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The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly
important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs)
has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in
biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery.
The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer
architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them
highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative
medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the
lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications
include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for indi-
vidual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related
to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent
research efforts in maintaining and directing cellular phenotype in stem cell differentiation.

Introduction

Layer-by-layer (LbL) assembly of polyelectrolytes (PEs)
is a method for preparing highly tunable thin film

polymer coatings. Such coatings or films are denoted
henceforth as polyelectrolyte multilayers (PEMs).1–3 PEMs
self-assemble due to electrostatic interactions between se-
quentially deposited, alternately charged PEs.2,4–6 The che-
mical composition and concentration of the individual PEs
direct the self-assembly process of PEMs. Since electrostatic
interactions enable the links between PEs, multilayer prop-
erties can be modulated through the adjustment of deposi-
tion conditions. Typically, parameters that are varied are the
pH of the PE solution,4,7–12 ionic strength,7,12 the number of
layers,13,14 the order in which the layers are deposited,15 and
post-assembly modifications.10,11,16–19 A commonly used
post-modification process is cross-linking, which further in-
fluences film morphology, thickness, and structure.16,17,20

Virtually any combination of cationic and anionic PEs can be
used to assemble PEMs with highly tunable properties ap-
plicable in a wide range of applications. Such applications
include microelectronics,11 nanofluidics,21,22 virucidal coat-
ings,23 drug delivery,24,25 and tissue engineering.26,27 In this
review, applications of PEMs in tissue engineering will be
discussed.

PEMs have been assembled from synthetic as well as
naturally occurring polymers.1–3,28–30 Synthetic PEMs have

been assembled from cationic PEs such as poly (allylamine
hydrochloride) (PAH) and poly (diallyldimethylammonium
chloride) (PDAC) and anionic PEs such as poly (acrylic acid)
(PAA) and sulfonated polystyrene (SPS).8,29,31,32 PEMs have
also been fabricated from naturally occurring PEs such as,
polypeptides, polysaccharides, DNA, and proteins.26,31,33–37

One of the earliest reports of PEMs derived from a combi-
nation of synthetic and natural PEs was by Lvov et al. where
ultrathin films comprised of DNA and PAH were assembled
for applications in ecological sensors.1 More recently, Dubas
and Schlenoff explored combinations of poly(styrene) and
PDAC to systematically determine the factors governing LbL
assembly such as thickness, ionic concentration, and pH.12

Elbert et al. formed PEMs comprised of poly (L-lysine) (PLL)
and alginate (ALG) to render the surfaces biologically inert
and thereby block the adhesion of human fibroblast cells.33

Berg et al. assembled PAA and arginine-glycine-aspartic acid
(RGD)-modified PAH multilayers to promote the cellular
adhesion of murine wild-type NT6 fibroblasts and to deter-
mine the effect of RGD-PAH spatial configuration (i.e., RGD-
PAH line widths ranging from 10 to 50 mm) on cytoskeletal
protein organization.38 Due to a wide range of PEs available
to assemble multilayer films, as well the ability to tailor their
properties by varying the deposition conditions, PEMs are
being incorporated into a variety of biological applications.
Their uses include coatings to either promote or prevent cell
adhesion, and more importantly in directing or maintaining
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cellular phenotype.29 In addition to PEs, multilayer films
have been assembled from DNA strands using complimen-
tary base pairing,39 click chemistry utilizing covalent bond-
ing,40 and hydrogen bonding to create degradable
multilayers for drug release applications.41 The remainder of
this review will focus on the recent literature regarding LbL
assembly of PEs and their applications in the field of tissue
engineering.

PEMs have garnered immense interest in the field of
biomedical engineering to render implantable material
surfaces more biomimetic.42 Largely due to their tunable
nature, PEMs have had a significant impact in nearly every
aspect of biomaterial design and tissue engineer-
ing.10,18,22,24,26,27,30,31,38,42–55 PEMs have been used to modu-
late protein adsorption,33 promote cell adhesion,16,29,34,38,55–57

or regulate the inflammatory response.58–60 In addition, PEM
coatings have the potential to mimic the complex extracel-
lular matrix found in vivo. To recapitulate the in vivo envi-
ronment, studies have been conducted to tailor the surface
topography, chemical composition, mechanical properties,
and the degradation of PEMs.61–63 In subsequent sections,
the effect of chemical and mechanical properties of PEMs
and their impact on tissue engineering, cell adhesion, main-
taining, and, more importantly, directing cellular phenotype
will be discussed. Other novel applications of PEMs in tissue
engineering such as drug delivery and drug reservoir con-
struction for controlled release will also be reviewed.

Tailoring the Mechanical and Chemical Properties
of PEMs for Cellular Applications

The adhesion of cells in vitro and their subsequent per-
formance is often dependent on the physical properties of the
underlying substrate.52,62 The mechanical properties of a
PEM can be varied by changing the thickness, the pH of the
solutions used to assemble the PEM, and through post-
assembly modifications. In the following sections, we will
review the approaches to tailor the mechanical and chemical
properties to optimize cellular response.

Assembly conditions modulate the mechanical
properties of PEMs

Various factors such as the assembly conditions and the
number of bilayers in the PEM contribute to the diversity in
mechanical properties. In a recent study, the response of
smooth muscle cells (SMCs) was directly linked to the
Young’s modulus of the multilayer on which the cells were
cultured.16 Richert et al. demonstrated that the number of
layers within the self-assembled film play a dominant role in
SMC response.16 PEMs were assembled using PLL and
hyaluronic acid (HA) as the cationic and anionic PEs, re-
spectively. Increasing the PLL/HA bilayer number from 20
to 60, directly correlated with increasing thickness from 3 to
15 mm, respectively. However, the Young’s modulus was
inversely related to bilayer number, with values of 90 and
40 kPa observed for 20 and 60 bilayers, respectively. Thicker
PEMs were less rigid due to a higher degree of hydration.5,64

When SMCs were cultured on the PLL/HA multilayer,
projected cell areas were observed to be *1100mm2 on
substrates comprised of 20 bilayers, compared to 800 mm2 for
a substrate coated with 60 bilayers.16 In another study by the
same group, the adhesion of human chondrosarcoma cells

increased with decreased PLL/poly (L-glutamic acid)
(PLGA) PEM thickness.56 Although the thickness of a PEM
can affect cellular adhesion and spreading, it appears that
swelling and mechanical properties such as Young’s modu-
lus may play a more significant role in cellular response.56

A self-assembled PEM can grow in a linear2 or exponential
manner33 (Fig. 1). Linear growth typically occurs when the
PEs are highly charged and do not diffuse freely throughout
the PEM.2 Highly charged PEs exhibiting linear growth in-
clude cationic PAH and anionic SPS.2 On the other hand,
exponential growth occurs in the presence of weak PEs (PLL,
ALG, and PLGA), characterized by diffusion, and hydrogen
bonding.13,33,34,65 In a few cases, linear growth in the pres-
ence of weak PEs has also been observed.66 Exponential PEM
growth is largely due to the diffusion of at least one PE
through the film,34,65 resulting in an exponentially increasing
thickness, as additional bilayers are added to the film.66,67

Picart et al. attributed the exponential growth observed in
PLL/HA PEMs to the diffusion of PLL chains into the inte-
rior of the PEM when in contact with the PLL solution.28

Upon immersion in a HA solution, the PLL chains diffused
to the surface and interacted with the highly charged HA
chains, resulting in large PE aggregates at the surface re-
sulting in an exponential increase in PEM thickness as sub-
sequent bilayers were deposited.28 Researchers have
exploited the two different modes of growth within the same
PEM to create distinct regions. For example, the combination
of linear and exponential growth modes can be used to create
compartments where the PEs diffuse freely within an expo-
nentially growing region of bilayers and tightly bound in
areas of linear growth.68 Taken together, this methodology
exhibits enormous potential for applications in drug deliv-
ery, specifically as drug reservoir compartments.68 Multi-
compartment PEMs will be discussed later in this review.

The height of a PEM is also dependent on the pH of the
individual PE solutions and their ionic strength.4,5,12,29,55

Polymers can be assembled that exhibit thick, loopy struc-
tures at lower charge density or thin, rod-like confirmations
at a higher charge density.8 Mendelsohn et al. tuned the
adhesion of murine NR6WT fibroblasts on PEMs comprised
of PAH and PAA or PDAC and SPS by modulating the pH of
the PE solution.29 PEMs comprised of PAH and PAA, as-

FIG. 1. Relationship between thickness of a PEM and either
linear or exponential growth. PEM, polyelectrolyte multi-
layers; PE, polyelectrolyte.
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sembled at pH 6.0, and exhibited excellent cell adhesion
compared to PEMs assembled at pH 2.0. When PEMs were
assembled at higher values of pH, the multilayers were more
rigid in contrast to films assembled at pH 2.0. The observed
decrease in cell adhesion was attributed to a higher extent of
hydration.29 Thompson et al. assembled identical PEMs to
directly relate stiffness, which was modulated by pH, to
microvascular endothelial cell adhesion.55 Multilayers of
PAH and PAA assembled at pH 6.5 exhibited a Young’s
modulus of 150 MPa. On day 6 in culture, the cell densities
were found to be *100 cells/mm2.55 However, when the
multilayer was assembled at pH 2.0, the Young’s modulus
was found to be 200 kPa and the cell density on day 6 was
*20 cells/mm2. These trends suggested that less rigid
multilayers may result in lower rates of proliferation.55 In
separate studies, similar properties were obtained by simply
changing the ionic concentration of the PE solutions.7,12 Ty-
pically PEMs are assembled under specific conditions, for
example, pH or ionic concentration, to obtain a desired set of
properties. However, post-assembly modifications may result
in changes in the PEM thickness, stiffness, or porosity.10,29

Effects of PEM crosslinking on cell adhesion

Postassembly chemical crosslinking is a method to further
modulate mechanical properties. For PEMs with the appro-
priate functional chemistry, such as amine and/or carboxyl
groups, water-based covalent chemical crosslink chemistries
have been investigated.16,32,69–71 Carbodiimide crosslinkers
such as 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hy-
drochloride (commonly referred to as EDC) are crosslinkers
used to couple carboxyl and amine groups leading to the
formation of amide bonds.70,72–74 In a recent study, the
Young’s modulus was varied for PLL/HA PEMs to modulate
myoblast adhesion, differentiation, and myotube formation
using EDC concentrations ranging from 5 to 100 mg/mL.57

Increasing the concentration of EDC was found to be directly
proportional to the mechanical stiffness of the PEM. Myoblast
adhesion increased with higher crosslinker concentration and
well-defined focal adhesions were observed only for the
stiffest PEMs along with well-organized f-actin fibers. The
morphology of the myotubes varied significantly with thin-
ner, more elongated tubes forming only on the stiffest PEMs
(Young’s modulus of 400 kPa).57 It is also possible to crosslink
PEMs during LbL assembly as demonstrated by Croll et al.
using EDC.75 In this study, EDC and N-hydroxysuccinimide
(NHS) were added to the HA solution before LbL assembly.
PEMs cross-linked by EDC did not degrade in phosphate-
buffered saline, whereas those assembled without the cross-
linker rapidly degraded. These stable hydrated PEMs were
used to prevent protein and cellular adhesion.75

Glutaraldehyde (GA) is another common chemical used to
crosslink PEMs.76–78 Tong et al. crosslinked PEM microcap-
sules comprised of PAH and SPS to promote stability for
potential applications in drug delivery. GA crosslinking re-
sulted in a 2.3-fold increase in Young’s modulus, from 290 to
680 MPa.79 The critical pressure, upon which microcapsule
collapse occurred, doubled upon GA crosslinking for 1 h.79

More recently, GA crosslinking was utilized to improve the
stability as well as to tune the Young’s modulus of free-
standing HA and chitosan (CHI) PEMs.18 Upon exposure to
GA, the stability of the films in aqueous solutions increased

to > 90% weight retention over a period of 7 days. However,
uncrosslinked films deteriorated in aqueous solutions within
5 min.18 The Young’s modulus increased from 90 MPa for
uncrosslinked PEMs to 310 and 480 MPa for PEMs cross-
linked with GA exposure for 1 and 2 min respectively.18

BALB/c 3T3 fibroblasts colonized the entire surface of
the crosslinked PEMs within 6 days and demonstrated well-
defined actin cytoskeletal structure.18

In addition to chemical crosslinkers, other covalent meth-
ods can also be used. Recently, Moussallem et al. thermally
crosslinked PAH and PAA PEMs to form covalent amide
crosslinks.20 The hydrated Young’s modulus increased from
6 MPa to 8 GPa for uncrosslinked and crosslinked PEMs, re-
spectively. A7r5 rat aortic SMCs cultured on uncrosslinked
PEMs (6 MPa) expressed phenotypic markers, such as vi-
mentin and nonmuscle myosin heavy chain IIB,20 whereas
SMCs expressed markers of a contractile phenotype such as
calponin and smooth muscle a-actin when cultured on the 8
GPa crosslinked PEMs.20 For most cell types, increased sub-
strate stiffness promotes cellular adhesion.16,29,38,53,55,56,62,69

The range of mechanical properties in PEMs due to assembly
conditions can be used to probe cellular mechanics as well as
promote cellular functions for tissue engineering (Table 1).

PEM surface composition

The surface composition of a PEM film can drastically impact
cellular adhesion.61 This feature can be altered by varying the
final PE deposited during the LbL assembly.34,55,56,80 Richert
et al. observed that PEMs terminating in PLL demonstrated
higher human chondrosarcoma adhesion forces, *80 nN, in
comparison to PLGA-terminated PEMs, where an eightfold
lower adhesion force was observed.56 More recently, Wittmer
et al. assembled PLL and dextran sulfate PEMs.80 In situ mass
adsorption measurements with a quartz crystal microbalance
with dissipation showed a 40% increase in fibronectin adsorp-
tion on PLL-terminated PEMs compared to dextran sulfate-
terminated multilayers. Further, significant spreading of
human umbilical vein endothelial cells was observed only on
the PLL-terminated PEM, due to the increased fibronectin ad-
sorption and terminal PLL layer.80 However, certain polyca-
tions have displayed cytotoxic effects. For example, Brunot et al.
determined the cytotoxicity of poly (ethyleneimine) (PEI) used
as a base layer for PEMs and as a PE coating.81 PEI demon-
strated potential cytotoxicity for both human periodontal fi-
broblasts as well as MG63 osteoblast-like cells.81 Additionally,
Fischer et al. investigated the cytotoxicity of polycation solutions
such as PEI, PLL, and PDAC.82 The MTT assays for L929 mouse
fibroblasts indicated that PEI was more cytotoxic compared to
PLL and PDAC.82 Together, these results demonstrate that
choosing a noncytotoxic polyion is a critical design parameter
when assembling PEMs for biological applications.

Surface composition does not always significantly impact
cellular adhesion. Thompson et al. observed that terminal layer
had no statistical significance when PEMs were sufficiently
stiff to support cellular adhesion.55 When compliant PAH and
PAA multilayers with an approximate Young’s modulus of
200 kPa were used as substrates for microvascular endothelial
cells, the terminal layer (comprised of either PAA or PAH) had
no statistically significant effect on cell density on day 7.55

Similarly, chondrosarcoma adhesion on crosslinked PLL- and
HA-terminated PEMs did not vary, with both substrates
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almost entirely colonized by day 6.83 These studies suggest
that there is a subtle interplay between cellular adhesion and
chemical and physical properties of PEMs.

PEM surface morphology

Topographical cues play an important role in vivo, since cells
are exposed to environments ranging from the micro- to the
nanoscale.61,63 The ability to control PEM surface topography
is extremely important in tissue engineering. Basement mem-
branes in vivo typically exhibit porosities ranging from the
nano- to the microscale to enable the diffusion of gases and
nutrients to the cells.84–86 When PAA and PAH multilayers
were exposed to an acidic aqueous solution (pH 2.5), micro-
porous PEMs were obtained (Fig. 2). The transition from a
nonporous to porous state was attributed to polymer cleavage
and reorganization.10 The characteristic pore length was 100–
500 nm after 60 s exposure to an acidic solution (pH 2.4). Upon
treatment at neutral pH for > 1 h, pore size diminished to
*50–200 nm. By heating PEMs above 200�C, amidization oc-
curred and created inter- and intrachain crosslinks, and the
films were found to be stable under ambient conditions up to
18 months.10 In another study, Hiller et al. used a similar ap-
proach to introduce nanoscale pores in PAH/PAA films.11 By
reducing the pH of the acidic solution to 1.8, pore sizes were
reduced to 15–80 nm.11 In addition to lowering the pH, salts
such as NaCl and MgCl2 were added at low concentrations to
promote structural rearrangements.11,87 Recently, nano- and
microporous PEMs were used to mimic the basement mem-
brane in the cornea (typical porosity ranging from 20 to

200 nm).44,84,85 PAA and PAH multilayers exhibiting pore sizes
ranging from 50 to 240 nm were used to culture human corneal
epithelial cells (HCECs).44 HCECs cultured on nanoporous
PEMs exhibited two-fold higher migration speeds in compar-
ison to microporous films, 30 and 15mm/h, respectively.44 In
addition, HCECs exhibited well-defined actin cytoskeletal
structures and vinculin focal adhesions only on the nanopor-
ous substrates.44 These examples demonstrate that by simply
varying the surface topography of a PEM, cellular response
can be controlled.44,88

Applications of PEMs in Tissue Engineering

Maintenance of cellular phenotype is paramount in any
tissue engineering application. The ability to measure in vitro
cellular responses to conditions that recapitulate the envi-
ronment in vivo can provide comprehensive insights into the
behavior of implanted biomaterials. PEMs are often designed
with finely tuned bulk properties like Young’s modulus and
degradability, in addition, such films can be further modified
to maintain or induce specific phenotypic characteristics.89,90

In the following sections, the use of PEMs in the fields of
regenerative medicine and stem cell differentiation will be
highlighted.

Maintaining cellular phenotype using PEMs

The cellular adhesion and phenotypic properties of SaOS-2
(human osteoblast-like cells) and human periodontal liga-
ment cells on multilayers derived from various PEs were
investigated by Tryoen-Toth et al.54 In this study, anionic SPS

Table 1. Examples of Parameters Varied in Polyelectrolyte Multilayer Assembly

for Cell Culture Applications

Cationic PE/anionic PE PEM parameter varied PEM property affected Cell types cultured References

PAH/PAA, PLL/PLGA,
PAH/PMA

Assembly pH Thickness
or swelling

NR6WT fibroblasts,
HCS-2/8 human
chondrosarcoma cells

8,29,73,142

PAH/PAA, PAH/SPS Assembly pH Stiffness MVEC 55,143,144

PAH/PAA-modified RGD Assembly pH Surface
composition

NR6WT fibroblasts,
osteoblasts

38,99,145,146

PAH/PAA Assembly pH Surface
topography

Human corneal
epithelial cells

10,11,44

PLL/PLGA,
PLL/alginate

Number of layers Thickness Human fibroblasts,
fetal liver/stem
progenitor cells

33,120

(PEI or PLL or PAH)/
(SPS or PLGA),
PLL/PLGA, PLL/HA,
PLL/(PLGA
or PAH or SPS)

Order in which
the PEs were

assembled

Terminating
PE Layer

Periodontal ligament
cells, HCS-2/8 human
chondrosarcoma cells,
primary human
monocytes

54,142,147,148

PLL/HA Chemical
crosslinker (EDC)

Stiffness Chondrocytes, C2C12
myoblasts, SMCs

16,52,57,69,149

PEI/PAA + MWNT,
PAH/SPS,
HA/chitosan

Chemical
crosslinker (GA)

Stiffness BALB/c 3T3 fibroblasts 18,78,79

PLL/vinylbenzyl
grafted-HA,
PAH/PAA

Other modes
of crosslinking
(Heat, UV)

Stiffness C2C12 myoblasts,
A7r5 SMCs

17,20

EDC, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride; GA, glutaraldehyde; HA, hyaluronic acid; MVEC, microvascular
endothelial cell; MWNT, multiwall carbon nanotube; PAA, poly (acrylic acid); PAH, poly (allylamine hydrochloride); PE, polyelectrolyte; PEI,
poly (ethyleneimine); PEMs, polyelectrolyte multilayers; PLGA, poly (L-glutamic acid); PLL, poly (L-lysine); RGD, arginine-glycine-aspartic
acid; SMCs, smooth muscle cells; SPS, sulfonated polystyrene; PMA, poly(methacrylic acid); UV, ultraviolet.
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and PLGA were utilized in combination with cationic PEI,
PAH, and PLL to construct a wide range of PEMs. In these
studies, the terminal PE layer drastically affected cellular
adhesion, but more importantly, this feature had a significant
effect on influencing cellular phenotype. Measurement of
alkaline phosphatase mRNA levels indicated the terminal PE
layer must be negatively charged to maintain osteoblast
phenotype in both cell lines. Negatively charged PGA and
SPS terminating films resulted in stable expression levels,
unlike cationic PEI and PAH terminal films.54 Interestingly, it
was also shown that these cells interacted only with the
terminal PE layer in the substrate. For example, PGA de-
posited directly on top of PAH exhibited positive phenotypic
effects by the osteoblast-like cells, whereas reversal of these

two layers resulted in negative phenotypic expression.54

These results suggest the terminal PEM layer is a dominant
factor in biocompatibility and must be carefully considered
based on desired cellular interactions for a particular appli-
cation. Many additional studies have investigated adhesion,
proliferation, spreading, and phenotypic expression profiles
of many different cell types on PEMs constructed from
combinations of PEs (Table 2).

In addition to facilitating phenotypic maintenance, it is
important for PEMs to stimulate cellular proliferation. Var-
ious growth factors can stimulate proliferation, and to this
end their incorporation and controlled release from PEMs
may be necessary for regenerative medicine. A common
problem with growth factor administration is uncontrolled

Table 2. Examples of Polyelectrolyte Multilayers Used in Tissue Engineering Applications

Research objective Cationic/anionic PE Cell type Significant finding References

Cell interaction PLL/HA
CHI/HA
PLL/PGA

Chondrocytes,
chondrosarcoma

Crosslinking increased
Young’s modulus
and cell adhesion,
and spreading decreased
enzymatic degradation

149–151

PEI/PAA
SPS/PAH
CHI/HA
Amine Mod
HA/HA

Fibroblasts Adhesion, proliferation,
and cell morphology

152,153

SPS/PAH
CHI/HA
PAA/PAH

Endothelial cells Adhesion, spreading,
and viability

154–157

Delivery of bioactive
molecules

PLL/RNA
PLL/PLGA
CHI/HA
PLL/HA

Osteoblasts, COS-1;
HeLa; HEK-293

DNA or RNA incorporation
to inhibit gene expression
or as transfection vehicle

158–161

PLL/PGA
PLL/HA
PAH/PAA

Cancer cell lines
(CHO, melanoma, HT29);
macrophages; fibroblasts

Embedded drugs, growth
factors, or signaling
molecules for cellular
response modulation

162–167

CHI, chitosan.

FIG. 2. Schematic for creat-
ing non-, micro-, and nano-
porous PAH/PAA PEMs.
PAA, poly (acrylic acid);
PAH, poly (allylamine hy-
drochloride). Color images
available online at www
.liebertonline.com/teb.
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release leading to high initial concentrations followed
by periods of rapid clearance, thus limiting possible thera-
peutic effects.91,92 The release of fibroblast growth factor 2
(FGF-2) has been controlled with the construction of poly
(b-aminoester)s/heparin (HEP)/FGF-2/HEP tetralayers de-
posited on top of PEI/SPS multilayers.43 This approach was
similar to another study using tetralayers for controlled hy-
drophobic drug and polysaccharide release.93 The incorpo-
ration of the poly (b-aminoester) polymer into the tetramer
was to prevent the localized degradation of the PEM due to
cellular interactions. Ester bonds in the poly (b-aminoester)
were hydrolytically cleaved during cellular degradation.93

The incorporation of methylene units to increase hydropho-
bicity resulted in decreased degradation. The incorporation
of HEP into tetralayers was necessary due to its known se-
questration of FGF-2,94 thereby inhibiting the diffusion of
free FGF-2 between tetralayers. Thus, the tetralayer method
of encapsulating FGF-2 proved to be very useful since the
protein from a single layer had to be completely released
before release from the underlying layers. The bioactivity of
the released protein was verified through its exposure to
preosteoblasts and by monitoring their proliferation.43 In-
formation on additional studies investigating the delivery of
bioactive molecules using PEMs is provided in Table 2,
further supporting the versatility of PEMs in stimulating
phenotypic maintenance.

When short functional peptide sequences are tethered to a
substrate, they can modulate a wide range of responses. For
instance, the tri-peptide sequence, RGD, has been extensively
utilized to promote cell adhesion and migration.95,96 This
approach has been particularly successful for cells that pref-
erentially adhere to fibronectin.19,97 A comprehensive review
of the chemistry involved in RGD and other peptide conju-
gation to synthetic polymers has been previously been re-
ported.98 To demonstrate the efficacy of PEMs functionalized
with short peptide sequences, Tsai et al. constructed PAH/
PAA PEMs comprised of five bilayers, with a terminal RGD-
PAH layer.99 In this study, the incorporation of RGD stimu-
lated osteoblast adhesion, proliferation, and phenotype.99 The
assembly of the multilayer was conducted at pH of 2 and 6.5.
At lower pH, the anionic PE was incorporated at increased
nonstoichiometric ratios to compensate for the fully ionized
cationic PE (*70% PAA, 30% PAH at pH 2.0).99,100 Conse-
quently, when the terminal RGD-PAH layer was deposited,
the concentration of RGD molecules at the surface increased
fivefold at pH 2.0.99 Despite the increased RGD surface con-
centration, osteoblast adhesion and proliferation were unaf-
fected since the concentration of RGD exceeded 0.6 pmol/
cm2.99 This value has been reported to be the threshold con-
centration, necessary to stimulate osteoblast adhesion and
spreading.101 However, at pH 2.0 a threefold increase in the
deposition of calcium by osteoblasts was observed. Although
the exact mechanism of increased calcium deposition in this
study remained unknown, the authors hypothesized that
decreased PEM mechanical stiffness, 100 MPa at pH = 6.5–
1 MPa at pH = 2.0,55 or RGD conformational changes due to
pH changes may be responsible for the observed increased
calcium deposition. This study serves as a good example on
the ability to elicit a desired phenotypic response by simply
varying the assembly conditions of a PEM.

Many studies have focused on maintaining cellular phe-
notype through direct cellular interaction with PEMs. The

adhesion of hepatocytes and maintaining their phenotype is
one such example.96 In general, primary hepatocytes cul-
tured in vitro as monolayers tend to rapidly de-differentiate.
They lose their ability to produce urea (indicative of liver
specific carbohydrate, lipid, and amino acid metabolism) and
albumin (representing hepatic protein production). PAA/
PAH multilayers have been used to culture hepatocytes and
these substrates appear to elicit increased urea and albumin
production in comparison to hepatocytes cultured on a col-
lagen surface.102 Similarly, Wittmer et al. have demonstrated
that both PLL/ALG and PLL/PLGA PEMs facilitate adult
rat hepatocyte adhesion and increased albumin production
when compared to cells cultured on a collagen surface.103

Further, in both reports, the adsorption of collagen on the
terminal PE layer enhanced hepatocyte adhesion and phe-
notypic functions.102,103 Hepatocytes are generally stable
when cultured between two collagen gels (collagen sand-
wich).104,105 When these cells are cocultured with non-
parenchymal hepatic cells, their function can be further
enhanced.48,106–108 Studies by Kidambi et al. have shown
that hepatocyte and fibroblast attachment can be spatially
controlled on patterned PDAC/SPS PEMs with superior
performance.47,48

More recently, three-dimensional (3D), layered liver mim-
ics have been designed using PEMs.26,27 In these 3D tissue
mimics, hepatocytes were seeded on a collagen gel and a
HA-CHI PEM was assembled above live cells. Next, liver
sinusoidal endothelial cells (LSECs) were seeded above the
PEM-coated hepatocytes.27 In these cultures, the PEM served
as a synthetic substitute for the Space of Disse, the interface
between hepatocytes and LSECs in vivo, thus using the PEM
to create a physiologically relevant 3D culture system. In
these cultures, the physical properties of the PEM, the num-
ber of layers, and the relative concentrations of each cell type
affected hepatocyte-specific functions.27 The shear modulus
of the PEM within the 3D liver mimic was *100 kPa, a value
similar to that previously shown to maintain hepatic pheno-
type.109 Furthermore, the activity of CYP1A1/2, a cyto-
chrome P450 enzyme involved in the metabolism of cyclic
aromatic compounds was increased 16-fold over conven-
tional monolayer cultures.27 These results suggest that PEMs
can serve as the interface between cell layers and used to
assemble a wide range of stratified 3D tissue mimics.

Directing cellular differentiation using PEMs

A growing body of work is emerging in which PEMs are
being tuned to direct phenotypic differentiation, particularly
progenitor cells, toward specific lineages. Directing the lin-
eage of stem cells is dependent upon complex interactions
between soluble factors, the extracellular matrix, intra- and
intercellular communications, and biophysical stimuli.110–113

Although soluble growth factors are critical to induce di-
rected stem cell differentiation, Engler et al. recently showed
that mesenchymal stem cells (MSCs) could be directed to
either neuronal, muscle, or osteogenic lineages by simply
modulating substrate elasticity from < 1, to 8–17, to 25–
40 kPa, respectively.53 Since PEMs exhibit mechanical prop-
erties in this range, the results from this study can be used in
directing phenotype.16,17,57 PEMs composed of alternating
layers of PAH and SPS have been shown to stimulate the
differentiation of endothelial progenitor cells.114–116 En-
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dothelial progenitor cells are a specialized type of progenitor
cells with a limited number of potential lineages. However,
when these cells were cultured on PEMs in the presence of
culture medium containing growth factors, such as vascular
endothelial growth factor and basic FGF, the differentiation
into endothelial phenotype was observed.114,117 PEMs de-
rived from PEI and SPS with embedded carbon nanotubes
enabled neuronal progenitor cell differentiation into the three
main classes of neural cells.118 These studies show PEMs can
aid in directing the differentiation of progenitor cells.

Liu et al. studied the adhesion and differentiation of MSCs
when cultured on PEMs comprising of alternating layers of
CHI with either gelatin (GEL), HA, or HEP.119 In this study,
MSC adhesion increased for the following PEM combina-
tions: GEL/CHI, HA/CHI, and HEP/CHI.119 It was further
reported that MSC spreading was inversely proportional to
cell adhesion. Although cell spreading could be modulated
through the careful selection of PEs, the authors concluded a
high degree of cell spreading, observed on GEL/CHI, was
not indicative of MSC phenotype. Studies by Semenov et al.
further validated these findings by culturing MSCs on PEMs
exhibiting a range of mechanical properties showing chon-
drogenic and osteogenic lineage differentiation was depen-
dent on the Young’s modulus.6

One of the most critical aspects of stem cell research is se-
lecting and isolating a pure population of cells. Fluorescence-
activated cell sorting is a powerful technique used in the
isolation of populations of pure cells. However, due to the
inherent complexity of this technique, and in obtaining via-
ble, antibody-free cells, this technique presents limita-
tions.120–122 A very interesting application of PEMs was
reported by Tsai et al. where fetal liver stem/progenitor
cells could be selected from a gross tissue digest using
PLGA-terminating PLL/PLGA multilayers. Further, these
substrates stimulated cell proliferation over time.120 The
development of such a cell selection method could yield a
more precise and less expensive approach to selectively
isolate pure cell populations.

Another novel use of PEMs in cell culture was to culture
MSCs on thermo-responsive multilayers made from SPS and
PAH, copolymerized with N-isopropylacrylamide.123 The
use of thermo-responsive PEMs enabled MSC proliferation
and passaging without enzymatic treatment. This procedure
yielded an increased number of MSCs capable of osteogenic
and adipogenic lineage differentiation after multiple pas-
sages.123 The combination of these two studies illustrates the
application of PEMs for the selection and culture of stem cells
in a noninvasive manner.

Multifunctional PEMs for Tissue Engineering

Although advances have been made toward the incorpo-
ration of bioactive molecules into PEMs, an unmet challenge
continues to be the inclusion of small, uncharged, hydro-
phobic molecules.49,124,125 Such compounds account for
*40% of the drugs approved by the Food and Drug Ad-
ministration.41 A recent development has been the con-
struction of free-standing multilayer films comprised of
block copolymer micelles and PAA.41 Kim et al. demon-
strated that the hydrophobic antibacterial drug triclosan,41

remained active after micelle incorporation and could be
successfully released at physiological conditions. It was also

shown that the rate of film degradation and drug release
could be tailored based through changes in the degree of
crosslinking within the PEM. A similar approach to protect
and deliver bioactive molecules is their incorporation within
polymersomes.126–128 Polymersomes are bilayer membrane
capsules formed through the self-assembly of ampiphilic
block copolymers.129 Biodegradable functionalized poly-
mersomes exhibit potential for site-specific therapeutic de-
livery through incorporation into PEMs. Further expanding
on this idea of drug encapsulation is the construction of
capsosomes. Capsosomes are constructed from alternating
layers of liposomes and an alternately charged polymer us-
ing LbL assembly.130,131 The multiple liposome layers allow
multiple reactions to occur simultaneously while being spa-
tially separated within a single capsosome.130

Another novel application of PEMs in drug delivery is the
construction of multiple drug reservoirs within a single de-
gradable PEM. Drug reservoirs are constructed by exploiting
the characteristic diffusivity associated only with exponen-
tially growing PEMs, not normally observed under linear
growth.68 The physical differences between exponentially
and linearly grown PEM films have already been discussed
in detail in the section Assembly conditions modulate the
mechanical properties of PEMs. Drug reservoirs take ad-
vantage of exponentially grown PEMs in which bioactive
molecules are incorporated. Due to the higher diffusivity
associated with such regions, bioactive molecules can easily
diffuse, thereby providing a means for localized delivery at
high concentration.13 A schematic of the layered architecture
required to create a PEM film containing multiple drug res-
ervoirs is shown in Figure 3. The construction of such res-
ervoirs requires the presence of impermeable barriers on
either side of the exponentially grown PEMs. Impermeable
barriers to prevent drug diffusion include linearly grown
films,65 an annealed layer of charged wax particles,132 or a
layer of biodegradable PLGA.68 Garza et al. created two drug
reservoirs within a single film in which each reservoir was
separated by a layer of PLGA. In this instance the PLGA
layer was deposited above the terminal PEM layer using a
novel spray deposition technique to provide the biocom-
patible biodegradable layer separating the reservoirs.68 The
PLGA layers prevented direct cell contact with the drugs in
each reservoirs up to 5 days, a length of time which corre-
lated directly with time the cells took to degrade the PEM.68

It has also been shown that cells do not have to come in

FIG. 3. Schematic of the layered architecture for the design
of a multireservoir drug delivery PEM. PLGA, poly (L-
glutamic acid); PLL, poly (L-lysine); HA, hyaluronic acid.
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direct contact with the reservoirs, but can internalize drugs
through localized degradation of the PLGA layer.133,134

A final application of PEMs to be discussed in tissue en-
gineering involves living cells functionalized with multilayer
patches.50 This work represents an elegant combination of
several PEM applications and techniques outlined in this
review. Recent advances in PEM applications have led to the
construction of multilayer assemblies encapsulating entire
living cells135–139; however, the entire surface chemistry of
the cell is likely altered affecting cell communication and
environmental interactions.50 In the work by Swiston et al. a
three-tiered construct was developed where each PEM tier
had a specific function: the releasable region, the payload
region, and the cell-adhesive region.50 The three-tiered con-
struct was built from a substrate on which a photolitho-
graphic patterning method was used to create the first tier, a
layer capable of being detached from the substrate through a
combination of pH and thermal conditions. The second tier,
the payload region, of the cell patch was engineered as a
drug reservoir to contain a range of bioactive molecules. In
this case, the payload PEM consisted of alternating fluorescent-
PAH and anionic super-paramagnetic nanoparticles. The fi-
nal tier in the patch was the cell-adhesive region constructed
from a HA/CHI PEM. After patch construction, individual
cell-patch attachment was observed only for 10mm patches
and cell aggregates were observed on 15 mm patches.50 After
release from the substrate, these cells could be magnetically
manipulated due to the presence of the PEM patch. A sig-
nificant consequence was that the patches did not interfere
with the phenotype and physiology of the cell.

Conclusions and Future Possibilities

The tunability of PEMs provides unique opportunities to
mimic the complex in vivo extracellular matrix environment.
Chemical, mechanical, and topographical features can be
varied to promote cellular adhesion, differentiation, migra-
tion, and gene expression of virtually any cell type. Cur-
rently, the majority of PEM applications in tissue engineering
are focused on rendering two-dimensional surfaces com-
patible for biological applications. However, it is well known
that providing a 3D environment to cells has the potential to
elicit an optimal response.61 Modifications in the current
techniques used to deposit multilayers on two-dimensional
substrates will be critical to successfully incorporate PEMs
into the design of 3D scaffolds.

An ultimate objective in tissue engineering is to functio-
nalize implantable materials directing cellular adhesion,
phenotype, and enhance site-specific regeneration of dam-
aged or diseased tissues. One such instance is the construc-
tion of 3D tissue constructs involving multiple cell types. To
this point, most PEM-related tissue engineering applications
have focused on surface coatings. However, due to the tun-
able nanoarchitecture of PEMs they can be used in the con-
struction of 3D liver mimics.27 The PEM must provide a
mechanical support for LSEC culture, a physical barrier be-
tween hepatocytes and LSECs, but most importantly allow
diffusion of signaling molecules to facilitate cell–cell com-
munication and phenotypic maintenance of both cell types.
Recent efforts to create free standing PEMs comprised of
synthetic and biologically derived PEs18,140,141 exhibit tre-
mendous potential to be utilized as scaffolds in tissue engi-

neering. An application with much potential in biological
therapeutic applications is the coating of individual cells
with biocompatible PEMs. Use of PEMs to coat a cell will
likely alter its biological activity, but a carefully chosen
combination of PEs may result in optimal physiological
function.

Finally, the number of tissue engineering application em-
ploying PEMs are rapidly expanding and providing useful
insights into cellular responses to different combinations of
mechanical and chemical signals. In the near future, PEM
applications studied in vitro for drug delivery and directing
cellular phenotype will undoubtedly proceed to in vivo ap-
plications and clinical trials. Current research and emerging
ideas to functionalize surfaces for biological applications will
benefit from the unique and highly tunable nature of PEMs
as they can be deposited on any surface with a wide range of
mechanical and chemical properties.
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