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Abstract: Magnetic iron oxide nanoparticles have been extensively investigated due to their appli-
cations in various fields such as biomedicine, sensing, and environmental remediation. However,
they need to be coated with a suitable material in order to make them biocompatible and to add new
functionalities on their surface. This review is intended to give a comprehensive overview of recent
advantages and applications of iron oxide nanoparticles coated by polydopamine film. The synthesis
method of magnetic nanoparticles, their functionalization with bioinspired materials and (in particu-
lar) with polydopamine are discussed. Finally, some interesting applications of polydopamine-coated
magnetic iron oxide nanoparticles will be pointed out.

Keywords: magnetic nanoparticles; iron oxide nanoparticles; polydopamine; surface functionaliza-
tion; bioinspired nanomaterials

1. Introduction

In the last decades, magnetic nanoparticles (MNPs) have been extensively investi-
gated due to their various applications in fields such as biomedicine [1], hyperthermia [2],
catalysis [3], wastewater treatment [4], and spintronics [5,6]. Among them, iron oxide
nanoparticles have attracted major attention because of their magnetic properties, chemical
stability, tuneable morphology, and ease of surface functionalization [7]. However, these
nanoparticles need to be coated with a suitable material in order to prevent agglomeration
or to add new functionalities on their surface. Surface modification can be carried out
in different ways and using various biomaterials [8]. Typical purposes are to obtain in a
single step reaction: the available material, the use of water as a solvent, and a coating
exploitable for secondary functionalization with specific molecules. Taking inspiration
from the adhesion properties of mussels, a uniform coating platform based on the use of
dopamine has been developed, leading to the use of polydopamine as a novel coating
material [9]. Polydopamine is a highly biocompatible bioinspired material that can be
easily deposited on various substrates with a good control on film thickness [10]. The
functional groups on its surface (catechol, carboxylic groups amine and imine) can be
used to bind specific molecules or to load transition metal ions. These unique properties
make polydopamine convenient not only as a coating material, but also as an innovative
biomaterial with applications in the fields of chemistry, biology, and material science [11].

The aim of this review is to provide a global overview of the properties, advantages,
and applications of iron oxide nanoparticles coated by polydopamine films. First of all,
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we will introduce the synthesis procedure of magnetic nanoparticles, their functional-
ization with biomaterials, and discuss the synthesis approaches of polydopamine, the
factors that influence its polymerization, and its chemical properties. Then, applications of
polydopamine-coated magnetic iron oxide nanoparticles will be discussed.

2. Magnetic Nanoparticles: Synthesis and Functionalization

Magnetic nanoparticles with specific features can be obtained using ferromagnetic
elements such as Fe, Ni, Co or metal oxides (Fe2O3, Fe3O4), alloys (CoPt, FePt), and ferrites
(MnFe2O4, CoFe2O4).

The electronic and magnetic properties of nanoparticles depend on their size [12]. In
particular, finite-size effects derived from the electron quantum confinement, and surface
effects related to the symmetry of the crystal structure, dominate the nanoparticles’ mag-
netic properties. Large particles have a multi-magnetic domain structure, with a remanent
magnetization in the absence of an external magnetic field, and exhibit a ferromagnetic
behavior. Decreasing the particle size to the nanoscale (typically around 10–25 nm) results
in a single magnetic domain structure with all the spins lined in the same direction, but
with a superparamagnetic behavior [13]. When an external magnetic field is absent, super-
paramagnetic nanoparticles exhibit zero magnetization, no coercivity, and less tendency to
agglomerate at room temperature, which makes them good candidates for biomedical and
adsorptive applications. However, for magnetic separation, particles with ferromagnetic
properties are mainly used [14].

The strong connection between the size, the shape, and the magnetic properties of
the nanoparticles leads to the development of a wide number of synthetic procedures to
achieve high crystallinity, a narrow size distribution, uniform morphology, and tuneable
properties [15]. Magnetic nanoparticles can be obtained by physical or chemical meth-
ods. Physical strategies include top-down approaches, leading to nano-sized materials
from bulk materials (molecular beam epitaxy [16], chemical vapour deposition [17], and
spray pyrolysis [18]). The main disadvantage of these techniques is the formation of pow-
ders with a wide side distribution. Chemical methods involve, on the contrary, bottom-up
approaches, since they use molecular precursors to synthetize nanocrystals. Chemical meth-
ods for the synthesis of high-quality magnetic nanoparticles include co-precipitation [19],
microemulsion [20], hydrothermal treatment [21], and thermal decomposition in the pres-
ence of molecular precursors [22]. The co-precipitation method is extensively used for the
synthesis of MNPs, with a good control on size and magnetic properties for biomedical ap-
plications. However, MNPs obtained by this technique tend to agglomerate because of their
small particle size [19]. The microemulsion technique allows for the obtainment of MNPs,
with a good control over size and composition and high saturation magnetization. How-
ever, the type of surfactant used affects nanoparticles’ properties, and represents a great
disadvantage [20]. The hydrothermal or solvothermal method is mainly used for the syn-
thesis of ultrafine powder and crystals of different materials. For example, Zheng et al. [23]
have reported the hydrothermal synthesis of Fe3O4 NPs in the presence of sodium bis
(2-ethylhexyl) sulfosuccinate as surfactant. The main disadvantage associated with this syn-
thetic route is that nanoparticles smaller than 10 nm in size cannot be obtained [21]. Among
the various chemical methods used for the fabrication of MNPs, the thermal decomposition
of organometallic precursors in the presence of stabilizing agents such as surfactants best
allows the synthesis of inorganic nanoparticles in a wide range of composition, including
oxides, metals, and semiconductors, with a good control of their size, shape, size dispersion,
crystallinity, and, accordingly, the resulting physicochemical properties. MNPs obtained
by means of such synthetic approaches are dispersible in organic solvent, and require
post-synthetic treatments for their application in biological fields [22]. Alivisatos et al. [24]
reported the synthesis of maghemite nanocrystals with size of 4–10 nm by the thermal
decomposition of iron cupferron complexes (FeCup3). Very recently, the γ-irradiation
method, commonly named as the radiolytic method, has emerged as a new green synthetic
route for magnetic oxides, exploiting the interaction between high energy γ-photons and an
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aqueous phase [25]. Recently, Jurkin et al. [26] have reported for the first time the synthesis
of δ-FeOOH nanodiscs by γ-irradiation of a deoxygenate iron(III) chloride alkaline solution
in the presence of diethylaminoethyl-dextran (DEAE-dextran) polymer, which is able to
disperse the NPs and form colloidal solutions rather than suspensions.

Magnetic nanoparticles derived from iron, in the form of magnetite (Fe3O4) or maghemite
(γ-Fe2O3), are the most extensively studied in the last decades, and have become promising
candidates for various applications because of their magnetic properties, chemical stability,
low toxicity, biological compatibility, tuneable size, and particle shapes that can be con-
trolled by varying the synthesis conditions, as well as the fact that they can be easily coated
by surface functionalization [27].

For most applications, the chemical stability of magnetic nanoparticles is crucial in
order to prevent agglomeration, precipitation, or oxidation. Moreover, their surface func-
tionalization is essential not only to make them stable against degradation, but also to
convey additional properties that enable their specific activity towards target cells, such as
tumor cells in order to address hyperthermia, towards biological ligands for the develop-
ment of electrochemical sensors, and also towards pollutants for the uptake of contaminants
from water, thus leading to the fabrication of various nanocomposites with applications in
many technological fields [28–32]. The strategies developed for the protection of magnetic
nanoparticles, their surface engineering, and their integration in functional structures and
materials, can be divided into two major groups: surface coating with inorganic mate-
rials (silica shell [33,34], carbon [35,36], metals [37]) and coating with organic materials
(surfactants, polymers [38–41]). In recent years, biopolymers including cellulose, alginate,
chitosan, polyethylene glycol (PEG), and synthetic eumelanin-type biopolymers such as
mussel-inspired polydopamine (PDA) have received much more attention for MNPs coat-
ing owing to their physicochemical properties, which are useful for different applications in
various research areas. Surface modification of MNPs can be carried out by two main strate-
gies, i.e., in situ and ex situ processes [42]. In the case of in situ surface functionalization,
the coating is carried out during the synthesis of nanoparticles and it starts at the same time
of nucleation, avoiding further growth of MNPs [42]. Generally, nanocomposites obtained
this way have core-shell or mosaic structures [43] with a variable polymer shell in terms of
morphology and thickness. The ex situ surface functionalization procedure, on the contrary,
relies on two different stages: the synthesis of nanoparticles and their successive coating
with biopolymers, allowing for better control of the nanocomposites’ morphology. In both
cases, the interactions attending the adsorption mechanism of biopolymers on the surface
of MNPs are mainly electrostatic and hydrophobic interactions, and hydrogen bonding [42].
All strategies available for the surface functionalization of MNPs lead to several magnetic
bio-nanocomposites characterized by different structures, including core-shell, shell-core-
shell, multicores or matrix-dispersed structures, and Janus-type hetero-structures [44–49]
(Figure 1).
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Figure 1. Distinct structures of magnetic bionanocomposites: (A) core-shell Fe3O4 polydopamine
nanoparticles (Fe3O4@PDA NPs) (reproduced with permission from ref. [45]. Copyright 2017 El-
sevier); (B) Polydopamine@upconversion nanoparticle@mesoporous silica yolk-shell nanoparticles
(PDA@UCNP@mSiO2 NPs) (reproduced with permission from ref. [46]. Copyright 2020 Elsevier);
(C) Mosaic Fe3O4 polydopamine nanoparticles; (D) Au speckled SPION@SiO2 NPs (reproduced with
permission from ref. [33]. Copyright 2020 John Wiley and Sons); (E) Polyethylene glycol (PEG) stabi-
lized MnFe2O4@MnO Janus nanoparticles (reproduced with permission from ref. [48]. Copyright 2003
Royal Society of Chemistry); (F) Polymer-stabilized ferromagnetic γ-Fe2O3 dumbell nanoparticles
(reproduced with permission from ref. [49]. Copyright 2013 ACS Publications).

3. Polydopamine Functionalized Iron Oxide Nanoparticles: Synthesis and Structures

Among the various biomaterials used for the protection and functionalization of
magnetic nanoparticles, polydopamine—a mimic of the adhesive foot protein secreted from
mussels—has stimulated extensive research in recent years for the surface modification
of many inorganic and organic materials, because it shows much more flexibility and
designability in the target structures compared to other biopolymers, and has singular
features and physicochemical properties. Since polydopamine is the major pigment of
eumelanin, it is biocompatible and displays many characteristics of natural melanin in terms
of optical (UV absorption as photoprotective agent) and electrical properties [50]. One of the
most exploited properties of polydopamine is its strong adhesion to all types of substrates,
thanks to the many functional groups, such as imine, amine, and catechol incorporated in its
structure. The catechol moieties in PDA have a certain redox activity that can be used both
for transition metal binding and for covalent bonding with specific molecules, leading to
the fabrication of diverse hybrid materials with powerful reducing capability towards metal
ions such as Mn2+, Cu2+, and Zn2+. Moreover, the functional groups present in its chemical
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structure can react with various molecules, allowing the manufacture of heterostructures
with applications in different fields. Finally, PDA has excellent biocompatibility, a crucial
factor for specific applications in the biomedical field [50].

In light of these properties, a wide number of polydopamine-derived hybrid ma-
terials have been developed for diverse applications, including energy (solar cells [51],
catalysts [52], supercapacitors [53]), the biomedical field (cells adhesion [54], antibacte-
rial activity [55], photothermal therapy [56], bioimaging [57], drug delivery [58]), water
treatment [59,60], and sensing [61–63].

The synthesis of polydopamine/iron oxides (PDA/Fe3O4) core-shell nanoparticles
has been widely investigated in recent years. PDA/Fe3O4 core-shell nanospheres can be
synthetized by the precipitation method [59], with PDA nanoparticles acting as templates.
On the other hand, introducing a dopamine solution into an Fe3O4 suspension can result in
magnetic nanoparticles coated by a polydopamine shell with a good control on the shell
thickness. In these conditions, dopamine could form –COO–NH2–ion pairs because of
the carboxyl groups on Fe3O4 surface, and could generate a polymeric shell under basic
conditions, leading to the formation of well-defined core/shell structures [64]. There are
advantages and limitations related to these two approaches. In particular, the first method
is useful for synthesizing iron oxide nanostructures after removing polydopamine. On the
other hand, the second approach presents three valuable features. First, multicore nanos-
tructures can be obtained, where polydopamine shell encapsulates magnetic nanoparticles.
Second, since magnetic iron oxide nanoparticles tend to aggregate and can biodegrade
when they are in biological systems, polydopamine shell can prevent their biodegradation
and their direct contact with biological systems. Moreover, polydopamine shell, thanks to
its chemistry and reducing ability, is a versatile platform for the surface modification of the
inorganic core.

The polymerization process of PDA shell around the surface of iron oxide nanoparti-
cles is affected by parameters such as the dopamine monomer concentration, the pH value,
and the type of buffer and oxidation agent used. Usually, polydopamine is synthetized by
a solution oxidation method, whereby the dopamine monomers (typically dopamine hy-
drochloride), added into an alkaline solution (generally tris(hydroxymethil)-aminomethane
(Tris) buffer (pH 8.5)), are oxidized and spontaneously self-polymerize. The polymerization
process can be easily monitored by a color change of the solution, from colorless to deep
brown. Dopamine concentration considerably affects the morphology of PDA nanoparticles
and the characteristics of film deposition. Increasing the dopamine monomer concentration
from 0.1 to 5 g L−1 results in an increase of the PDA shell thickness from a few nm to a
maximum of about 50 nm [65], but also in an increase of the coating’s surface roughness.
However, using dopamine concentrations lower than 0.5 g L−1 for functionalizing iron
oxide nanoparticles allows the reduction of the formation of insoluble PDA aggregates
formed during the synthesis, and the increase of PDA shell roughness. Another factor
affecting the polymerization process is the type of buffer used. Recent studies have demon-
strated that using Tris-HCl buffer instead of sodium bicarbonate (NaHCO3) and phosphate
buffers, leads to the incorporation of Tris into the dopamine structure via covalent coupling
between the primary amine of Tris and the dopamine-quinone intermediate, which is
significant during the polymerization process [50]. The use of sodium hydroxide (NaOH)
aqueous solutions instead of the above-mentioned buffers allows the preparation of PDA
nanoparticles with good colloidal stability and a size lower than 100 nm. However, in all
cases, the formation of large PDA aggregates can be observed, and additional purifica-
tion steps are necessary for their removal from the final preparation [50]. In addition to
these two parameters, the effect of the solution pH value must be considered. In fact, at
basic pH, a consumption of the produced hydrogen protons can be observed as the PDA
synthesis progresses, thus allowing the shifting of the redox equilibrium towards PDA
production [50]. Therefore, an increase of the initial pH results in an increase of the PDA
shell thickness in the case of coatings, and in a particle size reduction in the case of PDA
nanoparticles production [50].
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Owing to its described properties, polydopamine is an ideal candidate for the fabri-
cation of hybrid materials with specific functionalities. The following sections will give
some illustrative examples in order to describe the potential applications of polydopamine-
coated magnetic iron oxide nanoparticles across the fields of bioremediation, biomedicine,
and sensing.

4. Technological Applications of Polydopamine Functionalized Iron
Oxide Nanoparticles

The use of nanoparticles for applications in the field of remediation, biomedicine, and
sensing has been extensively researched in the last years, yielding significant advancement
in the development of ultrasensitive nanosystems, as confirmed by the great number of
publications (Figure 2). In this section, we will explore in particular recent advances in the
applications of polydopamine-coated iron oxide nanoparticles.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 17 
 

 

4. Technological Applications of Polydopamine Functionalized Iron Oxide  

Nanoparticles 

The use of nanoparticles for applications in the field of remediation, biomedicine, 

and sensing has been extensively researched in the last years, yielding significant ad-

vancement in the development of ultrasensitive nanosystems, as confirmed by the great 

number of publications (Figure 2). In this section, we will explore in particular recent ad-

vances in the applications of polydopamine-coated iron oxide nanoparticles. 

 

Figure 2. Number of publications with keywords: nanoparticles in combination with ◼ sensing, ⚫ 

biomedicine or nanomedicine or drug delivery, and ▲ bioremediation or remediation in the last 

years. 

4.1. Environmental Remediation 

The removal of pollutants such as heavy metals, aromatic compounds, dyes, pesti-

cides, and pharmaceuticals from water is a present challenge. Many methods have been 

exploited for the purification of water from contaminants, including photocatalytic deg-

radation, biological treatments, adsorption, and chemical precipitation [66–69]. Among 

these, adsorption methods are still the most efficient thanks to their easy operation. In 

recent years, polydopamine-coated magnetic nanoparticles have emerged for the uptake 

of heavy metals in wastewater treatment, since they combine magnetic separation and a 

specific affinity towards pollutants. The functional groups of polydopamine offer a wide 

number of active sites for binding pollutants, and can selectively bind heavy metals via 

electrostatic interaction, hydrogen bonding, coordination, or chelation. Combining the 

chemical properties of polydopamine with the magnetic properties of magnetic nanopar-

ticles is of great interest for adsorption applications, since magnetic materials can collect 

substances in water and be removed by the application of a magnetic field. Several works 

on the use of polydopamine-coated magnetic nanoparticles as adsorbent for pollutants 

have been reported. 

Among the toxic heavy metal ions, Cd(II) is considered to be an extremely harmful 

pollutant, and its accumulation in human body leads to many cardiovascular and neuro-

logical diseases [70]. Several methods have been employed for the removal of Cd(II) from 

Figure 2. Number of publications with keywords: nanoparticles in combination with � sensing,
• biomedicine or nanomedicine or drug delivery, and N bioremediation or remediation in the
last years.

4.1. Environmental Remediation

The removal of pollutants such as heavy metals, aromatic compounds, dyes, pesti-
cides, and pharmaceuticals from water is a present challenge. Many methods have been
exploited for the purification of water from contaminants, including photocatalytic degra-
dation, biological treatments, adsorption, and chemical precipitation [66–69]. Among
these, adsorption methods are still the most efficient thanks to their easy operation. In
recent years, polydopamine-coated magnetic nanoparticles have emerged for the uptake
of heavy metals in wastewater treatment, since they combine magnetic separation and a
specific affinity towards pollutants. The functional groups of polydopamine offer a wide
number of active sites for binding pollutants, and can selectively bind heavy metals via
electrostatic interaction, hydrogen bonding, coordination, or chelation. Combining the
chemical properties of polydopamine with the magnetic properties of magnetic nanopar-
ticles is of great interest for adsorption applications, since magnetic materials can collect
substances in water and be removed by the application of a magnetic field. Several works
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on the use of polydopamine-coated magnetic nanoparticles as adsorbent for pollutants
have been reported.

Among the toxic heavy metal ions, Cd(II) is considered to be an extremely harmful
pollutant, and its accumulation in human body leads to many cardiovascular and neu-
rological diseases [70]. Several methods have been employed for the removal of Cd(II)
from polluted water [71–73]. In 2019, Sun et al. [74] proposed the synthesis of Fe3O4@PDA
microspheres with strong saturation magnetism as adsorbents for Cd(II) from aqueous
solution, displaying the high efficiency of the obtained material for the removal of the metal
ions in a systematic study as a function of time, pH and ionic strength and concentration
(Figure 3). They demonstrated the excellent performance of the nanosystem for Cd(II),
thanks to its porous structure that allows the diffusion of Cd(II) and the subsequent removal
of ions. Another example is the use of magnetic core-dual shell Fe3O4@PDA@TiO2 nanopar-
ticles as adsorbent of U(VI) from aqueous solution under pH 3.0 and 8.2 as reported by
Zhang et al. [75]. Desorption and reusability studies conducted on the developed nanopar-
ticles confirmed the performance of Fe3O4@PDA@TiO2 as an efficient uranium adsorbent.
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(mg/g) is the equilibrium adsorption capacity and Ce is the Cd(II) concentration at the equilibrium
conditions. Reproduced with permission from ref. [74]. Copyright 2019 Elsevier.

In addition to heavy metals, other pollutants have been considered for water reme-
diation. For example, alginate beads with dispersed polydopamine CoFe2O4 particles
were used for the removal of dyes such as methylene blue (MB), malachite green (MG),
and crystal violet (CV) [76], exhibiting high adsorption performances due to the porous
structure and large surface area. In particular, they found that the removal efficiency is
higher in a pH range of 4.0–9.0 and a higher adsorption capacity towards MB and CV.
Tan et al. [77] proposed the synthesis of heterostructure based on PDA-coated graphene
oxide/Fe3O4 imprinted nanoparticles for selective adsorption of fluoroquinolone antibi-
otics by specific recognition and magnetic separation. The system had a large adsorption
capacity (70.9 mg/g), deriving from the electrostatic interactions and the molecular recog-
nition between the molecules and the PDA film, and it could be repeatedly used without
loss of removal efficiency, which was higher than 95%.

The same system was used by He et al. [78] for the selective removal of sulfonylurea
in cereals, leading to the possibility of using these nanoparticles for the selective detection
and adsorption of herbicides in cereal samples by magnetic solid phase extraction coupled
with High Performance Liquid Chromatography (HPLC). However, further investigation is
required to improve the adsorption capacity of the proposed nanoparticles towards sulfony-
lurea. The above-mentioned applications of polydopamine-coated magnetic nanoparticles
in the field of environmental remediation are reported in Table 1, and are highlighted for
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their great potential for the efficient removal and collection of heavy metals, antibiotics,
dyes, and other organic pollutants present in environmental water.

Table 1. Fe3O4@PDA nanocomposites for the uptake of organic and inorganic pollutants.

Biosorbent Pollutants Adsorption Capacity
(mg/g) pH Reference

PDA-coated graphene oxide/Fe3O4
imprinted nanoparticles Sulfonylurea 3.176 - [78]

Sodium alginate@CoFe2O4-PDA beads
Malachite green 248.8

Crystal violet
Methylene blue

456.5
466.6 4 [76]

PDA-coated graphene oxide/Fe3O4
imprinted nanoparticles fluoroquinolone antibiotics 70.90 8 [77]

Fe3O4@PDA@TiO2 nanoparticles U(VI) 87.74 8.2 [75]

Fe3O4@PDA microspheres Cd(II) 296.4 6 [74]

4.2. Biomedicine

The superparamagnetic properties of iron oxide nanoparticles are also of great interest
for applications in the biomedical field, including in therapeutic agents in cancer treatment
(hyperthermia), drug delivery, biosensors, magnetic resonance imaging contrast agents,
and cell separation, because they exhibit tuneable, size-dependent magnetic properties, and
are benign and biodegradable [79–81]. On the other hand, polydopamine has been widely
investigated for biomedical applications thanks to its biocompatibility and hydrophilicity.
Moreover, its chemical groups allow subsequent chemical modification with functional
groups for decoration with specific biomolecules, thus achieving original multifunctional
hybrid nanosystems which are useful for biomolecular therapeutics and biomedicine [82].
Thus, the growth of a PDA shell on the nanocrystals’ (NCs) surface represents an efficient
method for prevent NCs’ toxicity, to impart them with biocompatibility, and to introduce
new functionalities on their surface useful for subsequent reactions.

Fe3O4@PDA nanoparticles have found several applications in the biomedical field,
including in cancer diagnosis, photothermal therapy, bioimaging, and drug delivery. Pho-
tothermal therapy (PTT) is considered an alternative treatment to current cancer therapies
such as radiotherapy, chemotherapy, and surgery, because it is highly selective and mini-
mally invasive. It uses photosensitizing agents for absorbing the near-infrared (NIR) light,
which is subsequently transduced into heat to destroy cancer cells [83].

Several studies have demonstrated that Fe3O4 nanoparticles can ablate tumors via pho-
tothermal effect thanks to their broad absorption in the NIR region and good light-thermal
conversion efficiency [84]. Moreover, their superparamagnetic properties make Fe3O4
nanoparticles potentially useful as a magnetic resonance (MR) imaging contrast agent [85].
However, Fe3O4 nanoparticles need to be properly functionalized for applications in pho-
tothermal therapy against cancer, since they require a high iron oxide concentration to be
utilized for PTT, exhibit a lack of efficient drug loading capability, and do not respond
to stimuli such as pH and/or temperature for drug release [84,86]. The modification of
magnetic nanoparticles with PDA was found to improve the efficiency of photothermal
conversion and the NIR absorption, due to the strong near-infrared (NIR) light absorption
property of PDA and its excellent photothermal conversion efficiency [87]. Moreover, the
functional groups on the PDA surface can be exploited for the drug loading to perform
effective chemotherapy. For instance, it was shown that increasing the thickness of PDA
shell results in an increase in the efficacy of photothermal conversion and NIR absorp-
tion of Fe3O4@PDA particles [88] (Figure 4A,B). Several works have demonstrated that
nanocomposites based on Fe3O4@PDA can be used as a cancer theranostic agent directed
by a magnetic field, combining the highly sensitive MR capability of the superparamag-
netic iron oxide nanoparticles (SPIONs) core and the cancer cell killing capability of the



Nanomaterials 2022, 12, 1145 9 of 17

polydopamine coating by photothermal conversion effect [89]. However, the use of NPs
as theranostic agents is limited because of their loss of stability in the blood circulation.
Therefore, they can be superficially modified with polymeric moieties in order to improve
their in vivo performance. In this perspective, a core-shell magnetite nanoclusters@PDA-
PEG@ICG nanobead was synthetized and then conjugated with polyethylene glycol (PEG)
in order to enhance the stability of NPs in the blood circulation [90]. The nanocompos-
ites exhibited high accumulation in target tumors under the application of an external
magnetic field, biocompatibility, and high T2 relaxivity in MRI imaging. The subsequent
functionalization with indocyanine green (ICG) revealed a higher efficacy of photother-
mal conversion and a further photothermal effect in killing liver cancer cells under the
irradiation of NIR laser. In another work, Shi et al. [28] fabricated a novel system based
on polydopamine-coated magnetic mesoporous silica nanoparticles for multimode cancer
theranostics. In particular, they used SPIONs for T1 weighted MR imaging, and PDA
shell was used to impart a good colloidal stability and to absorb NIR light for the pho-
tothermal therapy of tumors (Figure 4C,D). The prepared nanoparticles exhibited NIR
absorption, enabling their possible use for multifunctional T1 MR, thermal imaging, and
PTT of xenografted tumor models. In 2020, Jędrzak et al. [91] designed a multimodal
nanoplatform based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and
spheres (sMAG) with PAMAM dendrimers for the treatment of hepatocellular carcinoma
(HCC) in vitro. They proved that these nanoplatoforms, functionalized with NHS-PEG-Mal
(N-hydroxysuccinimide–polyethylene glycol–maleimide) linker terminated with folic acid,
can be used as efficient agents for dual chemo and photothermal therapy of HCC. Very
recently, Jin et al. [92] developed a multifunctional porous Fe3O4@PDA-PEG nanocom-
posite that simultaneously can serve for magnetic resonance (MR) imaging, photothermal
therapy (PTT), and chemotherapy, and can potentially be used as a theranostic agent for
biomedical applications. Thanks to the porous structure of iron oxide nanoparticles and
the functional groups on the surface of PDA, a remarkable drug loading capacity was
observed, while the photothermal-chemotherapy showed an enhanced anti-tumor effect
during in vitro experiments.
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Figure 4. (A) Relative viabilities of A549 cells treated with Fe3O4, PDA, and Fe3O4@PDA at a
concentration of 50 µg mL−1 without or with NIR laser irradiation; (B) Photograph of tumors
after excision from PBS, Fe3O4, PDA, and Fe3O4@PDA under NIR irradiation (reproduced with
permission from ref. [88]. Copyright 2015 ACS Publications); (C) T1-Weighted MR imaging of
xenograft 4T1 tumors in mice before and at different time points post intravenous injection of
ultrasmall iron oxide nanoparticles (USIONPs); (D) MR signal/noise (S/N) ratios of tumors at
different time points (reproduced with permission from ref. [28]. Copyright 2013 Royal Society
of Chemistry); (E) Simultaneous detection of multiple mRNAs in living cells (reproduced with
permission from ref. [39]. Copyright 2014 ACS Publications).
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Magnetic nanomaterials and the unique properties of PDA are also of great interest
for the development of drug delivery systems. Thus, researchers are recently working
on the functionalization of these nanoplatforms with different types of drug molecules.
Liu et al. [93] proposed the synthesis of core-shell Fe3O4 polydopamine NPs as a drug
carrier, exploiting the catechol groups on PDA surface to create a pH responsive drug carrier
system. Fe3O4@PDA nanoparticles were loaded with the anticancer drug bortezomib (BTZ)
in order to investigate the pH-responsive drug release behavior of NPs, and they were
demonstrated to be effective at controlling the release of BTZ in a pH-sensitive manner. In
another work, Fe3O4@PDA core-shell nanocomposites were used as theranostics agents
for intracellular mRNA detection. They showed that PDA can adsorb dye-labelled single-
stranded DNA (ssDNA) probes and quench the fluorescence of the dye. In the presence of
the target, the binding between the dye-labelled ssDNA probe and its target form a duplex
structure, leading to a release of the probe from PDA and recovery of the fluorescence. In
this way, Fe3O4@PDA NCs could be used as a nanoprobe to detect mRNA in living cells
(Figure 4E) [39]. Singh et al. [94] proposed the development of nanocarriers based on PDA-
coated iron oxide nanoparticles (IONPs) functionalized with Glutathione disulfide (GSSG),
which acts as a cellular trigger to release the drug from the nanoparticles, for the treatment
of prostate cancer. Release studies performed on Doxorubicin (DOX), an anticancer drug
widely used in cancer treatment, showed a pH-responsive behavior and a decrease of
several side effects, making the elaborated nanocarrier a potential drug delivery system.

In 2020, Singh designed PDA-coated iron oxide nanorods conjugated with taurine—a
biomolecule that can improve the performance of nanodelivery vehicles as it can cross the
blood-brain barrier (BBB)—as an agent for cancer therapy. DOX was loaded on the nanove-
hicles, showing also in this case that the behavior of the nanocarrier depends on the pH
value, making them an efficient tool for effective delivery in the tumor microenvironment.
In vitro studies performed on prostate carcinoma cells (PC3) revealed the good cellular
uptake of the nanohybrid which can induce the cell death and potentially be used as a
nanocarrier for the treatment of cancer cells [95]. All mentioned studies are summarized in
Table 2.

Table 2. Fe3O4@PDA nanocomposites for biomedical applications.

Bionanocomposite Application Reference

Core-shell Fe3O4 polydopamine nanoparticles pH responsive drug delivery [93]

Core-shell Fe3O4 polydopamine nanoparticles Intracellular mRNA detection [39]

Nanoclusters@PDA-PEG@ICG Cancer therapy [90]

Polydopamine-coated magnetic mesoporous
silica nanoparticles Multimode cancer theranostic [28]

IONPs@PDA Drug delivery system for cancer therapy [94]

Polydopamine (PDA)-coated magnetite
nanoparticles (NPs) and spheres (sMAG) with

PAMAM dendrimers
Hepatocellular carcinoma treatment [91]

PDA-coated iron oxide nanorods Drug delivery system for cancer therapy [95]

Porous Fe3O4@PDA-PEG nanocomposite
Magnetic resonance (MR) imaging

Photothermal therapy (PTT)
Chemotherapy

[92]

4.3. Sensing

Miniaturized (bio)sensors have been widely investigated in the past years as a way
to achieve real-time monitoring and implement automated lab on chip platforms, ex-
ploiting their high selectivity and sensitivity and integration in portable measurements
systems [96–99]. An important component for the operation of a biosensor is the immo-
bilization of biorecognition probes, since it affects the sensitivity, the selectivity, and the
stability of biosensors.
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In this perspective, polydopamine was demonstrated to be a useful biopolymer to
immobilize many biomolecules on electrodes while preserving their biological activity. By
changing the immobilized molecules, several high performance polydopamine-containing
biosensors for various electrochemical assays have been engineered. For example, in 2013,
a biosensor based on multi-functional core-hell glucose oxidase–Au–PDA–Fe3O4 magnetic
nanoparticles has been proposed by Peng et al. [100] for glucose detection. They demon-
strated that the modified electrodes preserved the native structure of the immobilized
proteins, and had a good electrocatalytic activity for the oxidation of glucose. Moreover,
the entrapped glucose oxidase preserves its bioactivity thanks to the high biocompatibility
of PDA and the ability of the system in efficiently communication with electrodes.

Polydopamine-based electrochemical sensors for metal ions are also common. Wang
and co-workers explored the absorbent properties of Fe3O4@polydopamine-MoS2 core-shell
nanospheres for sensitive electrochemical detection of Pb2+ in environmental samples [101].
They found a fast adsorption and high adsorption capacity of nanospheres to Pb2+, in
addition to their easy separation from water by an external magnetic field. Polydopamine
coating has been used both for protecting the magnetic core and as a template for the in-situ
growth of MoS2. The adsorption capacity of nanospheres was observed to be dependent
on solution pH. In particular, increasing the solution pH in range of 1.0–4.0 results in a
great adsorption of Pb2+ on the surface of Fe3O4@PDA-MoS2 nanospheres due to increased
electrostatic interactions between the nanocomposite surface and lead ions. (Figure 5A,B).
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Figure 5. (A) Capture and detection of the target Pb(II) in sample solution; (B) Differential pulse
voltammograms of the developed nanocomposites (reproduced with permission from ref. [101]);
(C) Schematic illustration of the fabrication process of Fe3O4NPs MMIPs; (D) Cyclic voltammetry
from Fe3O4NPs MMIPs-modified glassy carbon electrode (GCE) dose dependent (reproduced with
permission from ref. [102]. Copyright 2017 Elsevier).

Recently, many researchers have focused their work on detection techniques based on
molecular imprinting polymers (MIPs) as artificial receptors for a target molecule based
on synthetic polymers. The preparation procedure involves the presence of a template
molecule around which interacting and cross-linking monomers are arranged and co-
polymerized to form a cast-like shell. Specifically, cavities are imprinted in the polymer,
which can now selectively recognize the target through steric and binding interactions.
MIPs thus represent an alternative to natural receptors, with the main advantages being ro-
bustness, versatility, and cost effectiveness. For these reasons MIPs are receiving remarkable
attention as smart and robust materials for applications such as affinity separation [103],
chemical sensors and assay [104], solid-phase extraction [105], catalysis [106], artificial en-
zyme inhibitor/antibody [107], and drug delivery [108]. In this perspective, polydopamine
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is very attractive as a promising molecular imprinted polymer for biosensing thanks to
its excellent biocompatibility, hydrophilicity, chemical functionalities, robust adhesion to
various substrates, and controllable thickness [109,110].

Liu et al. [111] first reported the use of a polydopamine imprinted film for the capac-
itive detection of biomolecules. Zhou et al. [112] reported the deposition of a thin PDA
shell on Fe3O4 nanoparticles using human hemoglobin as template molecule. Five different
non-template proteins were used to test capacity of the imprinted Fe3O4@polydopamine
nanoparticles to recognize the target protein, showing a high recognition capacity of
haemoglobin imprinted Fe3O4@polydopamine NPs towards haemoglobin. The obtained
results indicated that the imprinted Fe3O4@polydopamine NPs, in conjugation with strong
magnetism, could be used as affinity materials for the selective recognition and separation
of target proteins. In 2017, Wang et al. [102] prepared for the first time a new nanoenzyme
of Fe3O4 nanoparticles (NPs) magnetic molecularly imprinted polymers (MMIPs), by poly-
merizing dopamine on the Fe3O4NPs surface in the presence of thionine (Thi) as template
(Figure 5C,D). The results showed that the imprinting sites improved the selectivity of
Fe3O4 NPs MMIPs greatly. Moreover, they found that Fe3O4NPs MMIPs could selectively
catalyze the reduction of Thi in the presence of H2O2. Accordingly, they proposed Fe3O4
NPs MMIPs by using Thi as probe for the fabrication of a highly selective and sensitive
electrochemical H2O2 biosensor that could be detect acetylthiocholinechloride (AChl),
acetylcholinesterase (AChE), and the choline oxidase (ChOx).

Very recently, Miao et al. [113] designed a highly selective impedance chemical sen-
sor based on Fe3O4 and PDA molecularly imprinted polymer magnetic nanoparticles
(PDA@Fe3O4 MIP MNPs) for the ultrasensitive detection of dichlorodiphenyltrichloroethane
(DDT) in food samples. They showed that PDA@Fe3O4 MIP MNPs could specifically rec-
ognize and efficiently adsorb and extract 4,40-DDT from food samples. Moreover, the
application of an external magnetic field easily allows the separation of DDT. After the
adsorption of DDT, the electrochemical impedance value of the PDA@Fe3O4-MIP MNPs
increased sensitively, indicating the correlation between the impedance response and the
amount of analyte. Using this novel sensor, the selective recognition of a wide range of
molecules could be achieved. Table 3 summarizes the above-mentioned applications of
Fe3O4@PDA nanocomposites in the field of sensing.

Table 3. Fe3O4@PDA nanocomposites for sensing applications.

Bionanocomposite Application Analyte Reference

Fe3O4@PDA nanoparticles Recognition and separation Haemoglobin [112]

Core–shell glucose
oxidase–Au–PDA–Fe3O4 nanoparticles Glucose sensor Glucose [100]

PDA@Fe3O4 MIP (Molecularly
Imprinted Polymer) Electrochemical biosensor Thionine [102]

Fe3O4@PDA@MnO2 Electrochemical sensor Pb2+ [101]

PDA@Fe3O4 MIP Impedance sensor Dichlorodiphenyltrichloroethane
(DDT) [113]

5. Conclusions

This review illustrates that the magnetic properties of iron oxide nanoparticles and
the singular properties of polydopamine are of great interest for applications in bioma-
terials science. Dopamine can easily modify iron oxide nanoparticles, allowing the best
stability and the introduction of new functionalities. Thanks to their long-term stability and
resistance to oxidation, such nanomaterials can be utilized in different areas, from environ-
mental to biomedical applications. Future research should be directed towards the testing
of these systems in more complex conditions (water samples with different contaminants,
origin of samples, etc.) and in physiological environments. The application of Fe3O4@PDA
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nanosystems in biomedical areas should completely provide in vivo and in vitro assays
in order to highlight their potential usefulness in cancer therapy. Thus, more research
on the application of PDA-coated iron oxide nanoparticles and specific interdisciplinary
studies on the modification and the functionality of this class of nanosystems are expected
to further prove their potential.
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