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1
Granular materials

Everything seems simpler from a distance.

– Gail Tsukiyama

Matter exists in a variety of forms, of which granular materials – although simple –
behave differently from any of the other standard forms (solid, liquid and gas). For ex-
ample, a sand castle appears like a solid, which when tumbled upon, crumbles down like
an avalanche. On a few occasions, this avalanche takes down the whole castle, whereas
sometimes it is confined only to a thin layer on its surface (liquid). In another exam-
ple, shake up some crushed ice in a cocktail mixer and it behaves like a gas, whereas
when trying to pour some salt out of an orifice of a jar, the flow tends to choke and gets
clogged at the orifice. Granular material has it all, solid, liquid, gas, plastic flow, glassy,
etc. – it can mimic all of these behaviours. Thus exhibiting a prime reason for investing
our interest in understanding these simple but, mysterious materials.

1.1. History
Our knowledge of granular matter dates back to an era even before mankind’s existence.
These materials exist on a range of scales – micron sized to planetary – in a variety of
forms, exhibiting multitudes of interesting phenomena. The earliest encounter between
man and granular matter happened in the surroundings in which he evolved, i.e. with
soil, sand, stones, rocks, etc., but more importantly it was his need for survival that ul-
timately led to an inevitable bond between humanity and granular matter, existing till
today. Historical records indicate that primitive men often settled along the river banks
where fresh food was available throughout the year. However, due to climatic changes
coupled with migration of primitive tribes, new food gathering methods had to be de-
vised. Man needed to find some way to store the nutrients for periods of time when no
fresh food was available. Seeds, such as cereal grains, seemed to be one way to solve

1
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Figure 1.1: Facsimile of a famous scene from a wall painting on the tomb of Djehutihotep, a pharoah (circa
1932-1842 BCE). It illustrates his huge monolithic statue being transported from the quarries. In the front
of the statue (near the feet) we see a workman pouring water to lubricate the sand, helping the four rows of
workmen, 43 men in each, to haul the sledge smoothy (less friction). The figure is adapted from Dowson [1].

the storage problems. Ultimately around 8000 BCE, during neolithic revolution, this
seed storage led man towards becoming more agriculturally oriented. Grains were likely
among the first cultivated crops. They could be grown relatively easily, farmed in surplus
quantities and were suitable for storage in harsh cold winter climates. Thereby, marking
the dawn of grain agriculture – man’s preliminary experience with granular materials.

Since the neolithic revolution, man began to understand the importance of granular
materials. Besides agricultural advances, newer innovations, such as wheeled wagons
(to transport), pottery (to store), ploughs (to cultivate), etc., came into light. The econ-
omy flourished due to trade and manufacturing of these food resources (grains). By 6000
BCE the emergence and spread of food productions established the social and economic
foundations for a civilisation. With the innovation of sun-baked bricks from clay, sand
and water mixtures, civilisations arose in the period 3800 BCE - 3500 BCE. New cities
were built acting as trade, economic, political and religious centres. Granular materials
began to play a crucial role in the economic development; the scale and nature of the
trade had now changed, with substantial amounts of precious materials, such as lapis
lazuli, and huge quantities of everyday commodities, such as grain, textiles, timber and
metal ores, being imported to and exported from major cities. As time evolved, human
ability to manipulate granular materials, such as sand, stones, etc., advanced qualita-
tively. Not only did it contribute towards urbanisation of civilisations, but also led to
the construction of mega structures, such as the pyramids of Giza (circa 1700 BCE), the
lighthouse of Alexandria (circa 280 BCE) and many more. And since then, knowingly or
unknowingly, granular materials have become an integral component of our daily life.

As years progressed, new empires arose and perished with borders being replotted
every few years. While mankind was and still is busy fighting over territorial or racial or
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religious supremacy, trying to redefine the word freedom, it was in the early 15th century
when the science of granular media embarked upon the journey of discoveries. Besides
the Egyptians (circa 1880 BCE), see Fig. 1.1, Leonardo da Vinci (circa 1500 AD) proposed
the pioneering ideas of sliding friction 1, which was further developed by Augustin de
Coulomb (circa 1785 AD). Followed by Michael Faradays’ (circa 1831 AD) discovery of
slow bulk convection in a vibrating container filled with sand, and Osborne Reynolds
(circa 1880 AD), who introduced the concept of dilatancy, which implies that a com-
pacted granular material must expand in order for it to undergo any shear, and many
more. Besides the early attention granular matter received from physicists and mathe-
maticians, it quickly evolved to become an engineers’ and geologists’ mystery child.

Since the industrial revolution, technological progress has transformed the manu-
facturing processes concerning granular materials, such as food processing, chemicals,
coal, metal ores and many more, considerably. However millions of euros are spent
and around 10% of the worlds’ current energy consumption is used for processing these
materials alone. Due to inefficient processing techniques and material handling equip-
ments, inevitable monetary losses are incurred. In addition, several hazardous, damage
inflicting, natural catastrophes, such as avalanches, landslides, volcanoes, earthquakes,
etc., also involve granular media. Thereby an in-depth comprehension of the dynam-
ics concerning these multi-facetted materials is desirable, not only to help one design
efficient manufacturing processes, but also to allow for the construction of life saving
damage control measures. Thus, bringing us to an inevitable question, posed and an-
swered in the following section.

1.2. What is a granular material?
A standard definition states:

‘Granular matter describes large collections of small grains, under conditions in which

the Brownian motion of the grains is negligible (sizes d > 1 micrometer). The grains can

exhibit solidlike behavior and fluidlike behavior, but the description of these states is still

controversial.’
– P. G. de Gennes, Granular materials: a tentative view

‘A granular material is a conglomeration of discrete solid, macroscopic particles char-

acterized by a loss of energy whenever the particles interact (the most common example

would be friction when grains collide).’
– Wikipedia

Using the above definitions, it brings us to an understanding that individual particles
or grains constituting granular materials, besides being an agglomerate, are defined to
fall within a size range of 1 µm (micron) to 105 m (planetary). Below micron scale, tem-
perature excessively influences the motion of these particles, whereas granular materials
are technically defined to be athermal (i.e. neglect thermal fluctuations). Despite a wide
size range, earth-bound studies often consider sample particle size distributions to lie

1Friction is a resistive force caused due to relative motion of solid surfaces, fluid layers, and material elements
sliding against each other.
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between micro-metre to centimetre scale, solely due to easy manufacturing, and avail-
ability of experimental measurement techniques. The majority of this thesis focuses on
mixture particles of different sizes and densities. Furthermore, interactions between in-
dividual particles are dissipative in nature, i.e. energy or momentum exchange between
them involve inelastic mechanisms. When in contact, e.g. due to a collision, energy
is lost in several forms such as heat, sound, plastic deformation, etc. For example, if
a box of plastic balls is shaken or vibrated, the energetic balls eventually come to rest,
thus proving the dissipative nature of these materials. In this thesis, we consider rigid,
dry grains and do not consider soft particles, cohesive effects, or interaction with a sur-
rounding fluid, making dissipation as one of the major factors that distinguishes granu-
lar matter from fluids.

In nature and many industrial settings – during flows in rotating drum mixers, over
conveyor belts, on inclined channels feeding materials into hoppers, silos, etc. – granu-
lar media often experience a variety of external forces, such as collisions, shaking, shear,
compaction, etc. When subjected to these forces, not only do the dynamics – mixture
state, velocity, forces, etc. – of these materials evolve, but they also yield a galore of in-
teresting phenomena, such as particle segregation, granular Leidenfrost and many more
states. As an example, let us consider a model dry granular mixture containing only two
differently sized marbles. When allowed to flow over a sufficiently long rough inclined
channel, besides the varying flow dynamics – flow height and velocity, granular jumps
or shocks – the larger marbles end up near the surface whereas the smaller ones settle
near the base of the flow. Similarly, if the same mixture is rotated a few times in a thin
horizontal drum mixer, we observe the smaller marbles moving radially inwards to form
a central core, while the larger marbles move radially outward, surrounding the core.
This phenomenon is defined as particle segregation due to differences in size, which, for
example, the majority of industries would like to prevent, as an inhomogeneous mixture
blend hampers their product quality. In reality, however, granular mixtures often com-
prise of particles with differences in several of their physical attributes rather than just
size alone. Thereby, making them more complicated, challenging and most importantly
an interesting area of research.

Since decades, granular media has been a subject of many studies, ranging from
static conditions to flowing, dry hard-particles to soft-particles immersed in a fluid. This
thesis focusses on dynamical systems, such as the rapid flow of dense 2 dry spheres over
a rough inclined channel. We make an attempt to understand and predict the motion or
the dynamics of such gravity-driven granular flows through continuum models, discrete
particle simulations and, more importantly, by utilising accurate discrete to continuum
mapping methods, i.e. the micro-macro transition. Before we progress with the de-
scriptions of our findings and results, in the following chapters, we proceed by briefly
introducing the methods we employ for modelling these rapid dense granular flows.

2By dense, we imply that the particles or grains fill as large a proportion of the space as possible, e.g. a random
packing of equal spheres generally has a packing density of around 64% of the total volume.
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1.3. Modelling dry dense granular flows
In the years before 1980, the majority of studies [2] – concerning granular mixtures –
focussed on industrial settings. Although extensive, most of the problem solving proce-
dures relied on small scale pilot projects, which often looked for instant solutions, and
came up with a list of do’s and dont’s, e.g. see Johanson [3], based on empirical findings.
There definitely existed very little theoretical work concerning these flows. Thus costing
invaluable time and money. As years progressed, technological advances allowed for a
much improved and systematic comprehension of flowing granular materials over in-
clined channels. Based on this understanding, modelling of these dense granular flows
has seen some remarkable developments, both on theoretical and numerical fronts.

1.3.1. Continuum theories
Owing to several industrial (e.g. mining, pharmaceutical, food processing, etc.) and
geophysical applications (e.g. landslides, pyroclastic flows, debris flow, etc.), develop-
ment of continuum formulations to model cohesionless dense granular flows down an
inclined channel came into light in the late 80’s. These are briefed in the following sub-
sections.

Exploiting the shallowness
Often on daily news channels, we come across hazardous events that constitute a big
threat to human safety. Some examples include the Elm rockfall (Switzerland) in 1881
[4–6], the Sherman Glacier rock avalanche (Alaska) [7], the prehistoric Blackhawk land-
slide (Alaska) [8] and the various ice avalanches that keep disassociating themselves into
motion. All these landslides, rockfalls and snow and ice avalanches that dislodge them-
selves off the steep slopes, travel large distances before they come to rest. Given the risks
these geophysical events pose at human safety and property, predicting them would not
only help one avoid catastrophic damages, but also allow for designing efficient safety
measures.

One of the characteristic feature of these flows is that they are shallow in nature, i.e.
the ratio of the characteristic length scales associated with the flow depth H to the ones
associated with the downstream flow length L is small, H/L << 1. Using this shallow-
ness argument, studies formulated continuum models – describing flows over inclined
channels – which are classified into two categories; shallow-water-like theories extended
to granular flows (hydraulic avalanche models) by Grigorian et al. [9] (and others [10–
12]) and the Mohr-Coulomb type model put forward by Savage and Hutter [13], which
have further been extended in [14–18] to account for both complex basal topography
and interstitial pore fluid. Thus, allowing one to mathematically describe the granular
avalanches.

The Savage-Hutter model can be systematically derived from the general mass and
momentum balance laws. The model uses a simple Coulomb’s sliding friction law at
the base and the model is closed by assuming that the granular material is always in a
stress state consistent with the Mohr-Coulomb yield criterion. On exploiting the shal-
lowness of the flow, the leading-order mass and momentum balance laws are integrated
through the flow depth to obtain a one-dimensional theory along the flow direction for
the avalanche thickness and the downslope velocity. A depth-averaged value f̄ of a vari-
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able f is given by f̄ =
1

h

∫h
0 f d z. Thus, the resulting equations in Cartesian coordinates,

dropping the bars, are then

∂h

∂t
+

∂

∂x
(hu) = d ,

∂hu

∂t
+

∂

∂x
(α1hu2)+

∂

∂x

(
K g cosθ

h2

2

)
= hg S,

(1.1)

where d is the rate of deposition, θ is the local angle of inclination of the slope (basal to-
pography), h(x, t) and u(x, t) is the local flow depth and downslope velocity. The source
term (driving force) S is given by

S = (tanθ−µ)cosθ, (1.2)

where µ is the Coulomb sliding friction coefficient. The Earth-pressure coefficient, K ,
arises from the Mohr-Coulomb yield criterion. The shape factor, α1 = ū2/(ū)2, arises
from the depth-averaging. This model has been utilised to quantitatively predict the
spreading of granular material flowing over inclined channels.

At first glance, the Savage-Hutter theory has a strikingly analogous structure when
compared to the shallow-water equations [19]. However, the constitutive properties sig-
nificantly complicate the model by introducing a highly nonlinear Earth-pressure coeffi-
cient K into the theory, which pre-multiplies the pressure in the downslope momentum
balance. For K = 1, the Savage-Hutter model is reduced to the shallow-water-like model
of Grigorian et al. [9]. Thus assuming that the flowing granular material acts like a shal-
low inviscid fluid with a Coulomb friction law. Furthermore, both models assume the
granular material to be incompressible. This thesis employs the Savage-Hutter model.
For more details regarding the derivation of the shallow granular model, see Bokhove
and Thornton [20]. Thence, with suitable closure laws determined, the above shallow
granular model is able to quantify the possible flow quantities associated with any cohe-
sionless granular material flowing over an inclined channel.

Many geophysical studies, however, report of complex flow deposits or patterns that
arise due to the multi-component – differences in particle size, density, shape etc. – as-
pect of granular materials. These differences have a predominant effect on the bulk dy-
namics. Geophysical findings report that when a granular material avalanches down the
underneath rough topography, an inverse grading in size is observed, i.e. the small sized
particles settle near the bottom and the larger sized particles rise towards the surface.
When this inversely graded material is further sheared, large particles tend to migrate
towards the front of the flow and smaller ones towards the rear. This can have significant
effects on the bulk dynamics as larger particles are susceptible to greater resistance than
the smaller ones. Due to these phenomena, the bulk flow may tend towards forming lo-
bate fingers [21, 22] or spontaneously self-channelise to form lateral levees that enhance
the run-out distance of, e.g., debris flows [23].

Thus, to account for these additional aspects, suitable accurately predicting segre-
gation models need to be formulated, which when combined with the above shallow
granular model would allow one to quantify these complex phenomena. For exam-
ple, Woodhouse et al. [24] developed a model for these finger formations by coupling
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the above shallow granular model with a depth-averaged size-based particle segregation
model. Furthermore, the friction coefficient in (1.2) was considered to be a function of
the local volume fraction of the small particles. However, the particle segregation model
used is applicable to bidisperse mixtures varying in size alone. Thus illustrating the need
to continue develop more segregation models which can take into account polydisperse
mixtures, varying particle densities and shapes, etc. This brings us to the following sec-
tion, where we briefly describe the existing segregation models.

Segregation models
The British Materials Handling Board [25] holds particle segregation to be responsible for
non-uniform mixture blends, which in turn lead to poor product quality and processing
difficulties.

Studies have proposed several mechanisms [26] to be responsible for particle seg-
regation due to differences in their physical properties, such as size [27], density [28],
shape [29], inelasticity [30], surface roughness and friction [31]. However, differences
in size and density are the primary factors for de-mixing in dense free-surface flows
over inclined channels. Although, buoyancy effects appears to explain the reasons for
density-based segregation, there still exist a debate concerning the mechanism respon-
sible for size-based segregation. For years, kinetic sieving [32, 33] and squeeze expulsion

[34] were regarded as the dominant mechanism for size-based segregation. In this mech-
anism, Savage and Lun [34] proposed the concept of a random fluctuating sieve. The
basic idea behind kinetic sieving is that, as the granular material avalanches downslope
of an inclined channel, smaller-sized particles have a larger probability to fall into the
gaps that open up beneath them. This is complemented by squeeze expulsion, which
levers all the particles in the upwards. Thus resulting in a net flux of small particles to-
wards the base and large grains towards the free-surface of the flow. Recently, Fan and
Hill [35] proposed an alternative hypothesis for dense systems, where large particles are
driven to regions of higher velocity fluctuations by kinetic stress gradients, which results
in them rising to the surface of the avalanche in a rotating drum [36] or being driven to
the sidewalls in a vertical chute flow [35]. The problem can also be viewed as one of lift
and drag forces acting on a large particle in an effective fluid medium of fine particles
[28, 37]. This thesis, however, focuses on kinetic sieving and squeeze expulsion. In ad-
dition, the thesis focusses on the effects of both size and density differences. Although,
density-based segregation is weaker than kinetic sieving, it is still strong enough to pre-
vent particle-size segregation altogether [38], if the large particles are sufficiently dense,
and promotes size-segregation when the small particles are denser.

Based on this understanding of percolation and diffusion, given x, y and z are the
downslope, cross-slope and depth direction, Bridgwater et al. [39] were the first to for-
mulate a continuum model quantifying particle segregation in a bidisperse mixture of
particles varying in size alone. Their equation governing the granular mixture state is
in terms of the volume concentration, φ, of a component expressed as a fraction of the
solid volume,

∂φ

∂t
+

∂

∂z

(
qφ(1−φ)2)= ∂

∂z

(
D
∂φ

∂z

)
, (1.3)

where t is the time, z is the downslope direction, q and D are the percolation and diffu-
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sion rate. However, they soon realised that the rate of percolation, q , was dependent on
the shear rate, the particle size ratio and the normal pressure. As years progressed, Sav-
age and Lun [34] used statistical mechanics and information entropy theory to arrive at a
segregation model from first principles. Their model was formulated in terms of number
densities and fluxes. Although the model from Savage and Lun [34] considered various
functional forms for the shear rate, it certainly had a downside because the model pre-
dicted segregation even in the absence of gravity, which is odd given kinetic sieving is
a gravity driven process. From a different perspective, Dolgunin and Ukolov [40] devel-
oped a model on the basis of an equivalent mass transfer equation, which accounts for
the granular mass transfer due to convection, quasi-diffusion and segregation,

∂φ

∂t
+

∂

∂x
(φu)+

∂

∂z

(
qφ(1−φ)

)
=

∂

∂z

(
D
∂φ

∂z

)
, (1.4)

where u is the downslope velocity. Although, the above model (1.4) has all the features
essential for describing particle segregation, a general framework to derive such models
was still lacking. In year 2005, Gray and Thornton [41] proposed this general frame-
work by utilising the principles of mixture theory [42] (as also utilised in this thesis). The
theory states that each constituent can simultaneously occupy both space and time, re-
sulting in overlapping partial fields, and satisfies the mass and momentum balance laws,
which are stated in terms of these partial fields as below

∂ρν

∂t
+∇·

(
ρν

~uν
)
= 0,

∂

∂t

(
ρν

~uν
)
+∇·

(
ρν

~uν⊗~uν
)
=∇·σν+ρν~g +~βν.

(1.5)

The superscript ‘ν’ denotes the constituent type. Variables ρν, ~uν, σν denote the par-
tial density, velocity and stress corresponding to each constituent type-ν. The variable
~g represents the gravity vector and ~βν is the force experienced by each constituent due
to other constituents. The partial stress tensor σν is considered to be a sum of two com-
ponents, the volumetric −pν1 and the deviatoric τν stress, such that σν = −pν1+τν.
By using the shallowness argument, it can be shown that the pressure dominates in the
normal direction, and both the deviatoric stresses and normal acceleration terms can be
neglected. They further observed that as the small particles percolate downwards they
support a smaller part of the load when compared to the larger particles. Using these
assumptions after some manipulations and scalings, including a suitable form for the
drag force ~βν, see 4, they [41] arrived at a mixture theory segregation model,

∂φ

∂t
+

∂

∂x
(φu)++

∂

∂y
(φv)+

∂

∂z
(φw)−

∂

∂z
(Sr F (φ))= 0, (1.6)

where u, v , w is the downslope, cross-slope and normal (depth-direction) velocity, re-
spectively, Sr is a dimensionless segregation rate and F (φ) = φ(1−φ) is the driving seg-
regation flux. The above model was further extended to consider particle diffusion [43],
polydisperse mixtures [44] and higher order flux functions [45, 46]. However, the above
stated models considered size-based segregation alone, except [45] see Chap. 4. Re-
cently, by introducing the particle size as an independent coordinate, Marks et al. [47]
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proposed balance laws to consider both polydisperse grainsize distributions and differ-
ences in particle densities. Thus providing a significant extension to the theory in gen-
eral.

Thus, with the combination of the above shallow granular theory and the segrega-
tion models, one could expect an accurate prediction of the complex phenomena ob-
served in both industrial and geophysical flows. Unfortunately, although simple, gran-
ular materials are still mind boggling. In order to employ the above formulations, one
must certainly determine the closure relations or the constitutive equations. In case of
the shallow granular model, these turn out to be the shape factor, Earth-pressure coef-
ficient and the friction coefficient. Although the above model uses a Coulomb friction
law, studies [48–51] show that this is not generic enough. For more details concerning
the granular rheology in dense granular flows, see the very recent review by Jop [52]. Sim-
ilarly, in order to employ the segregation models, one also needs to still determine the
unknown segregations and diffusion rates. Several studies have focussed on determin-
ing these closure parameters or functions using state of the art expensive experimental
techniques [48, 53, 54]. However, given the amount of time and effort it takes one to
carry out these experiments, many studies – as an alternative – have also successfully
utilised particle simulations as an alternative to experiments [55–57]. Thus bringing us
to the following section.

1.3.2. Discrete particle simulations
With the advent of computing technology, research in granular media has literally quadru-
pled since the past few decades. It was in the late 1970s’, when the myth of tracing the
trajectory of a particle or grain metamorphosed into a much needed reality. Since then,
particle tracking has become essential in several applications involving particulate me-
dia.

The motion and the dissipative nature of the interactions between the grains in any
particulate media, is usually captured by solving Newtons’ laws of motion. Based on
the total force acting on a grain, the current state of a grain is updated/computed by
integrating Newtons’ second law in time. Small time steps are considered in order to
resolve the contacts between the particles. After updating the position of the particles,
forces acting on the particle are recalculated till the end of the simulation. The algorithm
utilised to implement this task is referred to as discrete particle simulations.

As stated earlier, particulate media looks simple, but they are a nightmare when ad-
dressed numerically. Not only are they complex due to a plethora of physical attributes
one needs to deal with, but also because of the variety of interactions that are to be con-
sidered. Several studies have focussed on formulating accurate force models, which are
able to emulate accurate particle interactions, e.g. elastic, inelastic, viscoelastic, elasto-
plastic, cohesive (liquid bridges) and many more. For more details regarding these inno-
vative developments, see some of the recent reviews [58, 59].

Time-efficient

The costs involved in tracking individual particles along with computing the interac-
tions is, however, highly system-size dependent. Nevertheless, recent advances involv-
ing powerful processors, fast and efficient algorithms, data handling techniques, etc.,
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have led to innovative optimisations that have helped reduce the high computational
time. Recent studies have been focussing on a GPU3-based framework for developing
a highly parallelised GPU based DPM solver, see for a brief performance overview for
CPU- and GPU-based systems, see Chapter 6 and references therein.

With such massive parallelism now available using programmable GPU hardware,
rapid advances have been witnessed during the past 10 years. Innovative simulations on
the order of millions of particles are being conducted in quasi real-time in confined en-
vironments [60], rotating drums [61], blenders [62], granular soils [63]. This is because
of the sophisticated algorithms developed for efficient collision detection [64–71] and
constructing memory-efficient data structures [72]. Using high performance GPU’s, [73]
investigated the size effects in granular mixture flows, whereas [74] used it to simulate
fractures in heterogeneous media. Additionally, to bridge the gap between ideal and re-
alistic mixtures, studies have also considered to simulate non-spherical particles using
the GPU-based framework, see [75] for triangular particles, [76, 77] for convex polyhe-
drals.

On the whole, despite the need of calibrating and validating DPMs, particle simula-
tions have shown to be an efficient, much appreciated, alternative to experiments.

1.3.3. Micro-macro transition
Given that DPM is an efficient tool to be utilised to probe the intricate details of granu-
lar dynamics, there still lies a gap between the discrete and continuum models. Macro-
scopic continuum quantities, such as density, velocity, stresses and other necessary fields
are essential in any analysis involving validation or calibration of, e.g., a continuum
model.

The mapping of the microscopic scale dynamics onto a macroscopic continuum
scale has been under focus since the classical studies by [78, 79] and others [80]. Based
on a variety of theoretical postulates, various methods for micro-macro transition have
been formulated to extract these macroscopic quantities efficiently, e.g. binning of the
microscopic fields into small volumes [81] and the method of planes [82]. However, most
of them are restricted in terms of their application due to various limitations, see [81] and
the references therein. One of the challenges or requirements for multi-scale methods is
to efficiently map the microscopic particle dynamics onto a macroscopic fields, which
in turn satisfy the classical equations of continuum mechanics, i.e. the fundamental
balance law of mass and momentum

Dρ+ρ∇·~u = 0,
D(ρ~u)+ρ~u∇·~u =∇·σ+ρ~g .

(1.7)

The above equations are stated in terms of the mass density ρ, bulk velocity ~u, and stress
tensor σ. Coarse graining approaches to granular materials first appeared in the work of
[83] and has been extended by various studies [84–95]. The coarse graining techniques
have two essential advantages over other types of averaging techniques. These are (i) the
macroscopic quantities exactly satisfy the continuum laws of motion and (ii) they are ap-
plicable to both static and dynamic granular media. With these advantages, the coarse
graining approach has been utilised to study the results of computations or experiments

3Graphics processing unit
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and their characterisation in terms of density, velocity, stress, strain, couple-stress and
other fields; for 2D granular systems [96–100], hopper flows [101, 102]. Furthermore, the
coarse graining method described in [95] has been extended to granular mixture flows
near boundaries or discontinuities [103, 104] and bidisperse mixtures [105]. These ex-
tensions [103] have been been applied to analyse shallow granular flows [56] and segre-
gation phenomena in bidisperse granular mixtures [105].

1.4. Thesis outline
The fundamental goal of this thesis is to utilise and extend the aforementioned theories.
As a stepping stone, in Chapter 2, we begin by considering shallow monodisperse granu-
lar mixture flowing over a rough inclined channel. In addition, the inclined channel also
has contracting sidewalls located downstream near the channel exit. On exploiting the
shallowness argument in the cross-slope direction, we further width-average the depth-
averaged shallow granular equations. Thus, resulting in a novel one-dimensional granu-
lar hydraulic theory. For simplicity, we assume the Earth-pressure coefficient K = 1 and
the shape factor α1 = 1. In addition, the simple Coulomb-like friction law is replaced by
a much more efficient empirically determined constitutive law, validated using discrete
particle simulations. Given this, flow profiles are predicted in a very simple and efficient
manner. As a verification step, the solution of the one-dimensional model is compared
with an equivalent two-dimensional shallow granular model. However, no validation
with discrete particle simulations or experiments is carried out.

With a goal towards analysing bidisperse mixture flows using both continuum the-
ories and discrete particle simulations, Chapter 3 focusses on extending the efficient
micro-macro mapping technique to multi-component mixtures. Using the concepts of
mixture theory, coarse graining expressions for macroscopic partial quantities are sys-
tematically constructed. In an attempt to test the limits of these coarse graining expres-
sions, we apply them on discrete particle data obtained from the simulation of a bidis-
perse mixture (varying in size alone) for both steady and unsteady scenarios. The de-
rived expressions are generic and can be easily extended to multi-component mixtures
varying in both size and density.

Chapter 4 showcases a classic example of using discrete particle simulations as a tool
to validate a developed continuum model. Using the same principles of mixture theory,
an existing bidisperse purely size-based segregation model is extended to take into ac-
count the density differences as well. However, no diffusive remixing is taken into ac-
count. By doing so, the resulting theory predicts zero segregation for a range of size and
density ratios. As a logical step and as an alternative to intensive experiments, we utilise
the discrete particle simulations (no micro-macro mapping), to validate the theoretical
prediction.

Given we have the coarse graining (CG) expressions at hand, Chapter 5 illustrates
a simple but effective application of these expressions. In a simple mixture theory size-
and density-based segregation model, unknown parameters arise based on the flux func-
tions used (1.6). Using the particle data set as utilised in Chapter 4 and the CG expres-
sions from Chapter 3, macroscopic continuum fields are constructed. Using these fields
closure parameter is determined as required to complete the continuum model.

Finally, in Chapter 6 we present an extensive review where we advocate discrete par-
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ticle simulations as a suitable alternative to experiments.
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2
One-dimensional shallow

granular model

We consider monodisperse dry granular mixture flowing down an inclined channel, with

a localised contraction: theoretically and numerically, using the shallow granular theory.

For closure, we consider an empirically determined and discrete particle simulation val-

idated constitutive friction law, which also accounts for the existence of steady uniform

flows for a range of channel inclinations. From the depth-averaged shallow granular the-

ory, we present a novel extended one-dimensional granular hydraulic theory, which for

steady flows predicts multiple flow regimes like smooth flows without jumps or steady

shocks upstream of the channel or in the contraction. For supercritical flows, the one-

dimensional model is further verified by solving the two-dimensional shallow granular

equations through a discontinuous Galerkin finite element method. On comparison, the

one- and two-dimensional solution profiles, averaged across the channel width, surpris-

ingly match although the two-dimensional oblique granular jumps largely vary across the

converging channel.

This chapter is still in prep. for a publication.
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2.1. Introduction
A considerable number of industrial processes involve materials in a granular form. Grains
of dissimilar properties are often mixed, fed, or separated through a variety of devices in
these processes. Partially filled rotating drums and blenders are used in pharmaceutical
and food production industries [1], whereas rotary kilns and inclined cylinders [2] are as-
sociated with chemical processes involving sinter1, cement and iron production due to
their ability for continuous material feed. In Europe, [3] sales of granular material, which
at some stage of a production process is poured, mixed, or separated, is estimated to be
over 6 billion euros with a production of over one million tonnes annually. Amongst
several particle transport mechanisms associated with industrial processes, this work
concerns analysing rapid free surface granular flow similar to what is observed in steel
manufacturing at any global steel company.

At a steel manufacturing site, the iron production process involves the inflow of sin-
ter, pellets and coke, via a rotating inclined channel, into a blast furnace for iron-ore
melting; see Fig. 2.1. Here, pellets are spheres of certain diameter produced by shaping
finely ground particles of iron ore. The mixture is pelletised as it is easy to feed, produce
and store. As the sinter, pellet and coke mixture is fed in a layered pattern into the blast
furnace; non-uniformity in the mixture properties like size and density leads to parti-
cle segregation. Furthermore, the rough base of the hopper is fitted with rivets, which
makes the base uneven and rougher. Thus, leading to complex flow and deposition pat-
terns and, more importantly, implying that a thorough understanding of the dynamics
of such complex flow phenomena is essential in improving the iron quality, control of
the production process (efficiency) and the design of the devices handling mixture feed.
As a stepping stone, this chapter considers the flow of a monodisperse mixture alone, i.e.
mixture comprised of same type of particles, which also implies no particle segregation,
over non-rotating rough inclined channels with constrictions.

In reality, the majority of granular flows in nature (avalanches, landslides, etc.) and
industries dealing with inclined channel flows are shallow, i.e. the ratio of the character-
istic length scales in the normal (H) to the streamwise direction (L) is small, H/L << 1.
Although qualitative understanding of monodisperse mixture flows over inclined chan-
nels has existed for some time; several avalanche models, by exploiting the shallow-
ness aspect, proved to be successful in quantitatively analysing these granular flows. In
essence, an avalanche model utilises the already existing shallow water theory from the
fluids community and extends it to model shallow granular free-surface flows. However,
one needs to know the corresponding granular constitutive relations required to relate
the normal and the tangential stresses. To our knowledge, the earliest known extension
of the shallow water theory was implemented by Grigorian et al. [4], to predict the snow
avalanche paths in the Ural mountains. The formal existence of shallow granular (SG)
theory was established by Savage and Hutter [5], who averaged the mass and momen-
tum balance equations in the depth direction (depth-averaging) and assumed a Mohr-
Coulomb rheology with a constant Coulomb basal friction law. In depth-averaging, one
averages out the depth dependency from the flow quantities, such as the flow height and
velocity. For more details also see Bokhove and Thornton [6]. With this established set

1Solid mass formed by compacting a solid material by heat and/or pressure without melting it to the point of
liquefaction
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of shallow granular equations, Savage and Hutter [7] and Greve and Hutter [8] further
extended the SG theory, to predict the flow of an initially stationary finite mass of co-
hesionless granular material down a variable basal topography, both concave and con-
vex. As years progressed, studies extended and generalised SG theory to consider flows
over varying topography, see [9–14], and used them for predicting precarious zones in
the alps (a mountain range in Europe), e.g., see [15–17]. Further simplifications were
made by Gray et al. [18], where the in-plane deviatoric stresses is assumed to be neg-
ligible. This assumption reduces the set of equations of Savage and Hutter [5] to bear
a superficial resemblance to the nonlinear shallow water equations with source terms.
This reduced set of hyperbolic equations has been successfully used to precisely predict
granular flows past obstacles (e.g. pyramids [18], wedges [19] ), through constrictions
[20, 21] and cylinders [22]. Besides theoretical applications, studies have also utilised
them to design avalanche deflecting walls for the protection purpose, e.g. see [21, 23].
We focus here on utilising the shallow granular theory for inclined channel flows through
contractions.

In Vreman et al. [20], alongside listing several other approaches attempted to pre-
dict and understand granular dynamics; the motion of granular matter flowing over
a smooth inclined channel, constrained by contracting sidewalls, was investigated by
means of theoretical, numerical and experimental analysis. Results revealed upstream
moving bores or shocks, a stable reservoir state and weak oblique shocks. Flow states
and flow regimes were explained via a unique granular "hydraulic" theory described by
a set of equations obtained by extending the asymptotic analysis of Gray et al. [18] to one-

dimension. Instead of granular material, Akers and Bokhove [24] analysed water flow on
a horizontal plane constrained downstream by contracting sidewalls, theoretically and
experimentally. In this chapter, the same one-dimensional hydraulic theory is extended
to the granular case, including frictional effects. These one-dimensional shallow water
equations combined with a theoretical and experimentally determined constitutive fric-
tion law leads to a one-dimensional shallow granular continuum model. To close this
model we use a friction law (constitutive law/closure relation) determined by Pouliquen
and Forterre [25] and verified through discrete particle simulations of Weinhart et al.

[26]. The discrete particle simulations construct a map between micro-scale and macro-
scale variables and functions thereby determining the closure relations needed in the
continuum model.

Through the one-dimensional asymptotic model, the flow regimes observed for gran-
ular flow in an inclined channel – with a contraction – are illustrated on a F0 −Bc plane,
where F0 is the channel upstream Froude number and Bc is the critical nozzle width ra-
tio. The latter is defined as the ratio of the nozzle width Wc and the upstream channel
width W0. The one-dimensional asymptotic theory gives a thorough, although approxi-
mate overview of the possible flow regimes. Results obtained via the one-dimensional

asymptotic theory are later verified by solving the two-dimensional shallow granular
equations using a discontinuous Galerkin finite element method (DGFEM). Solving the
two-dimensional shallow granular equations through DGFEM not only helps in verifica-
tion of the asymptotic theory, but most importantly it scrutinises whether the constitu-
tive friction law holds in higher space dimensions (two-dimensions). Finally, although
not shown in this chapter, the results from the continuum model should be compared
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Figure 2.1: View into the blast furnace at Tata Steel, the granular mixture is continuously fed into the furnace
through the hopper.

with full DPM simulations in order to investigate the validity of the assumptions of the
granular shallow-layer model.

2.2. Asymptotic theory
In rapid free surface shallow granular flows, the ratio of the characteristic length and
velocity scales in the normal to streamwise direction is small (<< 1). By utilising the
asymptotic analysis from Gray et al. [18], along with a series of approximations listed in
Appendix A, we obtain the depth-averaged shallow granular equations. The dimensional
2D shallow granular model is stated below

ht + (hu)x + (hv)y = 0,

(
hu

)
t
+

(
hu2 +K

h2

2
g cosθ

)
x
+

(
huv

)
y
= h

(
tanθ−µ(h,~u)

u

|~u|

)
g cosθ− g cosθh

db

d x
,

(
hv

)
t
+

(
huv

)
x
+

(
hv2 +K

h2

2
g cosθ

)
y
=−hµ(h,~u)

v

|~u|
g cosθ− g cosθh

db

d y
.

(2.1)
The above 2D shallow granular equations, (2.1), are derived via a step by step procedure
presented in the book chapter, Bokhove and Thornton [27]. Eqns. (2.1) represent the
conservation of mass and momentum in terms of the flow quantities, i.e. flow depth
h = h(x, y, t) and velocity (u, v) = (u(x, y, t), v(x, y, t)) in a channel of width W = W (x)
with basal topography b(x, y), where x and y is the down- and cross-slope direction, re-
spectively. Variable t denotes time, µ(h,~u) is the basal friction coefficient and K a mate-
rial constant denoting stress anisotropy. The subscripts t , x, and y denote the respective
partial derivatives and g is the acceleration due to gravity. The variable θ denotes the
chute angle, which is chosen such that the average inter-particle and particle-wall forces
are in balance with the downstream force of gravity acting on granular particles, leading
to a uniform flow in the absence of a contraction. Using the aspect ratio argument as
used for depth-averaging, the flow quantities across the channel are also averaged, see
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Figure 2.2: (a) Illustrates a simple granular flow over an inclined channel. (b) Top view of the channel with
symmetric sidewall geometry and a contraction at xm .

Appendix A.1. After averaging the flow quantities across the chute, i.e. averaging out the
y-dependence, the 2-dimensional model equations (2.1) reduce to the 1-dimensional

depth- and width-averaged shallow granular equations

(hW )t + (huW )x = 0,

(hW u)t + (hW u2)x +
1

2
gnK W (h2)x = gnhW

(
tanθ−µ(h,u)

)
.

(2.2)

The flow quantities h and u are independent (averaged out) of y , i.e. h = h(x, t),u =
u(x, t), with gn = g cosθ. We consider a uniform channel with a constant upstream
width W0 and a localised linear contraction, which is monotonically decreasing in width,
W (x) ≤W0, from xm till it reaches the minimum nozzle width W (xc ) at x = xc . Here, xm

and xc are, respectively, the x location of the contraction entrance and exit, Fig. 2.2.
We always consider the minimum nozzle width at the end of the channel. Thence, we
introduce the dimensionless variables denoted by primes,

t =
W0

ul
t ′ , x =W0x′ , u = ul u′ , h = hl h′ , W =W0W ′ ,

Fl =
ul√
gnhl

, (tanθ−µ(h,u)) =
hl

W0
(tanθ−µ(h,u))′.

(2.3)

The variables W0, ul and hl are suitable characteristic length scales for the flow domain
(usually a reference value for the channel width), flow velocity and flow depth, respec-
tively. In our model, W0, ul and hl are the values defined upstream of the contraction at
x =−xl < (xm = 0). We also define an upstream Froude number as Fl = ul /

√
gnhl . The

average slope of the contraction is given by, α = (W0 −Wc )/(xc − x0). After substituting
the scaled variables and dropping the primes, we obtain a non-dimensional depth- and
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width-averaged shallow-layer model for isotropic (simpler case), K = 1, granular flow,

(hW )t + (huW )x = 0

ut +uux +
1

F 2
l

hx =
1

F 2
l

[
tanθ−µ(h,u)

]
.

(2.4)

For a detailed derivation, see Appendix A.1. The 1-dimensional shallow-layer equations
(2.4) constitute of the continuity equation and the downslope momentum equation.
One could also arrive at these equations via a standard control volume analysis of a
column of granular material viewed as a continuum from the base to the free surface,
using Reynolds-stress averaging and a leading order closure. Moreover, in order to have
a closed system of shallow-layer equations we need a constitutive friction law, which we
shall briefly describe in the following section.

2.2.1. Constitutive law/Closure relation
The basic difference between the shallow-layer fluid model and a granular one is the
presence of the basal friction coefficient µ, where µ is the ratio of the shear to normal
traction at the base. Some of the previously developed dry granular models incorporated
a dry Coulomb-like friction law [5]. However, the Coulomb-like friction law holds only
in two cases:

1. When the inclined channel is smooth, fully developed uniform flows are found to
exist at one critical inclination angle [28–30]. Above this angle the material accel-
erates and below this angle the flowing material eventually stops. The rheological
properties of flows over smooth channels are well described by a constant friction
constant, which equals the tangent of the angle of friction between the material
and the base δ, i.e. µ= tanδ.

2. Similarly, experimental studies also show that the constant friction coefficient holds
for accelerating flows over rough channels at higher inclinations [28, 31]. Experi-
mental measurements of the shear forces at the bed show the friction coefficient
to be independent of the velocity.

For an intermediate range of angles where steady uniform flows reside [32–34], the
simple Coulomb friction, however, fails to describe the flow rheology on channels with
rough beds. Using accurate experimental measurement techniques Pouliquen [32], Forterre
and Pouliquen [35] empirically determined a scaling which allows one to predict the
variation in the mean (depth-averaged) velocity as a function of the channel inclination,
flow depth and channel roughness,

F =
u

√
g h

=β
h

hstop (θ)
−γ, (2.5)

where β and γ are constants and F is the Froude number. The effects of changing the
channel roughness, channel inclination and other features like mixture particle size is
captured in hstop (θ) without any experimental velocity measurements. The Variable
hstop (θ) denotes the critical thickness where the flow arrests or comes to a halt. Each
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channel inclination has a unique critical thickness, which depends on the channel rough-
ness and particle size, see [32] for more details concerning the measurement of hstop (θ).
With this scaling law at hand, Pouliquen and Forterre [25] further expressed the stoppage
height, as a function of the angle of inclination,

hstop (θ)

Ad
=

tan(δ2)− tan(θ)

tan(θ)− tan(δ1)
, δ1 < θ < δ2, (2.6)

where d is the grain diameter and A is a characteristic dimensionless length scale over
which the friction varies. In addition, the above empirical friction law (2.6) is charac-
terised by two angles: the angle at which the material comes to rest δ1, below which
friction dominates over gravity and the angle δ2, above which the material accelerates
as gravity dominates friction. It is between these two angles that steady flow is possi-
ble. One can obtain the constitutive friction law on combining (2.5) and (2.6). Using the
steady state flow assumption µ = tanθ to hold(approximately) in the dynamic case as
well, one obtains an improved, valid for lower Froude numbers, empirical friction law

µ=µ(h,F ) = tan(δ1)+
tan(δ2)− tan(δ1)

βh/(Ad(F +γ))+1
. (2.7)

As δ1 → δ2, the Coulomb’s model is recovered, see Grigorian et al. [4].

2.2.2. Steady state solutions
By utilising the improved macro-scale constitutive friction law (2.7), the steady flow
states in a granular flow – through a contraction – are predicted through the shallow-
layer granular model (2.4). We begin by defining a non-dimensional Froude variable as

F (x)= Fl
u(x)
p

h(x)
. (2.8)

Fl takes Fl = F0 for values u0, W0 and h0 at x = x0 near the sluice gate or Fl = Fm for
values um , W0 and hm at the contraction entrance x = xm .

For flows in steady state, from the mass balance equation (huW )x = 0, we obtain a
constant mass flux huW = constant. We define the integration constant as Q and for our
scaling we consider Q = 1. The momentum balance equation, in a conservative form, is
stated as

F 2
l

(
u2

2

)

x

+hx = (tanθ−µ(h,F )).

Using u2 = F 2h
F 2

l

, we obtain

d

d x

[(
1+ F 2

2

)
h
]
= (tanθ−µ(h,F )), (2.9)

and derive expressions for the flow height h(x) and its derivative, see Appendix A.1.3),

h =
(QFl

W F

)2/3
and

dh

d x
=−

2

3

[h

F
Fx +

h

W
Wx

]
. (2.10)
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Combining (2.9) and (2.10), see Appendix. A.1.4, we have

dF

d x
=

1

2

(F 2 +2)F

(F 2 −1)

d ln(W )

d x
−

3

2

C
′

d

(QFl )2/3

W 2/3F 5/3

(F 2 −1)
, (2.11)

with C
′

d
(θ,h,F ) = −(tanθ−µ(h,F )). Eqn. 2.11 is analogous to the equation (7) in [24] if

C
′

d
(h,F ) =Cd a constant; the coefficient Cd is called frictional drag in hydraulics.
An analytical solution is found for a special case where W =W (x) and assuming that

for a given steady flow, µ= tanθ (inviscid flow) holds (approximately). Eq. (2.11) can for
the inviscid case, be written as

dF

d x
=

1

2

(F 2 +2

F 2 −1

) F

W

dW

d x
, (2.12)

which when analytically integrated with respect to x, from the channel upstream posi-
tion xl to some point channel downstream yields
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Fl

2(F 2 −1)

(F 2 +2)F
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====⇒
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2+F 2
l
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W

W0
.

(2.13)

For the given closed system (2.11), the well known critical nozzle condition from Houghton
and Kasahara [36], F = 1, plays the role of a boundary condition at the channel exit. At
this condition the flow at the nozzle is "sonic" or "critical", such that the flow speed u

equals the gravity wave speed
p

h/Fl , which in terms of dimensional quantities means
that the flow speed u equals

√
gnh. On utilising this critical condition for the inviscid

case, the solution with F (xc ) = 1 and for x < xm , where Fl = F0, is

F0

( 3

2+F 2
0

)3/2
= Bc . (2.14)

The average solutions obtained are smooth as long as the flow is subcritical with F0 < 1
or supercritical with F0 > 1. The inviscid solution (2.14) divides the F0 −Bc parameter
plane into regions characterising the smooth sub- and supercritical flows, see Fig. 2.3.

In order to obtain the demarcating curves for granular flows with frictional effects, we
integrate the ordinary differential equation (ODE) (2.11) using the fourth-order Runge-
Kutta scheme, known as RK4, starting from the contraction exit x = xc given the critical
nozzle condition F (xc ) = 1, Bc and the width W =W (x). The location of the contraction
exit, x = xc , is given by the relation xc = L cosθc , with θc = sin−1((W0−Wc )/2L), where L is
the length of the contraction paddle. The Froude number Fl and depth hl is prescribed
upstream of the channel at x = xl . Either Fl = F0 upstream of the channel or Fl = Fm at
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Figure 2.3: The curves above demarcate a region in the F0/m −Bc plane where either smooth or shock solu-
tions exist for inviscid flows. Note that Fm corresponds to the value at the entrance of the contraction and F0
corresponds to the value at the entrance of the channel, which for inviscid flows is the same, i.e. F0 = Fm .
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R

(xr ,Wr )

(xc ,Wc )

W0

Wc

Figure 2.4: Illustrates how the sidewall geometry is modified by fitting a circle at contraction exit xc .

the contraction entrance. Given the critical nozzle condition is at the contraction exit,
where F = 1 by definition, a closer look at Eq. (2.11) indicates,

2

3

(F 2 −1

F 2

)dF

d x
=

(F 2 +2

3F

)d(ln W )

d x
+

F−1/3W 2/3

(QFl )2/3
(tanθ−µ(F )),

0
dF

d x︸ ︷︷ ︸
LHS

6=
3

2

α

Wc
+

3

2

1

(QFl )2/3
W 2/3

c (tanθ−µ(1))

︸ ︷︷ ︸
R HS

,
(2.15)

a singularity at the contraction exit xc implying the ODE does not hold (2.15)2 at the noz-
zle exit, i.e. LHS 6= RHS when F = 1, from a mathematical point of view. In Eq. (2.15)2,
α = dW /d x at the contraction exit. By regularisation we intend to determine the fi-
nite value for dF /d x at the contraction exit. The first step here is to construct more
slopes, i.e. compute more values of α and find the new contraction exit x = xcnew at
which LHS=RHS. This is achieved by fitting a circle at the exit of the channel as shown in
Fig. 2.4. Choosing a circle is convenient, as it has an infinite number of slopes and can
be easily fitted at the contraction exit x = xc . Moreover, as the radius R → 0, we return
back to the initial sidewall geometry (approximately). Once the new contraction exit,
xcnew , is determined, such that LHS=RHS, we arrive at a classic limit problem, stated as

lim
x→xnew ,F (xnew )→1

dF

d x
=

0

0
. (2.16)

The limit (2.16), is solved by using the Taylor expansion series, see Appendix A.1.5. The
finite slope F

′
at the new contraction exit x = xcnew is determined for both the inviscid

and viscous cases, see Appendix A.1.5. On regularisation, the singularity at the contrac-
tion exit due to the critical nozzle condition is resolved such that LHS = RHS.

For a given sufficiently large Fl > 1 or sufficiently small Fl < 1; in order to produce the
critical (demarcating) curves – for viscid flows – that allows one to distinguish between
the smooth super- and subcritical flows and flows with jump, the ODE (2.11) can be in-
tegrated in two ways:

(i) Non-regularised approach:

To avoid the singularity in Eqn. 2.11, the ODE is integrated starting from the initial con-
traction exit, xc , with Froude number F = limε→0 1±ε, respectively.
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Figure 2.5: Non-regularised and regularised approach is compared for both (a) inviscid flows (b) frictional
flows. The dashed lines demarcate the extent of upstream moving/steady shocks.
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(ii) Regularised approach:

Given the singularity is resolved by determining the new contraction exit and the correct
slope dF /d x, as described in Appendix. A.1.5, a regularised approach can now simply
use the critical boundary condition F = 1 and integrates the ODE starting from the new
nozzle exit x = xcnew .

Via either approach, regularised or non-regularised, the ODE (2.11) is integrated to
a point upstream, x = x0 or x = xm , to find a new estimate for Fl , since the scaling Fl

is unknown beforehand as it is part of the solution. Hence, the solution is found itera-
tively. One can consider the initial value (an educated guess) for Fl = F0(Bc ) obtained
from the solution for the inviscid case, here F0/m is a function of Bc . Once the new es-
timate for Fl is obtained, we proceed iteratively until convergence is reached. Thereby
we obtain the necessary demarcation curves on the F0/m −Bc plane. In Fig. 2.5, we show
the critical curves obtained using both the regularised and non-regularised approach.
As illustrated, the constructed solutions are in good agreement. Utilising the same regu-
larisation approach as above, Fig. 2.6 predicts the existence of different flow regimes by
plotting the critical curves which demarcate the F0/m −Bc plane into several regions.

2.2.3. Shock solutions
The closed system of equations, (2.4), is hyperbolic and thus can develop discontinuities
in the flow field in finite-time. These discontinuities are nothing but jumps in the depth
or velocity of the flow that propagate at a well-defined velocity. The jump conditions are
derived as follows. We integrate both the non-dimensional depth- and width-averaged
mass and momentum balance equation, from X (t) − δ to X (t) + δ and take the limit
δ→ 0. Both h and u are discontinuous at x = X (t). For simplicity, we define X − as the
limit position on the left side of the jump and X + the limit on the right side of the jump,
and the shock speed s =−d X /d t . Utilising these definitions, we begin by integrating the
continuity equation. On utilising Leibniz’s rule, we have

∫X +(t )

X −(t )
(hW )t + (huW )x d x = 0,

d

d t

∫X +(t )

X −(t )
hW d x + s

[
hW

]X +

X − +
[

huW
]X +

X − = 0,

As
∫X +

X −
hW d x = 0 and W + =W − =W →

[
h(u+ s)

]X +

X − = 0,

h+ (
u++ s

)
= h− (u−+ s) .

(2.17)

Similarly, using the same above approach, we integrate the momentum equation as be-
low ∫X +(t )

X −(t )

(
(huW )t + (hu2W )x +

W

F 2
l

(
h2

2

)

x

−
1

F 2
l

hW
(
tanθ−µ(F )

)
)

d x = 0,

As W + =W − =W , the above equation is simplified to

∫X +(t )

X −(t )

(
(hu)t + (hu2)x +

1

F 2
l

(
h2

2

)

x

−
1

F 2
l

h
(
tanθ−µ(F )

)
)

d x = 0.
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Figure 2.6: The Fm , Bc plane and the F0, Bc plane divided into regions of different flow regimes. Note that Fm

corresponds to the value at the entrance of the contraction and F0 corresponds to the value at the entrance
of the channel. In region (iii) upstream moving/steady shocks only. In region i/iii/iv, steady shocks in the
contraction, upstream moving/steady shocks and oblique waves or averaged smooth flows exists. In region
(ii), subcritical smooth flows are distinguished from flows in region (iii) by the absence of upstream moving
shock in the transient stage. See Fig. 2.7. In region (i), analysis predicts supercritical smooth flows. The solid
lines demarcate the existence of the region of super- and subcritical flows for inviscid and frictional flows (thick
and thin lines). The dashed lines demarcate the extent of the moving/steady upstream shocks also for viscid
and inviscid flows (dashed thick and thin lines).
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On utilising Leibniz’s rule,
∫X +(t )

X −(t )
hu d x = 0 and

∫X +(t )

X −(t )
h

(
tanθ−µ(F )

)
d x = 0, we have

s
[

hu
]X +

X − +
[

hu2
]X +

X − +
1

2F 2
l

[
h2

]X +

X − = 0,

On further manipulations, the above equation is restated as below

h+ (
(u+)2 +u+s

)
−h− (

(u−)2 +u−s
)
+

1

2F 2
l

(
(h+)2 − (h−)2

)
= 0,

h+ (
(u+)2 +2u+s + s2 −u+s − s2

)
−h− (

(u−)2 +2u−s + s2 −u−s − s2
)

...

... +
1

2F 2
l

(
(h+)2 − (h−)2

)
= 0.

(2.18)

Using the jump condition obtained from the continuity equation (2.17), the above equa-
tion (2.18) is restated as

h+ (
u++ s

)2 −h− (u−+ s)2 +
1

2F 2
l

(
(h+)2 − (h−)2

)
= 0,

h+ (
u++ s

)2 −h−
(

h+

h−

)2 (
u++ s

)2 +
1

2F 2
l

(
(h+)2 − (h−)2

)
= 0,

(
u++ s

)2
h+ (h−−h+)

h− =
1

2F 2
l

(
(h−)2 − (h+)2

)
,

(
u++ s

)2 =
1

2F 2
l

(
1+

h−

h+

)
h−.

(2.19)

The above two jump/shock relations are also known as Rankine-Hugoniot conditions.
For upstream moving shocks instead of matching the upstream conditions with the noz-
zle conditions, we relate the depth hu and uu upstream of the shock to h1 and u1 down-
stream of the shock and also to the depth hc and uc at the nozzle end. Using (2.17) and
(2.19) with h+ = hu , u+ = uu and h− = h1, u− = u1, the jump conditions are restated as

(uu + s)hu = (u1 + s)h1,

(uu + s)2 =
h1

2F 2
l

(
1+

h1

hu

)
.

(2.20)

Similarly, in order to obtain the jump conditions for a shock in the contraction, we com-
bine the above jump conditions with the Bernoulli equation and mass conservation in
the contraction thus leading to

1

2
u2

1 +h1/F 2
l
=

1

2
u2

c +hc /F 2
l

,

u1h1W1 = uc hcWc and
(2.21)



2.2. Asymptotic theory

2

33

from (2.8) with F (xc ) = 1, we obtain the critical condition

u2
c = hc /F 2

l . (2.22)

Variables uc and Wc are the downstream speed and width at the contraction exit. By
introducing Fu = uu Fl /

√
hu , S = sFl /

√
hu , B1 = Wc /W1 and H1 = h1/hu , below we

scale the equations (2.20)-(2.22) to reduce the jump conditions in terms of the upstream
Froude number Fu , the scaled shock speed S and H1. On substituting these scalings in
equation (2.20)2, we arrive at

(√
hu

Fl
(Fu +S)

)2

=
h1

2F 2
l

(1+H1)

Taking out

√
hu

Fl−−−−−−−−−−−−→ (Fu +S)2 =
1

2
H1(1+H1)

︸ ︷︷ ︸
Condition 1

. (2.23)

Similarly, below we substitute the above scalings in (2.20), to arrive at a few relations
useful for further manipulation of (2.21)1,

(uu + s) = (u1 + s)H1 →
√

hu

Fl
(Fu + (1−H1)S)= u1H1 → u2

1 =
hu

H 2
1 F 2

l

(Fu + (1−H1)S)2

︸ ︷︷ ︸
Relation # 1

,

(2.20)2−−−−→ h1 =
2F 2

l
(uu + s)2

1+H1
→ h1 = 2hu

(Fu +S)2

1+H1

Jump cond. # 1−−−−−−−−−−→ h1 = hu H1︸ ︷︷ ︸
Relation # 2

.

(2.24)
Furthermore, by using the critical condition (2.22) in (2.21)2, we obtain

u1h1 = uc hc B1
u2

c=hc /F 2
l−−−−−−−→u2

c =
(

u1h1

B1F 2
l

)2/3

︸ ︷︷ ︸
Relation # 3

. (2.25)

On substituting the above relations (2.24)-(2.25) in (2.21)1, we systematically proceed to
arrive at

u2
c=hc /F 2

l−−−−−−−→
1

2
u2

1 +
h1

F 2
l

=
3

2
u2

c

u2
c=


 u1h1

B1F 2
l




2/3

−−−−−−−−−−−→
1

2
u2

1 +
h1

F 2
l

=
3

2

(
u1h1

B1F 2
l

)2/3

,

(2.24)−−−−→
hu

2H 2
1 F 2

l

(Fu + (1−H1)S)2 +
hu

F 2
l

H1 =
3

2

(
h3/2

u

F 3
l

(Fu + (1−H1)S)

B1

)2/3

,

Factoring out
hu

F 2
l−−−−−−−−−−−→

1

2
[Fu + (1−H1)S]2 =

3

2
H 2

1

[
Fu + (1−H1)S

B1

]2/3

−H 3
1

︸ ︷︷ ︸
Condition # 2

.

(2.26)
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Thus, through these above manipulations, we arrive at the jump conditions in terms of
the upstream Froude number, shock speed and flow depth ratio

(Fu +S)2 =
1

2
H1(1+H1),

1

2
[Fu + (1−H1)S]2 =

3

2
H 2

1

[
Fu + (1−H1)S

B1

]2/3

−H 3
1 .

(2.27)

As we can see when H1 = 1, i.e. when there exists no jump in depth/height across the
shock, the above equation (2.27)2 reduces to the purely inviscid case (2.14) for Fu = F0 ≤
1 and B1 = Bc . For F0 > 0 and B1 = Bc , we get the the thin dashed line in Fig. 2.6. In the
same illustration, Fig. 2.6, the lower thin solid line corresponds to F0 < 1 and the upper
thin line concerns F0 > 1. The curves divide the F0−Bc plane into regions where moving
shocks and smooth solutions co-exist. When the viscous term is included, i.e. tanθ 6= µ,
the shocks become steady with time. Hence, we consider the shock speed s = 0. The
Bernoulli equations stated for the inviscid case are no longer valid when we include fric-
tional effects. They are replaced by eq. (2.11) from the shock position to the contraction
exit. Similar to the inviscid case, we calculate the arrested shock at the contraction en-
trance by integrating (2.11) from the nozzle end to the contraction entrance with the
critical nozzle condition F (xc ) = 1, to the point where the granular jump occurs, i.e. at
the contraction entrance xm . Given that we denote the Froude number just downstream
of the contraction entrance as F = F1 and at the upstream as F = Fm , with s = 0, using the
shock relation (2.27)1 with hu = hm , uu = um , Fu = Fm , we arrive at a quadratic equation
stated below,

1

2

(
h1

hm

)2

+
1

2

(
h1

hm

)
−F 2

m = 0
solution−−−−−→

h1

hm
=

1

2

[
−1+

√
1+8F 2

m

]
. (2.28)

From (2.20)1 we have h1u1 = hu uu which when rearranged results in um /u1 = h1/hm .
Using (2.8), this is restated as Fm/F1 = (h1/hm )3/2. Substituting Fm = F1H 3/2

1 in (2.27)1,
results in a quadratic equation stated below

F 2
1 =

1

2H 2
1

+
1

2H1
→

1

2

(
hm

h1

)2

+
1

2

(
hm

h1

)
−F 2

1 = 0
solution−−−−−→

hm

h1
=

1

2

[
−1+

√
1+8F 2

1

]
,

With
Fm

F1
=

(
h1

hm

)3/2

→ Fm =
p

8F1/
[
−1+

√
(1+8F 2

1 )
]3/2

> 1.

(2.29)
The ODE (2.11) is further integrated upstream from F = Fm > 1 at x = xm to find our
next estimate of F∗

l
at x = x0. Generally, F∗

l
6= Fl , where Fl is the scaling used in Eqn.

(2.11). Thereby, one begins with the inviscid result Fl = F0(Bc ). In the inviscid case one
can use (2.13) with Fl = F1 at the entrance of the contraction and Fm = F0 > 1 to find

F1 =
p

8Fo/

[
−1+

√
(1+F 2

o )

]3/2

from (2.29) to give

F1

( 3

2+F 2
1

)
= Bc (2.30)
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For comparison purposes, the demarcating curves, obtained either by regularisation or
non-regularisation, are almost identical, see Fig. 2.5. Nevertheless, the regularisation is
necessary to make the numerical analysis mathematically sound, i.e without a singular-
ity at F = 1.
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Figure 2.7: Profiles of Froude number F = F (x) and height h = h(x), as a function of downstream coordinate
x for the four flow states: (i) Supercritical flow with F > 1, (ii) subcritical flow for F < 1, (iii) upstream (steady)
shocks, and (iv) reservoir with shock in the contraction. Profiles (i), (iii) and (iv) corresponds to the multiple
steady states region, i/iii/iv, in the F0 −Bc plane in Fig. 2.6. The extent of the contraction is indicated by the
thick line on the x-axis from xc = 6 to xm = 11.

The super- (F > 1) and subcritical (F < 1) flow profiles are illustrated via F and h versus
x plots in Fig. 2.7. These profiles are obtained by integrating from a point upstream
of the channel into the downstream direction to the contraction exit. For flows with
granular jumps (discontinuities in flow quantities), the critical condition at the nozzle
exit is F = 1. We commence at the nozzle exit and move into the upstream direction.
The jumps in the flow quantities are computed by applying the jump condition, and
then finding a point where the downstream and upstream profiles match. Thereby, the
flow profiles are efficiently computed from the novel granular hydraulic theory. In the
following section we shall validate one of these flow profiles (supercritical), using two-
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dimensional solutions obtained through DGFEM.

2.3. Verification of 1D theory via 2D DGFEM
The asymptotic theory helps to approximately predict the flow regimes in F0 −Bc plane.
In order to verify the 1D results, the two dimensional solutions of the shallow granular
equations (SGE) are compared with the former. The additional degree of freedom helps
us illustrate the results from the 1D analysis in 2D. Moreover, the verification process
checks if the constitutive friction law holds in two dimensions. Solutions are obtained
by solving the SGE, along with closure relation µ(h,F ), using the discontinuous Galerkin
finite element method (DGFEM). The DGFEM is a blend of high resolution finite element
and finite volume methods for solving system of equations, as discussed in Di Pietro and
Ern [37]. We adopt a second order space discontinuous Galerkin method for the numer-
ical solution of our SGEs. The weak form of the SGE required for using DGFEM is de-
rived below. For more detailed information regarding the space discontinuous Galerkin
method one can refer to [38].

2.3.1. Weak formulation for DGFEM
From Eqn. (2.1) after applying the same scaling as in (2.3), the non-dimensional shallow-
layer granular flow system of equations can be written concisely in index notation as

∂tUi +∂ j Fi j (U ) = Si in the flow domainΩ (2.31)

for i=1,2,3 and (∂x ,∂y )T = (∂1,∂2)T with j = 1,2, using the Einstein summation conven-
tion. In Eqn. (2.31), U = (h,hu,hv)T is the vector of conserved quantities, and

F (U )=




uh vh

u2h+
K

F 2
l

h2/2 huv

huv v2h+
K

F 2
l

h2/2




and S =




0
h

F 2
l

(tanθ−µ
u

|~u|
)−

h

F 2
l

∂b

∂x

−
h

F 2
l

µ
v

~u
−

h

F 2
l

∂b

∂y




,

(2.32)
are the flux and the source term, respectively.
The conserved quantities of U are used to model granular bores/jumps. A closed system
of equations is obtained by prescribing the initial conditions and the boundary condi-
tions, such as inflow depth or flow velocity and also specifying the friction law µ(h, f ).
For details regarding the space elements and tessellation of the domain of our prob-
lem, Ω, see Tassi et al. [38]. The weak form of the given closed set of equations (2.31) is
obtained by multiplying it with an arbitrary test function Wh ∈ V

d
h

and replacing the ex-

act solution U by its approximation Uh ∈ V
d
h

, where V
d
h

is the discretised finite-element

space, V
d
h
= {v ∈ L2(Ω)|v |K ∈ P p (K )}, with P p (K ) as polynomials of degree p on the ele-

ment K and L2(Ω) is the function space of square integrable functions and d = dim(Wh ).
Given the domain Ω is discretised into k elements Kk , by integrating over the space ele-
ment Kk , we have the weak form for our compact system as

∫

Kk

Whi∂tUhi dK +
∫

Kk

Whi∂ j Fi j (Uh)dK −
∫

Kk

Whi Si dK = 0. (2.33)



2.3. Verification of 1D theory via 2D DGFEM

2

37

y
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~u

Figure 2.8: Top: Illustrates a schematic of an inclined channel with contracting and expanding sidewalls. Mid-
dle: Plot of the flow height h=h(x) as a function of downstream coordinate x for supercritical flow F = 3, ob-
tained by solving the 2D shallow granular model using a discontinuous Galerkin finite element method in our
open-source code (hpgem.org). Bottom left: contour plot of the flow height, h(x, y), as a function of down- and
cross-slope coordinate, x and y for a prescribed upstream inflow Froude number F=3. Bottom right: Compar-
ison of profile of Froude number F = F (x) and height h = h(x) as a function of downstream coordinate x for
supercritical flow F = 3, obtained from the 1D and 2D shallow granular model. The circles indicate the aver-
aged DGFEM solution and the solid line represents the solution obtained using the 1D theory.
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Substituting one of the identities of divergence operator, div(Whi Fi j ) =Whi∂ j Fi j +
(
∂ j Whi

)
Fi j

in (2.33) results in
∫

Kk

Whi∂tUhi dK +
∫

Kk

div(Whi Fi j )dK −
∫

Kk

(
∂ j Whi

)
Fi j dK −

∫

Kk

Whi Si dK = 0. (2.34)

Applying the Gauss theorem to eq. (2.34) and summing over all the elements results in

∑

Kk




∫

Kk

Whi∂tUhi dK +
∫

∂Kk

nK j W −
hi F−

i j dΓ

︸ ︷︷ ︸
boun. integ r al

−
∫

Kk

(
∂ j Whi

)
Fi j dK −

∫

Kk

Whi Si dK



= 0.

(2.35)
After defining a tessellation Th of the domain Ω, having a boundary ∂Ω, we define Γ

as a set of all the faces in Th . If ~x is a point on a face S in Γ and if ~nK is the outward
unit normal vector at the boundary ∂Kk , then the trace of the function Vh on the interior
of the element boundary ∂Kk is defined as Vh (~x)|∂Kk

= V − := limε→0 Vh(~x − ε~nK ). The

traces of the functions Vh (~x) ∈ V
d
h

on each face relative to the neighbouring element are
in general not equal, i.e. they have jumps or discontinuities. Thus, for the given weak
formulation (2.35), W −

hi
and U−

hi
are the traces of Whi and Uhi at ∂Kk ; F−

i j
= F−

i j
(U−

h
)

and dΓ is an infinitesimal boundary segment of the element Kk . Summing over all the
elements we could rewrite the boundary integral in Eq. (2.35) as

∑

Kk

∫

∂Kk

nK j W −
hi F−

i j dΓ=
∑

S

∫

S

(nl
K j W l

hi F l
i j +nr

K j W r
hi F r

i j )dΓ=

∑

S

∫

S

(αF l
i j +βF r

i j )(nl
K j W l

hi +nr
K j W r

hi )+ (nr
K j F r

i j +nl
K j F l

i j )(αW r
hi +βW r

hi )dΓ,

with α+β= 1 and α,β≥ 0. If we consider the flux to be conservative across the element
faces such that ∫

S

F l
i j nl

K j W l
hi dΓ=−

∫

S

F r
i j nr

K j W r
hi dΓ, (2.36)

and nl
K j

=−nr
K j

, we get

∑

Kk

∫

∂Kk

nK j W −
hi F−

i j dΓ=
∑

S

∫

S

nl
K j

(
W l

hi −W r
hi

)(
αF l

i j +βF r
i j

)
dΓ. (2.37)

The numerical flux F̃i j (U r ,U l ,~nK ) replaces the flux (αF l
i j
+βF r

i j
) in (2.37). The numerical

flux is a function of the traces U l and U r at the element face, where l and r denote the left
and right side of the face, respectively. Finally, the weak formulation using the space-DG
method is stated for each element as: Find Uh ∈ V

d
h

, such that for all Wh ∈ V
d
h

,

∑

Kk

(∫

Kk

Whi∂tUhi dK −
∫

Kk

(
∂ j Whi

)
Fi j (Uh)dK −

∫

Kk

Whi Si dK

)
+

∑

S

(∫

S

nK j F̃i j (U r ,U l ,~nK )(W l
hi −W r

hi )dΓ

)
= 0.
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With the weak formulation at hand we use suitable numerical fluxes like the HLLC nu-
merical flux or the kinetic numerical flux. The discretised formulation arises when the
approximated quantities Uh and Wh are defined in terms of the suitable basis functions.
After which we use the explicit third order total variational diminishing (TVD) Runge-
Kutta scheme for time integration. The numerical solution is computed through our
open-source dgFEM solver, hpGEM.org.

2.3.2. 2D DGFEM solutions
The above weak formulation is utilised to implement, in our open-source code, a DG-
solver for the 2D shallow granular equations. A contracting-expanding channel is con-
sidered in a Cartesian coordinate system (x, y) ∈ [0,16] x [0,1]. The channel converges
from x = xm = 6 to x = xc = 11 and diverges from xc = 11 till the end of the channel as
seen in the top-most illustration of Fig. 2.8.

Supercritical Flow
For supercritical flows through a contraction, we take as initial conditions the flow height
h = 0.5, downstream velocity u = 0.5, velocity in the y-direction v = 0 and the basal
topography b = 0. At the inflow boundary, we specify the flow height h = 1, downstream
velocity u = 1 and the cross-slope velocity v = 0. At the outflow, all the variables are
extrapolated such that U r = U l . The channel sidewalls are considered to have a solid
wall boundary condition, as proposed in Ambati and Bokhove [39], imposed as:

~vb ·~n =−~vL ·~n, ~vb ·~t =~vL ·~t ,
~ub ·~n =−~uL ·~n, ~ub ·~t =~uL ·~t ,

(2.38)

where~t is the unit tangential vector orthogonal to the normal vector ~n at the sidewall.
For a given nozzle width Bc and upstream Froude value FL corresponding to the multiple
steady state region in Fig. 2.6, the second (middle) illustration of Fig. 2.8 shows oblique
weak (not predominant with huge discontinuities) jumps in the converging region of the
channel as predicted through the asymptotic theory.

DGFEM vs. 1D asymptotic theory

The 2D solution obtained from the DG-formulation is averaged in the cross-slope direc-
tion and compared with the solution profile constructed using the novel one-dimensional
granular theory, case (i) in Fig. 2.7. From Fig. 2.8, one can conclude that the one-
dimensional asymptotic theory is in a very close agreement with the two-dimensional
solution for supercritical flows.

2.4. Conclusions
2.4.1. Summary
As a stepping stone towards analysing the monodisperse granular mixture, flowing over
rough inclined channels – with constrictions – we use the extensively utilised depth-
averaged shallow granular equations. On exploiting the shallowness aspect in the cross-
slope direction, which is often associated with the flows considered, we width-averaged
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the depth-averaged shallow granular equations, and arrived at a novel one-dimensional
granular hydraulic theory. For closure, we used an empirically determined constitutive
friction law, which was also validated using discrete particle simulations by Weinhart
et al. [26].

By using the one-dimensional theory, we can compute the flow profiles for any chan-
nel opening and inclination in a quick and efficient manner. Besides this ability, we
also illustrated – for steady flows – an existence of multiple flow regimes. As a verifica-
tion step, for supercritical flows alone, the 1D theory is compared to solutions obtained
via numerically solving an equivalent depth-averaged shallow granular equations us-
ing DGFEM. On comparison, we found a close agreement between the one- and two-
dimensional theories.

2.4.2. Future work
A complete verification of the 1D theory has to be carried out, i.e. the one-dimensional
granular theory needs to be verified for subcritical flows and also for flows with jumps
or shocks. Besides the verification of the theory, a thorough validation needs to be per-
formed. Although attempts have been made to validate the above one-dimensional the-
ory using fully three dimensional discrete particle simulations, efforts were so far in vain.
Mainly, because the flow profiles in the contraction did not completely match the 1D
predictions. However, the flow profiles for flows over an inclined channel without a con-
traction do agree with solutions obtained using the 1D theory. Thence, suggesting for
further study to understand the underlying dynamics in the contraction.
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3
From discrete data to

continuum fields

Micro-macro transition methods can be used to, both, calibrate and validate continuum

models from discrete data obtained via experimental or simulations. These methods gen-

erate continuum fields such as density, momentum, stress etc. from discrete data i.e. po-

sitions, velocity, orientations, forces of individual elements. Performing this micro-macro

transition step is especially challenging for non-uniform or dynamic situations. In this

chapter, we present a general method of performing this micro-macro transition but for

simplicity we will restrict our attention to two-component scenarios.

The mapping technique, presented here, is an extension to the micro-macro transition

method, called coarse-graining, for unsteady two-component flows and can be easily ex-

tended to multi-component systems without any loss of generality. This novel method

is advantageous; because, by construction the obtained macroscopic fields are consistent

with the continuum equations of mass, momentum, and energy balance. Additionally,

boundary interaction forces can be taken into account in a self-consistent way and thus

allow for the construction of continuous stress fields even within one element radius of the

boundaries. Similarly, stress and drag forces can also be determined for individual con-

stituents of a multi-component mixture, which is critical for several continuum applica-

tions, e.g. mixture theory based segregation models. Moreover, the method does not require

ensemble-averaging and thus can be efficiently exploited to investigate static, steady, and

time-dependent flows.

The method presented in this chapter is valid for any discrete data, e.g. particle simula-

tions, molecular dynamics, experimental data, etc.; however, for the purpose of illustra-

tion we consider data generated from discrete particle simulations of bidisperse granular

mixtures flowing over rough inclined channels.

This chapter has been accepted for publication in the Journal of Computational Particle Mechanics (2015) [1].
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3.1. Introduction
To formulate accurate continuum models one constantly needs to calibrate and validate
them with the available experimental or numerical data, which are discrete in nature. To
implement this mapping in an efficient manner, accurate micro-macro transition meth-
ods are required to obtain continuum fields (such as density, momentum, stress, etc.)
from discrete data of individual elements (positions, velocities, orientations, interaction
forces, etc.). This is the focus of this chapter: How to perform the micro-macro transi-

tional step?

Many different techniques have been developed to perform the micro-macro tran-
sition, from discrete data, including Irving & Kirkwood’s approach [2] or the method of
planes [3]; we refer the interested reader to [4, 5] and references therein. Here, we use
an accurate micro-macro transitional procedure called coarse-graining, as described in
[4, 6–12]. When compared with other simpler methods of performing the micro-macro
transitions, the coarse-graining method has the following advantages: (i) the resulting
macroscopic fields exactly satisfy the equations of continuum mechanics, even near
the boundaries, see [10], (ii) the elements are neither assumed to be spherical or rigid,
(iii) the resulting fields are even valid for a single element and a single time step, hence
no ensemble-averaging is required, i.e. no averaging over several time steps or stamps.
However, the coarse-graining method does assume that (i) each pair of elements has a
single contact; i.e. elements are assumed to be convex in shape; (ii) the contact area can
be replaced by a single contact point, implying that the overlaps are not too large; (iii)
the collisions are enduring (i.e. not instantaneous). Often, micro-macro methods em-
ploy ensemble- or bulk-averaging to obtain accurate results; therefore, the methods are
only valid for homogeneous, steady situations. The coarse-graining method overcomes
these challenges by applying a local smoothing kernel, coarse-graining function, with a
well-defined smoothing length, i.e. coarse-graining scale, that automatically generates
fields satisfying the continuum equations. As an example, one could consider a Gaus-

sian as a coarse-graining function with its standard deviation as a coarse-graining scale.
For more details concerning the choice of the coarse-graining functions, see Sec. 3.2.4.

The coarse-graining method is very flexible and can be used with discrete data from
any source, e.g. molecular dynamics, smoothed particle hydrodynamics, discrete par-
ticle simulations, experimental data [13], etc. Previously coarse-graining has been suc-
cessfully extended to allow its application to bulk flows near the boundaries or disconti-
nuities [10, 11] and to analyse shallow granular flows [4]. Here, we systematically extend
the method to a multi-component unsteady, non-uniform situations, and demonstrate
its application by considering the granular flow of spherical particles (convex-shaped).
Recently, the technique of coarse-graining was used to analyse steady bidisperse granu-
lar mixtures of spheres varying in size alone [43]. Besides extending the technique to un-
steady multi-component mixtures, we apply it – for demonstration purpose – to a bidis-
perse flow of spherical particles, varying in both size and density, over inclined channels
for both steady and unsteady configurations. Giving special focus upon the often ne-
glected topic of how to coarse grain in time for unsteady scenarios?

Granular materials, conglomerates of discrete macroscopic objects, are omnipresent,
both in industry and nature. Therefore, understanding the dynamics of granular mate-
rials [14–16] is crucial for a diverse range of important applications, such as predicting
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natural geophysical hazards [17] to designing efficient material handling equipments
[18–22]. Although, in the past 30 years, extensive studies have been carried out in the
field of granular materials, today several open-questions in both static and dynamic
granular materials are yet to be answered, e.g. failures in static grain silos, rheology of
non-spherical flowing grains and many more. In nature, and often in industry, granular
materials are polydisperse (multi-component); comprised of elements varying in size,
shape, density and many other physical properties [23]. Therefore, in the past few years,
much work has been focused on multi-component systems, both experiments and sim-
ulations, in a host of different applications, including granular mixture flows in rotating
drums [31, 32], over non-rotating or rotating inclined channels [33, 34], in vibrated beds
[35, 36], in statics near jamming [37] and many more. Consequently, new continuum
models are being formulated that attempt to model the dynamics, e.g. particle segrega-
tion, of these multi-facetted granular constituents in different applications [33, 38–42].
In particle segregation, particles often tend to arrange themselves in distinct patterns
due to relative differences in their physical attributes. For example, if a bidisperse (two-
component) mixture – varying in size alone – flows over an inclined channel, eventually
the larger particles end up near the free-surface whereas the smaller particles find them-
selves to appear near the base of the flow [24].

For granular materials, the discrete particle method (DPM) is a very powerful com-
putational tool that allows for the simulation of individual particles with complex inter-
actions [26], arbitrary shapes [27], in arbitrary geometries, by solving Newton’s laws for
each particle, see [28, 29]. Moreover, complex interactions such as sintering, breaking
and cohesional particles can be captured, by an appropriate contact model; however,
this method is computationally expensive. Nevertheless, with the continuous increase
in computational power it is now possible to simulate mixtures containing a few million
particles; but, for 1 mm particles this would represent a flow of approximately 1 litre,
which is many orders of magnitude smaller than the real life flows found in industrial or
environmental scenarios.

Continuum methods, on the other hand, are able to simulate the volume of real en-
vironmental and industrial flows, but need simplifying assumptions that often require
effective macroscopic material parameters, closure relations or constitutive laws, etc.
In order to correctly apply these continuum models, both the continuum assumptions
must be validated and the effective material parameters must be determined for a given
application; e.g., the Savage-Hutter model [30] for granular geophysical mass flows re-
quires the effective basal friction for closure [4]. However, these continuum models of-
ten make assumptions that need to be validated, and contain new continuum properties
that must be determined for given materials. These are the so-called validation and cal-
ibration steps, which need to be undertaken either by careful experiments or using well
chosen small DPM simulations. Thus, motivating the need for an accurate micro-macro
method that can deal with multi-component scenarios.

Outline
To extract the averaged macroscopic fields, the coarse-graining (CG) expressions are sys-
tematically derived in Sec. 3.2. As a test case, we apply the available CG expressions to
bidisperse granular mixtures flowing over an inclined channel, see Fig. 3.1. In Sec. 3.3.2,



3

46 Micro-macro transition

✲
x

✻
z

y

∈F
1

∈F
2

∈F
b ❄

g

Figure 3.1: A snapshot of a bidisperse mixture flowing in a periodic box inclined at 26◦ to the horizontal (dis-
crete particle simulation). Colours/shades indicate the base/boundary (yellowish green, F

b ), species type-1
and type-2 (blue, F

1 and red, F
2). We define the bulk as F

1 ∪F
2.

for flows in steady state, we show that there exists a range or plateau of smoothing lengths
(coarse-graining scale/width) for which the fields are invariant. Although the technique
does not require ensemble-averaging, we nevertheless illustrate spatial coarse-graining
(averaging in space alone) to be well complemented by temporal averaging (averaging in
time). For bidisperse unsteady flows, Sec. 3.3.4 illustrates how to define both spatial and
temporal averaging scale such that resolved scale independent time-dependent fields
can be constructed. Finally, Sec. 3.4 summarises and concludes our main findings.

3.2. Spatial coarse-graining
The current section comprehensively extends the approach of [4, 10] to bidisperse spher-
ical systems, and can be easily extended to polydisperse mixtures without any loss of
generality. Traditionally, the coarse-graining formulae were derived from the classical
laws of conservation of mass, momentum, energy, etc., [9]. Thereby, leading to expres-
sions for the total density, stress, etc., in terms of the properties of all the particles. Here,
we generalise this to mixtures (multi-components); therefore, our starting point will be
mixture theory [44], which constructs partial mass, momentum and energy balances for
each distinct constituent of a mixture.

3.2.1. Mixture theory
As stated above, the coarse-graining formulae will be formulated using the framework of
mixture theory, which is often used to study porous media flow problems (e.g. the flow of
gas, oil and water mixtures through a deformable porous matrix) [44], sea ice dynamics
[45], snow metamorphism [46], determining the properties of concrete [47], swelling of
chemically active saturated clays [48] and many more applications.

Mixture theory deals with partial variables that are defined per unit volume of the
mixture rather than intrinsic variables associated with the material, i.e. the values one
would measure experimentally. The basic mixture postulate states that every point in
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the mixture is occupied simultaneously by all constituents. Hence, at each point in space
and time, there exist overlapping fields (displacements, velocities, densities) associated
with different constituents.

Since each constituent is assumed to exist everywhere, a volume fraction Φ
ν is used

to represent the percentage of the local volume occupied by constituent ν. Clearly,

( n∑

ν=1
Φ

ν

)
+Φ

a = 1, (3.1)

where n is the number of distinct granular constituents in the mixture and φa denotes
the fraction of volume corresponding to interstitial pore space filled with a passive fluid,
e.g. air. However, for convenience, studies, e.g. [41], often consider volume fraction of
the constituents per unit granular volume rather than per unit mixture volume. As the
volume fraction of granular constituents per unit mixture is

Φ
g =

( n∑

ν=1
Φ

ν

)
, (3.2)

the volume fraction of each constituent per unit granular volume is

φν =Φ
ν/Φg , (3.3)

which also sum to unity,
n∑

ν=1
φν = 1. (3.4)

For each individual constituent, conservation laws for mass, momentum, energy and an-
gular momentum can all be obtained, but here for simplicity, we only consider mass and
momentum balance for bulk constituents. Each bulk1 constituent satisfies the following
fundamental laws of balance for mass and momentum [44],

∂tρ
ν+∇· (ρν

~uν) = 0,

∂t (ρν
~uν)+∇· (ρν

~uν⊗~uν) =−∇·σν+~βν+~bν with ν= 1,2.
(3.5)

The above fundamental laws (3.5) are derived from the classical principles of mass and
momentum conservation corresponding to each constituent, see [44] for details. ∂t =
∂/∂t and ∇ = [∂/∂x,∂/∂y,∂/∂z] denote the partial temporal and spatial derivatives, re-
spectively. Symbols ‘ · ’ and ‘⊗’ denote scalar and dyadic product. Furthermore,

(i) ρν and ~uν are the partial density and velocity.

(ii) σν is the partial stress tensor.

(iii) ~βν denotes the partial inter-constituent drag force density (drag) which essentially
accounts for the net effect of tractions across the interfaces of different constituents.
The inter-constituent drag is analogous to the viscous shear tractions resisting the
relative motion of fluid through matrix pores.

1Bulk is defined as F
1 ∪F

2, see Fig. 3.1, excluding the interstitial pore-space.
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(iv) ~bν represents the partial body force density, which accounts for all the external body
forces (generally due to gravity) acting on each constituent ν.

The variables appearing in the theory are partial not intrinsic, these are defined such
that their sum is equal to the total mixture quantity. For example,

ρ =
n∑

ν=1
ρν+ρa . (3.6)

This makes the bulk quantities easy to calculate, by simply summing over all bulk con-
stituents. Various relations can be shown between the intrinsic (by convention a su-
perscript ‘ * ’ denotes an intrinsic variable) and partial variables. In models based on
mixture theory, the relationships for velocity and density are

ρν =φνρν∗ and uν = uν∗. (3.7)

For the case where the stress tensor can be represented by a hydrostatic pressure field, it
is common in the application of mixture theory [44] to consider a linear volume fraction
scaling for the pressure as well, i.e.

pν =φνpν∗. (3.8)

3.2.2. A mixture theory for coarse-graining
Consider a DPM simulation with three different types of particles: (bulk) type-1, (bulk)
type-2 and boundary, whose interstitial pore-space to is filled with a zero-density passive
fluid, see Fig. 3.1. Each particle i ∈ F , where F = F

1 ∪F
2 ∪F

b , will have a radius ai

whose centre of mass is located at~ri with mass mi and velocity~vi . The total force ~fi (3.9),
acting on a particle i ∈F is computed by summing the forces ~fi j due to interactions with
the particles of the same type j ∈F

ν and other type, j ∈F/Fν, and body forces bi , e.g.,
gravitational forces (mi g).

fiα =
∑

j∈F
ν

j 6=i

fi jα+
∑

j∈F/Fν

fi jα+biα, for all i ∈F and ν= 1,2,b,
(3.9)

where the Greek subscript α = [x, y, z] denotes the vector components. For each con-
stituent pair, i and j , we define a contact vector~ri j =~ri −~r j , an overlap δi j = max(ai +
a j −~ri j ·~ni j ,0), where~ni j is a unit vector pointing from j to i ,~ni j =~ri j /|~ri j |. Furthermore,

we define a contact point~ci j =~ri + (ai −δi j /2)~ni j and a branch vector~bi j =~ri −~ci j , see
Fig. 3.2. Irrespective of the size of constituent i and j , for simplicity, we place the contact
point, ~ci j , in the centre of the contact area formed by an overlap, δi j , which for small
overlaps has a negligible effect on particle dynamics.

To account for the interaction of the two bulk constituents, type-1 and type-2, with
the boundary, we will denote the boundary as a third constituent. As the constituents of
a bidisperse system are classified under three categories – type-1, type-2, boundary – a
three-constituent continuum mixture theory [44] is considered, see Sec. 3.2.1. In other
words, we classify the bidisperse system constituents under three categories (i) type-
1 constituent (ii) type-2 constituent and (iii) boundary. The set F

1 ∪F
2 denotes the
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~vi ,mi ~v j ,m j

~ni j

~ci j

~ri
~r j

~bi j

Figure 3.2: An illustration of two interacting constituents i and j , where the interaction is quantified by a
certain amount of overlap δi j . If ~ri and ~r j denote the particles’ centre of mass then we define the contact

vector~ri j =~ri −~r j , the contact point~ci j =~ri + (ai −δi j /2)~ni j and a branch vector~bi j =~ri −~ci j .

bulk comprising of type-1 and type-2 constituents and F
b denotes the boundary con-

stituents, e.g. see Fig. 3.1. Although Fig. 3.1 depicts a flowing (dynamic) system scenario,
the above nomenclature is equally applicable to static bidisperse system.

For the bulk constituents, F
1 ∪F

2, we define partial densities, ρν, velocities, ~uν,
stresses, σν, with ν = 1,2. Additionally, we also define inter-constituent drag force den-
sities, ~βη→ν, corresponding to the interaction among different constituent with η,ν =
1,2,b. When η= ν, by definition ~βη→ν =~0.

For ν = 1, the partial inter-constituent drag is the sum of drags due to constituent
type-2 and boundary, i.e. ~β1 = ~β2→1 + ~βb→1. Similarly, the partial inter-constituent drag
for constituent type-2 is ~β2 = ~β1→2 + ~βb→2. On summing the partial mixture momentum
balance law over ν= 1,2, leads us to the momentum balance law for the bulk excluding
the boundary, ν= b,

∂t (ρ~u)+∇· (ρ~u ⊗~u) =−∇·σ+ (~β2→1 +~β1→2)︸ ︷︷ ︸
~0

+(~βb→1 +~βb→2)︸ ︷︷ ︸
~t

+~b,

∂t (ρ~u)+∇· (ρ~u ⊗~u) =−∇·σ+~t +~b,

(3.10)

where ρ, ~u, σ,~t and~b are the bulk macroscopic density, velocity, stress, boundary trac-
tion and body force density, respectively,

ρ = ρ1 +ρ2, ~u = (ρ1
~u1 +ρ2

~u2)/ρ, σ=σ1 +σ2 and~b =~b1 +~b2. (3.11)

Additionally, we have used:
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(i) By Newton’s third law, interspecies drag ~β1→2 = − ~β2→1.

(ii) The drag on the bulk constituents due to the boundary is defined as ~t = ~βb→1 +
~βb→2 and is equivalent to the boundary interaction force density (IFD) defined in
[10].

In the following sections, using the above postulates of mixture theory, we system-
atically derive and arrive at the coarse-graining expressions for both partial and bulk

quantities in terms of discrete particle data defined above.

3.2.3. Mass density
The partial microscopic (point) mass density for a system (in a zero-density passive
fluid) at the point~r and time t is given from statistical mechanics as

ρν,mic (~r , t) =
∑

i∈Fν

miδ(~r −~ri (t)), (3.12)

where δ(~r ) is the Dirac delta function in R3. This definition complies with the basic re-
quirement that the integral of the mass density over a volume in space equals the mass
of all the particles in this volume.

To extract the partial macroscopic mass density field, ρν(~r , t), the partial micro-
scopic mass density (3.12) is convoluted with a spatial coarse-graining function ψ(~r ),
see Sec. 3.2.4, leading to

ρν(~r , t) :=
∫

R3
ρν,micψ(~r −~r ′)d~r ′ =

∑

i∈Fν

mi ψ(~r −~ri (t))︸ ︷︷ ︸
ψi

. (3.13)

Essentially, we replace the delta-function with an integrable (real and finite support)
coarse-graining function of space, ψ(r ), also known as a smoothing function. For ben-
efits seen later, we define ψi = ψ(~r −~ri (t)). From the partial density (3.13), the partial

volume fraction is defined as

νν =
ρν

ρν
p

, with ν 6= b, (3.14)

where ρν
p is the (constant) material density of constituent type-ν. Thereby, the bulk vol-

ume fraction is defined as ν= ν1 +ν2. Given the coarse-graining expressions for partial

densities (3.13), using (3.11), the bulk macroscopic density field is defined as

ρ(~r , t) =
∑
ν
ρν(~r , t) with ν 6= b. (3.15)

Thence, on utilising expressions (3.13)-(3.15), one can construct spatially coarse grained
fields for partial and bulk density. However, it is still unclear about the choice and type of
coarse-graining functions one could use in these expressions. Thereby, in the following
section we briefly reflect upon the characteristics and possible forms of coarse-graining
functions, ψ(~r ).
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3.2.4. Which functions can be used to coarse-grain?
The coarse-graining functions ψ(~r ) need to possess certain characteristics essential for
the technique of coarse-graining:

(i) They are non-negative, i.e. ψ(~r ) ≥ 0 ensuring the density field to be positive.

(ii) They are normalised, such that
∫
R3 ψ(~r ) d~r = 1, guaranteeing conservation of mass,

momentum, etc.

(iii) There exists a compact support c ∈ R such that ψ(~r ) = 0 for |~r | > c.

As a regularisation to the delta-function, below are a selection of archetype cases one
could choose from

(i) Heaviside:

ψ(~r ) =
1

Ω(w)
H(w − |~r |), where H represents the Heaviside function and Ω(w) =

(4/3)πw3 is the volume of a sphere in three-dimensional space, with w as its radius.

(ii) Gaussian:

ψ(~r ) =
1

(
p

2πw)3
e(−|~r |2/(2w )2)H(3w −|~r |), of width w . A Gaussian results in smooth

fields and is infinitely differentiable. Often a cut-off is utilised in order to compute
the fields efficiently.

(iii) Lucy polynomials:

In this manuscript, we utilise a family of polynomials called Lucy, see [49]. In three
dimensional (3D) space, the 4th-order Lucy polynomial is defined as

ψ(~r ) =
105

16πc3

[
−3

( a

c

)4
+8

( a

c

)3
−6

( a

c

)2
+1

]
, if a :=

|~r |
c

< 1, else 0, (3.16)

with c the cut-off radius or the range (compact support) and w = c/2 the coarse-
graining scale or pre-determined width (or standard deviation). A Lucy polynomial
has at least two continuous derivatives. Moreover, the use of a polynomial form
allows one to compute exact spatial averages and gradients of the resulting fields as
they are integrable and differentiable analytically.

Note, in all the cases ‘w ’ is defined such that a direct comparison between the different
coarse-graining functions for a fixed ‘w ’ can be made.

In the limit w → 0, both the Gaussian and Lucy polynomials tend towards the delta-
function. However, as long as the coarse-graining function is not singular or highly
anisotropic, the fields depend only weakly on the choice of the above functions, but
strongly on the chosen or predetermined spatial coarse-graining scale, w .

Thus, with the coarse-graining function known and the expressions for partial and
bulk mass density at hand, the coarse-graining expressions for partial and bulk momen-
tum density, velocity and stress fields shall be comprehensively derived in the following
sections.



3

52 Micro-macro transition

3.2.5. Mass balance
By utilising the coarse-graining expression for macroscopic partial mass density (3.13),
we derive the governing equation conserving the mass, which is satisfied by each con-
stituent of the mixture. Note that (using the chain rule):

∂

∂t
ψ(~r −~ri (t)) =−

∂riγ

∂t

∂

∂rγ
ψ(~r −~ri (t))=−viγ

∂

∂rγ
ψi , (3.17)

where ψi = ψ(~r −~ri (t)) is the smoothing kernel around particle i . Using the approach
of [9], we consider the time derivative of the coarse-grained partial mass density (3.13).
Using (3.17), we have

∂

∂t
ρν(~r , t) =

∂

∂t

∑

i∈Fν

mi ψ(~r −~ri (t))︸ ︷︷ ︸
ψi

=−
∂

∂rγ

∑

i∈Fν

mi viγψi =−
∂pν

γ(~r , t)

∂rγ
(3.18)

with ν denoting the species-type and ~pν(~r , t) defined as the coarse-grained partial mo-
mentum density,

~pν(~r , t) :=
∑

i∈Fν

mi~viψi . (3.19)

The above expression (3.19) corresponds to the microscopic partial momentum density
field ~pν,mic =

∑
i∈Fν mi~vi (t)δ(~r −~ri (t)). Moreover, on rearranging the terms in (3.18),

using the shorthand notation ∂t = ∂/∂t and ∇= [∂/∂x,∂/∂y,∂/∂z], we arrive at the mass
balance law, in terms of the partial fields,

∂tρ
ν+∇· (~pν) = 0 with ν= 1,2. (3.20)

Note that the above result also holds for a single constituent (e.g. single particle) in a
mixture, and one does not need to consider an ensemble of constituents, e.g. a collection
of particles, to define these fields. Additionally, the macroscopic partial velocity fields,
~uν(~r , t), are defined as the ratios of partial momentum density and mass density fields

~uν = ~pν/ρν, (3.21)

Thence, the coarse-grained partial mass density and velocity fields are defined such that
they exactly satisfy the mixture continuity equation (3.20) which, when summed over the
constituent types, leads us to the mass balance law (excluding the boundary)

∑
ν

[
∂tρ

ν(~r , t)+∇· (~pν(~r , t))
]
= ∂tρ(~r , t)+∇· (~p(~r , t)) = 0, (3.22)

where ρ(~r , t) is the macroscopic bulk mass density field (3.15) and ~p(~r , t) =
∑

ν ~p
ν(~r , t) is

defined as the macroscopic bulk momentum density field. Furthermore, the bulk veloc-
ity field, ~u, is defined as uα = pα(~r , t)/ρ(~r , t), which satisfies the bulk law of mass balance
(3.22).
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3.2.6. Momentum balance
Besides satisfying mass balance laws, as postulated in mixture theory (Sec. 3.2.1), each
constituent (e.g. single particle) of the system also satisfies the fundamental balance law
of momentum, which, when stated in terms of partial fields is

∂t ~p
ν+∇· (ρν

~uν
~uν) =−∇·σν+~βν+~bν. (3.23)

In order to obtain an expression for the partial macroscopic stress field, σν, we rewrite
the momentum balance law (3.23) in component form,

∂pν
α

∂t
=−

∂

∂rγ
[ρνuν

αuν
γ]−

∂σν
αγ

∂rγ
+βν

α+bν
α. (3.24)

To begin with, we compute the temporal derivative of pν
α as,

∂pν
α

∂t
=

∑

i∈Fν

fiαψ(~r −~ri )

︸ ︷︷ ︸
A

ν
α

+
∑

i∈Fν

mi viα
∂

∂t
ψ(~r −~ri )

︸ ︷︷ ︸
B

ν
α

, (3.25)

where fiα = mi
d viα

d t
is the total force on particle i ∈F

ν. Substituting (3.9), the first term

of (3.25) can be expanded as

A
ν
α =

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψi +
∑

i∈Fν

∑

j∈F/Fν

fi jαψi +
∑

i∈Fν

biαψi .
(3.26)

The first term of A
ν
α , representing interactions between constituents of the same type,

satisfies ∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψi =
∑

j∈F
ν

∑

i∈F
ν

j 6=i

f j iαψ j =−
∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψ j ,
(3.27)

by first interchanging the indices i and j and then applying Newtons’ third law, fi jα =
− f j iα. On adding the first and the third term from (3.27), it follows that

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψi =
1

2

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jα(ψi −ψ j ). (3.28)

Using (3.27) with ψi j =ψ(~r −~ci j ) at the contact point, defined in Fig. 3.2, and ψi j =ψ j i ,
(3.28) can be restated as

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψi =
1

2

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jα(ψi −ψi j +ψi j −ψ j )

=
1

2

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jα(ψi −ψi j )+
1

2

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψi j︸ ︷︷ ︸
=− f j iαψi j

−
1

2

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jαψ j︸ ︷︷ ︸
=− f j iαψi

=
∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jα(ψi −ψi j ).

(3.29)
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The second term of A
ν
α , representing inter-species interactions, can be rewritten as

∑

i∈Fν

∑

j∈F/Fν

fi jαψi =
∑

i∈Fν

∑

j∈F/Fν

fi jα(ψi −ψi j )+
∑

i∈Fν

∑

j∈F/Fν

fi jαψi j . (3.30)

Substituting (3.29) and (3.30) into (3.26), yields

A
ν
α =

∑

i∈F
ν

∑

j∈F
ν

j 6=i

fi jα(ψi −ψi j )+
∑

i∈Fν

∑

j∈F/Fν

fi jα(ψi −ψi j )

+
∑

i∈Fν

∑

j∈F/Fν

fi jαψi j +
∑

i∈Fν

biαψi ,

(3.31)

which when simplified results in

A
ν
α =

∑

i∈F
ν

∑

j∈F

j 6=i

fi jα(ψi −ψi j )+
∑

i∈Fν

∑

j∈F/Fν

fi jαψi j +
∑

i∈Fν

biαψi ,
(3.32)

From the above expression, we define the interspecies drag force density (drag) in (3.24)

β
η→ν
α :=

∑

i∈Fν

∑

j∈F
η

ν6=η

fi jαψi j ,
(3.33)

localised at the contact point~ci j . The body force density is defined as

bν
α :=

∑
i∈Fν biαψi . (3.34)

To obtain the macroscopic partial stress field σν
αβ

, we use the identity [10]

ψi j −ψi =
∫1

0

∂

∂s
ψ(~r −~ri + s~bi j )d s =

∂

∂rα
bi jα

∫1

0
ψ(~r −~ri + s~bi j )d s

︸ ︷︷ ︸
χi j

,
(3.35)

which is rewritten using the chain rule of differentiation and the Leibnitz’ rule of inte-
gration. In (3.35), ~bi j =~ri −~ci j is the branch vector as illustrated in Fig. 3.2. Substitut-
ing the expressions (3.35) in A

ν
α , allows one to compute the force densities along the

branch vector between the particles. Using the identity (3.35) and substituting (3.34),
A

ν
α is rewritten as

A
ν
α =−

∂

∂rγ




∑

i∈F
ν

∑

j∈F

j 6=i

fi jαbi jγχi j


+

∑

η 6=ν
β
η→ν
α +bν

α. (3.36)

where σc ,ν
αβ

is the macroscopic partial contact stress field;

σc ,ν
αγ :=

∑

i∈F
ν

∑

j∈F

j 6=i

fi jαbi jγχi j , (3.37)
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due to all the contacts among all the constituents. The integral χi j ensures that the con-
tribution of the force between two constituents i and j to the partial stresses to be pro-
portional to the length of the branch vectors, i.e. the stresses are distributed proportion-
ally based on the fraction of the branch vectors contained within the constituent. Thus,
for contacts between a small and a large constituent, the larger sized constituent receives
a bigger share of the stress.

Following [9], the second term of (3.25), is expressed as

B
ν
α =

∑

i∈Fν

mi viα
∂

∂t
ψi =−

∂

∂rγ

[
ρνuν

αuν
γ+

∑

i∈Fν

mi v ′
iαv ′

iγψi

]
, (3.38)

where v ′
iα

is the fluctuation velocity of particle i , defined as v ′
iα

(~r , t) = uα(~r , t)− viα(t).
Substituting (3.36) and (3.38) in (3.24) yields

∂σν
αγ

∂rγ
=

∂

∂rγ

[
σc ,ν
αγ +

∑

i∈Fν

mi v ′
iαv ′

iγψi

︸ ︷︷ ︸
σk,ν
αγ

]
,

(3.39)

where σk ,ν
αγ is the macroscopic partial kinetic stress field;

σk ,ν
αγ :=

∑

i∈Fν

mi v ′
iαv ′

iγψi . (3.40)

Thereby, from (3.39), the total partial stress field, σν
αβ

, is defined as the sum of both

partial contact and kinetic stress fields, σν =σc ,ν+σk ,ν. Similarly, from (3.10), the total
bulk stress field is defined as

σ :=
∑
ν
σc ,ν+σk ,ν. (3.41)

In the case of bidisperse mixture, ν= 1,2, the bulk stress is defined as

σ :=σc ,1 +σk ,1
︸ ︷︷ ︸

σ1

+σc ,2 +σk ,2
︸ ︷︷ ︸

σ2

. (3.42)

In order to illustrate a simple application of the above coarse-graining expressions to
compute the partial stresses and interspecies drag forces, a simple setup of static bidis-
perse (large and small) two-dimensional particles (discs) is considered, see Fig. 3.3. Us-
ing the coarse-graining expressions for partial drag (3.34) and stresses (3.39), Fig. 3.3
exhibits the magnitude of partial stresses and drag arising from the contacts between
the discs.

So far, we have comprehensively derived and given the coarse-graining expressions
for both partial and bulk mass and momentum density, velocity and stress fields includ-
ing the expressions for the boundary force density, a interspecies drag force density, and
the body force density. In the following section, using a convenient medium, we present
a simple example to utilise these expressions for a bidisperse mixture where ν= 1,2.
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Figure 3.3: Magnitudes of partial stresses, σs (small discs type-1) and σl (large discs type-2), and partial drag
experienced by large discs, ~βl , due to small discs in a static assembly of bidisperse (small and large) two-
dimensional discs.

3.3. Application
Besides the simple example in Fig. 3.3, involving static bidisperse two-dimensional discs,
we apply the coarse-graining expressions to a larger bidisperse system in three dimen-
sions (3D). As an example, we consider bidisperse mixtures flowing over inclined chan-
nels, as depicted in Fig. 3.1 and described below. This problem was considered previ-
ously in [33] and more details of the setup can be found in that article.

3.3.1. Discrete particle simulation (DPM) setup
A fully three-dimensional simulation of an initially homogeneously mixed bidisperse
mixture of particles, see Fig. 3.1, is considered. The two different particle types are re-
ferred to as type-1 and type-2. If d1 and d2, are defined as the particle diameter of particle
type-1 and type-2, then the mean particle diameter is defined as

d̄ =φd1 + (1−φ)d2, (3.43)

with φ= ν1/(ν1 +ν2) being the volume fraction of particles of type-1.
In our chosen coordinate system, as illustrated in Fig. 3.1, we consider a cuboidal

box, set to be periodic in the x- and y-directions and with dimensions (x, y, z) ∈ [0,20d̄ ]×
[0,10d̄ ]× [0,10d̄ ]. The box is inclined at θ = 26◦ and consists of an irregularly arranged
fixed particle base, for further details see [4, 33] or Chapter 4 or Chapter 5. The pa-
rameters in our DPM simulations are non-dimensionalised such that the mean particle

diameter ̂̄d = 1, its mass ̂̄m = 1 and the magnitude of gravity ĝ = 1 implying the non-

dimensional time scale t :=
√

d̄/g . The ‘̂’ denotes non-dimensional quantities.
The box is filled with a bidisperse mixture in which the number of particles of each

type is

N1 =
φV̂box

(d̂1)3
and N2 =

(1−φ)V̂box

(d̂2)3
, (3.44)

where the V̂box = 20×10×10 is the volume of the box. The formulae (3.44) ensure that
the ratio of total volume of particles of type-1 to the total volume of all the particles is φ
and the dimensionless height of the flow, Ĥ is the same for all simulations used in this
chapter. Using (3.44), for homogeneous initial conditions (randomly mixed), with initial
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particle volume fraction φ = 0.5, DPM simulations for two different particle size ratios,
ŝ = d̂2/d̂1 = 2 and 3.5, were carried out.

For the performed simulations, we use a linear spring dashpot model [28, 29] with a

contact duration of tc = 0.005
√

d̄/g , coefficient of restitution rc = 0.88, contact friction
coefficient µc = 0.5 and time step tc /50. More details about the contact model can be
found in [4] and [29].

3.3.2. Spatial coarse-graining
In order to obtain the continuum macroscopic fields, for any stationary or transient par-
ticulate system, it is essential to choose a proper spatial coarse-graining scale, w , irre-
spective of the chosen coarse-graining function, ψ(r ). So the question that arises is how

do we choose w? This question is equivalent to asking what do we mean by a continuum

description? A continuum description has an implicit length scale associated with it for
which the assumptions made in the continuum model are valid and it is this length scale
over which we must coarse-grain. When one chooses a length scale, w , smaller than the
continuum length scale, the resulting coarse grained data will still show individual par-
ticles; these are not continuum fields. On the other hand, if one chooses a large w , it
will smear out the macroscopic gradients and the results will be strongly dependent on
w . Between these two extremes, their exists a plateau in which the continuum fields ob-
tained are independent of the w chosen and it is this length scale that must be utilised
for an efficient micro-macro transition. Thus, leading to another interesting question:
Do such plateaus exist for the example we considered?

Quest for the plateaus, i.e. what is an optimal spatial coarse-graining scale?
To determine a suitable scale, bidisperse mixtures of two different particle size ratios
ŝ ∈ {2, 3.5}, are considered and simulated until they reach their steady states. Simulation
data is saved after every 10000 (200t̂c ) simulation time steps. The flows are understood
to have reached steady state when the vertical centres of mass of the particles of type-ν
reach a constant value, see Chapter 4.

Fig. 3.4(a-b) illustrates the steady state configurations of two different mixtures with
ŝ = 2.0 (Fig. 3.5(a)) and ŝ = 3.5 (Fig. 3.5(b)), respectively. Given these steady flow con-
figurations, we use the above derived coarse-graining expressions to construct the bulk

volume fraction, λ(z), as a function of the flow depth, for two different coarse-graining
scales, Fig. 3.5(c) (ŝ = 2.0) and Fig. 3.5(e) (ŝ = 3.5). By following the steps described in Ap-
pendix B, these profiles are constructed by spatially averaging in both x- and y-direction
and temporally over a time interval [600,800] (i.e. 200 snapshots). As seen in these plots,
the resulting depth profiles strongly depend upon the chosen coarse-graining scale, ŵ .
For ŝ = 2, when averaged on a sub-particle length scale: layering in the flow can be
observed near the base of the flow (boundary). However, when averaged on the par-
ticle length scale, the layering effect, observed near the base, is smoothened out. The
particle-scale density is nearly constant in the bulk, whereas it decays slightly near the
base where density oscillations are strong (dilatancy), and near the surface, where the
pressure approaches the atmospheric pressure. Thereby, illustrating the larger gradients
alone, which are present near the base and the free-surface. The momentum density,
velocity and the contact stress show the same qualitative behaviour. Similarly for ŝ = 3.5,
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ẑ = 1.437
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ŵẑ
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Figure 3.4: (a)-(b) Steady state snapshots of bidisperse mixtures flowing in a periodic box inclined at 26◦ to
the horizontal, for particle size ratio (left) ŝ = 2 and (right) ŝ = 3.5. For ŝ = 2, (c) illustrates density profiles as a
function of flow depth for ŵ = 0.05 (red) and ŵ = 1.0 (blue). Similarly for ŝ = 3.5, (e) illustrates density profiles
as a function of flow depth for ŵ = 0.05 (red) and ŵ = 2.35 (blue). The tiny solid and hollow circles, in (c)
and (e), denote selected depths, ẑ, at which values of density, λ, are to be tracked for different coarse-graining
scales (ŵ ). On tracking, plots (d) and (f) illustrate the effects of choosing different coarse-graining scales, ŵ , on
the density values at selected depths (◦ and • ); note the log scale of the x-axis. The ◦ in (d) and (f) correspond
to ŵ = 0.05 in (c) and (e), while the • in (d) and (f) correspond to ŵ = 1.0 in (c) and ŵ = 2.35 in (e). The two
coloured blocks labelled as ‘1’ and ‘2’ in (d) and (f) denote sub-particle or microscopic scale (1) and particle
or continuum scale (2).
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for a sub-particle length scale, layering is not just observed near the base, but also within
the bulk, which is smoothed out when averaged using a particle length scale (denoted
by • in Fig. 3.4(f)). However, understanding and illustrating the underlying dynamics of
mixtures with larger particle size ratios is beyond the scope of this chapter and will be ad-
dressed in a future publication. Nevertheless, an ideal scenario would be to see whether
these macroscopic fields are independent of the chosen coarse-graining scale. But, does
such a scenario exist? Numerical simulations, see Goldenberg et al. [50] which involve
systems of 2D polydisperse disks and Weinhart et al. [51] for monodisperse 3D mixtures
flowing over inclined channels, show that for a considerable range of coarse-graining
scales, ŵ , the computed fields are independent of the averaging scale.

As a step towards our quest for determining this so called range (plateaus), we aver-
age these steady state mixture configurations, Fig. 3.4(a-b), for a range of coarse-graining
widths (scales), ŵ = w/d̄ , i.e. averaged depth-profiles of the bulk volume fraction are
constructed for different coarse-graining scales. For selected flow depths, denoted by a
circle (◦) in Fig. 3.4(c) and a solid dot (•) in Fig. 3.4(e), Fig. 3.4(d) (ŝ = 2.0) and Fig. 3.4(f)
(ŝ = 3.5), illustrates the effects of the chosen coarse-graining scale one the bulk volume
fraction. This is done by plotting the bulk volume fraction at the selected flow depths
as a function of coarse-graining width, ŵ . In Fig. 3.4(d) we observe plateaus. The first
plateau (labelled as 1) exists for all chosen flow depths and approximately spans from ŵ

= 0.01 - 0.2. For scales ŵ < 0.01, strong statistical fluctuations exist. Thereby, in order to
compute meaningful fields for ŵ < 0.01, longer temporal averaging or a larger number of
particle ensembles would be needed. In other words implying more particle data needs
to be stored, i.e. probably at every 100 (2tc ) time steps. Nevertheless, the existence of this
first plateau confirms the presence of a sub-particle length scale, much smaller than the
mean particle diameter, for which consistent invariant fields can be defined. We denote
this sub-particle scale as microscopic scale. Similarly, for mixtures with particle size ra-
tio ŝ = 3.5, Fig. 3.4(f), the first plateau spans from ŵ = 0.03 - 0.2, which is slightly smaller
when compared to the one observed in Fig. 3.4(d).

Besides the first plateau, there also exists a second plateau (labelled as 2) in the range
of 0.75 ≤ ŵ ≤ 1.5 in Fig. 3.4(d) and 2.3 ≤ ŵ ≤ 3.5 in Fig. 3.4(f). Both plateaus (on particle-
scale) appear to be narrower than their corresponding first plateaus (effect of using a
log-scale for the x-axis). Nevertheless, the presence of the second plateaus confirms the
existence of a mean particle length scale for which, again, invariant fields can be con-
structed. We denote the scales in this range as continuum scale. Moreover, the coarse-
graining scales chosen in Fig. 3.4(c) (ŝ = 2) and Fig. 3.4(e) lie in the labelled plateaus 1
and 2.

Therefore, the plots in Fig. 3.4(c-f) show (i) the effects of the chosen spatial coarse-
graining scale, ŵ , on the averaging of the fields and (ii) the existence of a range of scales
for which invariant fields can be constructed on both sub-particle and particle scale.

3.3.3. Temporal averaging
The choice of a coarse-graining scale for spatial averaging, depends on the scale of the
problem, i.e. microscopic or continuum. Now that, for mixtures in steady state, we have
determined the ranges/plateaus, from which one could choose a spatial scale, ŵ = w/d̄ ,
we shift our focus towards investigating the issues concerning temporal averaging of
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ŵ = 0.1

Êλ
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spatially coarse-grained fields. Thus, leading us to the question: Is spatial averaging

complemented by temporal averaging? Note: In the previous section, the fields com-
puted were both spatially and temporally averaged. However, we primarily focussed on
the effects of ŵ , the spatial coarse-graining scale, for a fixed temporal averaging width.

In order to carry out in-depth analysis concerning temporal averaging, the same dis-
crete particle simulation as described in Sec. 3.3.1 is utilised. However, rather than saving
data at every 10000 (200t̂c ) simulation time steps, as done in the previous Sec. 3.3.2, we
consider saving particle data at every 100 (2tc ) simulation time steps, i.e. with the sim-
ulation time step d̂ t = 0.0001 (t̂c /50) we have 100 snapshots for each simulation time
unit. For temporal averaging, we consider a fixed averaging time interval, i.e. ∆t̂a =[
t̂min , t̂max

]
= [652,1852]. If Na is defined as the number snapshots to average over, for

the chosen ∆t̂a , we have a total of 120000 snapshots. We define this as Na,tot al .
Given the time interval is defined, we temporally average over Na number of snap-

shots, which are cleverly chosen from the defined time interval ∆ta ; note that ∆ta =
[652,1852] is fixed. We initially begin with Na = 2 and gradually increase the number
of snapshots, Na → Na,tot al . As a result, for the spatial coarse-graining scale ŵ = 0.1, the
effects of Na on temporal averaging of spatially averaged (in x- and y-direction alone)
depth profiles of the bulk density are illustrated in Fig. 3.5(b-e). As the value of Na in-
creases, implying an increase in the number of snapshots to average over, the statistical
fluctuations gradually disappear, see Fig. 3.5(e). The decrease in these statistical fluctua-
tions due to increasing value of Na can be quantified by computing the L2-error, defined
as

Êλ(Na) =
∫

R

√
[λa (ẑ)−λb(ẑ)]2d ẑ with a = Na,tot al and b = Na . (3.45)

Note that λa and λb are spatially and temporally averaged fields. On plotting Êλ against
the number of averaging snapshots (Na), see Fig. 3.5(f), we observe that the error is in-
versely proportional to the square root of Na , i.e. Êλ ∝ 1/

p
Na , see the dashed line.

Finally, from Fig. 3.5, one can infer that, for steady flows, spatial averaging can definitely
be complimented by temporal averaging, i.e. there exists an optimal number of snap-
shots to construct meaningful fields, which in turn is dependent on the chosen spatial
coarse-graining scale, ŵ . However, for ŵ > 2.0, effects of the smoothing function take
over, leading to overly smooth fields neglecting the boundary effects and their gradients.

3.3.4. Averaging unsteady mixture states
So far, in the previous sections, following the procedure outlined in Appendix B, we have
applied our coarse-graining (CG) expressions on particle data corresponding to steady
flows2. It is, however, the unsteady particle dynamics that is vital for completely un-
derstanding the underlying phenomena and developing accurate continuum models.
Thereby an essential step would be to examine, in detail, the application of CG expres-
sions to unsteady mixture states.

As an example application, we consider the same system, i.e. of bidisperse granular
mixtures (varying in size alone) flowing over inclined channels as described in Sec. 3.3.1.

2The CG expressions are equally applicable to static systems.
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ẑ = z/d̄ẑ = z/d̄
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ŵt = 40
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ŵt = 60
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For particle size ratio, ŝ = 2, the whole process of segregation happens within the first
500 time units. See Fig. 3.5(a), where the vertical centre of mass, of both large and small
particles, is tracked. However, to investigate the application of coarse-graining to tran-
sient, unsteady flows, we focus on the part before particle segregation is attained, i.e.

when t̂ ∈ [50,450] see Fig. 3.6(a). Moreover, we consider the dynamics of large particles
(partial fields) alone rather than focussing on the bulk. Considering the same data set
that was used for our investigation in Sec. 3.3.3 (data stored at every 100 (2tc ) simulation
time steps) and following the approach taken in Sec. 3.3.2, we begin with spatial coarse-
graining of particle data available in the time interval ∆ta = [50,450]. As a result, given a
spatial coarse-graining scale (ŵ) is chosen, the spatial averaging is carried out in x- and
y-direction alone. Thence resulting in a spatially averaged profile, denoted by ζ̄(t̂ , ẑ).
The resulting field ζ̄(t̂ , ẑ) is a function of both time t̂ and flow depth ẑ = z/d̄ , where
t̂ ∈ [50,450]. However, in order to average in the temporal dimension, i.e. averaging out
the time dependency, we temporally average over a time interval,

[
t̂ − ŵt , t̂ + ŵt

]
where

ŵt is defined as the temporal averaging scale. Note: in the previous section, Sec. 3.3.3,
we considered a fixed time interval ∆ta .

In general, given a spatial (ŵ) and temporal (ŵt ) averaging scale, temporal averaging
of any spatially averaged field, ζ̄(t̂ , ẑ), can be defined as

¯̄ζ(ẑ) =
1

2ŵt

t̂+ŵt∫

t̂−ŵt

ζ̄(t̃ , ẑ)d t̃ , for a given ŵ and ŵt , (3.46)

where t̂ denotes a point about which we would like to temporally average. Note that:
ŵt determines a time interval over which we temporally average,

[
t̂ − ŵt , t̂ + ŵt

]
, see

Fig. 3.6(a). Given that we focus only on the large sized particles, for t̂ = 250, Fig. 3.6(b)
and Fig. 3.6(c) illustrate the large particle density profiles, λL(ẑ). For a fixed spatial
coarse-graining scale ŵ = 0.4, Fig. 3.6(b) shows the effects of choosing three different
temporal averaging scales ŵt ∈ {2 (Na = 400), 40 (Na = 8000), 120 (Na = 24000)}. On the
contrary, for a fixed temporal averaging scale ŵt = 60 (Na = 12000), Fig. 3.6(c) illustrates
the effects of choosing three different spatial coarse-graining scales, ŵ={0.01, 0.4, 1.5}.
Although the two plots do illustrate the corresponding spatial and temporal averaging
effects, this again leads us to the same old question: does there exists a range of spatial
(ŵ) and temporal (ŵt ) averaging scales for which one can construct invariant fields?

For this purpose, we do something similar to what we did in Sec. 3.3.2. Instead
of picking and tracking 5− 6 points in the bulk of the flow, as we did in Fig. 3.4(c) or
Fig. 3.4(e), we pick and track the value at just one suitable point, denoted by ‘◦’ in Fig. 3.6(b)-
(c), corresponding to ẑ = 7. By tracking this one point, the coloured block in Fig. 3.6(d)
shows that for a given spatial coarse-graining scale ŵ = 0.4, there exists a range of tem-
poral averaging scales, 30 ≤ ŵt ≤ 85, for which invariant fields can be constructed. For
ŵt ≥ 90 (Na = 18000), macroscopic averaging (time-smoothening) effects take over and
hence leading to a decrease in the density value, whereas for ŵt < 30, strong statisti-
cal fluctuations exist. Similarly, for a given temporal scale, ŵt = 60 (Na = 12000), the
coloured block in Fig. 3.6(e) illustrates that there exists a range of spatial coarse-graining
scales for which invariant averaged fields can be constructed, also see Fig. 3.4(c) and
Fig. 3.4(e) (steady flows). Similar behaviour is observed for different values of ẑ, t̂ , ŵ and
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ŵt (data not shown). Thence, implying that there exists a range of both spatial coarse-
graining scales and temporal averaging scales for which invariant averaged fields can be
computed.

Additionally, we consider a range of spatial ŵ and temporal ŵt , CG scales, which re-
sults in a ŵt × ŵ phase plot. Thereby, for each combination of a spatial and temporal
scale, we spatially and temporally average the available particle data. Once an averaged
field is constructed, we track a point, ẑ = 7.0, in the flow depth to analyse its sensitivity
to different values of the spatial and temporal scale, similar to what we did earlier. As
a result, Fig. 3.7 displays a contour plot for λL(ẑ = 7.0) and illustrates that there exists a
region of (almost) invariance irrespective of the chosen spatial and temporal averaging
scale, see the rectangular region. For ŵt ≥ 90, macroscopic smoothening effects dom-
inate, while for ŵt < 30, strong statistical fluctuations exist, as seen in Fig. 3.6(d), and
for ŵ > 1.5, effects of large spatial coarse-graining scales take over. Nevertheless, simi-
lar regions of invariance are found to be existing at different values of flow depths ẑ and
different values of t̂ .

Therefore (i) for a given single data-set, in order to utilise the coarse-graining expres-
sions, see Sec. 3.2, for unsteady flows, one needs to specify both the temporal and spatial
scales of averaging, i.e. both spatial and temporal averaging has to be done. (ii) Similar
to the results corresponding to steady flows, there exists a range or plateau of temporal
and spatial scales for which macroscopic fields can be constructed for flows with time-
evolving macroscopic states.

3.4. Summary and conclusions
In this work, we comprehensively derived a novel and efficient technique of spatial and
temporal mapping, called coarse-graining, for bidisperse systems. The technique can
be easily extended to multi-component systems without loss of generality. As an appli-
cation example, we carried out an in-depth analysis concerning the coarse-graining by
using an example bidisperse mixture, of two different size-ratios (same density), flowing
over a rough inclined channel, for both steady and unsteady scenarios. Note that this
technique is equally applicable to static and polydisperse mixtures as well.

As a result, for steady flows, we have discovered the existence of a range or plateau of
spatial coarse-graining scales, both, on the sub-particle (microscopic) and particle (con-
tinuum) scale, for which invariant coarse-grained fields can be constructed, see Fig. 3.4.
We also found that the spatial averaging is well complemented by temporal averaging,
see Fig. 3.5. Additionally, for unsteady flows, we discovered a region of invariance, see
Fig. 3.7, i.e. a range of spatial and temporal coarse-graining scales for which (almost)
invariant fields can be constructed.

Here, we did not present any analysis using the coarse-grained quantities to com-
pute the unknown macroscopic parameters [43], or validate continuum formulations
and constitutive postulates [4]. This shall be the focus of our future work where we will
thrive on developing accurate continuum formulations using the approach of the micro-
macro transition presented above. Furthermore, no quantitative recommendations are
provided as coarse-graining is highly system dependent.

The above coarse-graining method is available as part of an open-source code Mer-
curyDPM (mercurydpm.org) and can be run either as a post-processing tool or in real
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time, see Appendix B. In real-time mode, it not only reduces the data that have to be
stored, but also allows for the boundary conditions, etc., to be coupled to the current
macroscopic state of the system, e.g. allowing for the creation of pressure-controlled
walls.
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4
Mixture theory continuum

segregation model

In Chapter 2, we have seen a continuum model predicting the dynamics of monodisperse

granular mixtures flowing over inclined channels. However, several granular mixtures are

polydisperse in nature because of which they exhibit complex flow patterns, e.g. segrega-

tion. In this chapter, as a stepping stone, we focus on modelling segregation patterns for

bidisperse mixtures, varying in size and density, flowing over inclined channels.

In the past ten years much work has been undertaken on developing mixture theory con-

tinuum models to describe kinetic sieving-driven size segregation. We propose an exten-

sion to these models that allows their application to bidisperse flows over inclined chan-

nels, with particles varying in density and size. Our model incorporates both a recently

proposed explicit formula for how the total pressure is distributed among different species

of particles, which is one of the key elements of mixture theory-based kinetic sieving mod-

els, and a shear rate-dependent drag. The resulting model is used to predict the range of

particle sizes and densities for which the mixture segregates. The prediction of no segrega-

tion in the model is confirmed by using discrete particle simulations, and good agreement

is found when a single fitting parameter is used which determines whether the pressure

scales with the diameter, surface area or volume of the particle.

This chapter has been published in Journal of Fluid Mechanics 749, 99–112 (2014) [1].
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When free-surface granular flows with particles differing in size and/or density discharge
down an inclined plane they often segregate to form complex patterns [2, 3]. These flow-
induced effects must often be avoided in production processes of the pharmaceutical,
chemical, food, iron and cement industry [4, 5]. Therefore, a quantitative prediction of
segregation is vital in improving the product quality and design of the material handling
equipment. Despite its importance, the fundamentals of this phenomenon are incom-
pletely understood.

In general, segregation or de-mixing occurs due to differences in particle properties such
as size [6], density [7], shape [8], inelasticity [9], surface roughness and friction [10].
However, differences in size and density are the primary factors for de-mixing in free-
surface flows over inclined channels. Experimental studies have been considered to ob-
serve the combined effects of size and density difference [11, 12] but few continuum
models have considered these combined effects [13]. Felix and Thomas [11] experimen-
tally analysed the size and density effects of particles for bi-dispersed mixture flows in
rotating tumblers, over inclined channels and pile formations. Using a continuum ap-
proach, we present an analysis predicting the degree of segregation in a bidisperse mix-
ture flow, over inclined channels, due to both size and density differences. The zero
segregation prediction, from our continuum model, is later benchmarked against the
discrete particle simulations.

Among several mechanisms causing segregation [14], our focus lies upon kinetic siev-

ing, which is the dominant mechanism causing segregation in gravity driven free-surface
flows, when the size-ratio is less than 2 [15]. For size ratios greater than 2, percolation
effects becomes important and should be included in the model [15, 16]. We use the
framework of mixture theory [e.g. 17] and extend the ideas of Gray and Thornton [18]
and Thornton et al. [19] in two ways: (i) we relax the equal particles-species density as-
sumption and (ii) we incorporate a shear rate dependent interspecies drag with a slightly
more general pressure scaling function of that proposed by Marks et al. [13]. The result-
ing theory is able to predict the range of sizes and densities for which segregation will oc-
cur directly from the known particle’s size and density. Previously Marks et al. [13] stated
a way to incorporate density differences, but they have not considered these combined
effects in detail.

4.1. Particle segregation model.
We choose a domain consisting of a chute inclined at a constant angle θ with respect to
the horizontal and a Cartesian coordinate system in which the x–axis points down the
chute, the y–axis points across its width and the z–axis points in the upward direction
normal to the chute.

Mixture framework.
Our starting point for the model is a granular mixture theory composed of two different
constituents, indexed 1 and 2, whose interstitial pore space is filled with air, which has
a negligible effect on these dense granular flows. Mixture theory [e.g. 17] for a binary
continuum postulates that all constituents of the mixture simultaneously occupy space
and time. This leads to overlapping fields with partial pressures, pν, densities, ρν, and
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velocities, ~uν = [uν, vν, wν]T in the three coordinate directions, corresponding to each
constituent indexed ν= 1,2. Each of the constituent satisfies the following fundamental
balance laws of mass and momentum for these partial fields

∂tρ
ν+∇· (ρν

~uν) = 0,

ρν(∂t~u
ν+~uν ·∇~uν) =−∇pν+ρν~g +~βν,

(4.1)

where ~g = (gt ,0,−gn )T is the gravity vector with g the standard acceleration due to free
fall; gt = g sinθ and gn = g cosθ. The ~βν’s represent interspecies’ drag forces resisting the
motion between the constituents. As these forces are internal, from Newtons’ third law
the sum of these drags must be zero, i.e., ~β1 +~β2 =~0. Given a unit mixture volume, each
of the constituents occupies a volume fraction φ1 or φ2, including the interstitial pore
space. Hence, by definition, the individual volume fractions sum to unity φ1 +φ2 = 1.
Furthermore, the bulk density ρ, barycentric granular velocity or bulk velocity ~u and the
bulk pressure p are defined as ρ = ρ1 +ρ2 , ~u = (ρ1

~u1 +ρ2
~u2)/ρ , p = p1 + p2 respec-

tively. A vital element in the mixture theory is the relation between partial and intrinsic
variables. Hereby, variables such as velocity, density and pressure are related as follows

~uν =~uν∗ , ρν =φνρν∗ , pν =φνpν∗ with pν∗ = f νp, (4.2)

with the ‘∗’ indicating when a variable is intrinsic. Motivated by Marks et al. [13], we
assume that f ν scales with the species size sν as

f ν =
(sν)a

∑
(sν)aφν

for ν= 1,2 and a > 0. (4.3)

The new definition for partial pressure (4.2)3 is a slight generalisation of the form used
by Marks et al. [13]. When a = 1 or 2 or 3, the pressure precisely scales with the length,
surface area, or volume of the particle, respectively.

Drag force.
In a simple shear flow of a mixture with different particle species, the shear causes the
species to preferentially fall into the gaps created beneath them (kinetic sieving) or rise
upwards through (squeeze expulsion) each other, resulting in interspecies friction [15].
Following Marks et al. [13], a generalised version of Gray and Thornton [18] interaction
drag or interspecies’ friction is assumed to be

~βν = p∇(φν f ν)−ρν c

γ̇
(~uν−~u), ν= 1,2, (4.4)

with c as a priori unknown coefficient of interspecies’ interaction and γ̇ the shear rate.
Note that c/γ̇ has a dimension of 1/s. The momentum balance for each individual
species (4.1)2 can be thus restated as

ρν(∂t~u
ν+~uν ·∇~uν) =−φν f ν∇p +ρν

~g −ρν c

γ̇
(~uν−~u). (4.5)

In shallow large scale industrial or natural granular flows, the aspect ratio, of velocity
and flow length scales in the downslope and cross-slope direction to those in the nor-
mal direction, is small. Summing the momentum balance equation (4.5) of each species
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implies that the flow, at leading order in this aspect ratio, is in lithostatic balance, i.e.,
∂p/∂z = −ρg cosθ, see Appendix C. Moreover, at leading order in this aspect ratio, the
down- and cross-slope velocity of the species also equals to the bulk down- and cross-
slope velocity component uν = u, vν = v, ν = 1,2, see Appendix C. Assuming the flow to
be in viscous balance by neglecting the inertia terms, substituting the drag force and ve-
locity definitions into the particles’ normal momentum balance equation, the species’
percolation or normal velocity is

w1 = w −
gn

c
γ̇

[
(1−φ)(ŝ a − ρ̂)

φ+ (1−φ)ŝ a

]
and w2 = w +

gn

c
γ̇

1

ρ̂

[
φ(ŝ a − ρ̂)

φ+ (1−φ)ŝ a

]
. (4.6)

Here ρ̂ = ρ2∗/ρ1∗ and ŝ = s2/s1 are the particle density and size ratios, respectively,
whereas φ = φ1 is the volume fraction of species-1. By combining the mass balance
equation (4.1)1 and the percolation velocity (4.6)1, we obtain the governing equation for
φ1 =φ as follows

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
−

∂

∂z

(
gn

c
γ̇

(
ŝ a − ρ̂

)[ φ(1−φ)

φ+ (1−φ)ŝ a

])
= 0. (4.7)

In general, an approximate bulk velocity ~u = (u, v, w)T can be computed from an ex-
isting shallow granular model [e.g. 20–22] and then a fully coupled model can be devel-
oped. An example of how to couple these types of models can be found in Woodhouse
et al. [23], where a coupled model to describe the geophysically important granular fin-
gering instability is derived.

Scaling.
Assuming the bulk flow velocity is approximated using such models, the flow quantities
are scaled as follows

(x, y, z) = (Lx̃,Lỹ , H z̃), (u, v, w) = (U ũ,U ṽ , (HU /L)w̃ ), t = (L/U )t̃ . (4.8)

Variables U , L and H are suitable characteristic scales for the flow velocity, length, and
depth/height respectively where L >> H . Substituting the above scalings and dropping
the tildes, the governing equation (4.7) is restated as

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
−

∂

∂z

[
Ŝr F (φ)

]
= 0 with F (φ)=

[
φ(1−φ)

φ+ (1−φ)ŝ a

]
, (4.9)

where Ŝr = qL/(HU ) is the non-dimensional number defined as the ratio of the mean

segregation velocity, q =
gn

c

(
ŝ a − ρ̂

)
γ̇, to a typical magnitude of the normal bulk velocity.

4.2. Solutions for limiting cases.
For the kinematic limiting cases, solutions are constructed for (4.9) for a velocity field
~u = (u(z),0,0) in the domain 0 ≤ z ≤ 1 and x ≥ 0, for a mixture flow of unit height. For
simplicity, initially we consider thin/shallow flows in which the velocity profiles are al-
most linear [24]; hence, to a good approximation we can take the shear rate, γ̇, to be
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constant. For the case with Ŝr = S̄r constant, Eq. 4.9 becomes

∂φ

∂t
+u

∂φ

∂x
− S̄r

∂

∂z

(
φ(1−φ)

φ+ (1−φ)ŝ a

)
= 0. (4.10)

As in Gray and Thornton [18], we use a simplified boundary condition with no flux of
particles at the free-surface and the base by considering F (φ) = 0 at z = 0,1. Solutions
to (4.10) can be constructed for two types of inflow boundary conditions, prescribed at
x = 0, termed as homogeneous mixture inflow and normally graded mixture inflow. In
the former type, a homogeneous mixture of concentration with φ(0, z, t) =φ0, constant,
enters at x = 0, whereas in the latter case normally graded particles, i.e., a mixture in
which smaller particles lie on top of the larger particles, enters at x = 0.

4.2.1. Analytical solutions.
Assuming the flow has reached its steady state, the differential equation (4.10) is restated
as

u(z)
∂φ

∂x
− S̄r

[
(φ−1)2 ŝ a −φ2

(φ+ (1−φ)ŝ a )2

]
∂φ

∂z
= 0, (4.11)

which is a quasi-linear partial differential equation. By using the method of characteris-
tics, as applied in Gray and Thornton [18] and Thornton et al. [19], the above equation
(4.11) is analytically solved for specific inflow boundary conditions.

Characteristics.
An exact solution to the above equation is obtained via the method of characteristics,
such that φ is constant, φλ, along each characteristic curve given by

u(z)
d z

d x
= S̄r

[
(φλ−1)2 ŝ a −φ2

λ

(φλ+ (1−φλ)ŝ a)2

]
. (4.12)

The characteristics describe the flux of information into the domain. Given a velocity
field, u(z), the above equation is integrable as downslope velocity u is a function of z

alone and φλ is constant. Solutions for general velocity fields can be obtained by intro-
ducing a depth-integrated velocity coordinate ψ, where

ψ=
∫z

0
u(z ′)d z ′. (4.13)

Equation (4.12) can then be integrated to give straight line characteristics,

ψ= S̄r

[
(φλ−1)2 ŝ a −φ2

λ

(φλ+ (1−φλ)ŝ a)2

]
(x − xλ)+ψλ, (4.14)

in terms of the mapped variables, with (xλ, ψλ) as the starting point for varying φλ. We
choose a scaling such that without loss of generality the mapped coordinate ψ = 1 at
the free surface z = 1. As u(z) > 0 is taken from the onset to simplify matters, the map
between the physical and depth-integrated coordinates can easily be constructed for a
whole class of general velocity fields.
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Jump conditions.
Experimental evidence of segregating flows reveals that concentration jumps or shocks
can emerge [15]. The presence of shocks implies that the segregation equation (4.9) or
(4.10), is no longer valid because particle concentration φ is then no longer continuous.
Hence, a jump condition should be applied across the discontinuity [25]. We derive the
jump condition from an integral version of the conservative form of segregation equa-
tion (4.10). We have

∂

∂x

∫L1

L2

φu d z − S̄r

[
φ(1−φ)

φ+ (1−φ)ŝ a

]L2

L1

= 0. (4.15)

Assuming a jump in φ exists at z = J (x) and following Whitham [25], the jump condition
is [

φu J ′+ S̄r

(
φ(1−φ)

φ+ (1−φ)ŝ a

)]+

−
= 0, (4.16)

with J ′ = d J/d x, ’+’ and ’−’ denoting the limits on either side of the discontinuity/jump
J (x), and the bracket, ‘[ ]’, denoting the difference of the enclosed function value at upper
and lower limit. Since u(z) is continuous, the above equation can be restated as

u
d J

d x
=−S̄r

(
(1− (φ++φ−))ŝ a −φ+φ−(1− ŝ a )

φ+φ−(ŝ a −1)2 + (φ++φ−)(ŝ a − ŝ 2a)+ ŝ 2a

)
, (4.17)

which, when solved, gives the location, z = J (x), of the shock. Following Gray and Thorn-
ton [18], we restate the above equation in terms of depth-integrated velocity coordinates,
(4.13), i.e.,

dψJ

d x
=−S̄r

(
(1− (φ++φ−))ŝ a −φ+φ−(1− ŝ a )

φ+φ−(ŝ a −1)2 + (φ++φ−)(ŝ a − ŝ 2a )+ ŝ 2a

)
, (4.18)

independent of the assumed monotonically increasing velocity profile, withψJ =ψ(J (x)).

Jumps in mapped coordinates.
For a homogeneous inflow condition and purely size-based segregation, i.e., ρ̂ = 1, posi-
tions of the shocks are determined from the shock relations (4.18). By substituting φ+ = 1
and φ− = φ0 and integrating with boundary condition ψ= 0 at x = 0, the position of the
shock is ψ1 = −(gn/c)(1− ŝ a)

[
φ0/(φ0 + (1−φ0)ŝ a )

]
x. Similarly, by substituting φ+ = 0

and φ− = φ0 into the shock relations and integrating with boundary condition ψ = 1
at x = 0, the position of shock ψ2 = 1+ (gn/c)(1− ŝ a )

[
(1−φ0)(φ0 + (1−φ0)ŝ a)

]
x. The

shock ψ2 propagates downwards to merge with shock ψ1 at the triple point, xtr i ple =
(φ0 + (1−φ0)ŝ a)((ŝ a −1)(gn/c)) and at ψ=φ0 in depth-integrated velocity variables, re-
sulting in a third shock separating the 100% species-1 and species-2 regions. The shock
position, ψ3, is determined by substituting φ+ = 0 and φ− = 1 into the shock relations
which on integrating gives ψ3 = φ0, for x ≥ xtr i ple . When the shock positions ψ1, ψ2

and ψ3 are mapped back to physical coordinates, they yield the solid lines in Fig. 4.1.

Physical solutions and comparison with other models.
The shock positions, in terms of the depth-integrated velocity coordinates, are valid for
all velocity fields given that the fields have a single valued map from the depth-integrated
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Figure 4.1: For simple shear flow α = 0 and purely size-based segregation, the analytical jump solutions are
compared for the Savage and Lun theory (dashed-dotted line) and the Gray and Thornton (GT) theory (dashed
line), and the current theory, Ŝr = 1 and a = 1, (solid line). Note: to compare we take S̄r = 1 in both the GT and
the current model. Homogeneous inflow concentrations of (a) φ0=50% and (b) φ0=10%.

velocity coordinate space to physical coordinate space. If we consider a linear shear
profile u = α+ 2(1 −α)z where 0 ≤ α ≤ 1, then it follows from (4.13) that the depth-
integrated velocity coordinate ψ = αz + (1−α)z2 with ψ(1) = 1 at the free surface. The
ψ-coordinate can easily be mapped back to the physical space as

z =





ψ, for α= 1

−α+
√

α2 +4(1−α)ψ

2(1−α)
, for α 6= 1.

(4.19)

In case of a simple shear flow where α= 0, from (4.19) we find that z =p
ψ. Thereby, the

jump/shock positions are mapped back to the physical space. Fig. 4.1 shows the results
from our model, the model of [18] and the model of [15]. To allow direct comparison of
the effects of the flux functions, between our model and [18]’s models the segregation
velocity, S̄r = 1, is taken to be unity in both theories. Two things are clear from this
comparison: firstly, the point of full segregation (location of the triple point) is further
down-stream for our model, by as much as a factor of two for φ0 = 0.1; secondly, the
distance to full segregation is a function of φ0 in our model (in contrast to the model of
[18]). Our flux function F (φ) is convex and more general; it is apparent that the form of
this function can have a large effect on the predicted distance to full segregation.

4.2.2. Numerical solutions.

Solutions can be computed to the segregation equation (4.7) for various values of shear α
and constant or non-constant shear rates, γ̇. Following [13], for sufficiently thick mixture
flows,

γ̇= [(tanθ−µc )/(ks̄)]
√

1.5g cosθH(1− z̃) where s̄ =
∑

φν(sν)a with ν= 1,2, (4.20)
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Figure 4.2: For a = 3, ρ̂ = 0.5 and ŝ = 1.26, the development of volume fraction φ is shown as a function of the
downslope coordinate x and flow depth z. The domain is initially filled with a mixture of φ1 =φ(x, y,0) = 0.25
and the bulk flow is from left to right. (i) Constant shear rate (γ̇= 1) i.e. simple shear flow α= 0, Ŝr = 1.5, (a)-(b)
Homogeneous mixture inflow (φ0 = 0.6) and (c)-(d) normally graded mixture inflow. (ii) Bagnold-type shear
rate (Eq. 4.20), M = 0.1: (e)-(f) Homogeneous mixture inflow (φ0 = 0.6) and (g)-(h) normally graded mixture
inflow. No. of elements: 160×60.
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leading to a Bagnold-type velocity profile. Substituting Eq. (4.20), dropping tilde, in the
scaled segregation equation (4.9) gives

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
−

(
ŝ a − ρ̂

)
M

∂

∂z

(
φ(1−φ)

p
1− z

(φ+ (1−φ)ŝ a )2

)
= 0, (4.21)

where M = (L/HU )(gn/c)(tanθ−µc )
√

1.5H g cosθ/k(s1)a is a material parameter, µc is
the friction coefficient and k a non-dimensional constant when a = 1 or a dimensional
constant when a = 2 or a = 3. We choose M = 0.1 such that the DPM simulation and con-
tinuum numerical solution takes the same time to reach steady state. We use a high reso-
lution shock capturing method, the space discontinuous Galerkin finite element method
(space-DGFEM) [26], implemented in our open-source DGFEM solver hpGEM [27]. Full
details of the package including the numerical codes used to generate Fig. 4.2 are avail-
able through the package’s website, http://einder.ewi.utwente.nl/hpGEM/. This
new implementation of a DGFEM based solver is accurate, robust and has been exten-
sively tested against both the exact solutions and the solutions presented in [18] and [19]
for flux functions of the form F (φ)=φ(1−φ).

In Fig. 4.2, the evolution to steady-state for (i) constant shear rate, γ̇= 1, i.e., simple shear
with α= 0 and (ii) Bagnold-type rate (4.20) for both homogeneous and normally graded
inflow conditions is shown. For constant shear rate, γ̇= 1, and normally graded inflow, in
Fig. 4.2 (c)-(d), the expected expansion fan and three-shock structure can be clearly seen
[19]. On inspecting Fig. 4.2 (a)-(d), it seems that the rational and convex flux function
does not structurally change the evolution of the solution when compared to the solu-
tions in Gray and Thornton [18] and Thornton et al. [19]; however, a full investigation of
the dependence of the solution on this flux is beyond the present scope. With a Bagnold-
type shear rate, for homogeneous and normally graded inflows, the upper shock, seen
in Fig. 4.2 (a)-(d), does not develop in (e)-(h), similar to what is captured by the cellular
automata model of Marks and Einav [28].

4.3. No/weak segregation.
One of the key new features of our model is the ability to predict the ratios of size and
density for which no or very weak segregation should occur. Due to the non-dimensionalisation
used, this is simply given by the line ŝ a = ρ̂; recall that a = 1 for the pressure function sug-
gested by [13].

To validate our no or zero segregation prediction, we used fully three-dimensional dis-
crete particle simulations (DPMs) (a.k.a Molecular Dynamics (MD) simulations or the
Discrete Element Method (DEM) simulations), implemented in our in-house open source
DPM package, MercuryDPM. This package has previously been used by Thornton et al.

[16] and Weinhart et al. [29] to investigate size-segregation in chute flows. Full details
about the MercuryDPM and the source code used for this paper can be found at the
website MercuryDPM.org.

4.3.1. DPM simulation Setup
We simulate a homogeneously mixed bi-disperse mixture of particles. We will refer to
the two different particles as species type-1 and type-2. In general, if di , i = 1,2, ..., is
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Figure 4.3: Z-component of the centre of mass, scaled by the bulk vertical centre of mass, of particle species
type-1 (red, COM1), particle species type-2 (blue, COM2) and bulk (green, COMB) as a function of time (DPM)
(a) (ŝ, ρ̂)=(1.4,1.0) (b) (ŝ, ρ̂)=(1.0,1.4) (c) (ŝ , ρ̂)=(1.4,1.4) (d) (ŝ, ρ̂)=(0.9,0.7).

defined as the particle diameter of each species type-i , then the mean particle diameter
is

dm =
∑

i

φi di , (4.22)

with φi being the volume fraction of particles of species type-i . Hence, for a bi-disperse
mixture dm = φd1 + (1−φ)d2 with φ being the volume fraction of particles of species
type-1. Correspondingly, ρm is the mean particle density.

In our chosen coordinate system, we consider a cuboidal box, periodic in x and y , in-
clined at 26◦ to the horizontal. The box has the dimensions L×W ×H = 20dm ×10dm ×
10dm . To create a rough base, we fill the box with a randomly distributed set of parti-
cles of both types of diameter dm and simulate until a static layer of about 12 particles
thick is produced. Then a slice of particles with centres between z ∈ [9.3,11]dm are fixed
and translated 11 particle diameters downwards to form the base of the box. A solid flat
wall is added below this layer of particles to ensure that none of the flow particles will
fall through. Once the base is created, the box is inclined and filled with homogeneously
mixed bi-disperse mixture, see Fig. 4.5 and [24] for details.

The parameters in our DPM simulations are non-dimensionalised such that mean par-
ticle diameter d̂m = 1, its mass m̂m = 1 and the magnitude of gravity ĝ = 1. Therefore the
non-dimensional mean particle density ρ̂m = m̂m /V̂m = 6/π, with mean particle volume
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Figure 4.4: For particle volume fraction of each species-type being φi = 50%, the above plot illustrates
D̂com = (COM2−COMB )/COMB for different values of ρ̂ and ŝ. From theory, the solid line represents the
weak segregation line for a = 3 and the dotted-dashed line is the weak segregation line analytically predicted
for spheres by Yoon and Jenkins (2002). In their theory, large particles are assumed to be dilute in a dense gas
of small particles.

V̂m = π(d̂m)3/6 and time scale
√

dm/g , with ‘̂’ indicating non-dimensional quantities.
Furthermore, given the diameters and densities of each species type, the particle size
and density ratios, ŝ and ρ̂, is defined as ŝ = d2/d1 and ρ̂ = ρ2/ρ1, respectively.

The box is filled with a bi-disperse mixture containing

N1 =
φV̂box

(d̂1)3
and N2 =

(1−φ)V̂box

(d̂2)3
. (4.23)

particles, where V̂box = 10×20×10 is the volume of the box. The formulae (4.23) ensures
that the ratio of total volume of species-1 over total volume of all the particles is φ and
the dimensionless height of the flow, Ĥ is the same for all simulations. Using (4.23), for
homogeneous initial conditions (randomly mixed), with initial particle volume fraction
φi = 0.5, a series of DPM simulations for different values of ρ̂ and ŝ were carried out to
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Figure 4.5: A snapshot of a bi-disperse mixture flowing in a periodic box inclined at 26◦ to the horizontal,
at steady state. Colours/shades indicate the fixed base (black), species type-1 and type-2 ( light green and
orange). a) (ŝ ,ρ̂)=(1.0,1.1) b) (ŝ ,ρ̂)=(1.4,1.0).

make a phase plot [ρ̂× ŝ].

For all the performed simulations, we use a linear spring dashpot model with a contact
duration of tc = 0.005

√
dm /g , coefficient of restitution rc = 0.88 and contact friction

coefficient µc = 0.5. More details about the contact model can be found in Weinhart
et al. [24],Luding [30] and Cundall and Strack [31].

4.3.2. Analysis
The sensitivity to both basal and initial conditions on the steady-state has been thor-
oughly investigated and hardly any sensitivity was found [32]. Once the flow has reached
its steady state, we calculated a relative difference between the centres of mass D̂com(ρ̂, ŝ) =
(COM2−COMB)/COMB , as a function of ŝ and ρ̂. Here COM2 is the vertical centre of
mass of species-2 particles and COMB is the bulks’ vertical centre of mass. For a given
ŝ and ρ̂, the flow is steady when the function value, D̂com , remains constant with time.
In Fig. 4.4, we plot the values of D̂com for given ρ̂ and ŝ. When the value of D̂com is
positive, particles of species-2 are near the free surface; vice-versa, when it is negative,
particles of species-2 are near the base, see Fig. 4.3. Close inspection of the data shows
very weak segregation along the solid line ŝ a = ρ̂ with a = 3, also implying that the pres-
sure is scaled by the volume of the particle. Below the solid line the species-2 particles
rise towards the free-surface and above the solid-line species-2 particles fall towards the
base. The dashed-solid line corresponds to the prediction via kinetic theory for a binary
mixture [33]. The mismatch between the dashed-solid line and the solid line is probably
because the prediction by Jenkins and Yoon [33] is valid only for mixtures in which large
particles are dilute in a dense mixture comprised of smaller particles. This assumption
is best satisfied for low ŝ and ρ̂ limit; which is clearly seen in the bottom left corner of
Fig. 4.4. In this limit, our continuum theory is not valid, as from Savage and Lun [15]
and Thornton et al. [16] it is known that for size ratios greater than 2 percolation effects
are present. This corresponds to ŝ < 0.5, in our current study, and ŝ > 2. Percolation of
small sized particles through the matrix of large sized particles occur simply as a result of
gravity, in absence of shear. In contrast to kinetic sieving that requires the combination
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of gravity and shear to be acitve.

Felix and Thomas [11] experimentally investigated density and size segregation for both
chute flows and rotating drums. It is not possible to directly compare their chute flow re-
sults with our DPM simulations, as in their chute experiments the type-2 species’ (trac-
ers) volume fraction is 10%. It is very hard to directly fit their experimental data to obtain
the value of a; however, several qualitative similarities can be found between our DPM
simulations and their experimental findings. Firstly, for (ŝ = 1, ρ̂ ≈ 1.1) they conducted
two experiments for which they observed segregation only in one and homogeneous
mixture state in the other, indicating that the mixture weakly segregates at that ratio of
size and density. For these ratios, our DPM data shows weak segregation (see Fig. 4.4),
i.e., the flowing mixture only partially segregates with a fairly homogeneous mixture still
existing in the bulk (see Fig. 4.5a). We only see almost complete segregation in the re-
gions of Fig. 4.4, with dark blue or red spots; however, as we measure the centre of mass
of both species we can detect even weak segregation, compare the left and right panels of
Fig. 4.5 that correspond to cases where D̂com =−0.1 and 0.5, respectively. The weak seg-
regation in our phase plot seems to correspond to the homogeneous states of Felix and
Thomas [11], as such weak segregation could not be captured by the experimental tech-
niques they employed. Secondly, for the cases where ρ̂ ≈ 1.3 and ŝ = (1.0,1.1,1.2,1.3),
they observed undeterminable/homogeneous mixture states, which from our DPM sim-
ulations again correspond to a weakly, not fully, segregated region in our phase plot.
However, for larger size ratios, i.e. ŝ > 2, an opposite trend versus density ratio is ob-
served in their experiments indicating that the segregation reverses direction. Given
these differences, we suggest that this behaviour could be due to percolation effects and
different volume fractions considered; however, further study is required to confirm this.

Moreover, a generalised pressure scaling function could be obtained directly from the
DPMs. This work is ongoing and some early results can be found in [29]. In this paper,
we have not incorporated the diffusive nature of these segregating flows into our model
[34] and therefore the model predicts full segregation, eventually, on either side of the no
segregation line. However, if we had included diffusion in the model then D̂com could be
reinterpreted as a segregation Péclet number (ratio of segregation to diffusive strength)
as in Thornton et al. [16].

4.4. Summary and conclusions.
In this paper, we focus on bi-disperse flows over inclined channels with size ratios less
than 1.5. We derived a generic continuum model to predict the extent of segregation in
a bidisperse granular mixture flow due to differences in particle size and density. For a
given density and size ratio, the model predicts the extent of de-mixing in gravity-driven
chute flows. For purely size-based segregation, the model has been compared to two
previous models. The derived model, for constant shear, is solved analytically using the
method of characteristics, and numerically using a discontinuous Galerkin finite ele-
ment method. The model was also used to predict the ratios of particle size and den-
sity for which very weak/no segregation would occur. This prediction is independent of
the details of the drag coefficient between the particles and the bulk velocity profile of
the flow. To validate this prediction, we performed discrete particle simulations as an
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alternative to laboratory experiments of field measurements. The model performs sur-
prisingly well, when compared with the discrete particle simulations, with the fitting pa-
rameter ‘a’ determined from the DPMs. The advantage of our continuum model is that
it permits analytical and fast numerical solutions. However, for size ratios ŝ < 0.5 and
ŝ > 2, the current model is not valid as percolation effects [15, 16] are not considered.
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5
Example coarse graining

applications

In Chapter 4, we have seen a beautiful blend between a mixture theory continuum model

and discrete particle simulations, where the two theories were used to model and under-

stand bidisperse granular mixtures flowing over rough inclined channels. However, de-

spite the illustration of an efficient micro-macro transition technique for multi-component

mixtures (chapter 3), a direct application of this mapping tool is still something we have

not yet considered in the previous chapter(s). Thereby, this chapter focusses on utilising

the micro-macro transition technique.

To be submitted.

87



5

88 CGApplication

5.1. Introduction
Granular mixtures often tend to arrange themselves in certain patterns when stirred,
shaken or sheared [1]. These mixtures often comprise of constituents varying in size,
density, inelasticity, shape, surface roughness, etc. When such polydisperse mixtures
are subjected to external forces, individual studies [2–6] confirm the influence of these
constituent properties in forming patterns, e.g., segregation or de-mixing. However, in
free-surface flows over inclined channels differences in size and density are the primary
factors for segregation.

Among several mechanisms responsible for segregation, kinetic sieving [7] is the dom-
inant one in dense granular flows. Kinetic sieving is a trivial mechanism. As the mixture
flows down the inclined channel, fluctuations in the local pore space cause smaller parti-
cles to fall into the space/gaps created beneath them. The fine ones, i.e. small sized par-
ticles, easily fit into these pores leading to gradual percolation of them towards the base
of the flow. Simultaneously, force imbalances lever/squeeze the larger particles towards
the surface. This simple mechanism results in stratified layers that one terms as segrega-
tion, as seen in Chapter 4. Opposing kinetic sieving is diffusive remixing, which causes
random motions of particles as they collide and shear over each other [8]. Based on the
relative strength of either mechanisms, the mixture strongly or weakly segregates. Apart
from kinetic sieving, which is a purely size-based effect, buoyancy effects due to differ-
ences in particle density also play a major role in particle segregation [9]. For bidisperse
mixtures, varying in particle size and density, experiments [10] and numerical simula-
tions [11] (Chapter 4) indicate a balance between the two driving mechanisms, i.e kinetic
sieving and buoyancy effects, which in turn keeps the mixture homogeneously mixed.
However, a detailed understanding of the dynamics of segregation becomes more diffi-
cult with the increase in the number of particle properties, i.e. size, density, shape etc.,
one includes in a study.

To get a grip on the segregation dynamics, as an alternative to experiments, we em-
ploy discrete particle simulations (DPMs) [12]. From DPMs, macroscopic quantities
corresponding to the macroscopic field variables, appearing in continuum-mechanical
models, are extracted. To do this, we use an appropriate micro-macro transition proce-
dure called coarse graining, which has been described in detail in Chapter 3 and refer-
ences therein ( e.g. [13, 14]). This mapping technique has been successfully applied to
flows near boundaries or discontinuities [15], shallow granular flows [16] and bidisperse
mixtures with varying particle size [17]. By this micro-macro mapping, one can easily
use the DPMs as a calibration tool for the continuum models.

Based on the existing knowledge pool associated with quantifying segregation dy-
namics, a few continuum models [11, 18–21, 23] have been formulated to predict seg-
regation in gravity-driven granular flows. Out of these, we focus on mixture theory [24]
based kinetic sieving models [21, 25]. Recently, the Gray and Thornton [21] model was
subjected to verification by extending the coarse graining technique [15] to mixture flows
[17]. As a result of this, for a certain particle size-ratio, Weinhart et al. [17] observed that
(i) the large particles do support a fraction of the stress larger than their volume fraction;
(ii) a simple linear interspecies’ drag law is not sufficient to describe bidisperse mixture
flow dynamics; (iii) the smaller particles support a fraction of the kinetic stress larger
than their volume fraction, as postulated by Fan and Hill [22] in their shear-induced seg-
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Figure 5.1: A snapshot of a bidisperse mixture flowing in a periodic box inclined at 26◦ to the horizontal (dis-
crete particle simulation). Colours/shades indicate the base/boundary (yellowish green, F

b ), species type-1
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regation theory.
In this chapter, we extend the purely size-based Gray and Thornton [21] model to

consider density differences as well, the derivation steps are similar to the steps followed
in Chapter 4, however, we employ a simpler pressure scaling function. Similar to what
was done in Weinhart et al. [17], on using the coarse graining expressions from Chap-
ter 3, we verify if the observations of Weinhart et al. [17] are still valid, when considering
bidisperse mixtures varying both in size and density. Furthermore, from the discrete par-
ticle simulations, we also determine the closure parameter, which is dependent on both
the size- and density-ratio.

5.2. Simulation setup
To illustrate the micro-macro technique, as an example, fully three-dimensional (3D)
discrete particle simulations (DPM) are used as an alternative to experiments, to investi-
gate segregation dynamics in bi-dispersed mixture flows over inclined channels. For set-
ting up the simulations, we use our in-house open source DPM package, MercuryDPM.
Previously, this simulation package has been used by Thornton et al. [26] and Weinhart
et al. [17] to investigate size-based segregation in inclined channel flows.

We consider a cuboidal box, periodic in x- and y-direction, inclined at 26◦ to the
horizontal. The box has dimensions L ×W × H = 20dm × 10dm × 10dm . For a box to
have a rough base (bottom), we fill the box with a randomly distributed set of particles
with diameter dm and simulate them until a static layer of about 12 particles thick is
produced. Then a slice of particles with centres between z ∈ [9.3,11]dm are fixed and
translated 11 particle diameters downwards to form the rough base of the box. To ensure
no flowing particles fall through the base, a solid wall is placed underneath this static
layer. Once the rough base is created, the box is inclined and filled with a homogeneously
mixed bi-disperse mixture of particle diameters d1 and d2, and densities ρ1 and ρ2, as
illustrated in Fig. 5.1, see [16] for more details.
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In our DPM simulations, we non-dimensionalise the parameters such that the mean
particle diameter d̂m = 1, the mean particle mass m̂m = 1, the magnitude of gravity ĝ = 1.
Implying, that the mean particle density ρ̂m = m̂m/V̂m = 6/π and the mean particle vol-
ume V̂m = π(d̂m)3/6. The non-dimensional quantities are denoted by ‘̂’ . Furthermore,
given the diameters and densities of each particle species type, the particle size and den-
sity ratio is defined as ŝ = d2/d1 and ρ̂ = ρ2/ρ1, respectively.

Finally, we fill the box with the bi-disperse mixture comprising

N1 =
φ1V̂box

d̂1
3

and N2 =
φ2V̂box

d̂2
3

(5.1)

particles of species type-1 and type-2 with V̂box = 20×10×10 being the non-dimensional
volume of the box. The formulae in (5.1) enforce (i) the dimensionless flow height Ĥ to
be the same in all our simulations and (ii) the ratio of the total volume of species type-1
over the total volume of the particles to be φ1, see Appendix: D.1 for details. Thereby,
using (5.1) with homogeneous mixture initial conditions (randomly mixed) and particle
volume fraction φ1 = 0.5, DPM simulations for different values of ρ̂ and ŝ were carried
out.

Furthermore, a linear spring dashpot model is used, where the spring stiffness and
dissipation for each collision is chosen such that the collision contact time tc = 0.005√

dm/g and the coefficient of restitution rc = 0.88 are constant. More details about the
model can be found in [12, 16, 27].

5.3. Mixture theory
We choose a coordinate system such that the x- and y-axis points in the downslope and
the cross-slope direction of the channel, and the z-axis points in the upward direction
normal to the channel, see Fig. 5.1.

Similar to Chapter 4, we briefly introduce the mixture theory postulates. For a bidis-
perse mixture of grains, mixture theory [24] for a binary continuum postulates that both
constituents of the mixture simultaneously occupy both space and time. This results in
overlapping fields leading to partial flow quantities, such as partial stress σν, density,
ρν, and velocity, ~uν = [uν, vν , wν]T in the three coordinate directions, corresponding to
each constituent indexed ν= 1,2. Each of the constituents satisfies the following funda-
mental balance laws of mass and momentum stated in terms of the partial fields as

∂tρ
ν+∇· (ρν

~uν) = 0,

ρν(∂t~u
ν+~uν ·∇~uν) =−∇·σν+ρν~g +~βν,

(5.2)

where ~g = (gt ,0,−gn )T is the gravity vector, with g being the standard acceleration due
to free fall; gt = g sinθ and gn = g cosθ. The variable ~βν represents the interspecies drag
force due to resisting motion between the constituents. As these forces are internal, from
Newtons’ third law the sum of these drags must be zero, i.e., ~β1 +~β2 =~0.

Given a unit mixture volume, including the interstitial pore-space, each of the con-
stituents occupies a volume fraction φ1 or φ2. Hence, by definition, the individual vol-
ume fractions sum to unity φ1 +φ2 = 1. Furthermore, the bulk density ρ, barycentric
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granular velocity or bulk velocity ~u and the bulk stress σ are defined as ρ = ρ1 +ρ2 , ~u =
(ρ1

~u1+ρ2
~u2)/ρ , σ=σ1+σ2 respectively. The intrinsic variables defined for each of the

constituents do play an integral role in the constitutive theory. These quantities are re-
lated to the partial quantities and hence are the key features of the mixture theory. The
intrinsic density of the constituent ρν∗, i.e. the mass of the constituent per unit volume
of the constituent, is related to the partial density by constituent volume fraction φν. The
same applies to the partial pressures of the constituents. However, in standard mixture
theory the partial velocity of the constituent is identical to the intrinsic velocity of the
constituent

ρν =φνρν∗ , σν =φνσν∗ , ~uν =~uν∗, (5.3)

where all the intrinsic quantities are denoted with ’∗’.

Gravity-driven segregation
Most of the mixture flows involved in industry and geological applications are shallow
in nature, implying that the flow quantities in the downslope and cross-slope direction
are nearly uniform. Moreover, we assume that the partial densities and momenta be-
come quasi-steady even before the flow segregates, implying that the temporal deriva-
tives ∂t (ρν) and ∂t (ρν

~uν) vanish after a certain equilibrium time te . On employing the
shallowness argument, as done in the previous chapters, from the momentum equation
(5.2)2, we arrive at

0 =−
∂σν

αz

∂z
+ρνgα+βν

α with α= x, y, z, t > te . (5.4)

Summing (5.4) over each particle species-type ν= 1,2 for α= z, setting σzz |z=inf implies
that the flow is in lithostatic balance

∂σzz

∂z
=−ρg cosθ. (5.5)

The key idea behind the kinetic sieving model of Gray and Thornton [21] is that as the
small particles percolate downwards through the granular assembly, they carry less of
the weight and the large particles carry proportionately more. To quantify this, they in-
troduced a new scaling function f ν, which determines the amount of overburden pres-
sure (weight) is to be distributed among each of the constituents. In standard mixture
theory, the constituent pressure is assumed to be linearly related to the bulk pressure
through the volume fraction, i.e. f ν is assumed to be equal to φν. Here, we have, how-
ever, a crucial deviation from the standard approach in order to account for the effects
of segregation, i.e. we define the intrinsic partial pressure as

σν∗
zz = f νσzz . (5.6)

The stress fraction f ν is defined using the following functional form

f 1 = 1+B1φ2 and f 2 = 1+B2φ1, (5.7)

with φ1 f 1 +φ2 f 2 = 1, f 1 = 1 when φ1 = 1 and f 1 = 0 when φ2 = 1. Similarly, f 2 = 1 when
φ2 = 1 and f 2 = 0 when φ1 = 1 In order to use these scalings, one still needs to determine
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the magnitude and sign of Bν. For a bidisperse mixture varying in size alone, Gray and
Thornton [21] considered the pressure scalings to be

f s = 1−Bφl and f l = 1+Bφs , (5.8)

where superscripts s, l denote small and large constituents, with B s = −B and B l = B .
Furthermore, Gray and Thornton [21] also considered the interaction drag or interspecies’
friction to take the form of Darcy’s law,

~βν =σ∇(φν f ν)−ρνc(~uν−~u), (5.9)

where c is an inter-constituent drag coefficient. The inter-particle surface interaction
force is given by p∇(φν f ν), thus ensuring that the particle percolation is driven by the
partial pressure gradients. Substituting the expressions for the drag force (5.9) and litho-
static balance (5.5) into the normal momentum balance equation for constituent type-ν
(5.4) – neglecting normal acceleration terms – results in the species percolation velocities

ρνwν = ρνw +
gn

c
(ρ f ν−ρν). (5.10)

For ν= 1, the above expression is further simplified, for details see Appendix D.2, to

w1 −w =
g cosθ

c
(1−φ)

[
B1ρ̂+ (ρ̂−1)(B1φ−1)

]
. (5.11)

By substituting the above percolation velocity (5.11), with uν = u and vν = v (see Ap-
pendix C), in the continuity equation for ν = 1 leads us to the segregation governing
equation

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
+

g cosθ

c

∂

∂z

(
B1ρ̂φ(1−φ)+ (ρ̂−1)(B1φ−1)φ(1−φ)

)
= 0,

(5.12)
where ρ̂ = ρ∗2/ρ∗1 is the particle density ratio. For a bidisperse mixture varying in size
alone, ρ̂ = 1, we arrive at the purely size-based segregation model of Gray and Thornton
[21]. However, in order to utilise the above segregation model one still needs to deter-
mine the values of B and c. In this chapter, we determine the values of B using discrete
particle simulations (Sec. 5.2) and the coarse graining expressions from Chapter 3,

5.4. Results
At around te ≈ 3.1s, all the flows (DPM simulations) considered in this chapter become
quasi-steady implying that the flow density, velocity and pressure profiles change at a
very slow rate. Once the mixtures flow over a duration of te , particle species of type-1
and type-2 either rise towards the surface or fall towards the base of the flow, depending
on the particle size and density ratio. After around t ≈ 20s, the process of demixing or
segregation is complete and steady. With the flows in steady state, the corresponding
data sets are coarse grained to obtain the macroscopic flow fields.

In order to carry out the required micro-macro transition, i.e. to determine the value
of B , we require the coarse graining expressions for the partial stresses (pressure) and
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Figure 5.2: For a bidisperse mixture with ŝ = 1.4 and ρ̂ = 1, we plot the stress fractions φν f νcon and φν f ν
kin

as a

function of φν and fit it to (5.8). The above fits correspond to B 1
con =−0.005 and B 1

kin
= 0.40.

volume fraction, as the ratio of the partial to bulk pressure is

σν
zz

σzz
=φν f ν, (5.13)

where σν
zz is total partial stress in the normal depth-direction. We use the word total

because, in Chapter 3, we defined the total partial stress (3.39) as the sum of both par-

tial contact (3.37) and kinetic stress (3.40) fields, σν
zz = σcon,ν

zz +σkin,ν
zz . Using the coarse

graining expressions illustrated in Chapter 5, depth-profiles of volume fraction and par-
tial stresses are constructed by averaging both spatially (x- and y-direction) and tempo-
rally. Utilising these fields and substituting (5.8) in (5.13), the sign and magnitude of B in
the scaling function f ν is simply given by

Bν =

∫1

0
(φν f ν−φν)dφν

∫1

0
φ1φ2dφν

with ν= 1,2. (5.14)

Furthermore, in order to see whether segregation is primarily caused by the contact
or the kinetic part of the total stress, we compute the contact and kinetic stress fraction

φν f ν
con =

σcon,ν
zz

σcon
zz

and φν f ν
kin =

σkin,ν
zz

σkin
zz

, (5.15)

by fitting (5.8) such that

Bν
con =

∫1

0
( f ν

con −φν)dφν

∫1

0
φ1φ2dφν

and Bν
kin =

∫1

0
( f ν

kin −φν)dφν

∫1

0
φ1φ2dφν

with ν= 1,2. (5.16)

To illustrate this, we consider three bidisperse mixtures with different particle size- and
density-ratios, (ŝ, ρ̂) = { (1.4,1.0), (1.0,1.4), (0.5,0.6) }. In Figs. 5.2 and 5.3, we plot the
stress fractions φν f ν

con and φν f ν
kin

against the volume fraction φν for bidisperse mix-
ture flows varying both in size or density. It follows, that for bidisperse mixtures varying
in size alone, the smaller particles (type-1) have a kinetic stress fraction slightly higher
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Figure 5.3: Bidisperse mixture with ŝ = 1.0 and ρ̂ = 1.4, we plot the stress fractions φν f νcon and φν f ν
kin

as a

function of φν and fit it to (5.8). The above fits correspond to B 1
con =−0.002 and B 1

kin
=−0.24.
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Figure 5.4: Bidisperse mixture with ŝ = 0.5 and ρ̂ = 0.6, we plot the stress fractions φν f νcon and φν f ν
kin

as a

function of φν and fit it to (5.8). The above fits correspond to B 1
con = 0.20 and B 1

kin
=−0.32.

than their volume fraction. This is consistent with results in [17] and in agreement with
shear induced segregation theory of Fan and Hill [22]. Similarly, for bidisperse mixtures
varying in density alone, the heavier particles have a kinetic stress fraction higher than
their volume fraction. For a bidisperse mixture varying in both size and density, the be-
haviour of the stress fractions against volume fraction is illustrated in Fig. 5.4. It follows,
that the smaller and heavier particles (type-1) have a kinetic stress fraction slightly larger
than the volume fraction.

5.5. Summary
We illustrated a simple application of a micro-macro transition using the coarse grain-
ing expressions of Chapter 3. By employing these we not only determined the closure
parameter, Bν, for our formulated continuum model, but also showed that by utilising
this mapping technique one can better understand the segregation dynamics or mech-
anisms.

For bidisperse mixtures varying in both size and density (i) the smaller and heavier

Table 5.1: Closure parameters for mixtures of varying size- and density-ratios.

Size-ratio Density-ratio B1
con B1

kin

1.4 1.0 -0.005 0.40
1.0 1.4 -0.002 -0.24
0.5 0.6 0.20 -0.32
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particles do support a fraction of the stress (kinetic) larger than their volume fraction; (ii)
a simple linear interspecies drag law is not sufficient to describe bidisperse mixture flow
dynamics. There exist, however, many more aspects that still need to be better under-
stood regarding particle segregation, such as determining the correct pressure scalings,
diffusive remixing and many more, which will be the subject of our future studies.
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6
Keeping it Real: How Well can

Discrete Particle Simulations

Reproduce Reality?

Discrete particle simulations provide a powerful tool for the advancement of our under-

standing of granular media, and the development and refinement of the multitudinous

techniques used to handle and process these ubiquitous materials. However, in order to

ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is

of paramount importance that we fully understand the degree to which numerical mod-

els can be trusted to accurately and quantitatively recreate and predict the behaviour of

the real-world systems they are designed to emulate. Due to the complexity and diverse

variety of physical states and dynamical behaviour exhibited by granular media, a sim-

ulation algorithm capable of closely reproducing the behaviour of a given system may be

entirely unsuitable for other systems with different physical properties, or even similar sys-

tems exposed to differing control parameters. In this chapter we focus on two widely-used

forms of granular flow, for which discrete particle simulations are shown to provide a full,

quantitative replication of the behaviour of real industrial and experimental systems. Sit-

uations for which quantitative agreement may fail are identified, but important general,

qualitative trends are still recreated, and indeed the cases for which computational mod-

els are entirely unsuitable. By assembling this information into a single document, we

hope not only to provide researchers with a useful point of reference when designing and

executing future studies, but also to equip those involved in the design of simulation al-

gorithms with a clear picture of the current strengths and shortcomings of contemporary

models, and hence an improved knowledge of the most valuable areas on which to focus

their work.
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Figure 6.1: Overview of the monotonically increasing research interests concerning discrete particle simula-
tions of particulate systems in the last 10 years. The statistics are obtained from Google scholar using the
following keywords: ‘discrete element method’, or ‘discrete particle simulation’. Of course there are other key-
words that could be used such as ’discrete particle method’, however, the main intention was to illustrate the
rapid increase in utilising particle simulations.

6.1. Introduction
6.1.1. Background and Aims
Granular materials – assemblies of multiple, discrete particles or ‘grains’ – are, after wa-
ter, the second most manipulated material on the planet [1], playing important rôles in
multitudinous natural and industrial processes [2–9]. Yet in spite of their ubiquity and
industrial relevance, and despite the significant volume of research in the field [10], the
behaviours of granular materials remain poorly understood and difficult to predict [11].

Our inability to accurately predict and control the behaviour of granular flows carries
many negative consequences for industries required to handle particulate media. For
instance, phenomena such as jamming, agglomerating or clogging [12] may significantly
reduce the efficiency of industrial flows [13] or even cause catastrophic structural failures
in storage silos [14, 15]; phenomena such as segregation (gradual separation of dissimilar
particle species) [16, 17], meanwhile, can prove similarly problematic, for instance in the
pharmaceutical industry [18], where a lack of mixing may – for obvious reasons – have
serious repercussions.

In order to avoid issues such as those described above, companies often resort to ad

hoc solutions, such as the construction of scaled down test systems or pilot plants, or
even opting to ‘hit and hope’ – simply constructing a system and attempting to resolve
any issues later. The former solution can often prove extremely costly and, since the
scaling behaviour of granular materials is also incompletely understood [3, 19, 20], may
still not provide any information relevant to the full-scale set-up. The latter, meanwhile,
is likely to result in decidedly sub-optimal efficiency or, worse, might fail entirely.

Increasingly, industries are turning away from such ‘practical’ methods, choosing in-
stead to utilise computational models. In particular, simulations produced via the dis-
crete particle method (DPM) [21–29] – or discrete element method (DEM) as it is more
commonly referred to – are used in order to gain an understanding and predictive, quan-
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titative knowledge of the dynamical and physical properties of granular systems. Dis-
crete particle models – a rapidly evolving field of research, see Fig.6.1 – carry a significant
advantage over practical investigations (experiments) in that they can provide a plethora

of information regarding the dynamics of each particle within the system at any given
point in time. This level of detail is, at present, near-impossible to achieve in practical,
experimental settings – techniques that can capture information regarding all particles
within a system typically suffer from poor time resolution [30], while systems capable of
imaging in real-time can generally only image relatively small systems, or limited frac-
tions of larger systems [31–33]. Similarly, techniques which provide detailed information
regarding the dynamics of a system [34] are often limited in their ability to provide infor-
mation regarding detailed structural and contact properties, and vice-versa.

Unfortunately, discrete element methods also carry certain notable disadvantages.
Firstly, the simulation of systems containing large (& 106) numbers of particles will typi-
cally require hardware that may be prohibitively expensive and timescales that are often
unfeasible. However, despite the current trends of increasing processing power in com-
putational systems and the falling cost of technology, such a problem is likely to persist
for a considerable period of time. This being the case, a more time-efficient alternative
is to use discrete element methods only when necessary, i.e. to determine the closure or
constitutive relations necessary for a continuum approach (micro-macro mapping – see
[35, 36] and references therein). Alternatively, it is possible to couple simulations with
continuum methods (coupled multi-scale methods, CMSM – see [37–39]).

An additional disadvantage of the discrete element method is the necessity to imple-
ment certain modelling assumptions when emulating particulate systems, e.g. particle
shapes (spherical or non-spherical), type of interactions (contact models) etc., which are
often approximations compared to ‘real life’. This raises an important question:

How accurately can DEM/DPM models emulate ‘real’ granular systems?

It is this question that forms the central theme of this paper. The ability of DEM sim-
ulations to faithfully recreate the behaviour of physical systems is pivotal to their use as
viable predictive models. While we have focussed thus far on the relevance of DEM sim-
ulations in industrial settings in order to quickly and simply give a feel for the magnitude
of the issues at hand, computational models also have numerous other highly impor-
tant applications regarding questions of science and progress in other disciplines. For
instance, granular systems provide useful, easily accessible analogues for various bio-
logical systems [40, 41], which may be difficult to study in-vivo or in the field, allowing
us to extract valuable information regarding, for instance, the behaviour of bacteria [42],
animals [43, 44] and even humans [45–47]. Computer models of granular systems may
even eventually provide us with the ability to predict and prevent disastrous geophysical
events, such as earthquakes, avalanches and landslides [48–50].

Before any of the above can be attempted, we must first ensure that computer (par-
ticle) simulations can indeed provide an accurate representation of the real systems that
they are designed to represent. In this work we raise, and aim to resolve, a series of ques-
tions pertaining to this matter: what is the current state of the field of discrete element
modelling? Under what conditions, and for what parameter ranges, can specific sys-
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tems be accurately modelled at present? How do we ensure that we implement sensible
values for particle properties? How can we test the validity of the numerous simplifying
assumptions used in simulations? Through an analysis of the existing literature and with
reference to our own experimental and numerical work we aim to address these vital and
pressing questions.

6.1.2. Article Outline
This chapter is structured as follows: In the following (Sec. 6.2), we begin by briefly list-
ing recent developments relating to the methods used to simulate particulate systems,
with particular emphasis on the post processing techniques implemented. We also de-
tail current works pertaining to parallelised discrete element simulations (Sec. 6.2.1) and
micro-macro mapping techniques (Sec. 6.2.2). We then discuss how discrete element
simulations are used in conjunction with experimental systems and the data produced
by these systems (Sec. 6.3), detailing the typical process by which suitable quantities can
be determined to recreate the real-world system being modelled. We then assess how
well DEM results compare to experimental data for two common experimental setups –
vibrated beds (Sec. 6.3.1) and inclined channels (Sec. 6.3.2) – and for a variety of system
parameters. Finally, we summarise our results and provide an outlook (Sec. 6.4).

6.2. Particle simulations
Over the past decades, a range of computational methods have been developed to ad-
dress and understand granular dynamics [51]. These include cellular automata (CA),
direct simulation Monte Carlo (DSMC), contact dynamics (CD) and the discrete ele-
ment/particle method (DEM/DPM).

In a simple, deterministic technique such as lattice-based cellular automata (CA),
particle positions are determined using rule-based mathematics or physics-based equa-
tions. CA utilise lattice like structures (grids) in which the physical domain is divided
into cells. Each cell corresponds to one of the defined number of states (see Goles et al.
[52]). The technique has been used, previously, to understand the flow of granular mate-
rials in silos [53–55], sand piles [51, 52, 56], and annular shear cells [57, 58], as well as the
granular flow over inclined channels [59, 60], in rotating drums [61, 62], and in hopper
flows with irregular particle shapes [63]. Although the method is computationally fast,
the predicted particle dynamics lack quantitative accuracy, agreeing only qualitatively
with experimental observations.

Granular dynamics have also been modelled using a stochastic direct simulation Monte
Carlo (DSMC) approach. This method solves the Boltzmann equation based on a di-
rect statistical simulation of the molecular processes described by the kinetic theory,
see [64, 65]. The technique, first proposed by G. A. Bird [64], is both computation-
ally efficient and relatively simple to implement as compared to DEM implementations.
The method has been successfully utilised to simulate dilute granular flows in two- and
three-dimensional vibrated containers [66] and Couette flows [67], for instance. Re-
cently, modified DSMC algorithms have been developed [68–70] which, due to their im-
proved algorithms, are faster than traditional DSMC methods and, more importantly,
consistent with DEM results [70].
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6.2.1. Discrete element method (DEM)
With the advent of computing technology, research in granular media has increased
fourfold since the past few decades. It was in the late 1970s’, when the myth of tracing the
trajectory of a particle or grain metamorphosed into a much desired reality. Since then,
particle tracking has become essential in numerous applications involving particulate
media.

DEM is categorised into two main – hard- and soft-particle [21, 51, 71] – categories.
In the hard-particle (rigid particles) approach, collisions are assumed to be instanta-
neous and binary whereas in the soft-particle approach the collisions are considered to
be enduring, i.e. the contact duration is finite1. Hard-particle based computations are,
in many cases, significantly faster as compared to equivalent soft-particle simulations.
Even today, when necessary, studies still utilise the hard-particle based particle simula-
tions, e.g. in dilute, rapid collisional flows. However, for highly dense, quasi-static flows,
where particle contacts are enduring and multiple, the soft-particle approach is, clearly,
preferable. For a detailed review of these approaches, their corresponding algorithms,
theoretical advances and applications we refer to recent reviews [21, 51, 72–74] and the
references therein.

Even though the majority of the references listed in these articles [21, 51, 72–74] con-
sider spherically shaped particles, particulate systems encountered in industry or na-
ture are often made up of non-spherical and/or irregularly shaped particles. Studies
have shown that particle geometry considerably affects the bulk dynamics of particulate
mixtures. As a result, a variety of techniques have been formulated to construct differ-
ent particle shapes (ellipses/ellipsoids, super-quadrics, polygons/polyhedrons, multi-
spheres etc.) and to perform efficient contact detection for these more complex geome-
tries. However, we do not review these state of the art techniques as these have already
been comprehensively addressed [71, 72, 75–80].

Computational speed-up

Despite tremendous efforts to allow DEM to successfully emulate reality, the compu-
tational time associated with soft-sphere DEM has always been considered a liability.
While soft-sphere based DEM provides us with a plethora of useful particle data, this
data requires a considerable amount of time to compute. For example, let us consider a
DEM simulation of a granular mixture. During a dynamic simulation process, one has
to store and update the particle positions at every time step, and also needs to detect all
collisions or contacts between particles and calculate the resulting forces due to these
contacts. However, in case of static mixtures, e.g. simulations concerning stationary
assemblies of rocks, it is the force computations that consume more time since the de-
tection of contacts for fixed neighbours is just a one time operation. Nevertheless, both
contact detection and force computations carry a high computational cost in most cases.

As a stepping stone towards minimising this computational effort, recent studies
have succeeded in developing efficient solutions (algorithms) either by developing state
of the art contact detection algorithms [81–84] or utilising multi-core [85–87] processors,

1Note that particles are geometrically still rigid. However, deformations are taken into account in force models.
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heterogeneous CPU2-GPU3 architectures [87–90], supercomputers [91] or parallelised
GPU clusters [92]. A modern day personal desktop – possessing two or four cores – is
able to simulate a fully three-dimensional simple soft-sphere (linear force model) DEM
simulation comprising 10,000 to 200,000 particles within a couple of hours. A highly par-
allelised cluster [93–96], meanwhile, would only require a couple of minutes to perform
such a task. Despite of advances in parallelised DEM packages, simulation of current
industrial applications which involve multitudes of highly polydisperse particles, in the
order of 109, is difficult because of the inherited complexity in the detection of contacts
[86]. As a result, studies have been focussing on a GPU-based framework for developing
a highly parallelised GPU based DEM solver. See [92] for a brief performance overview
for CPU- and GPU-based systems.

With such massive parallelism now available using programmable GPU hardware,
rapid advancements have been witnessed during the past 10 years. Innovatory simu-
lations on the order of millions of particles are being simulated (conducted) in quasi
real-time in confined environments [97], rotating drums [98], blenders [99] and gran-
ular soils [100], to give but a few examples. This is thanks to the sophisticated algo-
rithms developed for efficient collision detection [84, 101–107] and the construction of
memory-efficient data structure [108]. Using high performance GPU, [109] investigated
the effects of differing particle sizes in granular mixture flows, whereas [110] used it to
simulate fractures in heterogeneous media. Additionally, to bridge the gap between ideal
and realistic mixtures, studies have also considered the simulation of non-spherical par-
ticles using the GPU-based framework, see [111] for triangular particles, or [112, 113] for
convex polyhedrals.

6.2.2. Micro-Macro transition
Given that DEM is an efficient tool utilised to probe the intricate details of granular dy-
namics on the micro (particle and contact) scale, macroscopic quantities, such as den-
sity, velocity, stresses and other necessary fields, are essential in any study involving
development, validation and/or calibration of a continuum model. Besides using this
mapping tool to calibrate or validate continuum models, macroscopic fields are useful
to quantitatively compare experiments and particle simulations as well. For example, let
us consider monodisperse flows (mixtures made up of particles of the same type) over
inclined channels. In such experiments, often techniques such as particle image ve-
locimetry [115] are used to obtain velocity fields [116]. In order to compare these fields
with the DEM simulations, a micro-macro technique is essential.

Mapping of the microscopic scale information onto a macroscopic scale, e.g. con-
tinuum, has been under focus since the classical studies by [117, 118] and others [119].
Based on a variety of theoretical postulates, various methods for local averaging have
been formulated to extract these macroscopic quantities efficiently, for instance the bin-
ning of the microscopic fields into small volumes [73] and the method of planes [120].
However, most methods are restricted in terms of their application due to various lim-
itations, (see [73] and the references therein). One of the requirements for multi-scale
methods is to efficiently map the particle dynamics (microscopic) onto a macroscopic

2Central processing unit
3Graphics processing unit
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Figure 6.2: Comprehensive illustration of the contemporary philosophy adopted by many studies concern-
ing utilisation, calibration and validation of the discrete element method [114]. (a) Micro-macro transition
(b) Two-way coupling of the continuum and discrete model, also defined as coupled multi-scale mechanics
(CMSM).

field, which in turn satisfy the classical equations of continuum mechanics, i.e. the fun-
damental balance law of mass and momentum

Dt (ρ)+ρ∇·u = 0,
Dt (ρu)+ρu∇·u =∇·σ+ρg,

(6.1)

where Dt is the material derivative. The above equations are stated in terms of mass den-
sity ρ, bulk velocity u, and the stress tensor σ. “Coarse graining”4 or “homogenisation”
approaches to granular materials first appeared in the work of [121] and have been ex-
tended in a number of studies [122–133]. Coarse graining techniques have two essential
advantages over other types of averaging techniques. Firstly, the macroscopic quantities
produced exactly satisfy the continuum laws of motion. Secondly, they are applicable to
both static and dynamic granular media. With these advantages, the coarse graining ap-
proach has been utilised to study the results of computations or experiments and char-
acterise them in terms of their density, velocity, stress, strain, couple-stress and other
fields [134–140]. Futhermore, the coarse graining method described in [133] has been
extended to granular mixture flows near boundaries or discontinuities [141, 142] and

4On a different note, in molecular dynamics, the same term coarse graining is used when a system is rep-
resented by a reduced (in comparison with an all-atom description) number of degrees of freedom. Due
to the reduction in the degrees of freedom and elimination of fine interaction details, the simulation of a
coarse-grained (CG) system requires less resources and goes faster than that for the same system in all-atom
representation. As a result, an increase of orders of magnitude in the simulated time and length scales can be
achieved.
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bidisperse mixtures [36, 143]. These extensions [141, 143] have been applied to analyse
layered flows [35, 144] and segregation phenomena in bidisperse granular mixtures [36].

6.3. Discrete Particle Simulations and Experimental Systems

Even with the innovative theoretical extensions discussed in Sections 6.2.1 and 6.2.2,
emulations of ‘real’ particulate systems or experiments is still non-trivial. Fig. 6.2 illus-
trates two conceivable modelling philosophies that utilise discrete element simulations.
In Fig. 6.2a, we see a conventional approach adopted by the majority of contemporary
studies dealing with validation and calibration of discrete element simulations using ex-
periments. Single particle experiments are vital for establishing the contact parameters
(material properties) essential in discrete element simulations. Once appropriate values
for the contact parameters are established, both small and large scale simulations are
set up. Through small scale simulations, one is able to understand the intricate dynam-
ics – by micro-macro mapping – essential for developing an accurate predictive contin-
uum model. Once the continuum model is formulated, it can then be validated using
a large scale simulation or experiments. There exist several granular continuum formu-
lations that need closure or constitutive relations which are unknown, e.g. [145–147],
and need to be determined experimentally or via DEM simulations, e.g. [35, 36, 148].
However, when modelling more complex particulate systems, a two-way coupled multi-
scale mechanics (CMSM) approach is adopted, see Fig. 6.2b. Single particle experiments
are utilised to determine the particles’ material properties, which in turn are incorpo-
rated into small scale discrete element simulations. With the right material parameters,
the two simulation models (DEM and continuum) are dynamically coupled such that a
two-way feedback exists between the two models. The idea is to use a macroscopic con-
tinuum model even where the continuum method fails. In this case, the microscopic
model, i.e. DEM, solves for the non-continuum part locally and constructs meaning-
ful macroscopic data, which is incorporated into the continuum model. The coupling is
performed in select regions in space and time, thus reducing the computational expense
and allowing for the simulation of complex particulate systems. A detailed review of this
method is given by Weinan et al. [37].

Continuum theories are advantageous over purely simulational methods for several
reasons: (i) they describe the processes occurring in particulate mixtures in terms of dif-
ferentiable quantities, thus allowing the computation of the solution to the problem by
methods of mathematical analysis, e.g. finite difference schemes, finite element meth-
ods, finite volume, etc.; (ii) they overcome the need to specify exact microscopic config-
urations – the microscopic effects are captured in terms of macroscopic coefficients or
closure relations, e.g. [35, 149]; (iii) they can be scale independent of the particle num-
ber; (iv) they do not require an in-depth knowledge of DPMs or experiments. There-
fore, in order to have accurate continuum formulations, which are more time-efficient,
it is essential that the discrete element simulations emulate – qualitatively and quantita-
tively – realistic phenomena observed experimentally – thus, bringing us to the following
section.
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Comparing Experiment and Simulation
If discrete element simulation results are to be of any value to research or industry, they
must first be validated through comparison with data pertaining to corresponding ‘real-
world’ systems. Such validation can be achieved, to varying degrees of reliability, by as-
sessing the degree to which they compare to one or more of the multitudinous quantities
that characterise the state and dynamics of a granular system.

In the following sub-sections, we present examples from various studies in which
the behaviour of simulated and ‘real’ granulates are directly compared, focussing on two
widely-researched experimental set-ups, which are commonly employed in industrial
settings – vibrated beds and chute flows. By making such comparisons, we aim to build
up a picture of those situations in which current simulation models can be ‘trusted’ to
faithfully reproduce real-world systems and, conversely, cases in which results produced
by such models are likely to be unreliable.

6.3.1. Vibrated Systems
Vibrated systems are commonly used in industry for various processes, such as the com-
paction [150], sorting and mixing [151] of powders and granulates, but can also be ex-
ploited to provide useful ‘model systems’ for various natural and biological processes
[152, 153].

The behaviour of these systems is largely governed by the details of the vibrations
used to energise the system – frequency, f , amplitude, A and hence the dimensionless

acceleration, Γ = 4π2 f 2 A
g

, and the dimensionless energy input parameter S = 4π2 f 2 A2

g d
–

and the dissipative parameter χ = Nl (1− ε), where Nl is the number of layers in the
system and ε the normal coefficient of restitution.

These systems are highly appropriate testing grounds for validating DEM simula-
tions for two main reasons: firstly, compared to ‘real-world’ systems, and indeed other
simplified flow geometries where complex surface and frictional effects are more dom-
inant relative to collisional interactions, vibrated beds are relatively simple. Secondly,
experimental set-ups containing relatively few particles can be made to exhibit most of
the important phenomena observed in larger-scale systems [154, 155], allowing simula-
tions to be performed quickly and easily. Vibrated systems can also – depending on the
relevant energy input and dissipation control parameters [156, 157] – achieve numer-
ous, vastly differing physical states, ranging from jammed, solid-like and glassy config-
urations exhibiting slow dynamics [158, 159] to dilute, highly energetic gases [160, 161],
thus allowing agreement between experiment and simulation to be verified under vari-
ous conditions.

We begin by discussing the relatively simple case of dilute, monodisperse systems
of spherical particles, where the majority of collisional interactions are binary and con-
tacts between colliding particles are not enduring [162]. In such systems, the specific
details of a particle’s frictional and elastic properties are comparatively less important
[163, 164] and, hence, one may expect simulations to be able to recreate the behaviour
of experimental systems with comparative ease. Work by Géminard and Laroche [165]
looks at what may be considered the ‘extremal case’ of a dilute granulate – a single parti-

cle bouncing on a vibrating plate. Their research demonstrates, for this fundamental sit-
uation, a strong, quantitative agreement between experimental and simulational results
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concerning the mean energy possessed by a particle and its scaling with the relevant
driving parameters. Specifically, agreement was observed so long as the dimensionless
acceleration, Γ, with which the system is driven is greater than or approximately equal
to 1.4 (the situation for which, in this system, particle motion is no longer synchronised

with base motion). Here, the dimensionless acceleration is defined as Γ= 4π2 f 2 A
g , where

f and A are, respectively, the frequency and amplitude of the vibrations by which the
system is excited, and g is the acceleration due to gravity – i.e. Γ = 1.4 corresponds to
an applied acceleration 1.4 times greater than gravity. The aforementioned agreement
is observed despite the fact that their simulations do not include either sliding or rolling
friction coefficients, and assume a coefficient of restitution with no dependence on im-
pact velocity. It is perhaps worth noting that earlier, similar work by Warr et al. [166]
showed a significant disagreement between simulation and experiment. Interestingly,
however, this is thought by the authors to be due to problems with their experimental

techniques, as opposed to the limitations of their simulation model - the simulation re-
sults obtained were in fact found to agree closely with their theoretical predictions, and
indeed the subsequent experimental findings of Géminard and Laroche.

Studies of single-particle systems have also shown that more complex behaviour,
such as period-doubling bifurcations and the transition to chaotic motion, may also be
successfully reproduced by similarly rudimentary simulations; work by Tufillaro et al.

[167], for instance, demonstrates how a simple model assuming frictionless, instanta-
neous collisions and a constant restitution coefficient can correctly predict the bound-
aries in frequency-amplitude parameter space, which separate the different periodic and
chaotic motions exhibited by an experimental system.

We next turn our discussion from single particles to the slightly more involute case
of one-dimensional columns comprising multiple individual spherical particles. Once
again, simulated systems assuming a frictionless environment and a constant restitution
coefficient are shown to be capable of accurately emulating their experimental counter-
parts. The work of Luding et al. [168], for example, shows that such models can accu-
rately recreate experimental particle distributions, scaling relations and even the pres-
ence of clustering [169], whereby repeated collisions between dissipative particles lead
to localised increases in the packing density of particles, leaving other regions of the sys-
tem practically empty. This faithful reproduction of experimental observations demon-
strates that simulations may also faithfully reproduce dynamical processes in which par-
ticle collisions are no longer binary, but may involve multiple simultaneous particle con-
tacts.

Simulations concerning dilute granular fluids have also been shown to accurately
reproduce experimentally observed phenomena in systems with higher dimensional-
ity. For instance, simulations of two- and three-dimensional systems are capable of re-
producing the aforementioned clustering instability [169, 170] and the well-known non-
Gaussian velocity distributions observed in vibrofluidised granulates [171] – perhaps the
two defining features of a granular gas. It is interesting to note that for the case of a highly

constrained, quasi-two-dimensional system, the inclusion of frictional effects in simula-
tions becomes highly important in producing accurate results [172], while the behaviour
of fully-three-dimensional systems can still be accurately represented using frictionless
walls and particles [173]. In addition to successfully reproducing the known behaviour of
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granular systems, simulation models have also been used to discover and characterise
new phenomena unobserved in practical systems. An example of such a discovery is
that of low frequency oscillations or LFOs in three-dimensional vibrated systems [174],
a phenomenon first discovered using hard sphere simulations and later confirmed by
experiment [175]. A similar model was also used to discover the phenomenon of sudden
chain energy transfer events [176, 177] in quasi-two-dimensional systems, evidence of
which was latterly observed in experimental, 3D beds [178].

Having established the applicability of discrete element simulations to unary sys-
tems in one, two and three dimensions, we now relax the constraint of monodispersity,
and explore the degree to which simulation models can successfully characterise the be-
haviour of dilute systems comprising multiple, distinct particle species. Binary beds, and
indeed systems with higher degrees of polydispersity, exhibit various phenomena, such
as energy non-equipartition [179, 180] and segregation [16, 181], which are not observed
in the monodisperse case, and thus provide additional tests for the validity of discrete
element models.

Feitosa and Menon [179] were among the first researchers to directly address the
matter of energy non-equipartition, whereby two dissimilar particle species in the same

system may possess different kinetic energies, in violation of the zeroth law of thermo-
dynamics. Specifically, they demonstrate that binary systems of equally-sized particles,
which differ in their masses and elastic properties, will exhibit decidedly unequal aver-
age energies for the two differing species. The experimental work of Feitosa and Menon
[179] was later recreated in simulations by Wang et al. [182] who, unlike in many of the
studies previously discussed, implement both a simple friction coefficient for particle
interactions and a velocity-dependent restitution coefficient. Their setup differs from
the experimental case, however, in the introduction of periodic lateral boundaries.

The simulations of Wang et al. [183] were, in the dilute regime, found to reproduce
the main features of the experimental system explored by Feitosa and Menon [179], in-
cluding the higher concentration of heavy particles observed near the centre of the cell,
the well-mixed nature of the system on a local level, the absence of any significant clus-
tering and, most importantly, the difference in average kinetic energy, 〈EK 〉 between par-
ticle species, with heavier particles possessing greater energy. Moreover, the experimen-
tally observed invariance of the energy ratio between light and heavy particles with base
velocity, V , and the consistency of this ratio throughout the bed’s central region were
also successfully reproduced in simulations.

Although the similarities in findings of the two studies discussed above strongly hint
at the ability of discrete element simulations to successfully reproduce the behaviour
of vibrofluidised binary granular mixtures, we nonetheless lack any direct, quantitative

comparison of simulated and experimental binary systems. Indeed, to the best of the
authors’ knowledge, there exist few examples of such explicit comparisons in the existing
literature.

We aim to address this issue – and other under-investigated systems – by including
additional analysis of our own experimental and simulational data acquired from a va-
riety of three-dimensional binary granular beds, assessing the merits and limitations of
the application of DEM models to vibrated systems. Our experimental results are ac-
quired using the Positron Emission Particle Tracking technique [34, 184], while simula-
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tions are performed using the MercuryDEM software package [114, 185–187].
We look first at the situation investigated by Feitosa and Menon [179], of a binary

bed of spheres with equal volumes, but differing material properties, although we focus
on three-dimensional, as opposed to quasi-two-dimensional, systems. The reasoning
behind this choice of dimensionality is two-fold: firstly, most granular systems in ‘real
world’ scenarios are likely to be three-dimensional. Secondly, the dynamical behaviour
of three-dimensional systems are more complex than their lower-dimension counter-
parts – i.e. if the behaviour of these relatively complicated systems can be successfully
reproduced in simulations, then we can safely assume them to be capable of describing
the simpler one- and two-dimensional cases.

Figure 6.3 shows the variation with vertical height, z, of the packing fraction, η, for
both components of a variety of different binary systems. Results are shown for exper-
imental data sets alongside corresponding simulations, in which accurate values of the
driving vibrational frequency, f , and amplitude, A (and hence peak driving velocity, V ,

and dimensionless acceleration Γ= 4π2 f 2 A
g

) are used, as are known experimental values

of particles’ elastic coefficients, ε, densities, ρ, diameters, d , and hence masses, m.
It is worth noting that ε may perhaps be better interpreted as an informed fitting

parameter, as in reality the elasticity of a given collision is dependent on the relative
velocity between colliding bodies, in addition to other, more subtle factors relating to
particles’ material properties and their surrounding environment . The ε values imple-
mented are experimentally determined by measuring the pseudo-instantaneous veloc-
ity of a particle immediately before and after a colliision with a similar particle. For each
particle material used, a number of such collisions spanning a range of relative velocities
0.1 . v . 1.0 m/s are measured and used to calculate numerous individual values of ε;
the elastic coefficient for each particle species is then taken as the mean of all calculated
values for the relevant species.

In fact, the only important system parameters whose experimental values are not

used based on experimental data are the interparticle and particle-wall frictional coeffi-
cients, µ and µw , respectively, which are assigned a constant value of 0.1. Interestingly,
for the strongly-fluidised beds explored here, a variation in µ shows little effect on the
density profiles produced, while a variation in ε exerts a significant influence, implying
that collisional, as opposed to frictional, interactions are dominant in such systems. As
is immediately apparent from Figure 6.3, a strong agreement between experiment and
simulation is observed for the three combinations explored, strongly supporting the idea
that discrete element simulations are suitable for the numerical simulation of relatively
well-fluidised, binary granulates.

Not only are the observed profiles qualitatively similar for experiment and simula-
tion, but experimentally acquired values of the systems’ time-averaged centre of mass
positions (and therefore mean potential energies) agree to within 10% with results ob-
tained from simulation, a value not dissimilar to the statistical fluctuations within the
experimental data used for comparison. The segregation intensity, Is – a measure to the
degree of species-separation exhibited by a system [188] – is also found to agree to within
10% between experiment and simulation for the systems shown. In other words, we see
that our simulations produce strong quantitative agreement with experiment, in addi-
tion to the qualitative agreement noted in our comparison of the works of Feitosa and
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Figure 6.3: Packing density as a function of height for a variety of vibrated, bidisperse-by-material granular
beds. Data is shown for (a) a binary mixture of (light) glass and (heavy) steel particles driven with a dimension-
less acceleration Γ= 6.5, (b) a binary mixture of (light) nylon and (heavy) steel particles driven at Γ= 6.5 and (c)
a binary mixture of (light) aluminium and (heavy) steel particles driven with an acceleration Γ= 8. In all cases,
the bed depth at rest, NL , is equal to four particle layers. Data is shown for experimental results acquired using
positron emission particle tracking (blue circles) as well as MercuryDEM simulations (red diamonds) with, in
each instance, open symbols representing the particle distribution for the lighter component of the bed, and
solid symbols representing heavier particles.
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Figure 6.4: Fractional increase in the vertical centre of mass position of a vertically vibrated granular bed from
its resting (unexcited) value as a function of driving frequency, f , (panel (a)) and dimensionless amplitude,
A/d (with d the particle diameter), (panel (b)) for a fixed, constant vibrational energy input, S. The fractional

increase in centre of mass height is defined as h∗ = h−h0
h0

where h0 is the bed’s centre of mass height for

zero driving, and h is its time-averaged, steady-state value for a continuously excited system. Data is shown
for both experiment (triangles) and simulation (circles) and for two different bed depths, specifically NL = 6
(black circles and blue triangles) and NL = 3 (grey circles and red triangles).
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Figure 6.5: Variation of the non-dimensionalised vertical mass centre h = Zcm
d

with the ratio of particle den-

sities,
ρH
ρL

, for a series of binary systems with depth NL = 5.4 driven with dimensionless acceleration Γ = 3.5.

Here,
ρH
ρL

gives the relative density – and, since all particles used are of equal size, mass – of the heavier (H)

particle species to the lighter (L) species for the binary granular mixture corresponding to each data point.
Data is shown for experimental (black circles) and simulated systems (red triangles, blue squares and green
diamonds). The simulations corresponding to the triangular data points represent the ‘real’ combinations of
materials used in experiment, with known values of inelasticity, ε, and density, ρH ,L implemented (see table
6.1). Data is shown for binary beds of steel and brass (SB), nylon and glass (NG), glass and steel (GS), glass
and brass (GB), nylon and steel (NS) and nylon and brass (NB). Square and diamod-shaped data points, mean-
while, correspond to the case in which only the density ratio between particles,

ρH
ρL

, is considered, with the

particle elasticities held equal at values of εH = εL = 0.83 and εH = εL = 0.41, respectively. The strong agree-
ment between experiment and simulation for the cases in which experimental ε values are utilised, compared
to the considerable differences between cases in which particle elasticities (and the ratios thereof) are held
constant, clearly demonstrates the importance of ε to the accurate reproduction of real-world systems using
DEM models. Figure taken from our reference [189].

Menon [179] and Wang et al. [183].

In fact, the agreement demonstrated in the small selection of images shown in Fig-
ure 6.3 is observed to persist across considerable ranges of parameter space. Further
evidence of the ability of DEM simulations to reproduce the behaviours of experimental
systems for a wide variety of system parameters and combinations thereof may be seen
in our Figures 6.4, 6.5 and 6.6. Figure 6.4 demonstrates the accuracy with which simu-
lations may predict a monodisperse system’s particle distribution and, hence, centre of
mass position for numerous different combinations of the driving parameters f and A as
well as for differing particle numbers, N , and hence bed depths or ‘layer numbers’, NL .
The layer number, or ‘bed depth’, NL is simply defined as the number of resting layers
within a system (i.e. the number of layers formed when the system is exposed to zero
excitation) normalised by the particle diameter, d . In Figure 6.5 we see that the agree-
ment between simulationally and experimentally obtained values of the vertical mass
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Table 6.1: Dimensions of spherocylindrical and spherical particles used in experiment.

Particle Diameter, Length, Aspect Ratio,
Class d (mm) l (mm) A = l/d

I 23.8 2 11.9
II 23.8 3 7.9
III 11.8 2.5 4.7
IV 11.8 3 3.9
V 9.8 3 3.3
VI 7.8 3 2.6
VII 9.8 4 2.5
VIII 5.0 5.0 1.0
IX 4.5 4.5 1.0
X 4.0 4.0 1.0
XI 3.0 3.0 1.0

centre persists also for the more complex case of binary systems, successfully account-
ing for variations in particle density and elasticity and, indeed, the combinations thereof
for differing binary mixtures. In particular, this figure provides a stark illustration of the
importance of particle inelasticity to the behaviour of granular systems, and hence the
necessity of the correct implementation of this property in computational models.

In Figure 6.6, meanwhile, we compare simulated and experimental segregation in-
tensities, Is , achieved by systems in their steady states. Data is once again shown for
various combinations of particle material. This image provides a fascinating insight into
the importance of implementing accurate values for particles’ restitution coefficients, as
simulated and experimental results are observed to diverge sharply when differences in
ε are not accounted for, even when all other system parameters are accurately imple-
mented.

We have, thus far, demonstrated that DEM simulations are highly capable of accu-
rately reproducing, both qualitatively and quantitatively, the physical properties and dy-
namical behaviours of relatively dilute, well-fluidised monodisperse and binary systems
in one, two and three dimensions. However, as we tend toward the high-density limit
in which the condition of fluidisation is no longer fully upheld and systems experience
an increased prevalence of enduring contacts and a greater influence of frictional inter-
actions, the simplified force models adopted by DEM simulations face a more stringent
test.

Returning to the case of a simple, one-dimensional column – where frictional effects
between particles are limited due to the restricted angle of impact between particles –
we once more find that simulations can quantitatively reproduce bed behaviours; Figure
6.7, for instance, shows that – as with the dilute case – the gravitational potential energy
of a system can be accurately predicted for a range of driving parameters and system
sizes. Simulations are also found to accurately predict quantities such as the frequency
of the periodic motion achieved by dense systems under specific driving conditions.
Other studies have shown that, in addition to the global properties mentioned above,
simulations may also closely reproduce the internal dynamics of a columnar system on
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Figure 6.6: Variation of segregation intensity, Is , with the density ratio,
ρH
ρL

, of particles in a variety of binary

granular systems. For all cases represented in this figure, a segregation intensity of zero represents a perfectly
mixed system, while a value of 0.5 indicates a fully separated bed. Data is shown for beds of depth NL = 2.5
(top) and NL = 10 (bottom), both systems driven with a constant dimensionless acceleration Γ = 17. In both
panels, experimental data are represented by triangles, while squares represent simulations in which experi-
mental density and inelasticity values are implemented and circles represent the case in which segregation is
driven purely by density differences (εH = εL = 0.91). Filled circles correspond to experimental density ratios,
once more demonstrating the considerable discrepancy between simulation and experiment when inelastic-
ity effects are not considered. As with Figure 6.5, experimental particle combinations (and the simulations in
which the relevant experimental parameters are implemented) are specifically labelled, with data here being
shown for combinations of steel and brass (SB), glass and aluminium (GA), aluminium and steel (AS), glass
and steel (GS) and glass and brass (GB). Figure taken from our reference [190].

the ‘microscopic’ level – work by Rosato et al., for instance, has recently demonstrated
that the experimentally measured [192] speed of a compression wave through an excited
granular column may be correctly determined in simulation [193]; the impressive agree-
ment observed between experiment and simulation provides a pleasing example of the
ability of non-Herzian contact models to accurately reproduce physical processes even
in relatively dense systems.

Studies of two-dimensional systems also show a continued strong agreement be-
tween simulations and experiment in the high-density case. Work by Yang and Hsiau, for
instance, shows an impressive quantitative agreement between experimental and simu-
lated velocity distributions [194] as well as close correspondence regarding the diffusive
behaviours and granular temperatures [195] of dense, two-dimensional beds. Ventur-
ing further toward the high-density limit, where particle motion becomes less fluid-like
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Figure 6.7: Time averaged gravitational energy, EP , for a column of particles exposed to continuous vibrational
energy input as a function of the oscillatory frequency, f , of the moving wall providing energy to the system.

As with Figure 6.4, data is shown for a fixed energy input (S = 4π2 f 2 A2

g d
= 1.83) achieved through a variety of

f -A combinations. Data is shown for one-dimensional columns comprising 15 particles (top) and 20 particles
(bottom), presenting in each case both experimental (circles) and simulated (crosses) data sets. In each panel
shown, the resting gravitational potential energy, E0 , possessed by the bed at zero energy input is subtracted
from EP in order to isolate the potential energy gained by the system through the applied vibrational excitation.
Figure taken from our reference [191].

and granular beds begin exhibiting crystallisation [196] and glassy properties [197], the
strong similarities between experiment and simulation are still found to persist. Studies
have found, for instance, that the solidus point – the filling fraction for which a gran-
ular bed ‘freezes’ – observed for a two-dimensional experimental system agrees quan-
titatively well with that pertaining to a simulated system of disks [198, 199]. It is rather
remarkable that such a strong, quantitative agreement is observed here in spite of several
considerable differences between the experimental and simulated systems investigated,
in particular the differences in particle dimensionality, with three-dimensional spheres
used in experiment and two-dimensional discs modelled in simulation, and the fact that
while experimental granulates are inherently non-equilibrium systems, the simulations
to which they are compared correspond to an equilibrium state. Simulations are also
found to successfully and accurately capture the structural configuration of dense, two
dimensional systems, as demonstrated by a strong agreement between experimentally
acquired and simulated radial distribution functions and shape factors [199–201]. In
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fact, the only deviations between the experimental and simulational results of the cited
articles are thought to arise simply due to the imperfectly two-dimensional nature of the
experimental system studied, leading to a finite number of out-of-plane collisions be-
tween particles and hence overlap in the resulting projections used to determine particle
distributions. In other words, for a perfectly two-dimensional experimental set-up, one
may well expect a near-perfect agreement across the full range of system parameters.

For the case of fully three-dimensional granular beds, it becomes increasingly diffi-
cult to conduct direct, quantitative comparisons of the behaviours of simulated and ex-
perimental particulate systems. Interestingly, the difficulty in comparison arises largely
from the limitations of the currently available experimental techniques as opposed to
the limitations of contemporary computational methods. For instance, at high packing
densities, the high collision rate between particles makes it highly difficult to resolve par-
ticles’ instantaneous velocities due to the limited data acquisition rates of experimental
equipment [202, 203], while the opacity of a densely-packed system will clearly render
the real-time imaging of a three-dimensional system’s interior considerably more com-
plicated. Nonetheless, parameters such as mean squared displacement (MSD) – which
reduce the noise associated with direct measurement of particle velocities – have been
shown to produce a pleasing qualitative agreement between simulation and experiment
in both two- [203] and three-dimensional [204] systems. Other behaviours, such as the
time-dependent compaction of a granular bed and the variation of particle mobility with
packing density, are also found to be qualitatively reproduced by simulations [205]. Al-
though the existing literature – and indeed our own findings – show that DEM simu-
lations are capable of emulating their experimental counterparts on a qualitative level,
there exists, at present, little conclusive evidence to either support or disprove the abil-
ity of such simulations to provide a full, quantitatively accurate reproduction of dense,
three dimensional, vibrofluidised systems.

We have thus far assessed the viability of discrete element simulation models across a
broad spectrum of system parameters and dimensionalities. However, all of the research
discussed up to this point pertains to granulates composed entirely of perfectly spheri-

cal particles. As we have previously mentioned, ‘real’ particle flows observed in industry
and nature will seldom be composed of exclusively spherical constituents. However, as
we have repeatedly observed from the studies discussed above, a simulation does not
necessarily have to precisely match its experimental counterpart in terms of particle ge-
ometry and material properties in order to elicit an accurate, quantitative reproduction
of the system’s dynamical behaviours and structural properties. This fact is exemplified
in our reference [208] where it is shown that the particle distributions and segregative be-
haviours of binary systems comprising particles differing both in density and geometry

may be accurately and quantitatively reproduced using simulations of solely spherical

particles. An example of the close agreement observed is depicted in Figure 6.8. The
simulated density profiles shown in Figure 6.8 account for changes in particle geometry
through an appropriate alteration of the diameter of the spherical particles modelled,
based on the radii of gyration [209–211] of the non-spherical shapes used in experiment,
and an alteration of the particles’ restitutive coefficients, taking into consideration the
additional translational kinetic energy lost to the rotational modes [212]. For the case of
gaseous systems, where contacts between particles are near-instantaneous, agreement
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Figure 6.8: Packing density profiles for a variety of binary granular systems comprising particle species equal
in volume and density (and hence mass) but differing in geometry. Data is shown for systems of (a) spheres
and cuboids driven at a frequency f = 40 Hz and an amplitude A = 1.67 mm, (b) cuboids and disc-like particles
driven with the same f and A as the previous system, (c) spheres and cuboids driven with f = 100 Hz and A =
0.67 mm and (d) spheres and cuboids driven with f = 80 Hz and A = 0.42 mm. In all cases, a dimensionless bed
height NL = 2.5 is used. For all images shown, particles possessing a higher radius of gyration, rg , (i.e. larger
‘effective size’ [206, 207]) are represented by dashed lines, while solid lines correspond to lower-rg species,
with black lines corresponding to experiment and yellow lines to simulation. Figure taken from our reference
[208].
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between simulation and experiment is strong for a variety of particle geometries and
materials, across a range of driving parameters. However, for increasingly dense beds
where systems become sensitive to the more specific aspects of interactions between
particles as well as the differences in packing density achievable by shapes of differing
geometries [213, 214] this simple model is, rather unsurprisingly, found to fail.

In recent times, a number of simulation codes have been developed which are capa-
ble of directly modelling particles of various diverse geometries. Although inherently less
computationally efficient than simulations involving only spherical particles, these algo-
rithms allow a deeper investigation of the influence of particle shape on the behaviours
of vibrated granulates across an increased range of parameter space.

Perhaps the simplest non-spherical geometries to numerically model are sphero-
cylinders and ellipsoids, due at least in part to the relatively simple contact detection
algorithms required [215, 216]. Prior studies have shown that DEM simulations using
these particular particle shapes can provide a close, quantitative agreement with ex-
periment, with work by Pournin et al. [216], for instance, successfully reproducing the
self-assembly of a bed of spherocylindrical particles experimentally observed by Villar-
ruel et al. [217]. Even for the relatively complex case of a densely-packed, fully three-
dimensional system, a comparison of the two studies shows quantitative agreement in
terms of the initial and final packing densities achieved and even the timescales corre-
sponding to the ordering processes within the systems explored. Beyond the constraints
of ellipsoidal/spherocylindrical geometries, there exists an apparent lack of DEM-based
research focussing on vibrated systems with more complex non-spherical constituents,
despite the existence of numerous such studies pertaining to sheared beds [218, 219]
and gravity flows [183, 220], for instance. Recently, however, the multi-sphere method

[221], which has proved highly effective in the modelling of other system geometries
[222–224], has begun to be applied to vibrated and vibrofluidised beds. Using the multi-
sphere approach, each non-spherical particle within a system is composed of a num-
ber of smaller objects, creating ‘composite particles’, the modelling of which is often
more computationally efficient than for complex shapes represented using single par-
ticle models [225, 226]. Work by Chung et al. [227], for example, demonstrates, for the
case of simple paired particles, an excellent, quantitative agreement between experi-
ment and simulation, providing strong support for the validity and applicability of the
multi-sphere model in vibrated beds. Pei et al. [228], meanwhile, implement more com-
plex elongated particles comprising spheres of differing sizes. They study the effect of
geometry on the transfer of electrostatic charge between particles, finding their results
to agree qualitatively with experimental expectations.

Qualitative predictions arising from numerical studies using the Monte Carlo method
[209] to simulate the segregative behaviours of particles possessing still more complex
geometries also agree well with experimental observations [208]. Although these simu-
lation methods can at best be described as semi-quantitative, the observed correspon-
dence between experiment and simulation nonetheless shows promise.

In summary, we have demonstrated that numerical simulations of vibrated and vi-
brofluidised granular beds can provide quantitatively accurate models of the behaviour
of these systems over a wide range of parameter space. The models used are capable
of recreating numerous complex behaviours exhibited by particulate systems spanning



6

1186. Keeping it Real: How Well can Discrete Particle Simulations Reproduce Reality?

Figure 6.9: The above figure, adopted from Forterre & Pouliquen [232], illustrates three flow – solid, liquid and
gas – regimes attained by pouring glass beads on a pile.

one, two or three spatial dimensions, existing in solid-like, liquid-like or gaseous states
and comprising particles possessing various diverse material properties. While there
remain certain cases where the applicability of particle simulations is yet to be fully ver-
ified, with the continuing improvements in processing power, in addition to the further
refinement and development of the computational methods and contact models associ-
ated with DEM simulations, it is likely that these remaining issues will be resolved in the
not-too-distant future.

6.3.2. Flows over inclined channels (chute flows)
Similar to vibrated systems, inclined channels (chutes) are also commonly employed
in various industrial processes, for example in the mining, pharmaceutical and food-
processing industries, which handle particulate media [2]. Besides their numerous in-
dustrial applications, a range of geophysical events (including avalanches, landslides,
debris flows, see [229–231]), can be emulated utilising this simple flow geometry. Hence,
a thorough understanding of the relevant granular dynamics is not only vital for design-
ing efficient handling equipments, but also for developing accurate continuum formu-
lations used to predict these hazardous natural events5 . Attributable to the inherent
nature of granular materials to exhibit a range of diverse behaviour, they are broadly
categorised into three regimes: solid, liquid, and a gaseous (see Fig. 6.9). Vibrated sys-
tems (section 6.3.1) can, under certain circumstances, fall into the category of gases be-
cause the particulate media is dilute and the grains interact through binary collisions.
However, depending on the level of energy input and the chosen dissipation parame-
ters, these systems can appear to be solid- or liquid-like as well. In contrast to vibrated
systems, granular flows over inclined channels fall in the category of intermediate liquid
regimes, where the flows are rather rapid and dense – high volume fraction – and the
momentum exchange and energy dissipation is due to both collisional (instantaneous)

5These continuum formulations are equally applicable to model industrial flows.
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Figure 6.10: A snapshot of a periodic box containing bidisperse mixtures flowing over rough inclined channels.
The box is utilised to simulate infinitely long inclined channel flows.

and frictional (enduring) contacts between the particles. This section focusses solely
on these dense liquid flow regimes. Essentially, a granular material is a conglomerate of
multiple discrete, solid constituents, which are typically dispersed in a medium. In rapid
dense flows, the particles are much denser than the interstitial fluid with low dispersion
(closely packed). As a result, the interstitial fluid, e.g. air, is often neglected as it has neg-
ligible effect on the bulk flow behaviour. Despite such simplifications, the behaviour of
these dense rapidly flowing dry particulate media is yet to be completely understood.

In order to gain an improved understanding, studies have utilised a varied range of
experimental setups – plane shear, annular shear cells, vertical chutes, rotating drums,
heap flows, and inclined channels (our current interest) – in which the granular mate-
rial is subject to simple or planar shear. For the schematics of these setups, see MiDia
[233]. By employing the available state of the art experimental techniques, such as par-
ticle imaging velocimetry (PIV) [115], particle tracking velocimetry (PTV) [234], force
sensors [235, 236], acoustic probes [237], tracked transmitters [238], capacitance probes
[239], optical imagery [240], digital imaging [241–243], refractive index methods (RIM)
[244], X-ray tomography [245], magnetic resonance imagery [246], studies have not only
determined the kinematic properties, but also the rheological behaviour of dense gran-
ular flows. However, in 3D, no contemporary experimental technique has the ability to
directly determine the local or global stresses generated in such flows. In contrast, dis-
crete element simulations are able to provide all the useful information necessary to fully
understand the kinematics and dynamics of a system – hence this indispensable need for
cooperation and agreement between experiments and (discrete element) simulations.

Although simple, understanding dense inertial flows has been and still is a daunting
task. We begin with a relatively simple case of monodisperse flows over both smooth
and rough inclined channels. Interests in understanding these flows date back to the
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70s’ where several studies [247–251] focussed on determining the rheological properties
(constitutive laws) of mixtures constituting sand and glass beads. Later Hwang and Hogg
[252] and Brennen et al. [253], focussed on examining the diffusive remixing in these
flows and illustrated the possibility of granular jumps or bores, respectively. However,
due to the lack of intrusive experimental techniques to precisely determine the flow ve-
locity, solid volume fraction and granular temperature, many studies utilised computer
simulations as an alternative approach, see [254, 255] and references therein. Camp-
bell et al. [254, 256] were one of the first to compare their particle simulations of two-
dimensional unidirectional flow of inelastic circular cylinders with experiments. They
used a hard-sphere DEM approach and observed their results to qualitatively match
the findings of Augenstein & Hogg [250] and Bailard [257], but not of Savage [251] and
Ridgway & Rupp [247]. While the majority of the studies focussed on understanding
the fundamentals [258–264] and developing continuum formulations [145, 265, 266], it
was in the early 90s’ where discrete element simulations were employed to analyse the
two-dimensional [267–269] and three-dimensional [270] flow behaviour of inelastic fric-
tional particles. However, most of these simulations either contained very few particles
– compared to todays standard –[267–269] or were not fully steady [267].

In the early 2000s, a few of the calibration steps illustrated in Fig. 6.2a were pur-
sued to investigate flows of glass beads over a rough inclined channel [271]. Using a
combination of experiments and discrete element simulations, Hanes and Walton [271]
studied the effects of basal and side-walls roughness on the flow structure and its dy-
namics. In their experiments, steady flows were observed for a range of inclinations.
Furthermore, for two inclinations, the particle velocities (both near the side-walls and
at the free-surface), the mass flow rate and the flow depth were found to be in relatively
good agreement with discrete element simulations. Furthermore, their DEM simula-
tions utilised the contact parameters for glass beads which were determined using single
particle experimental measurements carried out by Lorenz et al. [272]. Similarly, several
other studies [35, 149, 273, 274] have used DEM to simulate both steady and unsteady
flows of cohesionless particles (glass beads) and found them to be in good agreement
with experimental observations. Silbert et al. [273, 275] investigated the rheology of fully
three-dimensional, steady, dense flows of cohesionless frictional spheres over rough in-
clined planes. The channels were made rough by sticking particles on the channel sur-
face, over which the material flows. Among the areas studied were the effects of param-
eters, such as the inter-particle friction coefficient, inelasticity, flow heights and channel
inclinations. Steady flows were found to exist over a wide range of inclination angles and
heights confirming the experimental observations of Pouliquen [148]. For different flow
heights (thick flows), Silbert et al. [273] found the flow properties, such as velocity and
strain-rate, to be sensitive to the interparticle friction coefficient. Additionally, for thick
enough flows the velocity profiles and rheology were shown to obey Bagnold scaling.
However, when gradually reducing the flow height, Silbert et al. [275] observed transi-
tions from Bagnold rheology to linear velocity profiles, consistent with the experimental
observations of Lemieux & Durian [276] (avalanches), Ancey [277] (linear velocity pro-
files) and Pouliquen [148] (Bagnold scaling). Furthermore, Silbert et al. [275] observed
that both thin and thick flows obey a simple scaling law consistent with the experiments
of Pouliquen [148]. In addition to the range of parameters – such as the flow height,
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angle of inclination, etc. – considered to understand their effects on these flows, Wein-
hart et al. [35] and Thornton et al. [149] also systematically investigated the effects of
varying basal properties. By changing the basal particle diameter or inter-particle fric-
tion between the flowing particles and fixed base particles, [35, 149], they studied the
effects on the effective macroscopic friction coefficient. For varying basal particle diam-
eters, Weinhart et al. [35] found their simulation results to be in good agreement with
the empirical law determined by the experiments of Pouliquen & Forterre [148, 278].
Not only did Weinhart et al. [35] obtain a DEM validated empirical law for the effective
macroscopic friction coefficient, but they also determined other closure relations, such
as for ratio of the stress in the downslope and normal direction (flow depth), K , mean
flow density, ρ̄ and the shape of the velocity profile, α, – essential for solving the contin-
uum shallow-layer granular continuum model, e.g. as shown in Chapter 2 or references
[145, 147]. Similarly, for varying basal contact friction coefficients, Thornton et al. [149]
presented a modified empirical law [278], which could be used in continuum models to
simulate flows over varying base types, i.e. rough or smooth. In addition, by choosing the
right inter-particle collision model and contact parameters, recent experimental studies
have further validated discrete element models of monodisperse glass spheres over non-
rotating [279] and rotating smooth inclined channels [116, 280], thereby illustrating once
more the current ability and future potential of discrete element simulations to emulate
and help understand monodisperse flows over both smooth and rough inclined chan-
nels. For more examples and a detailed review concerning other applications of discrete
element simulations, see [74, 233].

As stated earlier, real-world flows comprise particles of varied sizes, densities, shapes
and many other characteristic features. Attributable to these varied features, particles
in dense rapid flows (also in vibrated systems) tend to arrange themselves in distinct
spatial patterns[10, 283–286], which is termed as particle segregation. Despite many
differences in particle attributes, differences in size and density are considered to be
the most important, see [285, 286] and references therein. Similar to the interest shown
in understanding monodisperse flows, several experimental studies have attempted to
address the issue of size-based particle segregation in rapid dense flows over inclined
channels [265, 279, 287–293]. It was in the late 90s’ when a two-dimensional discrete
element simulation of inelastic disks was carried out to quantitatively describe particle
segregation [294]. However, no quantitative agreement was achieved with the experi-
ments of Savage & Lun [265] because of the different mixture compositions considered.
While many studies, e.g. see Tunuguntla et al. [281], Fan and Hill [295], Schlick et al.

[296], focussed on developing accurately predicting continuum segregation models us-
ing DEM, Thornton et al. [186] illustrated the need of a frictional tangential force colli-
sion model for producing steady flows with strong segregation as seen in experiments.
Interestingly, similar results were also produced by simply adding tangential dissipation
to the contact model [186]. Although they were able to observe realistic flow behaviour,
further investigation is necessary to understand the effects of the chosen contact mod-
els on segregation. Recently, by a systematic fine tuning (parameter calibration) of the
contact model, Bhattacharya & McCarthy [279] showed quantitative agreement with ex-
periments. While purely size-based segregation has been a topic of interest for several
years, Tunuguntla et al. [281] (Chapter 4) investigated both size and density effects on
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Figure 6.11: The above phase-plot is constructed using several fully three-dimensional periodic-box DEM sim-
ulations of bidisperse mixtures, comprising of two types of particles. Using a simple force model, homoge-
neously mixed bidisperse mixtures, for a range of size- and density-ratios, are allowed to evolve till steady
state is reached. Given ŝ = s2/s1 and ρ̂ = ρ2/ρ1 as the size- and density-ratios, the above illustration plots
the normalised relative vertical center of mass of type-2 particles, D̂com = (z2

com − zb
com )/zb

com , with z2
com the

vertical center of mass of type-2 particles, and zb
com the bulk vertical center of mass. As an example, for a

purely size-based mixture (ŝ, ρ̂) = (1.4,1.0), we have D̂com = 0.5, implying that the large particles rise towards
the free-surface whereas the small particles settle near the base of the flow. Additionally, the solid line denotes
the line of weak segregation predicted from the continuum theory model of Tunuguntla et al. [281] whereas
the dotted-dashed line is the weak segregation line predicted analytically by Jenkins & Yoon [282] using kinetic
theory. For more details see Tunuguntla et al. [281].
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segregation, see Fig. 6.11. Although no direct quantitative comparisons were made with
experiments, qualitative agreements were found with the experiments of Felix & Thomas
[288]. These results imply that, wih proper calibration of DEMs, one should be able to
effectively emulate the experimentally observed particle phenomena on a quantitative
level.

Although studies have shown particle shape to have significant effects on particle
dynamics, there exist very few studies concerning the experimental validation of DEMs
of non-spherical particles flowing over inclined channels. Nevertheless, by proper cal-
ibration, Vu et al. [297] illustrated the ability of DEMs to simulate flowing ellipsoids in
an attempt to simulate the dynamics of flowing soybeans, their results being further vali-
dated by experimental findings. However, additional validation of particle simulations is
required to comfortably apply them to the analysis of the complex flows of non-spherical
particles.

6.4. Summary and Conclusions
Through analysis of the extensive literature related to the computational modelling of
granular and particulate flows, we provided an overview of the extent to which current
discrete element simulations may successfully emulate the behaviour of dynamic ex-
perimental systems, focussing specifically on vibrofluidised beds and chute flows – two
systems with direct relevance to numerous natural and industrial processes.

We carefully examined the specific circumstances under which computer models
may – if correctly implemented – be expected to accurately recreate experimental sys-
tems for two commonly explored types of granular flow. We show that simulations of
vibrated systems using the discrete element method are capable of quantitatively pre-
dicting the behaviour of granulates in one-, two- and three-dimensional systems, for the
case of monodisperse beds and bidisperse mixtures, and for systems in dilute gaseous
states, liquid-like states and densely-packed solid-like states. Discrete element models
of chute flows, meanwhile, are found to show strong quantitative agreement with exper-
iment for monodisperse flows across flat, bumpy, frictional and smooth surfaces for all
dimensionalities. The segregative behaviour of binary systems, which are bidisperse-
by-size, have also shown to be correctly simulated using the discrete element method,
although agreement between simulated and experimental systems comprising particles
of differing densities remains to be directly tested.

Perhaps the most pressing open question for both vibrated granular systems and
chute flows is whether the effects of particle shape can be adequately captured by simu-
lation models. At present, although quantitative agreement has been observed for very
simple systems, and qualitative trends reproduced for more complex cases, there exists
little direct evidence to concretely confirm or deny the suitability of current models to
the task of modelling non-spherical systems. Considering that the majority of particles
involved in real industrial and natural processes possess non-spherical geometries, this
is most certainly an issue worthy of direct, systematic research in the future.

In conclusion, the collected works discussed here demonstrate the ability of dis-
crete element simulations to quantitatively emulate experimentally observed phenom-
ena exhibited by dry granular media in both vibrated beds and liquid-like regimes (chute
flows). In doing so, we show that such simulation models provide a potentially power-
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ful tool with which we may better understand and predict the behaviour of granulates
in these commonly used flow geometries. The successful application of DEM models to
these canonical systems suggests that they may indeed prove equally valuable in other
granular systems.
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[273] L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, Gran-

ular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E 64,
051302 (2001).



6

142 References

[274] L. E. Silbert, G. S. Grest, S. J. Plimpton, and D. Levine, Boundary effects and self-

organization in dense granular flows, Phys. Fluids (1994-present) 14, 2637 (2002).

[275] L. E. Silbert, J. W. Landry, and G. S. Grest, Granular flow down a rough inclined

plane: transition between thin and thick piles, Phys. Fluids (1994-present) 15, 1
(2003).

[276] P.-A. Lemieux and D. J. Durian, From avalanches to fluid flow: A continuous picture

of grain dynamics down a heap, Phys. Rev. Lett. 85, 4273 (2000).

[277] C. Ancey, Dry granular flows down an inclined channel: Experimental investiga-

tions on the frictional-collisional regime, Phys. Rev. E 65, 011304 (2001).

[278] O. Pouliquen and Y. Forterre, Friction law for dense granular flows: application to

the motion of a mass down a rough inclined plane, J. Fluid Mech. 453, 133 (2002).

[279] T. Bhattacharya and J. J. McCarthy, Chute flow as a means of segregation character-

ization, Powder Tech. 256, 126 (2014).

[280] S. S. Shirsath, J. T. Padding, J. A. M. Kuipers, T. W. J. Peeters, and H. J. H. Clercx, Nu-

merical investigation of monodisperse granular flow through an inclined rotating

chute, AIChE 60, 3424 (2014).

[281] D. R. Tunuguntla, O. Bokhove, and A. R. Thornton, A mixture theory for size and

density segregation in shallow granular free-surface flows, J. Fluid Mech. 749, 99
(2014).

[282] J. T. Jenkins and D. K. Yoon, Segregation in binary mixtures under gravity, Phys. Rev.
Lett. 88, 194301 (2002).

[283] J. Bridgwater, Fundamental powder mixing mechanisms, Powder Tech. 15, 215
(1976).

[284] G. Metcalfe, T. Shinbrot, J. J. McCarthy, and J. M. Ottino, Avalanche mixing of gran-

ular solids, (1995).

[285] R. Hogg, Mixing and segregation in powders: evaluation, mechanisms and pro-

cesses, KONA 27, 3 (2009).

[286] J. Bridgwater, Mixing of particles and powders: Where next? Particuology 8, 563
(2010).

[287] V. N. Dolgunin and A. A. Ukolov, Segregation modeling of particle rapid gravity flow,

Powder Tech. 83, 95 (1995).

[288] G. Félix and N. Thomas, Evidence of two effects in the size segregation process in dry

granular media, Phys. Rev. E 70, 051307 (2004).

[289] V. N. Dolgunin, A. A. Ukolov, and O. O. Ivanov, Segregation kinetics in the rapid

gravity flow of granular materials, Theor. Found. Chem. Eng. 40, 393 (2006).



References

6

143

[290] V. N. Dolgunin, O. O. Ivanov, and A. A. Ukolov, Segregation kinetics of particles

with different roughneses and elasticities under a rapid gravity flow of a granular

medium, Theor. Found. Chem. Eng. 43, 187 (2009).

[291] S. Wiederseiner, N. Andreini, G. Épely-Chauvin, G. Moser, M. Monnereau, J. M.
N. T. Gray, and C. Ancey, Experimental investigation into segregating granular

flows down chutes, Phys. Fluids (1994 — present) 23, 013301 (2011).

[292] S. K. Hajra, D. Shi, and J. J. McCarthy, Granular mixing and segregation in zigzag

chute flow, Phys. Rev. E 86, 061318 (2012).

[293] K. van der Vaart, P. Gajjar, G. Epely-Chauvin, N. Andreini, J. M. N. T. Gray, and
C. Ancey, An underlying asymmetry within particle-size segregation, arXiv preprint
arXiv:1501.06879 (2015).

[294] D. Hirshfeld and D. C. Rapaport, Molecular dynamics studies of grain segregation

in sheared flow, Phys. Rev.E 56, 2012 (1997).

[295] Y. Fan and K. M. Hill, Theory for shear-induced segregation of dense granular mix-

tures, New J. Phys. 13, 095009 (2011).

[296] C. P. Schlick, Y. Fan, P. B. Umbanhowar, J. M. Ottino, and R. M. Lueptow, Granular

segregation in circular tumblers: theoretical model and scaling laws, J. Fluid Mech.
765, 632 (2015).

[297] L. Vu-Quoc, X. Zhang, and O. R. Walton, A 3-d discrete-element method for dry

granular flows of ellipsoidal particles, Comput. Meth. Appl. Mech. Eng. 187, 483
(2000).





7
Conclusions and Outlook

So many worlds, so much to do, so little done, such things to be.

– Alfred, Lord Tennyson

The focus of this thesis concerned modelling the dynamics of rapid dense granu-
lar materials flowing over inclined channels, using in-depth theoretical analysis, discrete
particle simulations (DPMs) and an accurate micro-macro mapping technique. By a
thoughtful combination of each of these individual elements, a beautiful blend has been
established among different scales, i.e. from particle to continuum. Overall, a sincere
effort has been made towards developing this blend, which is able to help understand
and emulate these phenomena-rich inclined channel flows.

As a primary step in our investigation, we begin in Chapter 2 by considering shallow
mono - disperse flows over a channel with converging sidewalls. By shallow, we implied
that the ratio of the characteristic length scales in the normal (H) to the streamwise di-
rection (L) is small, H/L << 1. Using the same shallowness argument in the cross-slope
channel direction, we derived a novel one – dimensional (width- and depth-averaged)
granular hydraulic theory from the depth-averaged shallow granular model. For closure,
the model utilised an empirically determined DPMs validated constitutive law. More im-
portantly, the closure law accounts for the existence of steady uniform flows for a range
of channel inclinations. On solving the one-dimensional model for steady flows, the
theory predicted the existence of multiple flow regimes. The flow regimes ranged from
regular steady smooth flows to the ones with steady jumps in their height or velocity pro-
files. To strengthen the value of this model, Chapter 2 further illustrated a much required
verification step, where we numerically solved the two-dimensional shallow granular
model using a continuum solver, discontinuous Galerkin finite element method. For
supercritical flows, we compared the flow height obtained from both the one- and two-
dimensional theories. Surprisingly, the profiles matched well, despite the presence of
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oblique granular jumps across the contracting channel. However, further verification is
to be done for, both, flows with jumps and subcritical flow regimes.

The majority of inclined channel granular flows involve polydisperse mixture rather
than an ideal monodisperse material. Thereby, constructing a continuum description
to describe these flows is not only enticing, but also a formidable challenge. Several
studies have utilised DPMs as an alternative to experiments to understand the particle
scale dynamics. However, an accurate mapping of the particle scale mechanics onto a
continuum macroscopic field is still an area of ongoing research.

Chapter 3 comprehensively presented a generic framework for an efficient and accu-
rate micro-macro mapping technique, called coarse-graining, for polydisperse mixtures
comprising of convex shaped constituents, e.g. spherical particles. More importantly,
the method presented is valid for any discrete data, e.g. particle simulations, molecu-
lar dynamics, experimental data, etc. However, for the purpose of illustration, Chapter
3 considered data generated from discrete particle simulations of bidisperse granular
mixtures flowing over rough inclined channels. In order to obtain continuum macro-
scopic fields, for any stationary or transient particulate system, it is essential to choose a
proper spatial coarse-graining scale, irrespective of the chosen coarse-graining function.
Thus bringing us to the question what do we mean by a continuum description? Chapter
3 comprehensively answers this question, through the example of bidisperse mixtures
flowing over inclined channels. We showed that when one chooses a length scale smaller
than the continuum length scale, the resulting coarse grained data will still show indi-
vidual particles; these are not continuum fields. On the other hand, if one chooses a
large coarse-graining scale, it will smear out the macroscopic gradients. Thence, the re-
sults will be strongly dependent on the chosen coarse-graining scale. However, Chapter
3 showed an existence of a range of spatial and temporal coarse-graining scales in which
the continuum fields obtained are independent of the chosen coarse-graining scale. It
is this length and time scale that must be utilised for an efficient micro-macro transi-
tion. Once an optimal scale to coarse grain is determined, more importantly, Chapter
3 illustrated the utility of coarse-graining the discrete particle data for both steady and
time evolving particulate mixtures. With this availability of accurately constructed con-
tinuum fields, now one could methodically develop and calibrate an efficient continuum
model.

Albeit the continuum description in Chapter 2 attempts to model the dynamics of
monodisperse flows over inclined channels, it is still unable to capture other complex
phenomena such as particle segregation. Before employing the efficient mapping tech-
nique, in Chapter 4 we formulated a mixture theory based segregation model for bidis-
perse mixtures varying in, both, size and density. The model is based on the current un-
derstanding of the bidisperse segregation dynamics, which is based upon an idea/assumption
reflecting on how the total pressure/bed load during the flow is distributed among the two

mixture constituents, i.e. the so called pressure scaling functions. The developed formu-
lation is built upon an existing size-segregation model, and is applicable to both shallow
(linear velocity profile) and thick (Bagnold profile) flows. For linear velocity profiles, the
current model has also been analytically solved and compared with the few of the ex-
isting size-segregation models. Besides predicting the extent of segregation for range of
size- and density-ratios, more importantly, the theory also predicted zero or weak segre-
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gation for a range of size and density ratios which was further confirmed using DPMs of
spherically shaped particles.

Chapter 4 considered an existing form of pressure scalings. In Chapter 5, we inves-
tigate this in more details using the coarse-graining technique of Chapter 3. For sim-
plicity, we considered a purely size-based segregation model, which was built upon a
simple pressure scaling function containing an unknown parameter. Not only did we
determine this unknown material parameter using coarse-graining technique but, more
importantly, we also found out that the complete size- and density-based segregation in
any flowing particulate mixture is an effect of the generated kinetic stress rather than the
contact stress.

Chapter 3, 4 and 5, illustrated how one could blend continuum models with DPMs, to
generate predictive continuum models. However, an important point that has not been
addressed so far, is to see if the DPMs can actually emulate reality. As a consequence, in
Chapter 6 we investigate, how well particle simulations capture the reality.

Outlook
Given the developments illustrated in this thesis, we present here some prospects for
future work:

♣ The novel one-dimensional (1D) and two-dimensional (2D) shallow granular model
predicts the flow dynamics for monodisperse flows alone. To enhance the strength of
the developed one-dimensional model, a proper validation – either through experi-
ments or DPMs – would definitely benefit the theory.

♣ Additional value can be added to the 1D and 2D shallow granular model, if one does
properly couple the two-dimensional shallow granular model (SGM) with the bidis-
perse segregation model. The 2D SGM constructs the velocity profile and provides it
as an input for the segregation model. However, a suitable closure law should also be
determined to take the bidisperse nature of the mixtures into account. Although, a
recent study has shown the Pouliquen friction law to be valid for bidisperse mixtures
varying in size alone, further validation needs to be done to check if the closure law is
valid for bidisperse mixtures varying in, both, size and density. The developed model
can then predict phenomena such as granular fingering, more accurately.

♣ As a step towards developing calibration and validation tools, i.e. from particle to con-
tinuum scale, the micro-macro transition using the coarse-graining technique needs
to be first applied to analyse polydisperse mixture dynamics. In addition to this, it fur-
ther needs to be extended to non-convex shaped particles. Suitable changes need to
be accounted for incorporating non-convexity into our existing theory which already
considers polydispersity without any loss of generality.

♣ Additionally, the coarse-graining tool needs to be generalised, i.e. currently our method
carries out the spatial coarse-graining where one could choose different coarse-graining
functions. These are Heaviside, Gaussian and Lucy functions. However, this is not
true with respect to temporal coarse-graining. At the moment, we assume Heaviside
function to be our temporal coarse-graining function. This feature definitely needs to
be extended to consider other variations.
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♣ The prediction of zero segregation from the bidisperse segregation model was con-
firmed using bidisperse mixtures with each constituent’ solid volume fraction as 50%.
Further study needs to be carried out for checking the effects of solid volume fraction
on the zero-segregation prediction.

♣ To enhance the predictability of the bidisperse mixture theory models, one definitely
needs to determine the correct form of pressure scalings. This still is an area that is
vastly unexplored. The second suitable extension to the bidisperse segregation model
would be to include diffusive remixing correctly. Several continuum descriptions,
modelling segregation, assume a certain way of capturing diffusive effects. However,
detailed study needs to be carried out in order to determine a correct continuum de-
scription for diffusive remixing. Thirdly, the current segregation model is valid for
flows over inclined channel. A probable extension would be to test the model in a dif-
ferent setup, such as a rotating drum. Although, an ideal model would include shape
effects as well, a much awaited extension would be to model polydisperse mixtures.
A few studies have attempted to model this feature, however, there exists very few
experimentally validated theories.
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Figure A.1: Sketch of the flow domain with coordinate z normal to and x adjacent to the inclined base with
flow depth h(~x , t ) = s(~x , t )−b(~x , t ).

Given we have a shallow flow, i.e. the ratio of the characteristic length scales in the
normal (H) to the streamwise direction (L) is small, H/L << 1. The two-dimensional
depth-averaged model for shallow granular flow is derived using the Cauchy’s equations
for balance of mass and momentum,

Dρ

Dt
+ρ(∇·~u) = 0,

D

Dt
(ρ~u) =∇·σ+ρ~b,

(A.1)

where ρ is the material density, ~u = [u, v, w]T is the bulk velocity, σ is the stress tensor
and~b is the body force, e.g. gravitational force. The above balance laws are to be satisfied
by all solids, liquids and gasses. In addition, D/Dt = ∂/∂t +~u ·∇ is the material derivative
operator.

149



A

150 A. Shallow granular model

In order to arrive at the shallow granular model, a series of assumptions or approxi-
mations are made. The material is assumed to be incompressible with a constant mate-
rial density ρ0 and gravity being the only external body force. As a result, the simplified
Cauchy’s equations are restated as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

ρ

(
∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
= ρg sinθ+

σxx

∂x
+
σx y

∂y
+
σxz

∂z
,

ρ

(
∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(v w)

∂z

)
=

σy x

∂x
+
σy y

∂y
+
σy z

∂z
,

ρ

(
∂w

∂t
+
∂(wu)

∂x
+
∂(w v)

∂y
+
∂(w2)

∂z

)
=−ρg cosθ+

σzx

∂x
+
σz y

∂y
+
σzz

∂z
,

(A.2)

where g is the acceleration due to gravity and θ is the inclination of the coordinate sys-
tem with the horizontal, see Fig. A.1. Furthermore, from Fig. A.1, it follows that the free
and basal surface are defined by z−s(~x, t) = 0 and b(~x, t)−z = 0. As the kinematic bound-
ary conditions must hold at both the free and basal surface, it implies that

w s =
∂s

∂t
+us ∂s

∂x
+ v s ∂s

∂y
and wb =

∂b

∂t
+ub ∂b

∂x
+ vb ∂b

∂y
. (A.3)

Substituting suitable scalings and boundary conditions, see [1, 2], the above Cauchy’s
balance equations are depth-averaged to result in the two-dimensional dimensionless
shallow granular equations

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0,

∂(hu)

∂t
+

∂

∂x

(
α1hu2 +ǫK cosθ

h2

2

)
+
∂(huv)

∂y
= h

(
sinθ−µ

u

|~u|
cosθ

)
−ǫh cosθ

∂b

∂x
,

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂x

(
α2hv2 +ǫK cosθ h2

2

)
=−µ

hv

|~u|
cosθ−ǫh cosθ

∂b

∂y
,

(A.4)
where u and v is the depth-averaged velocity component in the down- and cross-slope
flow direction, α1 and α2 denote shape factors, i.e. if f̄ denotes a depth-averaged quan-
tity, then f̄ 2 6= ( f̄ )2. Thereby, we have ū2 = α1 (ū)2 and v̄2 = α2 (v̄)2. For approximately
uniform velocity profiles, α1,2 ≈ 1. In addition, K represents the material constant de-
noting the stress anisotropy, i.e. σxx = K σzz . In the simplest case K = 1. Furthermore,
ǫ is the aspect ratio H/L and µ is a dimensionless friction coefficient representing fric-
tional effects in an average sense. For more details concerning the derivation of a shallow
granular model, see [1, 2].

A.1. Deriving a one-dimensional shallow granular model
For deriving the 1D shallow granular model, we restate the depth-averaged granular
model in its dimensional form. Assuming constant/no basal topography (b(x, y, t)=const.
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or 0) and shape factors α1,2 = 1, we have

ht + (hu)x + (hv)y = 0,

(
hu

)
t
+

(
hu2 +K

h2

2
gn

)
x
+

(
huv

)
y
= gnh

(
tanθ−µ

u

|~u|

)
,

(
hv

)
t
+

(
huv

)
x
+

(
hv2 +K

h2

2
gn

)
y
=−gnhµ

v

|~u|
.

(A.5)

The subscripts t , x and y denote partial derivatives. Applying the approximate 1D hy-
draulic analysis, we shall average the flow quantities across the cross section of a chan-
nel gradually varying in width. The channel sidewall is symmetric with respect to the
x-direction and remains constant in time, see Fig. A.2. Due to symmetry, the left and

W0 W (x) Wc

x

y

x0 xm xc

Figure A.2: Illustrates the top view of a channel with symmetric sidewall geometry.

right sidewall are defined as y =±W (x,t )
2 . The kinematic boundary conditions must hold

at the left and right sidewall. Let the left sidewall be denoted by superscript ’l ’, it implies

y +
W (x, t)

2
= 0 →

d

d t

(
y +

W (x, t)

2

)
= 0

∂

∂t

(
y +

W (x, t)

2

)
+

∂

∂x

(
y +

W (x, t)

2

)
u(x,−W /2, t) = 0

v l +
Wt

2
+ul Wx

2
= 0.

hl v l +hl Wt

2
+hl ul Wx

2
= 0.

(A.6)
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Similarly for the right sidewall, denoted by superscript ’r ’

y −
W (x, t)

2
= 0 →

d

d t

(
y −

W (x, t)

2

)
= 0

∂

∂t

(
y − W (x,t )

2

)
+

∂

∂x

(
y −

W (x, t)

2

)
u(x,W /2, t) = 0

v r −
Wt

2
−ur Wx

2
= 0.

hr v r −hr Wt

2
−hr ur Wx

2
= 0.

(A.7)

Assuming that the boundaries are impermeable, for fixed boundaries we obtain a more
familiar boundary condition ~u ·~n =~0, where~n is the outward normal at the fixed bound-
ary.

A.1.1. Width Average
The balance laws are width averaged from −W /2 to +W /2.

Mass Balance

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0. (A.8)

Applying Leibnitz’ rule on each term of (A.8) results in

∫W /2

−W /2

∂h

∂t
d y =

∂

∂t

∫W /2

−W /2
h(x, y, t)d y −

[1

2

∂W

∂t
h(x,W /2, t)+

1

2

∂W

∂t
h(x,−W /2, t)

]
,

∫W /2

−W /2

∂(hu)

∂x
d y =

∂

∂x

∫W /2

−W /2
(hu)(x, y, t)d y −

[1

2

∂W

∂x
(hu)(x,W /2, t)...

+
1

2

∂W

∂x
(hu)(x,−W /2, t)

]
.

Using the boundary conditions, (A.6) & (A.7), in the width-averaging of the third term
results in

∫W /2

−W /2

∂(hv)

∂y
d y =

[
hv

]W /2

−W /2
=

hl

2
W,t +

hl ul

2
W,x +

hr

2
W,t +

hr ur

2
W,x .

The width-averaged value f̄ of a variable f is given by f̄ = (1/W )
∫W /2
−W /2 f d y . Adding all

the above results, dropping the bars, we obtain a width-averaged mass balance equation

∂(hW )

∂t
+
∂(huW )

∂x
= 0. (A.9)
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Momentum Balance
The x-direction, depth averaged, momentum equation is

∂(hu)

∂t
+

∂

∂x

(
hu2 +K g cosθ

h2

2

)
+

∂

∂y
(huv) = h

(
tanθ−µ

u

|~u|

)
g cosθ. (A.10)

By applying Leibnitz’ rule on each of the terms in (A.10), we have

First term:

∫W /2

−W /2

∂(hu)

∂t
d y =

∂

∂t

∫W /2

−W /2
(hu)(x, y, t)d y − ...

...
[1

2

∂W

∂t
(hu)(x,W /2, t)+

1

2

∂W

∂t
(hu)(x,−W /2, t)

]
.

Second term:

∫W /2

−W /2

∂(hu2 +K h2

2 g cosθ)

∂x
d y =

∂

∂x

∫W /2

−W /2

(
hu2 +K

h2

2
g cosθ

)
d y...

...−
1

2

∂W

∂x

(
hu2 +K h2

2 gn

)
|W /2 −

1

2

∂W

∂x

(
hu2 +K h2

2 gn

)
|−W /2.

Third term: ∫W /2

−W /2

∂(huv)

∂y
d y =

[
huv

]W /2

−W /2
. (A.11)

Using the boundary conditions, (A.6) & (A.7), and substituting them in (A.11) results in

hr ur v r −hl ul v l =
hl ul

2
W,t +

hr ur

2
W,t +

hl (ul )2

2
W,x +

hr (ur )2

2
W,x .

RHS term of (A.10):

∫W /2

−W /2
h
(

tanθ−µ
u

|~u|

)
g cosθd y = hW

(
tanθ−µ

u

|~u|

)
g cosθ.

Adding all the terms corresponding to the x-momentum, we obtain

∂

∂t

∫W /2

−W /2
(hu)d y +

∂

∂x

∫W /2

−W /2

(
hu2 +K

h2

2
g cosθ

)
d y −

[
K Wx

h2

2
g cosθ

]W /2
...

...−
[

K Wx
h2

2 g cosθ
]−W /2

= hW
(

tanθ−µ
u

|~u|

)
g cosθ.

(A.12)

By width-averaging the integrals in (A.12) and on dropping the bars, results in

∂

∂t
(huW )+

∂

∂x

(
hu2W +K W

h2

2
g cosθ

)
−

[
K Wx

h2

2 g cosθ
]W /2

...

...−
[

K Wx
h2

2 g cosθ
]−W /2

= hW
(

tanθ−µ
u

|~u|

)
g cosθ.

(A.13)
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Using the chain rule of differentiation

(huW )t + (hu2W )x +K (W )x
h2

2
g cosθ+K W

(h2

2

)
x

g cosθ
︸ ︷︷ ︸

chain rule

−
[

K Wx
h2

2 g cosθ
]W /2

...

...−
[

K Wx
h2

2 g cosθ
]−W /2

= hW
(

tanθ−µ
u

|~u|

)
g cosθ.

(A.14)
Further simplifications lead to

(huW )t + (hu2W )x +K (W )x
h2

2
g cosθ+K W

(h2

2

)
x

g cosθ−

K
Wx

2

(hl )2

2
g cosθ−K

Wx

2

(hr )2

2
g cosθ = hW

(
tanθ−µ

u

|~u|

)
g cosθ.

(A.15)

where hl = h(x,−W /2, t) and hr = h(x,W /2, t). Since we have width-averaged the bal-
ance equations, hr = hl = h(x, t). Resulting in

(huW )t + (hu2W )x +K W
(h2

2

)
x

g cosθ = hW
(

tanθ−µ
u

|~u|

)
g cosθ. (A.16)

After further simplification of the above equation and defining gn = g cosθ, we have

(hW )t u+hW (u)t + (huW )x u+ (huW )ux +K gnhW (h)x = gnhW
[

tanθ−µ u
|~u|

]
,

((hW )t + (huW )x )︸ ︷︷ ︸
mass balance

u+hW (u)t + (huW )ux + gnK hW (h)x = gnhW
(
tanθ−µ u

|~u|

)
,

ut +uux +K gn(h)x = gn

(
tanθ−µ u

|~u|

)
.

(A.17)

A.1.2. Non-dimensionalisation
The dimensional width-averaged 1D shallow granular equations are

(hW )t + (huW )x = 0,

ut +uux +K gn(h)x = gn

(
tanθ−µ(h,u) u

|~u|

)
,

(A.18)

where in 1D ~u = u & |~u| = |u|. Hence, u/|u| = 1 and (tanθ−µ u
|u| ) = (tanθ−µ). Further, we

non-dimensionalise the above equations using the following scalings

t =
Wo

ul
t ′ , x =Wo x′ , u = ul u′ , h = hl h′ , W =WoW ′ ,

Fl =
ul√
gnhl

, tanθ−µ(h,F ) =
hl

Wo
(tanθ−µ(h,F ))′.

(A.19)

The apostrophes in the above equations denote non-dimensionalised quantities. On
substituting the above scalings in A.18, the non-dimensionalised balance equations are,
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Mass Balance
hl ul∂(h′W ′)′t +hl ul∂(h′u′W ′)′x = 0,

→ (h′W ′)t ′ + (h′u′W ′)x′ = 0.
(A.20)

Momentum Balance
u2

l

Wo
u′

t ′ +
u2

l

Wo
u′u′

x′ +K gn
hl

Wo
h′

x′ = gn
hl

Wo

(
tanθ−µ(h,F )

)′ . (A.21)

With gn =
u2

l

F 2
l

hl

, we obtain

u′
t ′ +u′u′

x′ +
K

F 2
l

h′
x′ =

1

F 2
l

(
tanθ−µ(h,u)

)′ .

After dropping the apostrophes, the non-dimensional 1D shallow granular equations are

(hW )t + (huW )x = 0,

ut +uux +
K

F 2
l

hx =
1

F 2
l

(
tanθ−µ(h,u)

)
.

(A.22)

A.1.3. Derived relations

By substituting the definition corresponding to the local Froude number F = Fl
u
p

h
, into

the mass balance equation (A.22)1, we have for steady state,

huW =Q ⇒u =
Q

hW

h = F 2
l

u2

F 2 → h =
F 2

l
Q2

h2W 2F 2
→ h3 =

F 2
l

Q2

W 2F 2
⇒ h =

(QFl

W F

)2/3
.

(A.23)

From above relations,

dh

d x
=

2

3

(
QFl

W F

)−1

3 d

d x

(
QFl

W F

)
,

dh

d x
=

2

3

(
QFl

W F

)−1

3
(

QFl

W F

)
W F

d

d x

(
1

W F

)
,

dh

d x
=

2

3

(
QFl

W F

)2

3
[−W Fx −Wx F

W F

]
,

dh

d x
=−

2

3

[
h

F
Fx +

h

W
Wx

]
.

(A.24)
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A.1.4. Froude function
For K = 1 and substituting (A.23) and (A.24) in the 1D momentum equation (A.22)2, we
have using the following steps

d

d x

[(1

2
F 2 +1

)
h
]
= (tanθ−µ(h,F )),

dh

d x
+hF

dF

d x
+

F 2

2

dh

d x
= (tanθ−µ(h,F )),

hF
dF

d x
=−

F 2

2

dh

d x
−

dh

d x
+ (tanθ−µ(h,F )),

hF
dF

d x
=

2

3

[
h
(F 2

2
+1

)][ 1

F

dF

d x
+

1

W

dW

d x

]
+ (tanθ−µ(h,F )),

dF

d x
=

(F 2 +2

3F

) 1

W

dW

d x
+

(F 2 +2

3F 2

)dF

d x
+

1

hF
(tanθ−µ(h,F )),

(
1−

F 2 +2

3F 2

)dF

d x
=

(F 2 +2

3F

) 1

W

dW

d x
+

1

hF
(tanθ−µ(h,F )),

(3F 2 −2−F 2

3F 2

)dF

d x
=

F 2 +2

3FW

dW

d x
+

1

hF
(tanθ−µ(h,F )),

2

3

(F 2 −1

F 2

)dF

d x
=

(F 2 +2

3F

)d(ln W )

d x
+

1

hF
(tanθ−µ(h,F )),

dF

d x
=

1

2

(F 2 +2)F

F 2 −1

d(ln W )

d x
+

3

2

F

h(F 2 −1)
(tanθ−µ(h,F )).

Substituting h =
(QFl

W F

)2/3
, results in

dF

d x
=

1

2

(F 2 +2

F 2 −1

)
F

d(ln W )

d x
+

3

2

1

(QFl )2/3

( F 5/3

F 2 −1

)
W 2/3(tanθ−µ(h,F )). (A.25)

A.1.5. Regularisation
The limit problem is stated as

lim
x→xcnew ,F (xcnew )→1

dF

d x
=

0

0
, (A.26)

where xcnew is the new contraction exit determined during regularisation. Below we
solve the limit problem for both inviscid and viscid cases.

Inviscid case

The slope of the contraction γ̂ and the normal to the contraction ~̂n are given by

γ̂=
[

xc

−(W0 −Wc )

]
, ~̂n =

[
W0 −Wc

xc

]
. (A.27)
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R

(xr ,Wr )

(xc ,Wc )

W0

Wc

Figure A.3: xc in the initial x-location of the contraction exit. xr is the x-location for the center of the circle used
to regularise. For inviscid case, after regularisation xr turns out to be the new x-location for the contraction
exit.

The equation of a line with position vector

[
xc

Wc

]
and direction vector ~̂n is

[
x

W

]
=λ

[
W0 −Wc

xc

]
+

[
xc

Wc

]
, (A.28)

[
x − xc

W −Wc

]
=λ

[
W0 −Wc

xc

]
. (A.29)

As xr ,Wr lie on the line (A.28)

[
xr − xc

Wr −Wc

]
=λr

[
W0 −Wc

xc

]
. (A.30)

The value of λr is determined by considering the distance between (xc ,Wc ) and (xr ,Wr ),
which is

(xr − xc )2 + (Wr −Wc )2 = R2,

using (A.30), gives us

λ2
r

[
(W0 −Wc )2 + x2

c

]
= R2 →λr =

R
√

(W0 −Wc )2 + x2
c

.

(A.31)

Withλr determined, the center of the circle for regularisation purpose is computed using
(A.30). By using the equation of a circle, we have W =Wr −

√
R2 − (x − xr )2 with xc < x <

(xr +R), W
′ =

x − xr√
R2 − (x − xr )2

and W
′′ =

R2

(R2 − (x − xr )2)3/2
. Eqn. (A.25) for inviscid case

becomes

dF

d x
=

1

2

(F 2 +2

F 2 −1

)
F

d(ln W )

d x
. (A.32)
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The right hand side of (A.32) becomes zero when
dW

d x
= 0, which is at x = xr . W (xr ) =

Wr −R and F (xr ) = 1. A Taylor expansion of F (x) and W (x) about xr gives

F = 1+F
′
r (x − xr )+

1

2
F

′′
r (x − xr )2.....,

F 2 = 1+2F
′
r (x − xr )+O(x − xr )2,

W = Wr −R +W
′
r (x − xr )+W

′′
r (x − xr )2 + ......,

W
′ = W

′′
r (x − xr )+O(x − xr )2,

(A.33)

where F
′
(xr ) = F

′
r ,F

′′
(xr ) = F

′′
r ,W

′
(xr ) = W

′
r ,W

′′
(xr ) = W

′′
r =

1

R
. The primes denote the

order of differentiation. Substituting (A.33) in (A.32) leads to

4

3
(F

′
r )2(x − xr ) ≈

W
′′
r (x − xr )

Wr −R
→ F

′
r =

√
3

4(Wr −R)R
. (A.34)

Viscid case

Eqn. (A.25) can be restated as

(
F 2 −1

F

)
dF

d x
=

(
F 2 +2

2

)
d(ln W )

d x
+

3

2

(
FW

QFl

)2/3

(tanθ−µ(F )) (A.35)

where

µ(F )= tanδ1 +
tanδ2 − tanδ2[

v

(
Fl Q

W F

)2/3 1

F +γ
+1

] , (A.36)

with v =
βλ

Ad
. With F = 1 at the contraction exit we arrive at

0
dF

d x︸ ︷︷ ︸
LHS

=
3

2

1

W

dW

d x
+

3

2

(
W

QFl

)2/3

(tanθ−µ(1))
︸ ︷︷ ︸

R HS

. (A.37)

With xcnew = xe denoted as the x-location where RHS=LHS, such that xc < xe < (xr +R),
we define Fe = F (xe ) = 1,F

′
e = F

′
(xe ),We = W (xe ),W

′
e = W

′
(xe ),W

′′
e = W

′′
(xe ). A Taylor

expansion of the primary variables F (x),W (x) and the secondary variables W
′
,F 2,1/F
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about xe gives

F = 1+F
′
e (x − xe )+

1

2
F

′′
e (x − xe )2 +O((x − xe )3),

F
′ = F

′
e +F

′′
e (x − xe )+O((x − xe )2),

F 2 = 1+2F
′
e (x − xe )+ [(F

′
e )2 +F

′′
e ](x − xe )2 +O((x − xe )3),

F 2 −1 = 2F
′
e (x − xe )+O((x − xe )2),

1

F
= 1−F

′
e (x − xe )+O((x − xe )2),

W = We +W
′
e (x − xe )+

W
′′
e

2
(x − xe )2 +O((x − xe )3),

W
′ = W

′
e +W

′′
e (x − xe )+O((x − xe )2),

(A.38)

Using (A.38),

(
F 2 −1

F

)
dF

d x
≈ 2F

′
e (x − xe )

(
1−F

′
e (x − xe )

)
(F

′
e +F

′′
e (x − xe ))

≈
(
2F

′
e (x − xe )−2(F

′
e )2(x − xe )2

)
(F

′
e +F

′′
e (x − xe ))

≈ 2(F
′
e )2(x − xe )+O((x − xe )2).

(A.39)

Similarly,

(
F 2 +2

2

)
1

W

dW

d x
≈

(
3+2F

′
e (x − xe )

2

)(
1

We
−

W
′
e

W 2
e

(x − xe )

)
...

...
(
W

′
e +W

′′
e (x − xe )

)
,

≈
3

2

W
′
e

We
+ (x − xe )

(
F

′
eW

′
e

We
−

3

2

(
W

′
e

We

)2

+
2+F 2

e

2

W
′′
e

We

)

+O((x − xe )2),

(A.40)

and

3

2

(
W

Fl Q

)2/3

F 2/3


tanθ− tanδ1 −

tanδ2 − tanδ1

v

(
Fl Q

W

)2/3 (
1

F

)2/3 1

F +γ
+1


 . (A.41)
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To compute the Taylor series expansion of (A.41), we use the following expansions

W 2/3 =
(
We +W

′
e (x − xe )+O(x − xe )2

)2/3
≈W 2/3

e +
2

3
W −1/3

e W
′
e (x − xe ),

1

W 2/3
≈

1

W 2/3
e

1(
1+

2

3

W
′
e

We
(x − xe )

) ,

F 2/3 = (1+F
′
e (x − xe )+O(x − xe )2)2/3 ≈ 1+

2

3
F

′
e (x − xe ),

1

F 2/3
≈ 1−

2

3
F

′
e (x − xe ),

1

F +γ
≈

1

1+γ
−

F
′
e (x − xe )

(1+γ)2
.

(A.42)

By utilising the above expansions, we compute the Taylor expansion for the term below
as

v (Fl Q)2/3 1

W 2/3

1

F 2/3

1

(F +γ)
+1

≈ v (Fl Q)2/3 1

W 2/3
e

(
1−

2

3

W
′
e

We
(x − xe )

)(
1−

2

3
F

′
e (x − xe )

)
1

γ+1

(
1−

F
′
e (x − xe )

1+γ

)
+1,

≈ v (Fl Q)2/3 1

W 2/3
e

1

γ+1

(
1−

2

3
F

′
e (x − xe )−

2

3

W
′
e

We
(x − xe )−

F
′
e (x − xe )

1+γ

)
+1.

(A.43)
Thus, using A.43, a Taylor expansion for the term below is computed as follows

(
v (Fl Q)2/3 1

W 2/3

1

F 2/3

1

(F +γ)
+1

)−1

≈
1

v (Fl Q)2/3 1

W 2/3
e

1

1+γ
+1




1+
v (Fl Q)2/3 1

W 2/3
e

1

1+γ

(
2

3
F

′
e +

2

3

W
′
e

We
+

F
′
e

1+γ

)
(x − xe )

v (Fl Q)2/3 1

W 2/3
e

1

1+γ
+1




,

(A.44)
Thence, from the above Taylor expansion (A.44) we have

1

v

(
Fl Q

W

)2/3 (
1

F

)2/3 1

(F +γ)
+1

≈
1

v

(
Fl Q

We

)2/3 1

(1+γ)
+1

......

+
v(Fl Q)2/3(x − xe )

(
v

(
Fl Q

We

)2/3 1

(1+γ)
+1

)2

(
2

3

W
′
e

W 5/3
e (Fe +γ)

+
2

3

F
′
e

W 2/3
e (1+γ)

+
F

′
e

W 2/3
e (Fe +γ)2

)
.

(A.45)
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Similarly we use the Taylor expansion

W 2/3F 2/3 ≈
(
W 2/3

e +
2

3
W −1/3

e W
′
e (x − xe )

)(
1+

2

3
F

′
e (x − xe )

)

≈W 2/3
e +

2

3
W 2/3

e F
′
e (x − xe )+

2

3
W −1/3

e W
′
e (x − xe )+O

(
(x − xe )2

)
.

(A.46)

Thus, the Taylor expansion of (A.41) is given (ignoring higher order terms) as

3

2

(
W

Fl Q

)2/3

F 2/3


tanθ− tanδ1 −

tanδ2 − tanδ1

v

(
Fl Q

W

)2/3 (
1

F

)2/3 1

F +γ
+1


 ,

≈
3

2

(
1

Fl Q

)2/3 (
W 2/3

e +
2

3
W 2/3

e F
′
e (x − xe )+

2

3
W −1/3

e W
′
e (x − xe )

)(
tanδ− tanδ1 − ...

tanδ2 − tanδ1

v

(
Fl Q

We

)2/3 1

1+γ
+1

−
(tanδ2 − tanδ1)v(Fl Q)2/3(x − xe )

(
v

(
Fl Q

We

)2/3 1

(1+γ)
+1

)2

(
...

2

3

W
′
e

W 5/3
e (1+γ)

+
2

3

F
′
e

W 2/3
e (1+γ)

+
F

′
e

W 2/3
e (1+γ)2

))

(A.47)
Substituting all the above approximate expansions, the Taylor expansion for

(
F 2 −1

F

)
dF

d x
=

(
F 2 +2

2

)
d(ln W )

d x
+

3

2

(
FW

QFl

)2/3

(tanθ−µ(F )), (A.48)

is, retaining only the first order terms O(x − xe ),

2(F
′
e )2(x − xe ) =

3

2

W
′
e

We
+ (x − xe )

(
W

′
e

We
F

′
e −

3

2

(W
′
e )2

(We )2
+

3

2

W
′′
e

We

)
...

+
3

2

(
1
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)(
W 2/3

e +
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3
W 2/3
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2
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e W
′
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·
(

tanθ− tanδ1 −
tanδ2 − tanδ1

v

(
Fl Q

We

)2/3 1

1+γ
+1

−
(tanδ2 − tanδ1)v(FlQ)2/3(x − xe )

(
v

(
Fl Q
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)2/3 1

(1+γ)
+1

)2

(
...

2

3

W
′
e

W 5/3
e (1+γ)

+
2

3

F
′
e

W 2/3
e (1+γ)

+
F

′
e

W 2/3
e (1+γ)2

))
.

(A.49)

As W
′
e is the correct slope, the O(1) terms satisfy the expression (2.15) in Chapter 2.

Hence,

3

2

W
′
e

We
+

3

2

1

(Fl Q)2/3
W 2/3

e


tanθ− tanδ1 −

tanδ2 − tanδ1

v

(
Fl Q

We

)2/3 1

(1+γ)
+1


= 0 (A.50)
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Thus, considering only the O(x − xe ) terms results in a quadratic equation to be solved
for F

′
e

2(F
′
e )2 =

W
′
e

We
F

′
e +

3

2

(
W

′′
e

We
−

(W
′
e )2

(We )2

)
+

W −1/3
e W

′
e

(Fl Q)2/3


tanθ− tanδ1 −

(tanδ2 − tanδ1)

v

(
Fl Q

We

)2/3 1

1+γ
+1




+
(

We

Fl Q

)2/3


tanθ− tanδ1 −

(tanδ2 − tanδ1)

v

(
Fl Q
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)2/3 1

1+γ
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F

′
e−

v
(We )2/3(tanδ1 − tanδ2)

(
v

(
Fl Q

We

)2/3 1

(1+γ)
+1

)2

[
W −5/3

e W
′
e

(1+γ)

]
−

v
(We )2/3(tanδ1 − tanδ2)

(
v

(
Fl Q

We

)2/3 1

(1+γ)
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)2

[
1

W 2/3
e

1

(1+γ)
F

′
e +

3

2

1

(1+γ)2

1

W 2/3
e

F
′
e
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(A.51)

References
[1] J. M. N. T. Gray, Y. C. Tai, and S. Noelle, Shock waves, dead zones and particle-free

regions in rapid granular free-surface flows, J. Fluid Mech. 491, 161 (2003).

[2] O. Bokhove and A. R. Thornton, Handbook of Environmental Fluid Dynamics, Fer-

nando H. J. (ed.) (Boca Raton, FL USA, ISBN:9781-43981-16691, 2012).



B
Steps to coarse grain

In order to obtain continuum fields from the discrete data, one can simply utilise the
coarse-graining expressions presented in Chapter 3 when combined with an appropri-
ately chosen coarse-graining function, ψ(~r , t), and scale, w . As a result, the above ex-
pressions have successfully been implemented in our in-house open-source package
MercuryCG. Before we illustrate a worked out example concerning coarse-graining ef-
fects on steady (Sec. 3.3.2) and unsteady mixture states (Sec. 3.3.4), we briefly describe
the MercuryCG package below.

B.1. Introduction to MercuryCG
MercuryCG is an easy-to-use coarse-graining package, which is available as part of our
in-house open-source fast and efficient discrete particle solver, MercuryDPM. For further
details see http://MercuryDPM.org. The solver can be comfortably installed on any
LINUX or UNIX based operating system. For simplicity, we assume that the reader is ac-
customed with either of these operating systems. Once installed, all the coarse-graining
utilities – described below – are encompassed in one single executable, ‘./MercuryCG’
which can be found in ones’ build directory under pathToBuildDirectory/Drivers/

MercuryCG/. The executable ‘./MercuryCG’ is ready to be executed in the Terminal or
Console. To see the list of utilities, one could just type ‘./MercuryCG -help’. Utilities are
the parameters or flags that one needs to pass in through the executable. Below are a list
of example parameters which have been used to construct the fields, e.g. see Chapter 3.

(i) ‘-CGtype’ allows to specify the type of coarse-graining function, Gaussian, Heavi-
side or Lucy.

(ii) ‘-z’ defines the domain of interest in the z-direction.

(iii) ‘-w’ is the spatial coarse-graining scale or predetermined width.

The contents in this appendix is part of an accepted publication whose content is listed in Chapter 3.
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(iv) ‘-n’ defines the number of grid points in the coordinate directions for which statis-
tics are evaluated.

(v) ‘-stattype’ allows one to define the type of averaging. Stattype Z implies averag-
ing in x- and y-direction. There are several other possibilities, see ./MercuryCG

-help.

(vi) ‘-tmin’ defines the lower limit tmin of the time averaging window.

(vii) ‘-tmax’ defines the upper limit tmax of the time averaging window.

(viii) ‘-o’ sets the name of the output file for the continuum fields.

Using the above parameters or flags, useful averaged quantities can be constructed as a
function of both space, (x, y , z), and time, t . Assuming we have a fully three-dimensional
particle data field available, below we present the syntax for the construction of depth-
profiles – averaged in x- and y-direction and time – of bulk quantities,

‘./MercuryCG Example -CGtype Lucy -z -0.5 12 -w 0.1 -n 100 -stattype

Z -tmin 6000 -tmax 6250 -o Example.stat’,

where ‘Example’ is a file name. All the particle data (e.g. position, velocity, angular veloc-
ity) is stored in ‘Example.data’, whereas the interaction forces are stored in ‘Example.fstat’.
On assigning suitable values to each of the flags described above, one can efficiently con-
struct the macroscopic fields. For bidisperse systems, partial quantities are of special
interest. These can be constructed by the following command

‘./MercuryCG Example -CGtype Lucy -indSpecies 2 -z -0.5 12 -w 0.1 -n

100 -stattype Z -tmin 6000 -tmax 6250 -o Example.2.stat’,

where ‘-indSpecies’ allows one to choose from either of the two particle types. In the
above case we consider particle type-2. However, in order to use the above package one
must have the data files written in the format compatible with MercuryCG.
Note: (i) Although no ensemble averaging is required to satisfy (3.5), both spatial and
temporal averaging is used to improve the quality of the continuum fields, see Sec. 3.3.3
in Chapter 3.
Once averaged or coarse-grained, all the averaged or macroscopic fields are stored in the
statistics file, i.e. Example.stat or Example.2.stat. The files contain several useful
fields such as

(i) Coordinates (grid points) x, y , z and the time-averaging window [tmin ,tmax ].

(ii) Volume fraction and density.

(iii) Momentum, displacement momentum, displacement, momentum flux, displace-
ment momentum flux, and energy flux.

(iv) Normal stress, tangential stress, normal traction, tangential traction.
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(v) Fabric tensor, collisional heat flux, dissipation potential.

(vi) Local angular momentum and local angular momentum flux.

(vii) Contact couple stress.

Using the above recipe, the method of coarse-graining is applied to both steady and
unsteady bidisperse granular mixtures (spheres) varying both in size and density, see
Sec. 3.3.





C
Asymptotic analysis

θ

z

x

b(~x, t)

s(~x, t) h(~x, t)

O

Figure C.1: Sketch of the flow domain with coordinate z normal to and x adjacent to the inclined base with
flow depth h(~x , t ) = s(~x , t )−b(~x , t ).

A mixture theory segregation model is formulated using a postulate which states that the
constituents of the mixture simultaneously occupy the same point in space and time.
This leads to overlapping fields like partial pressure pν, partial density ρν , partial veloc-
ity ~uν, etc., corresponding to each of the constituent ν = 1,2. For a mixture comprising
of several constituents, each of the constituent satisfies the fundamental balance laws of
mass and momentum. These laws are stated in terms of partial fields, as below

∂tρ
ν+∇· (ρν

~uν) = 0,

ρν(∂t~u
ν+~uν ·∇~uν) =−∇pν+ρν~g +~βν,

(C.1)

where ~g is the acceleration due to gravity vector, ~g =
(
gt ,0,−gn

)
with gt = g sinθ and

gn = g cosθ. The drag force ~βν is the net effect of the tractions across the interface of

The contents in this appendix is to be considered as a supporting material for Chapter 4.
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two constituents. As the species percolate or lever during kinetic sieving (segregation
mechanism), the species experience interspecies friction. Experiments showing the ki-
netic sieving phenomenon suggest that the process is analogous to percolation of fluids
through porous solids. Therefore, the interaction drag or interspecies friction is assumed
to have the form

~βν = p∇(φν f ν)−ρν c

γ̇
(~uν−~u), ν= 1,2, (C.2)

where c is the coefficient of the interspecies drag, γ̇ is the shear rate and φν is the volume
fraction that denotes the percentage of the local volume occupied by each constituent.
In reality the mixture flow consists of three-constituents, the additional component be-
ing the void space between the particles. However, the effect of including this space is
minor and is discussed in more detail in Thornton et al. [1]. The first term of (C.2) is the
interspecies surface interaction force, which when incorporated within the momentum
balance law leaves behind φν f ν∇p. This enforces the percolation process to be driven
by intrinsic pressure gradients. The second term defines the linear rate-dependent resis-
tance to relative motion. With the definitions of partial pressure and drag force at hand,
we have ∇pν =∇(pφν f ν) = p∇(φν f ν)+φν f ν∇p. The momentum balance law for each
individual species (C .1)2, using the mass balance law (C .1)1, is then restated as

ρν(∂t~u
ν+~uν ·∇~uν) =−φν f ν∇p +ρν

~g −ρν c

γ̇
(~uν−~u). (C.3)

C.1. Scaling
In several large scale industrial or natural granular flows, the flow quantities in the downs-
lope and cross-slope direction are of higher order in magnitude when compared to those
in the normal direction, i.e. δ = H/L = W /U << 11. For computational purposes, we
scale the large scale flows using suitable hydrostatic scalings, as below

(x, y, z) = (Lx̃,Lỹ , H z̃) , (u, v, w) = (U ũ,U ṽ ,W w̃) , t =
L

U
t̃

p = ρ1∗U 2p̃ ,
c

γ̇
=

1

δ

U

H

(̃
c

γ

)
, ~g =

U 2

H
~̃g , ρ = ρ1∗ρ̃

ρ1∗ = ρ1∗ρ̃1∗ , ρ2∗ = ρ1∗ρ̃2∗ , ρν =φνρ̃ν∗ , ρ̂ =
ρ2∗

ρ1∗

As ρ̃1∗ = 1 and ρ̃2∗ = ρ̂→ ρ̃ =φ1 +φ2ρ̂

(C.4)

The variables W , U and H are suitable characteristic scales for the length of the granular
motion (usually a reference value of the channel width), flow velocity and flow depth/height,
respectively. Variables x, y and z are the position coordinates and (u, v, w) denote the
flow velocity in (x, y, z) direction respectively. In addition, variable δ denotes the flow
aspect ratio and the superscript ‘∗’ denote an intrinsic quantity, i.e. the values such as
material properties, which one would determine experimentally. On scaling the con-
servative laws (C.1) corresponding to the two mixture constituents, particle type-1 and

1In Appendix. A, we used the ε as the flow aspect ratio
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particle type-2, and dropping the tildes, we arrive at the non-dimensionalised mass and
momentum balance equations for each species,

∂tφ
1 +∇· (φ1

~u1) = 0,

∂t u1 +~u1 ·∇u1 =− f 1 ∂p

∂x
+ gt −

1

δ2

c

γ̇
(u1 −u),

∂t v1 +~u1 ·∇v1 =− f 1 ∂p

∂y
−

1

δ2

c

γ̇
(v1 − v),

∂t w1 +~u1 ·∇w1 =
1

δ2

[
− f 1 ∂p

∂z
− gn −

c

γ̇
(w1 −w)

]

(C.5)

and

∂tφ
2 +∇· (φ2

~u2) = 0,

∂t u2 +~u2 ·∇u2 =− f 2 ρ
1∗

ρ2∗
∂p

∂x
+ gt −

1

δ2

c

γ̇
δ2(u2 −u),

∂t v2 +~u2 ·∇v2 =− f 2 ρ
1∗

ρ2∗
∂p

∂y
−

1

δ2

c

γ̇
(v2 − v),

∂t w2 +~u2 ·∇w2 =
1

δ2

[
− f 2 ρ

1∗

ρ2∗
∂p

∂z
− gn −

c

γ̇
(w2 −w)

]
.

(C.6)

C.2. Boundary conditions

From Fig. C.1, it follows that the free and the basal surface are defined, respectively, by
z−s(~x, t) = 0 and b(~x, t)−z = 0. As the kinematic boundary conditions must hold at both
the free- and basal surface, this implies that

ρ
D [z − s]

Dt
= 0 and ρ

D [b − z]

Dt
= 0. (C.7)

On substituting the scalings (C.4), the boundary conditions are non-dimensionalised as
below
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Surface boundary condition

ρ
D [z − (h+b)]

Dt
= 0

Using above scalings, i.e. non-dimensionalisation leads to

W U

L
ρ1∗ρ̃

D
[
z̃ − (h̃+ b̃)

]

Dt̃
= 0

ρ̃
(
∂t̃

[
z̃ − (h̃+ b̃)

]
+ ~̃u ·∇

[
z̃ − (h̃+ b̃)

])
= 0

(φ1 +φ2ρ̂︸ ︷︷ ︸
ρ̃

)∂t̃

[
z̃ − (h̃+ b̃)

]
+ (φ1

~̃u1 + ρ̂φ2
~̃u2

︸ ︷︷ ︸
ρ̃~̃u

) ·∇
[
z̃ − (h̃ + b̃)

]
= 0

By dropping tildes for simplicity, we have

φ1(∂t [z − (h+b)]+~u1 ·∇ [z − (h+b)])+φ2ρ̂(∂t [z − (h+b)]+~u2 ·∇ [z − (h+b)]) = 0

φ1w −φ1
[
∂t (h+b)+~u1 ·∇(h+b)

]
+φ2ρ̂w −φ2ρ̂

[
∂t (h+b)+~u2 ·∇(h+b)

]
= 0

(C.8)

ρw −ρ [∂t (h+b)+~u ·∇(h+b)] = 0 . (C.9)

Basal boundary condition

ρ
D [b − z]

Dt
= 0

Using above scalings (C.4), i.e. non-dimensionalisation leads to

W U

L
ρ1∗ρ̃

D
[
b̃ − z̃

]

Dt̃
= 0

ρ̃
(
∂t̃

[
b̃ − z̃

]
+ ~̃u ·∇

[
b̃ − z̃

])
= 0

(φ1 +φ2ρ̂︸ ︷︷ ︸
ρ̃

)∂t̃

[
b̃ − z̃

]
+ (φ1

~̃u1 + ρ̂φ2
~̃u2

︸ ︷︷ ︸
ρ̃~̃u

) ·∇
[
b̃ − z̃

]
= 0

On dropping tildes for simplicity, we have

φ1(∂t [b − z]+~u1 ·∇ [b − z])+φ2ρ̂(∂t [b − z]+~u2 ·∇ [b − z]) = 0

−φ1w +φ1
[
∂t b +~u1 ·∇b

]
−φ2ρ̂w +φ2ρ̂

[
∂t b +~u2 ·∇b

]
= 0

(C.10)

ρ [∂t b +~u ·∇b]−ρw = 0 . (C.11)

C.3. Asymptotic expansions
Quite often a function is expressed as a finite sum. If the terms of the finite sum are
rapidly decreasing, an asymptotic estimate can be defined by approximating the sum
with a finite sum and defining a bound on the size of the infinite tail. Thereby, the non-
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dimensional flow quantities can be approximated asymptotically as

φν =φν
0 +δ2φν

1 + ...,

f ν = f ν
0 +δ2 f ν

1 + ...,

~u =~u0 +δ2
~u1 + ...,

~uν =~uν
0 +δ2

~uν
1 + ...,

p = p0 +δ2p1 + ...,

(C.12)

where δ is the aspect ratio as used before. As ρ =φ1 +φ2 ρ
2∗

ρ1∗ , on substituting the above

expansions (C.12) for φν we have

ρ = (φ1
0 +δ2φ1

1)+ (φ2
0 +δ2φ2

1)
ρ2∗

ρ1∗ ,

O(1) →φ1
0 +φ2

0

ρ2∗

ρ1∗ = ρ,

O(δ2) →φ1
1 +φ2

1

ρ2∗

ρ1∗ = 0.

(C.13)

Similarly, as
∑

ν=1,2
φν = 1, substituting the above expansions (C.12) for ν= 1,2 gives

φ1
0 +δ2φ1

1 +φ2
0 +δ2φ2

1 = 1,

O(1) →φ1
0 +φ2

0 = 1,

O(δ2) →φ1
1 +φ2

1 = 0.

(C.14)

Furthermore, with
∑

ν=1,2
φν f ν = 1, we have

(
φ1

0 +δ2φ1
1

)(
f 1

0 +δ2 f 1
1

)
+

(
φ2

0 +δ2φ2
1

)(
f 2

0 +δ2 f 2
1

)
= 1,

O(1) →φ1
0 f 1

0 +φ2
0 f 2

0 = 1,

O(δ2) →φ1
0 f 1

1 +φ1
1 f 1

0 +φ2
0 f 2

1 +φ2
1 f 2

0 = 0.

(C.15)

Using the above expansions, the bulk velocity can be expressed as

ρ~u =φ1
~u1 +φ2 ρ

2∗

ρ1∗~u
2

ρ(~u0 +δ2
~u1) = (φ1

0 +δ2φ1
1)(~u1

0 +δ2
~u1

1)+
ρ2∗

ρ1∗ (φ2
0 +δ2φ2

1)(~u2
0 +δ2

~u2
1),

O(1) → ρ~u0 =φ1
0~u

1
0 +

ρ2∗

ρ1∗φ
2
0~u

2
0 ,

O(δ2) → ρ~u1 = (φ1
0~u

1
1 +φ1

1~u
1
0)+

ρ2∗

ρ1∗ (φ2
0~u

2
1 +φ2

1~u
2
0).

(C.16)



C

172 C. Asymptotic analysis

Additionally, the above expansions are substituted in the non-dimensionalised, (C.5-
C.6), momentum balance equations below, for each species ν= 1,2.

Downslope momentum balance

Particle type-1:

The non-dimensionalised x-momentum, (C .5)2, equation is restated (without tildes) be-
low using the continuity equation (C .5)1 and ρ̃ =φ1 + ρ̂φ2

∂t (φ1u1)+∇· (φ1
~u1u1) =−φ1 f 1 ∂p

∂x
+ gt −φ1 1

δ2

c

γ̇
(u1 −u). (C.17)

On substituting the asymptotic expansions, we have

∂t

[
(φ1

0 +δ2φ1
1)(u1

0 +δ2u1
1)

]
+∇·

[
(φ1

0 +δ2φ1
1)(~u1

0 +δ2
~u1

1)(u1
0 +δ2u1

1)
]

=−(φ1
0 +δ2φ1

1)( f 1
0 +δ2 f 1

1 )
∂(p0 +δ2p1)

∂x
+ gt − (φ1

0 +δ2φ1
1)

1

δ2

c

γ̇

[
(u1

0 +δ2u1
1)− (u0 +δ2u1)

]
,

which leads to

O(1) → ∂t

[
φ1

0u1
0

]
+∇·

[
φ1

0~u
1
0u1

0

]
=−φ1

0 f 1
0
∂p0

∂x
+ gt −

c

γ̇

[
φ1

0(u1
1 −u1)+φ1

1(u1
0 −u0)

]
,

O
( 1

δ2

)
→−

c

γ̇
(u1

0 −u0) = 0→ u1
0 = u0.

(C.18)
Particle type-2:

The non-dimensionalised x-momentum, (C .6)2, equation is restated (without tildes) be-
low using the continuity equation (C .6)1 and ρ̃ =φ1 + ρ̂φ2

∂t (ρ̂φ2u2)+∇· (ρ̂φ2
~u2u2) =−φ2 f 2 ∂p

∂x
+ gt −φ2ρ̂

1

δ2

c

γ̇
(u2 −u). (C.19)

On substituting the asymptotic expansions, we have

∂t

[
ρ̂(φ2

0 +δ2φ2
1)(u2

0 +δ2u2
1)

]
+∇·

[
ρ̂(φ2

0 +δ2φ2
1)(~u2

0 +δ2
~u2

1)(u2
0 +δ2u2

1)
]

=−(φ2
0 +δ2φ2

1)( f 2
0 ++δ2 f 2

1 )
∂(p0 +δ2p1)

∂x
+ gt − ρ̂

1

δ2

c

γ̇
(φ2

0 +δ2φ2
1)

[
(u2

0 +δ2u2
1)− (u0 +δ2u1)

]
,

which leads to

O(1) → ∂t

[
ρ̂φ2

0u2
0

]
+∇·

[
ρ̂φ2

0~u
2
0u2

0

]
=−φ2

0 f 2
0

∂p0

∂x
+ gt −

c

γ̇
ρ̂[φ2

0(u2
1 −u1)+φ2

1(u2
0 −u0)],

O
( 1

δ2

)
→−

c

γ̇
ρ̂(u2

0 −u0) = 0→ u2
0 = u0.

(C.20)
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Cross-slope momentum balance
Particle type-1:

The non-dimensionalised y-momentum, (C .5)3, equation is restated below (without tildes)

∂t (φ1v1)+∇· (φ1
~u1v1) =−φ1 f 1 ∂p

∂y
−φ1 1

δ2

c

γ̇
(v1 − v). (C.21)

On substituting the asymptotic expansions, we have

∂t

[
(φ1

0 +δ2φ1
1)(v1

0 +δ2v1
1)

]
+∇·

[
(φ1

0 +δ2φ1
1)(~u1

0 +δ2
~u1

1)(v1
0 +δ2v1

1)
]

=−(φ1
0 +δ2φ1

1)( f 1
0 +δ2 f 1

1 )
∂(p0 +δ2p1)

∂y
− (φ1

0 +δ2φ1
1)

1

δ2

c

γ̇

[
(v1

0 +δ2v1
1)− (v0 +δ2v1)

]
,

which leads to

O(1) → ∂t

[
φ1

0v1
0

]
+∇·

[
φ1

0~u
1
0 v1

0

]
=−φ1

0 f 1
0
∂p0

∂y
−

c

γ̇
[φ1

0(v1
1 − v1)+φ1

1(v1
0 − v0)],

O
( 1

δ2

)
→−

c

γ̇
(v1

0 − v0) = 0 → v1
0 = v0.

(C.22)
Particle type-2:

The non-dimensionalised y-momentum, (C .6)3, equation is restated below (without tildes)

∂t (ρ̂φ2v2)+∇· (ρ̂φ2
~u2v2)=−φ2 f 2 ∂p

∂x
−φ2ρ̂

1

δ2

c

γ̇
(v2 − v). (C.23)

On substituting the asymptotic expansions, we have

∂t

[
ρ̂(φ2

0 +δ2φ2
1)(v2

0 +δ2v2
1)

]
+∇·

[
ρ̂(φ2

0 +δ2φ2
1)(~u2

0 +δ2
~u2

1)(v2
0 +δ2v2

1)
]

=−(φ2
0 +δ2φ2

1)( f 2
0 +δ2 f 2

1 )
∂(p0 +δ2p1)

∂y
− ρ̂

1

δ2

c

γ̇
(φ2

0 +δ2φ2
1)

[
(v2

0 +δ2v2
1)− (v0 +δ2v1)

]
,

which leads to

O(1) → ∂t

[
ρ̂φ2

0v2
0

]
+∇·

[
ρ̂φ2

0~u
2
0 v2

0

]
=−φ2

0 f 2
0
∂p0

∂y
−

c

γ̇
ρ̂[φ2

0(v2
1 − v1)+φ2

1(v2
0 − v0)],

O
( 1

δ2

)
→−

c

γ̇
ρ̂(v2

0 − v0) = 0 → v2
0 = v0.

(C.24)

z-momentum
Particle 1:

The non-dimensionalised z-momentum, (C .5)4, equation is restated below (without tildes)

∂t (φ1w1)+∇· (φ1
~u1w1) =

1

δ2

[
−φ1 f 1 ∂p

∂z
−φ1gn −φ1 c

γ̇
(w1 −w)

]
. (C.25)
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On substituting the asymptotic expansions, we have

∂t

[
(φ1

0 +δ2φ1
1)(w1

0 +δ2w1
1)

]
+∇·

[
(φ1

0 +δ2φ1
1)(~u1

0 +δ2
~u1

1)(w1
0 +δ2w1

1)
]

=−
(φ1

0 +δ2φ1
1)( f 1

0 +δ2 f 1
1 )

δ2

∂(p0 +δ2p1)

∂z
−

(φ1
0 +δ2φ1

1)

δ2
gn

−
1

δ2

c

γ̇
(φ1

0 +δ2φ1
1)

[
(w1

0 +δ2w1
1)− (w0 +δ2w1)

]
,

which leads to

O(1) → ∂t (φ1w1
0)+∇· [φ1

0~u
1
0 w1

0] =−(φ1
0 f 1

1 +φ1
1 f 1

0 )
∂(φ1

0p1 +φ1
1p0)

∂z
− ...

φ1
1gn −

c

γ̇
[φ1

0(w1
1 −w1)+φ1

1(w1
0 −w0)],

O
( 1

δ2

)
→−φ1

0 f 1
0

∂p0

∂z
−φ1

0gn −
c

γ̇
φ1

0(w1
0 −w0) = 0.

(C.26)

Particle 2:

The non-dimensionalised z-momentum, (C .6)4, equation is restated below (without tildes)

∂t (ρ̂φ2w2)+∇· (ρ̂φ2
~u2w2)=

1

δ2

[
−φ2 f 2 ∂p

∂z
− ρ̂φ2gn − ρ̂φ2 c

γ̇
(w2 −w)

]
. (C.27)

On substituting the asymptotic expansions, we have

∂t

[ρ2∗

ρ1∗ (φ2
0 +δ2φ2

1)(w2
0 +δ2w2

1 )
]
+∇·

[
(φ2

0 +δ2φ2
1)
ρ2∗

ρ1∗ (~u2
0 +δ2

~u2
1)(w2

0 +δ2w2
1)

]

=−
(φ2

0 +δ2φ2
1)( f 2

0 +δ2 f 2
1 )

δ2

∂(p0 +δ2p1)

∂z
−

(φ2
0 +δ2φ2

1)

δ2
ρ̂gn

−ρ̂
1

δ2

c

γ̇
(φ2

0 +δ2φ2
1)

[
(w2

0 +δ2w2
1)− (w0 +δ2w1)

]
,

which leads to

O(1) → ∂t

(
ρ̂φ2w2

0

)
+∇·

[
ρ̂φ2

0~u
2
0 w2

0

]
=−(φ2

0 f 2
1 +φ2

1 f 2
0 )

∂(φ2
0p1 +φ2

1p0)

∂z
−

φ2
1ρ̂gn −

c

γ̇
ρ̂φ2[φ2

0(w2
1 −w1)+φ2

1(w2
0 −w0)],

O
( 1

δ2

)
→−φ2

0 f 2
0

∂p0

∂z
−φ2

0ρ̂gn −
c

γ̇
ρ̂φ2

0(w2
0 −w0) = 0.

(C.28)
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Adding the O
( 1

δ2

)
terms of z-momentum equations of particle type-1 and particle type-

2 and using the O(1) terms of (C.16), results in the lithostatic balance assumption at the
leading order in aspect ratio,

∂p0

∂z
=−ρgn . (C.29)

Similarly, the above asymptotic expansions are substituted in the non-dimensionalised
mass balance equations

Continuity equation

The dimensional mass balance equation for the whole mixture is stated as

∂tρ+∇· (ρ~u) = 0. (C.30)

Non-dimensionalising, using the above scalings (C.4) results in

∂t̃ ρ̃+∇· (φ1
~̃u1 + ρ̂φ2

~̃u2) = 0,

∂t̃ (φ1 +φ2ρ̂)+∇· (φ1
~̃u1 + ρ̂φ2

~̃u2) = 0.
(C.31)

On dropping the tildes and using asymptotic expansions, considering only the leading
order terms of O(1) implies

∂tρ+∇· (φ1
0~u

1
0)+∇· (ρ̂φ2

0~u
2
0) = 0. (C.32)

By defining φ1
0 = φ, φ2

0 = 1−φ and utilising the leading results obtained from the above
momentum balances, u1

0 = u2
0 = u0 and v1

0 = v2
0 = v0, implies

∂tρ+
∂(ρu0)

∂x
+
∂(ρv0)

∂y
+
∂
[
φw1

0 + ρ̂(1−φ)w2
0

]

∂z
= 0 . (C.33)

For a single constituent ν= 1,2, by only considering the leading order terms O(1) implies

∂tφ
ν
0 +∇· (φν

0~u
ν
0 ) = 0. (C.34)

Boundary asymptotic

Besides carrying out the asymptotic analysis on the mass and momentum balance equa-
tions, the asymptotic expansions are substituted into the expressions valid at the bound-
aries as well.

Surface boundary:

The non-dimensionalised surface boundary condition (C.2) is restated below,

ρw +ρ [∂t (h+b)+~u ·∇(h+b)] = 0, (C.35)
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Using the asymptotic expansions, we have

(φ1
0 +δ2φ1

1)(w1
0 +δ2w1

1)+ (φ2
0 +δ2φ2

1)ρ̂(w2
0 +δ2w2

1)−

ρ
[
∂t (h0 +δ2h1 +b0)− (~uH0 +δ2

~uH1) ·∇H (h0 +δ2h1 +b0)
]
= 0

O(1) →φ1
0w1

0 +φ2
0ρ̂w2

0 −ρ [∂t (h0 +b0)−~uH0 ·∇H (h0 +b0)]= 0

φ1
0w1

0 +φ2
0ρ̂w2

0 −ρ [∂t (h0 +b0)−~uH0 ·∇H (h0 +b0)]= 0 at z = h+b .

(C.36)

Base boundary:

Similar to the analysis carried out on the surface boundary condition, the non-dimensionalised
basal boundary condition (restated below) subject to the same analysis.

ρ [∂t b +~u ·∇b]−ρw = 0. (C.37)

Using the asymptotic expansions, we have

ρ
[
∂t b0 + (~uH0 +δ2

~uH1) ·∇H b0...
]

−(φ1
0 +δ2φ1

1)(w1
0 +δ2w1

1)− (φ2
0 +δ2φ2

1)ρ̂(w2
0 +δ2w2

1) = 0

O(1) → ρ [∂t b0 +~uH0 ·∇H b0]−φ1
0w1

0 −φ2
0ρ̂w2

0 = 0

ρ [∂t b0 +~uH0 ·∇H b0]−φ1
0w1

0 −φ2
0ρ̂w2

0 = 0 at z = b .

(C.38)

C.4. Segregation governing equation
Defining φ1

0 =φ, the continuity equation is stated below,

∂φ

∂t
+
∂(φu1

0)

∂x
+
∂(φv1

0)

∂y
+
∂(φw1

0)

∂z
= 0. (C.39)

Utilising the results obtained from the above asymptotic analysis, where the partial down-
and cross-slope velocity is, in the leading order of the aspect ratio, equal to the bulk
down- and cross-slope velocities u1

0 = u0, v1
0 = v0, then (C.26) is restated as

w1
0 = w0 +

gn

c
γ̇
[
ρ f 1

0 −1
]

. (C.40)

By substituting ρ =φ+ (1−φ)ρ̂ in the above equation, we have

w1
0 = w0 +

gn

c
γ̇
[(
φ+ (1−φ)ρ̂

)
f 1

0 −1
]

. (C.41)
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Utilising the asymptotic expansions of the terms in f 1 and substituting them in the
above equation (C.41) results in

f 1 =
(s1)a

(φ1
0 +δ2φ1

1)(s1)a + (φ2
0 +δ2φ2

1)(s2)a
,

O(1) →
(s1)a

φ1
0(s1)a +φ2

0(s2)a
= f 1

0 ,

O(δ2) →
(s1)a

φ1
1(s1)a +φ2

1(s2)a
= 0,

(C.42)

Using the O(1) terms of C.42 and substituting them in C.41, results in

w1
0 = w0 +

gn

c
γ̇
[
φ f 1

0 + ρ̂(1−φ) f 1
0 −1

]
,

w1
0 = w0 +

gn

c
γ̇

[
φ(s1)a

φ(s1)a + (1−φ)(s2)a
+ ρ̂

(1−φ)(s1)a

φ(s1)a + (1−φ)(s2)a
−1

]
,

w1
0 = w0 +

gn

c
γ̇

[
φ(s1)a − ρ̂φ(s1)a + ρ̂(s1)a −φ(s1)a − (1−φ)(s2)a

φ(s1)a + (1−φ)(s2)a

]
,

w1
0 = w0 +

gn

c
γ̇

[
(1−φ)

(
ρ̂(s1)a − (s2)a

)

φ(s1)a + (1−φ)(s2)a

]

if ŝ =
s2

s1
→ w1

0 = w0 +
gn

c
γ̇

[
(1−φ)

(
ρ̂− ŝa

)

φ+ (1−φ)ŝa

]
.

(C.43)

Similarly,

w2
0 = w0 +

gn

c
γ̇
ρ1∗

ρ2∗

[
φ

(
ŝ − ρ̂

)

φ+ (1−φ)ŝ

]
. (C.44)

Substituting u1
0 , v1

0 and w1
0 , dropping the subscripts, in the continuity equation results

in

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
+

∂

∂z

(
gn

c
γ̇

[
φ(1−φ)

(
ρ̂− ŝa

)

φ+ (1−φ)ŝa

])
= 0 . (C.45)

For a purely density driven segregation, s1 = s2, the governing equation is

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
−

gn

c
(1− ρ̂)

∂γ̇(φ(1−φ))

∂z
= 0 (C.46)

C.5. Summary
From the x- and y-momentum equations, O(1/δ2) implies that the partial velocity in the
down and cross-slope is equal to the bulk down and cross-slope velocity,

uν
0 = u0, vν

0 = v0, ν= 1,2. (C.47)
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If φ1
0 = φ, then from the normal component of the momentum balance of each particle,

O(1/δ2) implies that the normal component of the partial velocity, percolation velocity,
wν

0 for ν= 1,2 is

w1
0 = w0 +

gn

c

[
(1−φ)

(
ρ̂− (ŝ)a

)

φ+ (1−φ)(ŝ)a

]
and w2

0 = w0 +
gn

c

1

ρ̂

[
φ

(
(ŝ)a − ρ̂

)

φ+ (1−φ)(ŝ)a

]
. (C.48)

Moreover, by adding the normal components of the momentum balance of each con-
stituent shows that the bulk pressure is lithostatic in the leading order of the aspect ratio,

∂p0

∂z
=−ρgn . (C.49)

gn is normal component of the gravity. By substituting all the above expansions and
its implications in the continuity equation (C .5)1, dropping the subscripts, segregation
model governing the volume fraction φ, is obtained

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
+

∂

∂z

(
γ̇

gn

c

[
φ(1−φ)

(
ρ̂− ŝ

)

φ+ (1−φ)ŝ

])
= 0, (C.50)

where ŝ = s2/s1 is the ratio of particle sizes. A purely size driven or purely density driven
governing equation for segregation can be derived, from (C.50), either by considering
ŝ = 1 or ρ̂ = 1.
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D
CG Application

D.1. Number of particles
We consider a cuboidal box, periodic in x- and y-direction, inclined at 26◦ to the hori-
zontal. The box has dimensions L×W ×H = 20dm ×10dm ×10dm and is filled up with a
bidisperse mixture particles upto a flow height of H occupying a total particle volume of
V p with a packing fraction of π/6,

V p = (π/6)LW H , V
p

1 =φV p , V
p

2 = (1−φ)V p . (D.1)

Hence, V
p

1 and V
p

2 is the volume occupied by all the particles of species type-1 and -2
respectively, which are taken to be equal for the simulations presented here, i.e., φ= 0.5.
Below, we non-dimensionalise the particle diameter of species type-1 and -2, and the
mixture volumes, Eq. (D.1), as

d1 = dm d̂1 , d2 = dm d̂2 , (L,W, H) = dm (L̂,Ŵ , Ĥ ),

V p = d3
mV̂ p with V̂ p = (π/6)L̂Ŵ Ĥ , V

p
1 =φV̂ p ,V

p
2 = (1−φ)V̂ p .

(D.2)

Simultaneously, the total mass corresponding to the volumes V
p
ν , with ν = 1,2, and V p

is

M
p
ν = ρνV

p
ν with ν= 1,2 and M p = M

p
1 +M

p
2 with ρm = M p /V p = mm/Vm , (D.3)

and are non-dimensionalised as

M p = ρm(dm )3M̂ p with M̂
p
ν = ρ̂νV̂

p
ν and ν= 1,2. (D.4)

From the above non-dimensionalised flow quantities, (D.2) and (D.4), we determine
non-dimensionalised particle diameters and densities, and the number of particles of

The contents in this appendix correspond to Chapter 5.
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species type-1 and type-2 to be filled in the box. Thereby, the non-dimensional particle
diameters of the two species type are

d̂m =φd̂1 + (1−φ)d̂2 = 1,

implying d̂1 =
1

φ+ (1−φ)ŝ
and d̂2 = ŝ d̂1.

(D.5)

Similarly, the non-dimensional particle densities are given as

ρ̂m =
M̂ p

V̂ p
=

φρ̂1V̂ p + (1−φ)ρ̂2V̂ p

V̂ p
= ρ̂1(φ+ (1−φ)r̂ ) = 6/π,

implying ρ̂1 =
(6/π)

φ+ (1−φ)r̂
and ρ̂2 = r̂ ρ̂1.

(D.6)

Furthermore, if N1 and N2 are the number of particles of species type-1 and type-2 in
the mixture, from (D.4) we have

N1 =
V̂

p
1

(π/6)(d̂1)3
=

φ(π/6)L̂Ŵ Ĥ

(π/6)(d̂1)3
=

φL̂Ŵ Ĥ

(d̂1)3
,

N2 =
V̂

p
2

(π/6)(d̂1)3
=

(1−φ)(π/6)L̂Ŵ Ĥ

(π/6)(d̂1)3
=

(1−φ)L̂Ŵ Ĥ

(d̂2)3
.

(D.7)

D.2. Percolation velocities
Percolation velocities are often found to be of the order of magnitude of the bulk velocity.
The normal constituent or the percolation velocities, wν, is obtained by considering the
normal component of the momentum equation (5.2)2,

ρν d wν

d t
=− f ν d p

d z
−ρνg cosθ−ρνc(wν−w). (D.8)

For particle type-1, we define φ1 := φ and restate the pressure scaling f 1 = 1+ B(1 −
φ). On neglecting the normal acceleration terms (shallow flows), for ν = 1, (D.8) can be
simplified to

ρ1w1 = ρ1w +
g cosθ

c

(
ρφ f 1 −ρ1)

.

Substituting the pressure scaling in the percolation velocity leads to

ρ1w1 = ρ1w +
g cosθ

c

[
ρ

(
φ+Bφ(1−φ)

)
−ρ1

]
,

w1 −w =
g cosθ

c

[
ρ

ρ1

(
φ+Bφ(1−φ)

)
−1

]
,

w1 −w =
g cosθ

c

[
ρ

ρ1
φ+

ρ

ρ1
Bφ(1−φ)−1

]
.
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Given
ρ

ρ1
=

ρ1 +ρ2

ρ1
= 1+

ρ2

ρ1
= 1+

(
1−φ

φ

)
ρ∗2

ρ∗1
, leads to

w1 −w =
g cosθ

c

[(
1+

(
1−φ

φ

)
ρ∗2

ρ∗1

)
φ+B

(
1+

(
1−φ

φ

)
ρ∗2

ρ∗1

)
φ(1−φ)−1

]
,

w1 −w =
g cosθ

c

[
φ+ (1−φ)

ρ∗2

ρ∗1
+Bφ(1−φ)+B(1−φ)2 ρ

∗2

ρ∗1
−1

]
,

w1 −w =
g cosθ

c

[
(1−φ)

(
ρ∗2

ρ∗1
−1

)
+B(1−φ)

(
φ+ (1−φ)

ρ∗2

ρ∗1

)]
.

With ρ̂ = ρ∗2/ρ∗1,

w1 −w =
g cosθ

c
(1−φ)

[
(ρ̂−1)+B

(
φ+ (1−φ)ρ̂

)]
,

w1 −w =
g cosθ

c
(1−φ)

[
Bρ̂+ (ρ̂−1)(Bφ−1)

]
.

Substituting the above percolation velocity for particle type-1 into the continuity equa-
tion ρ1

t +∇ · (ρ1
~u 1) = 0, results in the segregation governing equation for a bidisperse

mixture varying in both size and density

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
+

g cosθ

c

∂

∂z

(
Bρ̂φ(1−φ)+ (ρ̂−1)(Bφ−1)φ(1−φ)

)
= 0.

(D.9)
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Summary

This thesis focuses on modelling the dynamics of dense granular materials flowing over
an inclined channel, utilising a continuum description. In the process of understanding
and developing this, besides continuum modelling, the thesis also exhibits the utility of
discrete particle simulations (DPMs), and the need for developing an accurate micro-
macro mapping technique.

As most of these dense gravity-driven flows are shallow in nature, for monodisperse
mixtures, Chapter 2 illustrates the formulation of a novel one – dimensional (width- and
depth-averaged) shallow granular model. Using this model, we not only predict the flow
dynamics – flow height, velocity and granular jumps or shocks – but also shows that one
can forecast the existence of multiple steady states for a given a range of channel incli-
nations. However, in reality, the majority of flowing particulate mixtures are known to
comprise of particles with varied physical attributes, i.e. they are bidisperse1 or poly-
disperse2. Thereby, as a step towards understanding the associated flow dynamics, and
developing improved continuum models, several studies presented in this thesis have
utilised discrete particle method. DPMs provide a plethora of information at a particle
scale, such as particle position, velocity, interaction forces or stresses. In order to accu-
rately map the particle scale mechanics onto a macroscopic continuum scale, Chapter
3 comprehensively presents a generic framework for an efficient and accurate micro-
macro mapping technique for polydisperse mixtures comprising of convex shaped parti-
cles, e.g. spheres. More importantly, the method presented is valid for any discrete data,
e.g. particle simulations, molecular dynamics and experimental data, for both steady
and unsteady configurations.

Before employing the efficient mapping technique of Chapter 3 to its full capacity,
based on the current understanding of bidisperse segregation dynamics, we formulate
in Chapter 4 a mixture theory segregation model for bidisperse mixtures varying both
in size and density. The developed formulation is an extension to an already existing
size-segregation model, and is applicable to both shallow (linear velocity profile) and
thick (Bagnold profile) flows. Besides predicting the extent of segregation, the theory
also predicts zero or weak segregation for a range of size and density ratios, which was
further benchmarked using DPMs. Although, we developed an efficient continuum size-
and density-segregation model, a detailed study is to be implemented in order to deter-
mine more accurate pressure scalings and further extend it to polydisperse mixtures. As
a stepping stone, towards determining these pressure scalings, in Chapter 5 we give an
example application of the micro-macro mapping technique (illustrated in Chapter 3).
For simplicity, we consider a purely size-based segregation model, which was built upon
a pressure scaling function containing an unknown parameter. Not only did we deter-
mine this unknown material parameter but, more importantly, we also found out that

1Two different types of particles.
2More than two types of particles.
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the complete size- and density-based segregation in any flowing particulate mixture is
an effect of the generated kinetic stress, rather than the contact stress. The current form
of the existing scaling functions is, however, still an active area of research, which defi-
nitely needs further attention and care.

Chapters 3, 4 and 5, show how one can mix and match continuum models with DPMs
using an efficient coarse-graining method. However, it is still vital to see if the DPMs
can actually emulate reality. As a consequence, we illustrate in Chapter 6, how DPMs
can be used as a suitable alternative to experiments using two commonly used DPM
experiments.



Samenvatting

In dit proefschrift wordt de focus gelegd op het modelleren, door middel van een zgn.
continuum omschrijving, van de dynamica van dichtgepakt granulair materiaal dat stro
-omt door een kanaal met een zekere helling. Naast het modelleren worden, voor het
begrijpen en het ontwikkelen van het model, ook simulaties door middel van de discrete
deeltjesmethode (DPM) en de bijbehorende micro-macro mapping technieken behan-
deld.

Voor de meeste van dit soort granulaire stromingen kan worden aangenomen dat
ze ondiep zijn. Hoofdstuk 2 bevat een beschrijving, voor monodisperse systemen, van
een nieuw een-dimensionaal (dwz. breedte en diepte gemiddeld) ondiep granulair mo-
del. Door dit model te gebruiken wordt, naast de dynamica van de stroming – hoogte,
snelheid, granulaire jumps en shocks – ook het bestaan van meerdere stabiele toestan-
den voor een gegeven reeks kanaalhellingen aangetoond. In realiteit bestaat het me-
rendeel van de granulaire stromingen uit meerdere soorten deeltjes met verschillende
eigenschappen, oftewel ze zijn bi-3 of polydispers4. Om de bijbehorende stromingdyna-
mica te begrijpen en betere continuum modellen te ontwikkelen, is bij een aantal studies
in deze thesis gebruik gemaakt van de discrete deeltjesmethode (DPM). Bij DPM is een
grote hoeveelheid informatie op deeltjesniveau beschikbaar, zoals positie, snelheid, in-
teractiekrachten en wrijvingen. In hoofdstuk 3 wordt op een begrijpelijke manier een
algemeen kader gepresenteerd voor een efficiënte en accurate micro-macro mapping

techniek voor polydisperse convexe deeltjes (dwz. bollen), die de mechanica op mi-
croschaal van de deeltjes om zet in bruikbare, macroscopische eigenschappen van het
systeem. De gepresenteerde methode is bovendien geschikt voor alle discrete data, bij-
voorbeeld deeltjessimulaties, moleculaire dynamica en experimentele data, voor zowel
stabiele als onstabiele configuraties.

Voordat de efficiënte mapping techniek uit hoofdstuk 3 ten volste wordt benut, wordt
er in hoofdstuk 4 een zgn. ’mixture theorie segregatie model’ voor bidisperse mengsels,
variërend in zowel grootte als dichtheid, uiteengezet. Deze is gebaseerd op de huidige
stand van kennis aangaande de segregatie dynamica van bidisperse systemen. De ont-
wikkelde formulering is een uitbreiding op een al bestaand grootte-segregatiemodel en
is toepasbaar op zowel ondiepe (lineair snelheidsprofiel) als ’dikke’ (zgn. Bagnold pro-
fiel) stromingen. Naast het voorspellen van de mate van segregatie, voorspelt de theo-
rie ook geen of zwakke segregatie voor een reeks aan grootte en dichtheid ratio’s tussen
deeltjes. Dit is verder gecontroleerd met behulp van DPM simulaties. Hoewel wij een
efficiënte continuum grootte- en dichtheidssegregatiemodel hebben ontwikkeld, is een
verder diepgaand onderzoek nodig om accuratere drukschalingen te bepalen, alsmede
de theorie uit te breiden naar polydisperse mengsels. Om alvast een stapje te zetten rich-
ting het bepalen van deze drukschalingen, is in hoofdstuk 5 een voorbeeldtoepassing van

3Twee soorten deeltjes
4Meer dan twee soorten deeltjes
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micro-macro-schaling gegeven (zoals geïllustreerd in hoofdstuk 3). Om het simpel te
houden is er een puur grootte-segregatie model toegepast, dat ontwikkeld is door mid-
del van een druk-schalingsfunctie met een onbekende parameter. Niet alleen hebben
wij deze onbekende parameter bepaald, maar bovendien zijn wij er achter gekomen dat
de complete grootte- en dichtheidsegregatie in elke willekeurige granulaire stroming een
effect is van de kinetische spanning, i.p.v. de contactspanning. De huidige vorm van de
bestaande schalingsfuncties is echter nog steeds een actief onderzoeksgebied, dat zeker
verdere aandacht en zorg verdient.

De hoofdstukken 3, 4 en 5 laten zien hoe men continuum modellen en DPM simula-
ties kan combineren en vergelijken door middel van een zgn. coarse graining methode.
Het is echter nog steeds van belang om te controleren of DPMs de realiteit wel goed
emuleren. Daarom illustreren we in hoofdstuk 6 hoe DPMs kunnen worden toegepast
als een geschikt alternatief voor experimenten aan de hand van twee veelgebruikte DPM
simulaties.


