our density functional theory (DFT) calculations 
(Supplementary Fig. 4 and Note). To probe the presence and dis-
tribution of surface SnOx in both the untreated and purified SnSe 
samples, we first performed time-of-flight–secondary ion mass 
spectrometry (TOF–SIMS). This is a highly surface-sensitive tech-
nique providing chemical mapping at spatial resolutions down to a 
submicrometre scale, thereby providing the broad-range distribu-
tion of surface SnOx at GBs. We mapped the SnOH+ species to reli-
ably display the spatial distribution of tin-bound oxygen.

Figure 2a,b shows TOF–SIMS images of the untreated and puri-
fied spark plasma sintering (SPS) SnSe samples. Spread red spots 
correspond to the distribution of SnOH+, which are much fainter 
and less dense in the purified SnSe sample. The analysed data 
show that it has a factor of 7.4 lower SnOx concentration than the 
untreated sample. After identifying the GBs in the corresponding 
optical images (Supplementary Fig. 5a,b), the line-profile scan for 
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Fig. 1 | A schematic illustration of the process to remove surface tin oxides (SnOx) in polycrystalline SnSe, and to reveal the intrinsic thermoelectric 

properties of the material. Our facile two-step process involves the successive purification of the tin starting reagent and the synthesized SnSe samples. 

The use of the purified samples minimizes the presence of SnOx in the SPS-processed dense pellets. As a result, the intrinsically ultralow thermal 

conductivity (κtot) is finally uncovered in the purified sample (green squares on the right) in sharp contrast to the controversially high values in the 

untreated sample (red circles), leading to the record-high thermoelectric figure of merit, ZT, of roughly 3.1 among all bulk thermoelectric systems.
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the SnOx concentration was taken across them. It revealed that SnOx 
is more abundant in the GBs than in the interior regions of SnSe 
crystallites (Fig. 2c,d). This is not surprising in view of the compac-
tion process of SnSe powders, which are surface-covered with SnOx.

We further investigated surface SnOx in GB regions in the 
untreated SnSe sample using a spherical aberration-corrected scann-
ing transmission electron microscope (STEM). A representative  
high-angle annular dark-field (HAADF)–STEM image shows the 
presence of abundant nanoscale precipitates, indicated by the white 
arrows, around the GB marked by the orange dashed line and arrow 
(Fig. 3a). The corresponding elemental map reveals that they are 
rich in oxygen and devoid of selenium with the negligible fluc-
tuation in the tin concentration throughout the specimen, thereby 
being identified as SnOx (Fig. 3b–e).

To spatially determine the distribution and composition of sur-
face SnOx, we conducted APT analysis on the untreated SnSe sam-
ple. It quantitatively provides the three-dimensional distribution of 
constituent elements with equal sensitivity at a spatial resolution 
nearly down to the subatomic level, thereby serving as an effective 
tool to resolve secondary phases either in the matrix or trapped at 
GBs18–20. Figure 3f displays the three-dimensional reconstruction 
of the needle-shaped specimen from the untreated SnSe sample. 
The GB, marked by the orange arrow and dash line, is located by a 
much higher atomic counts due to the local magnification effect20. 
The high concentration O atoms are aggregated along the GB, coin-
cident with our STEM observations. They also percolate into the 
grain forming SnOx layers as observed in the upper area in Fig. 3f.

To quantitatively resolve their content with the greater statistical 
accuracy, one-dimensional compositional profiles were recorded 

at the oxygen-rich region, namely both across the GB as enclosed 
by the blue cylinder (Fig. 3g) and across the oxygen-rich layer as 
marked by the green cylinder (Fig. 3h) in Fig. 3f. In these regions, 
the O concentration exceeds roughly 15 at% with a maximum reach-
ing roughly 30 at%, whereas the Se concentration drops by greater 
than 20%. Outside these, the former rapidly decreases and a compo-
sitional ratio of Sn to Se atom remains nearly constant at unity. The 
typical thickness of surface SnOx layer at GBs is about 15 nm in the 
untreated SnSe sample according to both STEM and APT observa-
tions. Even nanoscale GB phases could considerably affect charge21 
and thermal22 transport properties of materials, consequently inhib-
iting the observation of intrinsic values21,22.

A typical HAADF–STEM image for the purified SnSe sample 
does not show the presence of SnOx at the GBs (Fig. 3i). The magni-
fied image focusing on the GB shows that two adjacent crystalline 
grains form the tightly jointed interface without intervening sec-
ondary phases (Fig. 3j). The three-dimensional APT reconstruc-
tion (Fig. 3k) and one-dimensional compositional profile extracted 
across the GB (Fig. 3l) show that the distribution of Sn and Se atoms 
is nearly homogeneous at the same level over the specimen with a 
negligible discontinuity across the GB. No signal for the presence of 
O atoms is detected in the mass-to-charge ratio spectrum (Fig. 3m).  
The results confirm that our purification process effectively removes 
surface SnOx from SnSe-based materials.

The strong beneficial effect of our purification process is dramati-
cally evident in the thermoelectric properties of polycrystalline SnSe. 
Because of the characteristic lamellar structure of SnSe (Fig. 4a),  
its thermoelectric properties are highly anisotropic9. Namely, poly-
crystalline and single-crystal samples exhibit the lowest thermal 
conductivity (κ) along the parallel direction of compaction (//) and 
along the crystallographic a axis9, respectively. Along these direc-
tions, we compare κ of our polycrystalline SnSe-based samples 
with the reported values for the undoped single-crystal sample9. To 
obtain accurate κ, we directly recorded the temperature-dependent 
heat capacity (Cp) of the samples over the entire temperature range 
using differential scanning calorimetry (DSC). To ensure the credi-
bility of data, we ran measurements for more than 20 samples. 
The Cp values taken at the three different heating rates of 5, 7.5 
and 10 K min−1, respectively, unambiguously confirm that they are 
nearly constant outside the phase transition temperature of the 
Na0.03Sn0.965Se sample regardless of the heating rate (Fig. 4b). We 
averaged the obtained Cp values and then derived the κ. The aver-
aged experimental Cp is comparable to the modelled value derived 
from the previous report10 over the entire range of temperature.

Ultralow thermal conductivity. The purification process reduces 
lattice thermal conductivity (κlat) for the polycrystalline SnSe sample 
and makes it comparable to that reported for single crystals over the 
entire temperature range (Fig. 4c). In contrast, when SnSe powder 
is treated only by the post H2-reduction without the Sn metal puri-
fication, the decrease in κlat is small. The κlat values for the untreated, 
H2-reduced and purified polycrystalline SnSe samples are roughly 
1.03, 0.99 and 0.58 W m–1 K–1 at 300 K and roughly 0.39, 0.38 and 
0.23 W m–1 K–1 at 773 K, respectively. This observation confirms that 
the application of a proper Sn purification procedure is essential to 
unveil the intrinsically ultralow κlat in SnSe-based thermoelectric 
materials.

Hole-doped NaxSn0.995−xSe (x = 0.01–0.03) purified samples 
exhibit even lower κlat than the undoped polycrystalline and 
single-crystal SnSe samples. Their κlat decreases with the higher 
Na concentration because of slightly softened phonon frequency 
(Fig. 4d and Supplementary Fig. 6). The lowest κlat is roughly 
0.17 (x = 0.01), 0.12 (x = 0.02) and 0.07 W m–1 K–1 (x = 0.03) at 
783 K, in comparison with roughly 0.20 W m–1 K–1 at 973 K for the 
single-crystal SnSe along the a axis9. The observed value is one of 
the lowest κlat reported for bulk crystalline solids. In comparison, 
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SnSe samples obtained by TOF–SIMS. The surface of both SPS-processed 

specimens was sputtered to generate SnOH+ complex that is a relevant 

quantity to tin-bound oxygen. Accordingly, the SnOH+ map clearly 

represents the distribution of surface SnOx on SnSe samples. a, The 

SnOH+ image for the untreated SnSe sample. b, The SnOH+ image for the 

purified SnSe sample. The red spots correspond to SnOx. The white dotted 

lines indicate GBs, which were defined with optical images taken on the 

corresponding regions. Scale bars are 10 μm. c, The concentration of SnOx 

across the GB by a line profile (yellow solid line in a) for the untreated SnSe 

sample. d, The concentration of SnOx across the GB by a line profile (yellow 

solid line in b) for the purified SnSe sample. The width of a line profile is 

3 μm, in which the concentrations of SnOx were averaged. The substantial 

decrease in surface SnOx is clearly observed by our purification process.
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bulk polycrystalline CsAg5Te3 exhibits roughly 0.18 W m–1 K–1 at 
727 K (ref. 23) and disordered thin films of lamellar WSe2, prepared 
by the vacuum deposition, give roughly 0.05 W m–1 K–1 at 300 K  
(ref. 24). The x = 0.03 sample shows the lowest total thermal con-
ductivity (κtot) among the series as the trend of κlat (Supplementary 
Fig. 7). Its κtot at 300 K is higher at roughly 0.65 than 0.46 W m–1 K–1 
of the single-crystal SnSe sample. They show comparable κtot at the 
elevated temperatures, and the former exhibits a lower minimum of 
roughly 0.21 W m–1 K–1 at 783 K than roughly 0.23 W m–1 K–1 at 773 K 
of the latter.

The ultralow κ of NaxSn0.995−xSe and SnSe samples up to 783 K is 
present before the sharp endothermic thermal event occurs, thus 
the phase transition has a negligible effect on the ultralow value of 
κ. Figure 4e demonstrates that the temperature-dependent κtot cal-
culated by our DSC Cp and modelled Cp derived from the previous 
report10 are comparable from 300 to 783 K, confirming that κ is not 
underestimated by the modelled Cp in this temperature regime.

We prepared ten independent Na0.03Sn0.965Se specimens and 
cross-checked the reproducibility of the ultralow κ from two insti-
tutions, SNU and Northwestern University, and the manufacturer of 
Netzsch Instruments (Fig. 4f). The measurements on all specimens 
(four from SNU, three from Northwestern University and three 
from Netzsch) gave the uncertainty in κtot of less than roughly 10% 
in the temperature range 323–773 K.

Charge transport properties. The effect of the purification pro-
cess is seemingly marginal on electrical conductivity (σ) for the 
undoped polycrystalline SnSe samples (Supplementary Fig. 8a) 
because such samples have a very low carrier concentration (nH), 
for example, roughly 2.5 × 1017 and 2.0 × 1017 cm−3 at 300 K for the 
untreated and purified polycrystalline SnSe, respectively. In the 
doped NaxSn0.995−xSe samples with nH roughly 1019 cm−3, however, the 
purification process that minimizes surface SnOx is key to achiev-
ing the enhanced Hall carrier mobility (μH) (Supplementary Fig. 9) 
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Fig. 3 | Distribution and composition of SnOx in untreated and purified polycrystalline SnSe samples. a, HAADF–STEM image for the untreated 

polycrystalline SnSe sample, revealing SnOx precipitates around the GBs as indicated by the white arrows. Scale bar, 20 nm. b, Elemental map recorded on 
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respectively. f, Three-dimensional APT reconstruction of the untreated polycrystalline SnSe specimen, presenting the spatial distribution of Sn (green), 

Se (orange) and O (blue) atoms. Scale bar, 50 nm. g,h, One-dimensional compositional profiles showing the content of Sn, Se and O atoms across the 

GB as enclosed by the blue cylinder (g) and across the oxygen-rich layer as marked by the green cylinder (h) in f, respectively. i, HAADF–STEM image 

for the purified SnSe sample, confirming the absence of SnOx around the GBs. Scale bar, 200 nm. j, Magnified HAADF–STEM image focusing on the GB, 

showing two adjacent crystalline grains form the tightly jointed interface without intervening secondary phases. Scale bar, 1 nm. k, Three-dimensional APT 

reconstruction of the purified SnSe, representing the spatial distribution of Sn (green) and Se (orange) atoms. The O atoms are not detected, verifying 

the successful removal of SnOx by our two-step purification process. Scale bar, 50 nm. l, One-dimensional compositional profile extracted across the GB, 

demonstrating an at% ratio of Sn and Se atoms that is nearly constant at unity over the specimen. m, The mass-to-charge ratio spectrum for the purified 

sample, confirming the absence of signals from O atoms as indicated by the blue dashed lines. The orange arrows and dashed lines in a, f, i, j and k 

indicate the GBs in the samples.
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and σ over the full range of temperature (Fig. 5a). The σ markedly 
increases with the higher Na content in the temperature range 300–
523 K. This leads to the enhanced thermoelectric performance of 
the samples in the low- to mid-temperature regime, a big improve-
ment over previous polycrystalline SnSe thermoelectrics that suffer 
from low σ in that range, resulting in poor ZT values. The x = 0.03 
sample shows the σ of 140 and 118 S cm–1 at 423 and 783 K measured 
parallel to the SPS direction, and 181 and 132 S cm–1 at the same 
temperatures perpendicular to the SPS direction.

The Seebeck coefficients (S) of the NaxSn0.995−xSe samples are 
nearly the same along the parallel and perpendicular direction of 
SPS (Supplementary Fig. 10). Because of the higher hole concen-
tration, the S values are lower than in the undoped SnSe samples  
(Fig. 5b). S slightly increases with the higher Na concentration 
consistent with the multi-band nature of the valence band in this 
material, which enhances the effective hole mass with higher hole 
concentrations as the Fermi level lowers to cross several valence 
bands according to our theoretical calculations (Supplementary  
Fig. 11) and the previous report10. Their S is slightly increased by our 
purification process making the Na doping more effective. For exam-
ple, the maximum S for the x = 0.03 sample is +322 and +342 μV K–1 
at 673 K before and after the purification process, respectively. The 
high reproducibility of σ and S values were confirmed using numer-
ous independently synthesized specimens (Supplementary Fig. 12).

The simultaneously increased σ and S of the purified NaxSn0.995−xSe 
samples result in the improved power factor (Fig. 5c) that trends 
higher with the rising Na concentration. The x = 0.03 sample exhibits 
power factors near 9 μW cm–1 K–2 in the wide range of temperature 
473–783 K with a maximum of roughly 9.62 μW cm–1 K–2 at 498 K 
parallel to the SPS direction. The maximum power factor is roughly 
12.06 μW cm–1 K–2 at 473 K perpendicular to the SPS direction, which 
is the highest value reported for polycrystalline SnSe-based materials.

Thermoelectric figure of merit. The purification process concur-
rently enhances σ and S, and decreases κtot for the NaxSn0.995−xSe 
samples, leading to an extraordinarily high thermoelectric figure of 
merit ZT. It increases with higher Na concentration. The x = 0.03 
sample exhibits the maximum ZT (ZTmax) roughly 3.1 at 783 K, 
which is the highest reported for any thermoelectric system. This 
ultrahigh thermoelectric performance is attained below the phase 
transition temperature as observed in our DSC results (Fig. 4b), 
affirming no overestimation of ZT by the phase transition. In com-
parison, p- and n-type SnSe single crystals exhibit a ZTmax of roughly 
2.6 at 923 K (ref. 9) and 2.8 at 773 K (ref. 11), respectively (Fig. 5d). 
Among the highest performance polycrystalline thermoelectric sys-
tems have been PbTe-8%SrTe doped with 2% Na (ZTmax roughly 2.5 
at 923 K, ref. 8) and ball-milled and H2-reduced SnSe-5%PbSe doped 
with 1% Na (ZTmax roughly 2.5 at 773 K, ref. 12). ZT for Na0.03Sn0.965Se 
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already exceeds unity above 473 K, at which temperature regime few 
materials show comparable performance. It exhibits a record-high 
average ZT25 roughly 2.0 from 400 to 783 K (Supplementary Fig. 13). 
The deviation in temperature-dependent ZT values on consecutive 
heating and cooling cycles is less than 10%, indicating the prospect 
of stable operation from 300 to 783 K for thermoelectric power gen-
eration (Supplementary Figs. 14 and 15).

We conclude that a trace of SnOx in the starting tin metal 
reagent, used to prepare SnSe samples, has persistently concealed 
the intrinsic charge and thermal transport properties of SnSe and 
prevented the full thermoelectric performance from being realized. 
When properly purified and doped using the methods described 
above, polycrystalline SnSe exhibits an extraordinarily high ZT of 
roughly 3.1, outperforming any other bulk thermoelectric systems. 
The ultrahigh thermoelectric performance indeed originates from 
the intrinsic crystal chemistry of this simple yet remarkable binary 
compound SnSe, and this bodes well for the future development 
of this material to affect power generation applications from waste 
heat. This revelation has broader implications of how other systems 
need to be handled in the future and calls for the re-examination of 
synthesis and sample preparation processes for extensively studied 
thermoelectric systems, especially those containing tin.
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Methods
Note. All procedures for the synthesis and sample preparations were strictly carried 
out in an Ar-�lled glovebox (99.99% purity), in which the levels of moisture and 
oxygen are kept at 0 and less than 1 ppm, respectively, unless noted otherwise. When 
samples were transported from the glovebox for measurements and compaction 
processes, they were properly protected under a mobile Ar �owing system.

Reagents. The following starting reagents were used as received unless noted 
otherwise: Se shot (99.999%, 5N Plus) and Na piece (99.9%, Sigma-Aldrich). 
As-received Sn chunk (99.999%, American Elements) was used to synthesize 
‘untreated’ SnSe-based materials as control samples. It was purified by our 
melting-purification process as described below to eliminate surface tin oxides, and 
was used to synthesize ‘purified’ SnSe-based materials.

Purification of Sn. As-received Sn chunks were apparently silvery. They were 
placed on a graphite sheet prewashed with ethanol, and were heated at 473 K, 
which is near the melting point of Sn at roughly 505 K, for 6 h under a 4% H2/96% 
Ar with a flow rate of 200 ml min–1. A change in their surface colour and lustre 
was invisible. The resulting Sn chunks were loaded into a carbon-coated and 
evacuated fused-silica tube (roughly 10–4 Torr). The tube was heated at 1,273 K for 
6 h, followed by cooling to room temperature. Ash-like black residues formed at 
the top and surface of the Sn ingot. They were identified as tin oxides by Fourier 
transformed far-infrared absorption spectroscopy. They were scraped out of the  
Sn ingot. The same melting-purification process was repeated three times at  
873–723 K until the black residues were no longer observed.

Synthesis. Purified and untreated materials with the nominal compositions 
NaxSn0.995–xSe (x = 0.01–0.03) and SnSe as a reference were synthesized by 
reacting stoichiometric mixtures of proper starting reagents. They were loaded 
in carbon-coated and evacuated fused-silica tubes (roughly 10–4 Torr), and were 
heated at 1,223 K for 12 h, followed by quenching to ice water. The obtained 
ingots were further annealed at 773 K for 48 h and were cooled naturally to room 
temperature. The weight of typical ingots was approximately 13 g. They were 
pulverized by hand-grinding, and were subsequently purified at 613 K for 6 h under 
a 4% H2/96% Ar with a flow rate of 200 ml min−1.

Compacting powders. The resulting powders were loaded in a BN-coated graphite 
die and were cold-pressed manually in an Ar-filled glovebox. To avoid any possible 
oxidation of a sample, the loaded die was tightly sealed in a plastic zipper bag and 
taken out of the glovebox. It was transported from the chamber of the glovebox to 
the adjacently placed SPS system (SPS-211Lx, Fuji Electronic Industrial Co.) under 
a mobile Ar (99.99%) flowing system. Powder samples in the die were densified at 
roughly 783 K for 5 min under an axial pressure of 50 MPa in a vacuum of roughly 
1.4 × 10−2 Torr using SPS. All SPS-processed samples show relative densities of 
roughly 96%.

Powder X-ray diffraction. We carried out X-ray diffraction analysis on a SmartLab 
Rigaku X-ray diffractometer with Cu Kα (λ = 1.5418 Å) graphite-monochromatized 
radiation operating at 40 kV and 30 mA at room temperature. The patterns 
measured parallel and perpendicular to the pressing direction of the SPS-processed 
ingots for purified and untreated SnSe and Na0.03Sn0.965Se samples are given in 
Supplementary Figs. 16 and 17.

TOF–SIMS. TOF–SIMS experiments were carried out on a Physical Electronics 
TRIFT III spectrometer. The SPS-processed samples were polished with Buehler 
Ecomet III Tabletop Polisher/Grinder to prepare a smooth surface. Subsequently, 
they were sputtered with a 5 keV Ar ion beam for 5 min in SIMS chamber to 
expose the GB. During this process, omnipresent H2O even in an ultrahigh 
vacuum chamber was ionized to give H+, which then attached to surface tin oxides 
to form SnOH+. Accordingly, to examine the distribution of surface tin oxides, the 
SnOH+ ion mapping images were collected for 10 min. The primary ion source of 
SIMS is gallium beam with 25 keV energy. The measurements were conducted in 
NUANCE-Keck-II centre of Northwestern University.

Hall measurements. The Hall coefficients (RH) were obtained by the Van der Pauw 
method on a Lake Shore HMS8407 Hall effect measurement system in a magnetic 
field of 1.5 T and 3 mA excitation current. The hole carrier concentration (nH) 
and hole mobility (μH) were accessed by the formulas, nH = 1/(eRH) and μH = RHσ, 
respectively.

Electrical and thermal transport property measurements. The obtained 
SPS-processed pellets were cut and polished into a rectangular shape with a length 
of 13 mm and thickness of roughly 2 mm under a N2 atmosphere (99.99% purity) 
(Supplementary Fig. 18). The electrical conductivity and Seebeck coefficient were 
measured simultaneously under an Ar atmosphere from room temperature to 
823 K using a Netzsch SBA 458 Nemesis system. A Netzsch LFA 457 MicroFlash 
instrument was used to record the thermal diffusivity of the samples coated 
with graphite. The typical samples are disc shaped with a diameter of 8 mm and 
thickness ranging from 1 to 2 mm. To confirm the reproducibility of ultralow 

thermal conductivity of the Na0.03Sn0.965Se samples, the thermal diffusivity was 
cross-checked at Northwestern University and Netzsch Instruments (Korea) 
using LFA 457 and 467 instruments, respectively (Supplementary Figs. 19–21). 
The thermal conductivity was calculated from the formula κtot = DCpρ, where D 
is the thermal diffusivity, Cp is the heat capacity, which was directly measured 
using the DSC technique, and ρ is the mass density of the specimens. The ρ value 
used was obtained by their geometrical dimensions and masses, which is nearly 
the same as that by the Archimedes method. The density values used are given in 
Supplementary Table 1. The total thermal conductivity κtot is the sum of the lattice 
(κlat) and electronic thermal (κele) conductivities. κele is proportional to the electrical 
conductivity (σ) according to the Wiedemann–Franz relation (κele = LσT), where L 
is the temperature-dependent Lorenz number and T is the absolute temperature. 
The κlat value was calculated by subtracting the κele from the κtot value by the relation 
κlat = κtot – κele. Average ZT (ZTave) was calculated using the following equation25:

ZT

ave

=

∫
T

hot

T

cold

ZTdT

T

hot

− T

cold

where Thot and Tcold represent the temperature at the hot and cold sides, respectively.

Heat capacity measurements. The temperature-dependent heat capacity (Cp) was 
experimentally recorded by differential scanning calorimeter (DSC Polyma 214, 
Netzsch). To minimize the error, samples were cut into a cube with dimensions of 
roughly 2 × 2 × 2 mm3. Because Na easily reacts with typical Al2O3 or Al crucibles, 
Pt crucibles were used. Before the measurement, the blank crucible was heated 
to 823 K at least twice under a high-purity argon (99.999%) flow to remove any 
possible residual water and physisorbed O2. Afterwards, a standard sapphire disc 
with a diameter of 4 mm and a thickness of 0.25 mm was loaded into the crucible 
and measured up to 823 K. Subsequently, the standard sapphire was taken out, 
and the Na0.03Sn0.965Se sample was placed in the same crucible. The loaded crucible 
was purged with a high-purity argon flow for 30 min to ensure a dry and air-free 
atmosphere before the measurement. The Cp was extracted by comparing the signal 
difference between the reference sapphire and sample26.

STEM. STEM specimens were excised from the GB using a dual-beam scanning 
electron microscope/focused ion beam (Helio NanoLab 650, FEI) system using 
gallium ion milling. Before the ion milling, the surface of specimens was protected 
with carbon coating by sputtering. Structures and chemical compositions around 
GBs were analysed using a spherical aberration-corrected JEM ARM-200F 
microscope (Cold FEG Type, JEOL) equipped with an SDD type energy-dispersive 
X-ray spectroscopy (EDS) detector (Solid Angle 0.9-sr, X-MaxN 100TLE, Oxford) 
at 200 kV installed at the National Centre for Inter-University Research Facilities in 
SNU. In HAADF–STEM images, the point-to-point resolution was approximately 
80 pm after correcting the spherical aberration, and the angular range of the 
annular detector used was from 68 to 280 mrad. All STEM images were recorded 
using a high-resolution CCD detector with a 2,000 × 2,000-pixel device in the 
GIF-QuantumER imaging filter (Gatan). For STEM–EDS investigation, chemical 
maps were acquired with a probe size of 0.13 nm and a probe current of 40 pA.

APT. APT needle-shaped specimens were prepared using a dual-beam scanning 
electron microscope/focused ion beam (Helios NanoLab 650, FEI) following 
the site-specific ‘lift-out’ method27. The specimens were measured in a local 
electrode atom probe (LEAP 4000 X Si, Cameca) with voltage- and laser-assisted 
evaporation modes for the Sn reagent and SnSe samples, respectively. For a voltage 
mode, a voltage pulse with a repetition rate of 200 kHz and pulse fraction of 20% 
was used. The detection rate was five ions per 1,000 pulses (0.5%) on average. 
The base temperature of specimen was 30 K. For a laser mode, a 5 pJ ultraviolet 
(wavelength, 355 nm) laser with 10 ps pulse and a 200 kHz repetition rate was used. 
The detection rate was one ion per 100 pulses (1%) on average. For both modes, 
the base temperature was 40 K and the ion flight path was 160 mm. The detection 
efficiency was limited to 50% due to the open area of the microchannel plate. The 
APT data were processed using the software package IVAS v.3.8.0 (ref. 18).

Calculations for phonon band structure and Grüneisen parameters. Phonon 
band structure and Grüneisen parameters were calculated within quasi-harmonic 
approximations based on DFT calculations. They have been calculated for pristine 
SnSe previously9. In this work, we further calculated them for the optimally 
hole-doped system, namely, Na0.03Sn0.97Se. To obtain accurate force constant matrix, 
we used a 2 × 2 × 2 supercell for Na0.03Sn0.97Se with 64 atoms, and accordingly 
the supercell accommodates 512 atoms in total. For better comparison, we also 
considered the same size of supercell for pristine SnSe. DFT force calculations were 
performed with a plane wave set of 350 eV energy cutoff, gamma point k-space 
sampling and PBEsol exchange functional28, and they were forced to converge 
until the largest component of atomic force becomes smaller than 10–8 eV Å–1. To 
evaluate the Grüneisen parameters defined by the relation γ

i

= −

V

ω

i

∂ω

i

∂V

, where V 
is the volume of unit cell and ωi is frequency of i-th phonon mode, we considered 
three sets of phonon dispersion relation with different volumes, namely, 0.99, 
1.00 and 1.01 times the optimized volume of the unit cell. Calculation results are 
presented in Supplementary Fig. 6.
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Calculations for electronic band structure. To understand the enhanced Seebeck 
coefficient by Na doping, we obtained electronic band structures for hole-doped 
Na0.03Sn0.97Se and pristine SnSe using DFT calculations with plane wave basis 
set with 350 eV energy cutoff, 4 × 4 × 4 k-space sampling, and SCAN + rVV10 
functional29. We used a 

2

√
2 × 2

√
2

× 1 supercell, and the lattice parameters and 
internal coordinates were fully optimized. On Na doping, the lattice dimension 
decreases by about 0.5% along the b and c axes and increases by about 0.3% along 
the a axis.

It should be noted that the recent investigation by angle-resolved photon 
emission spectroscopy (ARPES) for SnSe clearly shows the emergence of pudding 
mould-type bands near valence band maximum30, which is highly important 
for achieving high power factor within the band convergence strategy. However, 
many previous DFT studies for SnSe using semilocal exchange-correlation 
functional such as Perdew–Burke–Ernzerhof (PBE) generalized gradient 
approximation could not reproduce band structures observed by the ARPES 
appropriately. In this work, we found that such band dispersions in SnSe seen by 
the ARPES experiments can be well reproduced by SCAN + rVV10 functional. 
Accordingly, we applied the same method to hole-doped Na0.03Sn0.97Se. We 
considered a 64-atom-containing supercell for both SnSe and Na0.03Sn0.97Se. Band 
structures are evaluated along a high-symmetric line in k-space. For density of 
states, we used a denser 10 × 10 × 10 regular mesh. Calculation results are given in 
Supplementary Fig. 11.

Data availability
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