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Polydisperse Microparticle 
Transport and Deposition to 
the Terminal Bronchioles in a 
Heterogeneous Vasculature Tree
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The atmospheric particles from different sources, and the therapeutic particles from various drug 
delivery devices, exhibit a complex size distribution, and the particles are mostly polydisperse. The 
limited available in vitro, and the wide range of in silico models have improved understanding of the 
relationship between monodisperse particle deposition and therapeutic aerosol transport. However, 
comprehensive polydisperse transport and deposition (TD) data for the terminal airways is still 
unavailable. Therefore, to benefit future drug therapeutics, the present numerical model illustrates 
detailed polydisperse particle TD in the terminal bronchioles for the first time. Euler-Lagrange approach 
and Rosin-Rammler diameter distribution is used for polydisperse particles. The numerical results 
show higher deposition efficiency (DE) in the right lung. Specifically, the larger the particle diameter 
(dp > 5 µm), the higher the DE at the bifurcation area of the upper airways is, whereas for the smaller 
particle (dp < 5 µm), the DE is higher at the bifurcation wall. The overall deposition pattern shows 
a different deposition hot spot for different diameter particle. These comprehensive lobe-specific 
polydisperse particle deposition studies will increase understanding of actual inhalation for particle 
TD, which could potentially increase the efficiency of pharmaceutical aerosol delivery at the targeted 
position of the terminal airways.

Airborne particles (dust, fumes, smoke, soot, droplets etc.) from various sources, and therapeutic drug particles 
from metered-dose inhalers (MDIs), dry-powder inhalers (DPIs) and nebulizers, are composed of complex size 
distributions. Particulates in the ambient air from natural and man-made sources include thoracic and respirable 
particles1, coarse inhalable particles (PM10), �ne particles (PM2.5)

2, and ultra�ne particles. �ese polydisperse 
particles are inhaled through the extrathoracic and tracheobronchial airways and down into the terminal bron-
chioles3. Particulate matter (PM10) are mostly deposited in the extrathoracic and tracheobronchial airways due 
to strong inertial impaction and sedimentation4; whereas PM2.5 and ultra�ne particle particulate matter could 
deposit at the alveolar airways5–7. Particulate matter (PM2.5) and ultra�ne particles may interact with epithelium 
cells, vessels and submucosa of the airways8,9.

A therapeutic drug aerosol may be absorbed by the epithelium cells; and toxic airborne particles occur in 
di�erent respiratory diseases by producing in�ammation in the lung epithelium10. A �ne particle could cross 
the alveolar epithelium wall to the interstitial space and �nally, contact the blood stream of the lung capillary2. 
Because airborne particle size distribution is mostly polydisperse, these polydisperse particles are inhaled during 
breathing. Comprehensive polydisperse particle TD data for the extrathoracic and intrathoracic airways is still 
not available; therefore inclusive polydisperse particle TD for the entire lung model is important to better under-
stand actual particle TD in the lung airways.
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Extensive in vivo and in silico studies have been performed on monodisperse particle TD for both the extratho-
racic and intrathoracic regions of the lung11–19. �e monodisperse particle TD study has improved understanding 
of airway deposition patterns for the upper airways. Relatively few studies have been conducted on polydisperse 
particle TD in the lung airways. �e ambient and occupational settings of aerosol particulate matter are polydis-
perse20, and polydisperse particles have been associated with adverse respiratory health e�ects21. A series of data 
on monodisperse aerosol particle TD22 has been used to predict polydisperse particle TD in the human lung.

Lognormal size distribution is used for the theoretical study of regional and total deposition. Discrete mon-
odisperse fraction base size distribution shows greater error for regional deposition, especially for particle sizes 
smaller than 2 µm23. A series of monodisperse and polydisperse aerosol particle depositions in a packed bed 
shows higher total deposition for polydisperse particles than monodisperse particles20. �e total 1- µm aerosol 
deposition in the packed bed without a charged neutralizer (an instrument which is used to neutralize the charge 
of the electronically charged aerosol particle) is 51% for polydisperse particles and 44% for monodisperse par-
ticles. An opposite deposition percentage is observed for a charged neutralizer system. �e theoretical arti�cial 
neural network (ANN) prediction of polydisperse aerosol deposition in a human lung shows a more accurate 
deposition pattern (<0.025% error) for all regions of the lung24. An In Vivo study of radioactive polydisperse 
particle deposition in a child’s respiratory tract shows the extra thoracic deposition pattern25; a 72% ± 17% poly-
disperse aerosol (1 µm-9 µm) deposition was observed in the extrathoracic region.

A recent CFD study by26 for a ring less trachea model and a Zygote5 model showed a maximum 68.35% 
polydisperse particle deposition in the mouth piece and the entire lung model. Particles were injected from the 
Novolizer dry power inhaler device and spray entered the mouth in a conical fashion. �e Zygote5 model consid-
ered �rst seven generations, and a ring structure was used in the trachea. No CFD or experimental study has been 
conducted which considers the entire branching pattern for polydisperse particle TD for a whole or large-scale 
lung model. To more accurately assess the polydisperse aerosol TD and respiratory health risk, it is important to 
investigate the various lobe speci�c studies.

�e present study is the �rst approach to investigate polydisperse particle TD in the �rst 17 generations of 
an asymmetric lung model by considering a likely entire branching pattern. �is study calculated the total air 
�ow rate distribution at the �ve di�erent lobes of a 17-generation model. A detail polydisperse particle TD was 
performed in the di�erent lobes of the terminal airways and the deposition hot spot at the right and le� lung, and 
di�erent lobes was investigated.

Numerical Methods
Governing equations and boundary conditions. �e present 17-generation anatomical model is pro-
posed by Schmidt, et al.27 and is an extension of the CFD study of Gemci, et al.28 and Islam, et al.6. Details of 
the anatomical model can be found in a previous computational study conducted by Islam, et al.6. An advanced 
meshing technique was used to generate the unstructured tetrahedral mesh for the complex anatomical model. 
A �ne boundary in�ation layer with dense hexahedral mesh was generated near the wall and the �nal geom-
etry contained approximately 34 million computational cells. Details about the meshing can be found in the 
Supplementary Section. A complete validation has been performed for the monodisperse particle TD, which can 
be found in the previous study by Islam, et al.6. �e Large Eddy Simulation (LES) model was used to calculate 
the air �ow in this study. Large eddies are calculated directly; on the contrary, the rest of the smaller eddies are 
calculated by using a Smagorinsky-Lilly subgrid-scale (SGS) model. �e detail of the governing equations and 
boundary conditions can be found in the Supplementary Sections.

Particle initial distribution. A parabolic condition6,29 is used at the inlet surface. All the particles are 
injected through the inlet surface; a total 14,800 particles are injected. To check the convergence of the local 
particle deposition, a di�erent number of particles are injected into the 17-generation model and found the local 
particle deposition fraction is no more than 1%. In order to minimize the discretization initialization time for 
the large-scale 17-generation model, a total 14,800 particles are injected for the �nal simulation. �e �ow rate is 
scaled by the face area and particles are injected through the face area. �e detail particle properties and govern-
ing equations can be found in the Supplementary Section.

Figure 1 shows the polydisperse particle initial distribution at the inlet surface. Figure 1(a) shows the initial 
position of the di�erent diameter particles; the initial distribution is coloured by a di�erent diameter. �e mini-
mum diameter 10−6 m, maximum diameters 10−5 m, and mean diameter 5×10−6 m is used in the Rosin-Rammler 
distribution method. Figure 1(b) shows the diameter distribution percentage plot. �e diameter distribution plot 
shows a small percentage variation for di�erent diameter particles; however, the initial position of the di�erent 
diameter particle and the distribution percentage is random.

Results and Discussion
Air Flow Simulation. �e present study accounts for air�ow, polydisperse microparticle TD in a large-scale 
17-generation conduit model, and calculates �ow rate distribution percentage in the �ve di�erent lobes. �e 
velocity contour at di�erent selected planes of the upper airways are presented and which can be found in the 
Supplementary Section.

Table 1 shows the total �ow rate distribution at the di�erent lobes of the 17-generation model for di�erent 
�ow rates. �e overall �ow rate percentage shows that �ow distribution is higher in the right lung than in the 
le�. Total �ow rate distribution also shows higher �ow percentage at the right lower lobe than in all other lobes, 
and the lower �ow distribution at the right middle lobe, compared to other lobes. �e highly asymmetric ana-
tomical bifurcating branches signi�cantly in�uence �ow rate distribution at the di�erent lobes. �e benchmark 
experimental data of Cohen, et al.30 and Hors�eld, et al.31 also show a similar trend of �ow rate distribution at the 
di�erent lobes, which satisfactorily supports the �ndings of the present study.
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Particle Transport and Deposition. �e current study performs a comprehensive polydisperse particle 
TD by considering di�erent deposition parameters. A wide range of micro-size particles (1 ≤ d µm ≤ 10) are con-
sidered for better prediction of polydisperse particle deposition at the terminal airways.

Polydisperse particle initial diameter distribution and total deposition comparison for di�erent �ow rates is 
shown in Fig. 2. �e primary y-axis shows the DE of the deposited particles and the secondary y-axis shows the 
initial diameter distribution of the polydisperse particles. �e overall DE of the polydisperse particle for di�er-
ent �ow rates shows an increasing trend, except at the 9 lpm �ow rate. For the 9 lpm �ow rate, the DE shows a 
�uctuating trend, and about 34% of injected 1- µm particles are deposited, while 42% of injected 10- µm particles 
are deposited. �e DE for 25 lpm and 60 lpm �ow rates shows an increasing trend, irrespective of particle diam-
eter. For a 60 lpm �ow rate, 46.3% of 1- µm-sized particles are deposited and 93.1% of 10- µm sized particles are 

Figure 1. Polydisperse particle distribution, (a) schematic diagram of particle initial distribution at inlet and 
legend shows microparticle (µm) diameter, and (b) particle initial distribution curve based on diameter.

9 lpm 25 lpm 60 lpm
Cohen, et al.30 
60 lpm

Hors�eld, 
et al.31

Right Upper Lobe 17.74 18.99 19.07 17.8 21.7

Right Middle Lobe 10.37 10.81 11.1 10.0 9.6

Right Lower Lobe 28.25 27.27 25.86 31.2 23.2

Le� Upper Lobe 19.38 19.01 20.05 16.0 20.5

Le� Lower Lobe 23.83 23.89 23.92 25.0 24.9

Right Lung 56.36 57.07 56.03 59 54.6

Le� Lung 43.21 42.90 43.97 41 45.4

Table 1. Total �ow rate distribution percentage at �ve di�erent lobes.

Figure 2. Polydisperse particle initial diameter distribution and total deposition comparison for di�erent �ow 
rates.
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deposited. �e calculated third order polynomial trend line �ts comfortably with the DE curve for di�erent �ow 
rates. �e third order analytical DE equation for the 60 lpm �ow rate is:

= − . + . − . + .y x x x0 153 2 6851 7 3543 51 291 (1)3 2

�e calculated R2 value is 0.9985, which clearly supports the curve �tting.
�e third order analytical DE equation for the 25 lpm �ow rate is;

= . − . + . + .y x x x0 0224 0 0273 1 0808 40 124 (2)3 2

with R2 value of 0. 9958, and the 4th order analytical DE equation for 9 lpm �ow rate is;

= . − . + . − . + .y x x x x0 0159 0 3377 2 325 4 7352 36 287 (3)4 3 2

with the calculated R2 value is 0.8753.
�e calculated third order polynomial analytical equation can be used for the validation purpose as it �ts 

nicely with the present results. �e analytical equations can also be used to predict the overall deposition pattern 
for a large scale model.

Figure 3 displays the polydisperse particle deposition pattern for a 17-generation whole lung model by exam-
ining the entire possible branching pattern. A wide range of micro-diameter particles (1 µm ≤ dp ≤ 10 µm) is 
considered in the present study, in which diameter is shown in di�erent sizes and colours. Figure 3(a,c) show 

Figure 3. Polydisperse particle deposition pattern in a 17-generation anatomical model for di�erent �ow rates: 
(a) overall deposition pattern for 9 lpm �ow rate, (b) enlarged portion of right upper lobe and right middle lobe, 
(c) overall deposition pattern for 60 lpm �ow rate, and (d) enlarged portion of �rst and second bifurcation area.
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polydisperse particle deposition scenario for 9 lpm and 60 lpm �ow rates respectively. Figure 3(b) shows enlarged 
deposition in the right upper lobe and part of the right middle lobe. Figure 3(d) shows the deposition pattern in 
the bifurcation area of the upper airway. �e overall deposition pattern shows higher deposition concentration in 
the �rst few generations. At the 9 lpm �ow rate, a lesser number of larger diameter particle (dp > 5 µm) are depos-
ited in the bifurcation area of the �rst and second generation compared to 60 lpm �ow rate. Figure 3(b) shows a 
signi�cant number of particles deposited in the bifurcation wall at the 9 lpm �ow rate. For the 60 lpm �ow rate, on 
the contrary, a signi�cant amount of larger diameter (dp > 7 µm) particles are deposited in the bifurcation angle 
of the �rst and the second generation than in the 9 lpm �ow rate. Figure 3(d) illustrates that fewer particles are 
deposited in the tracheal wall and the bifurcation wall at the 60 lpm �ow rate. �e enlarged deposition example 
also shows that smaller diameter particles are deposited mainly in the bifurcation wall, not at the carinal angle. 
Figure 3(a,d) show a noticeable amount of smaller diameter particles (dp < 5 µm) deposited at the terminal air-
ways for both �ow rates. Moreover, a signi�cant number of smaller diameter particles (dp < 5 µm) are deposited at 
the terminal airways of the 17-generation model in the 25 lpm �ow rate; the deposition �gure can be found in the 
Supplementary Section. �e reason for this type of deposition is microparticle inertia, and the inertial impaction 
is the dominant mechanism. With increased particle diameter, the momentum relaxation time τm = ρpdp

2Cs/18µ 
signi�cantly increases and inertia becomes the vital component for the deposition32. Because of the higher inertia, 
larger diameter particles are deposited at the carinal angle area. A detailed discussion of the mechanism can be 
found in the authors’ previous work6. Inertial parameter (IP) can be de�ned as;

ρ=IP d Q (4)p
2

where ρ is the density, dp is the particle diameter and Q is the �ow rate.
According to eqn. 4, inertial parameter value is increased regardless of �ow rate and particle diameter. �e 

inertial parameter value is signi�cantly higher with a higher �ow rate and larger diameter particles, which ulti-
mately indicates that inertial impaction is dominant for larger diameter particles and high �ow rates. To investi-
gate the polydisperse particle deposition hot spot, deposited particle concentration curve has been calculated. �e 
density curve and the detail discussion can be found in the Supplementary Section.

For better understanding of the polydisperse particle deposition, DE in the right lung and le� lung has been 
investigated and third order analytical polynomial equations are derived from the DE curve. �e detail discussion 
and the developed equations can be found in the Supplementary Section.

Figure 4 shows the lobar DE of a polydisperse particle for di�erent �ow rates. �e DE for various diameter 
particles in the �ve di�erent lobes is calculated. Figure 4(a) shows the lobar DE for a 9 lpm �ow rate; di�erent 

Figure 4. Lobar DE comparison for polydisperse particle: (a) 9 lpm �ow rate, (b) 25 lpm �ow rate, (c) 60 lpm 
�ow rate.
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colours represent various lobes. �e overall deposition DE shows higher deposition at the right upper lobes 
and lower deposition at the le� upper lobes. �e overall DE trend at the di�erent lobes is �uctuating, which 
could reveal the size-speci�c deposition pattern at di�erent lobes. Figure 4(a) shows that larger diameter par-
ticles are deposited mainly at the right upper lobes. Figure 4(a) also shows that the deposition concentration of 
4 µm ≤ dp ≤ 6 µm diameter particles are higher at the right lower lobes. However, for a 9 lpm �ow rate, particles 
ranging from 6 µm ≤ dp ≤ 8 µm diameter are deposited mainly at the le� lower lobes. �e DE curve also illustrates 
that for lower �ow rates, 6 µm and 7 µm diameter particle deposition concentrations are higher at the right mid-
dle lobe. Figure 4(b) shows the lobar deposition pattern for di�erent diameter particles in �ve di�erent lobes at 
25 lpm �ow rates. �e overall deposition pattern shows higher DE at the right upper lobe and lower DE at the 
le� upper lobe. Figure 4(c) shows that the DE at the right lower lobe is higher, and lower at the le� upper lobe. 
Figure 4(c) shows that the DE at the le� upper lobe decreases with increased particle diameter; the main reasons 
for this are gravitational force and the anatomical structure of the le� upper lobe. Because of gravity and the 
higher inertia of the microparticle, fewer micro-diameter particles enter into the le� upper lobe.

�e lobar deposition density comparison for di�erent diameter particles reveals di�erent deposition hot spots 
for various lobes, as shown in Fig. 5. At the right upper lobes, upper generations are the deposition hot spots 
and 10- µm diameter particle deposition concentration is higher than in particles of di�erent diameters. On the 
contrary, the deposition density of the 7 µm ≤ dp ≤ 9 µm diameter particle is higher at the upper generation of the 
right middle lobe. Figure 5(d) shows di�erent deposition hot spots at the le� upper lobe for particles of di�erent 
diameters.

Table 2 shows deposition hot spot for di�erent diameter particle at 9lpm �ow rate. �e lobe-speci�c deposi-
tion concentration comparison for polydisperse particles signi�cantly increases understanding of the pharmaceu-
tical particle deposition pattern at the terminal airways, which could advance respiratory health risk assessments.

Figure 5. Poly-disperse particle deposition density comparison during 9 lpm �ow rate at (a) right upper lobe, 
(b) right middle lobe, (c) right lower lobe, (d) le� upper lobe, (e) le� lower lobe.
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Conclusions
A comprehensive air �ow particle TD study has been performed in this study. �e present large-scale respiratory 
model illustrates detail polydisperse particle TD for di�erent �ow rates using the Rosin-Rammler diameter dis-
tribution technique for polydisperse particle injection. �e following conclusions can be drawn from the resulting 
study:

•	 Total �ow rate distribution at the right lung is 1.3 times higher than that in the le� lung and the total �ow rate 
distribution at the lower lobes is higher than in the upper lobes. Speci�cally, minimum �ow rate percentage 
is at the right middle lobe.

•	 Larger particle (dp > 5 µm) deposition concentration is higher at the bifurcation area (carinal angle) of the 
�rst couple of generations, whereas smaller diameter particle (dp < 5 µm) deposition concentration is higher 
at the bifurcation wall of the anatomical model.

•	 DE e�ciency of the polydisperse particle is higher in the right lung than in the le� lung, regardless of the �ow 
rates.

•	 Polydisperse particle DE at the right upper lobe is higher compared to other lobes, except at 60 lpm �ow rate, 
where DE is higher at the right lower lobe. Lower DE is observed at the le� upper lobe, regardless of the �ow 
rates.

•	 A di�erent deposition hot spot is observed in the right and le� lung for di�erent diameter particles. At a 9lp 
�ow rate, the deposition hot spot is in the upper and middle area of the right lung, and at the middle of the le� 
lung. At 60 lpm �ow rate, di�erent deposition hot spots are observed for various diameter particles.

•	 Di�erent deposition hot spots are observed at the di�erent lobes of the 17-generation anatomical model for 
di�erent diameter particles and �ow rates.

•	 New analytical equations for the right and le� lung DE, for di�erent �ow rates, have been developed and can 
be used to predict the DE for an entire lung model.

�e present CFD study is the �rst comprehensive approach to demonstrate the polydisperse particle TD in 
di�erent lobes of a large scale vasculature tree. �e advanced CFD model performed inclusive lobar deposition 
and found di�erent deposition hot spot for various deposition parameters. �e present model developed new 
analytical equations for the deposition in the right lung, le� lung and di�erent lobes, which would potentially 
provide overall deposition understanding for a large scale model. �e detail �ow rate distribution calculation at 
di�erent lobes will contribute to knowledge of air �ow transport for a whole lung airway. Numerical predictions 
o�er proven approximation of therapeutic aerosol particle deposition in the terminal airways of di�erent lobes, 
generated from nebulizers, dry power inhalers and metered dose inhalers. �e complete lobe-speci�c polydis-
perse particle TD study, together with clinical observations, will increase knowledge of site-speci�c drug delivery 
into the lower airways and the alveolar region of the lung. Detailed numerical prediction for lobar deposition will 
aid the pharmaceutical industry in the design of more e�cient lobe-speci�c drug delivery and potentially advance 
the entire drug delivery sector. A more advanced, patient-speci�c case study will follow.
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