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Abstract

Motivation: Statistical methods development for differential expression analysis of RNA sequenc-

ing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differen-

tial expression status is often unknown in experimental datasets, artificially constructed datasets

must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data.

Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an

experimental design and ending with collections of RNA-seq reads. Its main advantage is the abil-

ity to simulate reads indicating isoform-level differential expression across biological replicates for

a variety of experimental designs. Data generated by Polyester is a reasonable approximation to

real RNA-seq data and standard differential expression workflows can recover differential expres-

sion set in the simulation by the user.

Availability and implementation: Polyester is freely available from Bioconductor (http://

bioconductor.org/).

Contact: jtleek@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-seq) experiments have become increasingly

popular as a means to study gene expression. There are a range of

statistical methods for differential expression analysis of RNA-seq

data (Oshlack et al., 2010). The developers of statistical method-

ology for RNA-seq need to test whether their tools are performing

correctly. Often, accuracy tests cannot be performed on real datasets

because true gene expression levels and expression differences be-

tween populations are usually unknown, and spike-in experiments

are costly in terms of both time and money.

Instead, researchers often use computational simulations to cre-

ate datasets with a known signal and noise structure. Typically,

simulated expression measurements used to evaluate differential ex-

pression tools are generated as gene counts from a statistical model

like those used in common differential expression tools (Anders and

Huber, 2010; Robinson et al., 2010). But these simulated scenarios

do not account for variability in expression measurements that

arises during upstream steps in RNA-seq data analysis, such as read

alignment or read counting. Polyester is a new R package for simu-

lating RNA-seq reads. Polyester ’s main advantage is that users can

simulate sequencing reads with specified differential expression sig-

nal for either genes or isoforms. This allows users to investigate

sources of variability at multiple points in RNA-seq pipelines.

Existing RNA-seq simulators that generate sequencing reads are

not designed for simulating experiments with biological replicates

and specified differential expression signal. For example, the rsem-

simulate-reads utility shipped with RSEM (Li and Dewey, 2011) re-

quires a time-consuming first step of aligning real sequencing reads

to develop a sequencing model before reads can be simulated, and

differential expression simulation is not built-in. Neither
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FluxSimulator (Griebel et al., 2012) nor Benchmarker for

Evaluating the Effectiveness of RNA-Seq (BEERS) (Grant et al.,

2011) have a built-in mechanism for inducing differential expres-

sion. These simulators also do not provide methods for defining a

model for biological variability across replicates or specifying the

exact expression level of specific transcripts. TuxSim has been used

to simulate RNA-seq datasets with differential expression (Trapnell

et al., 2013), but it is not publicly available.

Polyester was created to fulfill the need for a tool to

simulate RNA-seq reads for an experiment with replicates

and well-defined differential expression. Users can easily simu-

late small experiments from a few genes or a single chromosome.

This can reduce computational time in simulation studies when

computationally intensive steps such as read alignment must be

performed as part of the simulation. Polyester is open-source,

cross-platform and freely available for download from

Bioconductor at http://www.bioconductor.org/packages/release/

bioc/html/polyester.html.

2 Methods

2.1 Input
Polyester takes annotated transcript nucleotide sequences as input.

These can be provided as cDNA sequences in FASTA format,

labeled by transcript. Alternatively, users can simulate from a GTF

file denoting exon, transcript and gene structure paired with full-

chromosome DNA sequences. The flexibility of this input makes it

possible to design small, manageable simulations by simply passing

Polyester a FASTA or GTF file consisting of feature sets of different

sizes. Efficient functions for reading, subsetting and writing FASTA

files are available in the Biostrings package (Pages et al., 2014),

which is a dependency of Polyester.

2.2 RNA-seq data as basis for model parameters
Several components of Polyester, described later in this section, re-

quire parameters estimated from RNA-seq data. To get these par-

ameter estimates, we analyzed RNA-seq reads from seven

biological replicates in the public Genetic European Variation in

health and Disease (GEUVADIS) RNA-seq dataset (AC’t Hoen

et al., 2013; Lappalainen et al., 2013). The seven replicates were

chosen by randomly selecting one replicate from each of the seven

laboratories that sequenced samples in the study. These replicates

represented seven people from three different HapMap popula-

tions: CEU (Utah residents with Northern and Western European

ancestry), TSI (Tuscani living in Italy) and YRI (Yoruba living in

Ibadan, Nigeria). Data from the GEUVADIS study is available from

the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under ac-

cession numbers E-GEUV-1 through E-GEUV-6. We specifically

used TopHat read alignments for these seven replicates, under ac-

cession number E-GEUV-6. The reads were 75bp, paired-end reads.

Also available for the GEUVADIS dataset is a fully processed

transcriptome assembly, created based on the RNA-seq reads from

all 667 replicates in the GEUVADIS study without using a reference

transcriptome. This assembly was built using Cufflinks and pro-

cessed with the Ballgown R package (Frazee et al., 2015), and it is

available for direct download as an R object (http://dx.doi.org/

10.6084/m9.figshare.1130849).

2.3 Expression models
A key feature of Polyester is that the analyst has full control over the

number of reads that are generated from each transcript in the input

file, for each replicate in the experiment. Polyester ships with a

built-in model for these read numbers, or the model can be explicitly

specified by the end user.

2.3.1 Built-in negative binomial read count model

The built-in transcript read count model assumes that the number of

reads to simulate from each transcript is drawn from the negative

binomial distribution, across biological replicates. The negative

binomial model for read counts has been shown to satisfactorily cap-

ture biological and technical variability (Anders and Huber, 2010;

Robinson et al., 2010). In Polyester, differential expression between

experimental groups is defined by a multiplicative change in the mean

of the negative binomial distribution generating the read counts.

Specifically, define Yijk as the number of reads simulated from rep-

licate i, experimental condition j and transcript k (i ¼ 1; . . . ; nj;

j ¼ 1; . . . ; J; and k ¼ 1; . . . ;N; where nj is the number of replicates in

condition j, J is the total number of conditions, and N is the total num-

ber of transcripts provided). The built-in model in Polyester assumes:

Yijk � Negative Binomialðmean ¼ ljk; size ¼ rjkÞ

In this negative binomial parameterization, EðYijkÞ ¼ ljk and

VarðYijkÞ ¼ ljk þ
l2

jk

rjk
, so each transcript’s expression variance across

biological replicates is quadratically related to its baseline mean ex-

pression. The quantity 1
rjk

is commonly referred to as the dispersion

parameter in this parameterization (Ismail and Jemain, 2007;

Lawless, 1987; Robinson et al., 2010). The user can provide ljk for

each transcript k and experimental group j. In particular, the user

can relate transcript k’s length to ljk. Also, this flexible parameter-

ization reduces to the Poisson distribution as rjk !1. Since the

Poisson distribution is suitable for capturing read count variability

across technical replicates (Bullard et al., 2010), users can create ex-

periments with simulated technical replicates only by making all rjk

very large. By default, rjk ¼
ljk

3 , which means VarðYijkÞ ¼ 4ljk. The

user can adjust rjk on a per-transcript basis as needed, to explore dif-

ferent mean/variance expression models.

When J¼2, differential expression is set by providing a fold

change k between the two conditions for each transcript. Initially, a

baseline mean lk is provided for each transcript, and l1k and l2k are

set to lk. Then, if fold change k is provided, l1k and l2k are ad-

justed: if k > 1; l1k ¼ klk, and if k < 1; l2k ¼ 1
k lk. The number of

reads to generate from each transcript is then drawn from the corres-

ponding negative binomial distribution. When J>2, the count for

each transcript, yijk, is generated from a negative binomial distribu-

tion with overall mean lk and size rjk. Differential expression can be

set using a fold change matrix with N rows and J columns. Each

count yijk is multiplied by entry k, j of the fold change matrix. Fold

changes must be explicitly specified by the user, so it is possible to

investigate a variety of differential expression scenarios. For ex-

ample, users can easily simulate the commonly seen pattern of more

extreme fold changes in lowly expressed transcripts (Anders and

Huber, 2010; Cai et al., 2012).

2.3.2 Options for adjusting read counts

Users can optionally provide multiplicative library size factors for

each replicate in their experiment, since the total number of reads

(sequencing depth) is usually unequal across replicates in RNA-seq

experiments (Mortazavi et al., 2008). All counts for a replicate will

be multiplied by the library size factor.

GC (guanine–cytosine) content is known to affect expression

measurements for genomic features, and the effect varies from sam-

ple to sample (Benjamini and Speed, 2012; Hansen et al., 2012;
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Risso et al., 2011). Polyester includes an option to model this GC

bias in the simulated reads: for each biological replicate in the simu-

lated dataset, the user can choose one of seven built-in GC content

bias models, where one model was estimated from each of the seven

GEUVADIS replicates described in Section 2.2. We calculated these

models using all transcripts from the available GEUVADIS tran-

scriptome assembly (also described in Section 2.2).

For each replicate, we first calculated transcript-level read counts

based on transcript length, sequencing depth, and the observed

Fragments Per Kilobase of exon model per Million mapped reads

(FPKM) for the transcript. By definition of FPKM, read counts can be

directly calculated using these inputs. We then centered the transcript

counts around the overall mean transcript count, and modeled the

centered counts as a smooth function of the transcript GC content

using a loess smoother with span 0.3, analgous to smoothers previ-

ously used for modeling GC content (Benjamini and Speed, 2012).

Transcript GC content was calculated as the percentage of the

annotated hg19 nucleotides falling in the boundaries of the assembled

transcript that were G or C. The fitted loess curve defines a function

that returns the average deviation from the overall mean transcript

count for a transcript with a given GC content percentage. If there is

no GC bias, the deviation would be 0. GC bias is added to replicates

in Polyester after transcript-level counts have been specified by

increasing or decreasing the count by the predicted deviation for that

transcript’s GC content. The seven loess curves included in Polyester

are shown in Supplementary Figure S1. Users can also provide loess

models from their own data as GC bias models if desired.

2.3.3 User-defined count models

As an alternative to the built-in negative binomial model, Polyester

allows users to individually specify the number of reads to generate

from each transcript, for each sample. This gives researchers the

flexibility to design their own models for biological and technical

variability, simulate complex experimental designs, such as time-

course experiments, and explore the effects of a wide variety of ex-

perimental parameters on differential expression results. This

transcript-by-sample read count matrix can be created within R and

input directly into Polyester’s read simulation function. This level of

flexibility is not available with Flux Simulator or BEERS, which

only allow specification of the total number of reads per replicate.

While it is possible to write custom command-line scripts that in-

duce differential expression using these simulators, differential ex-

pression models are built in to Polyester. This approach offers both

a built-in model for convenience and an integrated way to define a

custom model for flexibility.

2.4 The RNA sequencing process
2.4.1 Fragmentation

After the transcripts have been specified and each transcript’s abun-

dance in the simulated experiment has been determined by an as-

signed read count for each replicate, Polyester simulates the RNA

sequencing process, described in detail in (Oshlack et al., 2010),

beginning at the fragmentation step. All transcripts present in the ex-

periment are broken into short fragments. There are two options for

how fragment lengths are chosen: lengths can be drawn from a

normal distribution with mean lfl and standard deviation rfl. By

default, lfl ¼ 250 nucleotides and rfl ¼ 25, but these parameters can

be changed. Alternatively, fragment lengths can be drawn from an em-

pirical length distribution included with the Polyester R package.

This empirical distribution (Fig. 1) was estimated from the insert sizes

of the paired-end read alignments of the seven GEUVADIS replicates

described in Section 2.2, using Picard’s CollectInsertSizeMetrics tool

(http://broadinstitute.github.io/picard/). The empirical density was

estimated using the logspline function in R (Kooperberg and Stone,

1992; Kooperberg, 2013). Users can also supply their own fragment

length distribution in logspline format. This distribution may be esti-

mated from a user’s dataset or varied to measure the effect of frag-

ment length distribution on downstream results.

Ideally, the fragments generated from a transcript present in the

sequencing sample would be uniformly distributed across the tran-

script. However, coverage across a transcript has been shown to be

nonuniform (Lahens et al., 2014; Li and Jiang, 2012; Mortazavi

et al., 2008). In Polyester, users can choose to generate fragments

uniformly from transcripts, or they can select one of two possible

positional bias models. These models were derived by Li and Jiang

(2012), and they were based on two different fragmentation

protocols.

The first model is based on a cDNA fragmentation protocol, and

reads are more likely to come from the 30 end of the transcript being

sequenced. The second model incorporates bias caused by a protocol

relying on RNA fragmentation, where the middle of each transcript

is more likely to be sequenced. Both these models were estimated

from Illumina data. Since the exact data from Li and Jiang (2012)

was not made available with the manuscript, we extracted the data

from Supplementary Figure S3 of Li and Jiang (2012) ourselves,

using WebPlotDigitizer (Rohatgi, 2014), which can estimate the

coordinates of data points on a scatterplot given only an image of

that scatterplot. For reference, the figure is reproduced here

(Supplementary Fig. S2), created using the probabilities included as

datasets (cdnaf.rda and rnaf.rda) in the Polyester R package.

2.4.2 Sequencing

Polyester simulates unstranded RNA-seq reads in a manner compat-

ible with the Illumina paired-end protocol (Sengupta et al., 2011). In

this protocol, read sequences are read off of double-stranded cDNA

created from mRNA fragments, separated from other types of RNA

using poly-A selection. To mimic this process in Polyester, each
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fragment selected from an original input transcript is reverse-

complemented with probability 0.5: this means the read (for single-

end experiments) or mate 1 of the read (for paired-end experiments)

is equally likely to have originated from the transcript sequence itself

and from the cDNA strand matched to the transcript fragment dur-

ing sequencing.

Reads are then generated based on these fragments. A single-end

read consists of the first R nucleotides of the fragment. For paired-

end reads, these first R nucleotides become mate 1, and the last

R nucleotides are read off and reverse-complemented to become

mate 2. The reverse complementing happens because if mate 1 came

from the actual transcript, mate 2 will be read from the

complementary cDNA, and if mate 1 came from the

complementary cDNA, mate 2 will come from the transcript itself

(http://res.illumina.com/documents/products/datasheets/datasheet_

truseq_sample_prep_kits.pdf). By default, R¼100 and can be ad-

justed by the user.

Users can choose from a variety of sequencing error models. The

simplest one is a uniform error model, where each nucleotide in a

read has the same probability pe of being sequenced incorrectly, and

every possible sequencing error is equally likely (e.g. if there is an

error at a nucleotide which was supposed to be a T, the incorrect

base is equally likely to be a G, C, A or N). In the uniform error

model, pe ¼ 0:005 by default and can be adjusted.

Several empirical error models are also available in Polyester.

These models are based on two dataset-specific models that ship

with the GemSim software (McElroy et al., 2012). Separate models

are available for a single-end read, mate 1 of a pair and mate 2 of a

pair, from two different sequencing protocols: Illumina Sequencing

Kit v4 and TruSeq SBS Kit v5-GA (both from data sequenced on an

Illumina Genome Analyzer IIx). These empirical error models in-

clude estimated probabilities of making each of the four pos-

sible sequencing errors at each position in the read. In general,

empirical error probabilities increase toward the end of the read,

and mate 2 has higher error probabilities than mate 1 of a pair,

and the TruSeq SBS Kit v5-GA error probabilities were lower than

the Illumina Sequencing Kit v4 error probabilities (Fig. 2;

Supplementary Figs S3–S7).

Polyester can also handle custom error models: users can esti-

mate an error model from their own sequencing data with the

GemErr utility in GemSim. Detailed instructions on how to do this

in a way compatible with Polyester are available in the package

vignette.

After generating sequencing reads and simulating sequencing

error, reads are written to disk in FASTA format. The read identifier

in the FASTA files specifies the transcript of origin for each read,

facilitating assessment of downstream alignment accuracy. Other

pertinent simulation information is also automatically written to

disk for use in downstream analysis: for each transcript, the

transcript name, differential expression status and fold change is

recorded. For each replicate, the file name, group identifier j and

library size factor is recorded.

3 Results

3.1 Comparison with real data
To show that reads generated with Polyester exhibit realistic proper-

ties, we performed a small simulation experiment based on data

from the seven GEUVADIS RNA-seq replicates described in Section

2.2. For the experiment, we randomly selected 10 annotated genes

with at least one highly expressed isoform. We relied on the data-

driven Cufflinks assembly to determine isoform expression: an

annotated gene was considered to have highly expressed isoforms if

at least one of its annotated isoforms overlapped an assembled tran-

script with an average per-base coverage of at least 20 reads.

The 10 genes that were randomly selected had 15 transcripts be-

tween them: two had 3 isoforms, one had 2 isoforms, and the rest

had 1 isoform. For the 10 genes, we counted the number of reads

overlapping them using the summarizeOverlaps function in the

Bioconductor package GenomicAlignments (Lawrence et al., 2013).

Counts were calculated from the TopHat-aligned reads from the

GEUVADIS study for the seven replicates described in Section 2.2.

We then separated gene counts into isoform-level counts: we

calculated per-isoform FPKM values for each of the 15 annotated

transcripts using Cufflinks (Trapnell et al., 2010) in its abundance-

estimation only mode, and used the FPKM ratio between isoforms

of the same gene to generate isoform-level counts to simulate based

on the gene counts we had already obtained.

We then used these isoform-level counts as input to Polyester,

simulating a seven-replicate experiment with the specified number

of reads being generated from each of the 15 selected annotated

transcripts. Two experiments were simulated: one with all default

options (no GC or positional bias, normal fragment length distribu-

tion with mean 250 and standard deviation 25, and uniform error

model with 0.5% error probability) and one with all default options

except for the positional bias model, for which we specified the rnaf

bias model (Supplementary Fig. S2, red line).

The simulated reads were aligned to the hg19 genome with

TopHat, and the coverage track for each experiment, for each simu-

lated replicate was compared to the coverage track from the

GEUVADIS replicate that generated the simulated replicate’s read

count. For most of the transcripts, coverage tracks for both experi-

ments looked reasonably similar to the observed coverage track in

the GEUVADIS dataset (see Fig. 3 for a representative example).
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Fig. 2. Example error model available in Polyester. Empirical error model

derived from TruSeq SBS Kit v5-GA chemistry, using Illumina Genome

Analyzer IIx, for mate 1 of a paired-end read. Separate panels are shown for

each possible true reference nucleotide. Each panel illustrates the probability

(y axis) of mis-sequencing that reference nucleotide in a given read position

(x axis) as any of the three other nucleotides, or as an ‘N’ (indicating an

‘unknown’ nucleotide in the read). As expected, error probabilities increase

toward the end of the read. Other error models, including the model for mate

2 of the read on this protocol, are illustrated in Supplementary Figures S3–S7.

If these error models are not suitable, custom error models can be estimated

from any set of aligned sequencing reads
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The simulated coverage tracks were smoother than the coverage

track from the GEUVADIS dataset, but major trends in the coverage

patterns within exons were captured by the simulated reads. There

are annotated transcripts for which reads generated by Polyester do

not adequately capture the observed coverage in the GEUVADIS

dataset (Supplementary Fig. S8), especially when positional bias is

added. This seems to mainly occur in cases where only a very small

part of a large exon appears to be expressed in the dataset (as is the

case in Supplementary Fig. S8). The coverage for most of the other

transcripts was similar to the real data for most genes and replicates

(http://dx.doi.org/10.6084/m9.figshare.1225636). Reads simulated

with rnaf bias sometimes had poor coverage for genes consisting of

transcripts with many small exons.

For these 15 simulated transcripts, FPKM estimates were posi-

tively correlated between each simulated dataset and the

GEUVADIS dataset for each replicate. To get data for this compari-

son, we used Cufflinks’s abundance-estimation only mode to get ex-

pression estimates for the 15 isoforms based on the simulated reads’

alignments, in the same way we calculated expression for the

GEUVADIS replicates. We calculated correlation between FPKM es-

timates of the 15 transcripts for the GEUVADIS dataset and for

each of the simulated datasets, using correlation instead of absolute

FPKM because normalization for number of mapped reads put the

sets of FPKMs on different scales.

For the simulation without positional bias, the correlation was

extremely high: the minimum correlation across the seven replicates

studied was 0.98. However, the FPKM estimates were less corre-

lated when RNA-fragmentation-related positional bias was induced:

all correlations were positive, but weak (Supplementary Fig. S9).

These results generally indicate that realistic coverage profiles can

be obtained with Polyester but that adding positional bias may cause

problems when transcripts have unusual structure. The correlation

in FPKM estimates between the simulated datasets and the

GEUVADIS samples suggests that Polyester captures transcript level

variation in gene expression data.

3.2 Use case: assessing the accuracy of a differential

expression method
To demonstrate a use case for polyester, we simulated two small dif-

ferential expression experiments and attempted to discover the

simulated differential expression using limma (Smyth, 2005).

The first experiment used the default size parameter in Polyester,

which means the variance of the distribution from which each tran-

script’s count is drawn is equal to four times the mean of that distri-

bution. In other words, the mean and variance of the transcript

counts are linearly related. We refer to this experiment as ‘low vari-

ance.’ The second experiment set the size parameter to 1 for all tran-

scripts, regardless of the mean count, which means each transcript’s

mean and variance are quadratically related. This experiment was

the ‘high variance’ experiment.

In both scenarios, the main wrapper function in Polyester was

used to simulate classic two-group experiments. Reads were simu-

lated from transcripts on human chromosome 22 (hg19 build,

N¼926). lk was set to lengthðtranscriptkÞ=5, which corresponds to

approximately 20x coverage for reads of length 100. We randomly

chose 75 transcripts to have k¼3 and 75 to have k ¼ 1=3; the rest

had k¼1. For nj¼7 replicates in each group j, we simulated paired-

end reads from 250-base fragments (rfl ¼ 25), with a uniform error

probability and the default error rate of 0.005. Simulated reads were

aligned to hg19 with TopHat 2.0.13 (Trapnell et al., 2009), and

Cufflinks 2.2.1 (Trapnell et al., 2010) was used to obtain expression

estimates for the 926 transcripts from which transcripts were simu-

lated. Expression was measured using FPKM (fragments per kilo-

base per million mapped reads). We then ran transcript-level

differential expression tests using limma (Smyth, 2005). Specifically,

for each transcript k, the following linear model was fit:

log2ðFPKMk þ 1Þ ¼ ak þ bkXj þ ckWj

where FPKMk is the expression measurement for transcript k, Xj

is 0 or 1 depending on which group sample j was assigned to, and

Wj is a library-size adjustment, defined as the 75th percentile over

Fig. 3. Coverage comparison to GEUVADIS dataset. We counted the number of reads estimated to have originated from each of these annotated transcripts from

gene CD83 (bottom half of figure) in the GEUVADIS RNA-seq dataset, then simulated that same number of reads from each transcript using Polyester and

processed those simulated reads. This figure shows the coverage track (y-axis, indicating number of reads with alignments overlapping the specified genomic

position) for sample NA06985, reads simulated without positional bias, and read simulated using the rnaf bias model. While the simulated coverage tracks look a

bit cleaner than the track from the GEUVADIS dataset, many of the major within-exon coverage patterns are captured in the simulation, especially with the uni-

form model. For example, both simulations capture the peak at the beginning of the rightmost exon. Note: the dotted line indicates that part of a long intron at

that location was not illustrated in this plot
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all k of the log2(FPKMkþ1) values for replicate j (Paulson et al.,

2013). We fit these linear models for each transcript, and for each

bk, we calculated moderated t-statistics and associated P values

using the shrinkage methodology in limma’s eBayes function. We

calculated ROC curves based on these P values and our knowledge

of the true differential expression status of each transcript.

Sensitivity and specificity of the limma differential expression ana-

lysis were high for the small-variance scenario, but were diminished

in the large-variance scenario, as expected (Fig. 4).

Since expression fold changes can be explicitly specified in

Polyester, we can also investigate whether those fold changes are

preserved throughout this RNA-seq data analysis pipeline (Fig. 5).

In general, the coefficient distributions for transcripts not specified

to be differentially expressed were centered around zero, as ex-

pected, since models were fit on the log scale. The coefficient distri-

butions should have been centered around log2(3)¼1.58 for the

overexpressed transcripts (expression level three times higher in the

first group), and around log2(1/3)¼ –1.58 for the underexpressed

transcripts (expression level three times higher in the second group).

The overexpressed distributions had means 1.39 and 1.44 in the

high- and low-variance scenarios, respectively, and the underex-

pressed distributions had means �1.57 and �1.60 in the high- and

low-variance scenarios, respectively. Coefficient estimates were

much more variable in the scenario with higher expression variance

(Fig. 5). These numbers are similar to the the specified value of 1.58,

indicating that the RNA-seq pipeline used to analyze these datasets

satisfactorily captured the existence and magnitude of the differen-

tial expression set in the experiment simulated with Polyester.

3.3 Time and memory analysis
The computational time required by Polyester varies according to a

number of parameters. Assuming that n is the number of reads per

replicate and m is the number of replicates in the experiment simu-

lated, Polyester is O(mn) in time (Supplementary Figs S10–11). In

other words, the time required to run Polyester scales linearly with

both the number of reads per replicate and the total number of repli-

cates in the experiment. Adding positional bias to the experiment, as

we did for the analysis in Section 3.1, makes the simulation very

slightly slower (Supplementary Fig. S12). We note that using an em-

pirical error model requires substantially more computational time

(Supplementary Table S1), since the empirical error models assume

different error probabilities along the read and therefore require iter-

ating in R over the reads.

Let nmax denote the number of reads simulated from the replicate

with the most reads in an experiment. Then Polyester is OðnmaxÞ in

memory use (Supplementary Fig. S13); Polyester is constant in mem-

ory use with respect to m, the total number of replicates in the ex-

periment (Supplementary Fig. S14). In other words, the memory

required by Polyester scales linearly with the maximum number of

reads per replicate in the experiment, but is approximately constant

as the number of replicates in the experiment increases. The code is

written such that all reads for a single replicate are stored in memory,

but replicates are simulated sequentially, which means previous rep-

licates’ reads are released from memory after being written to disk.

If the desired number of reads to simulate per replicate exceeds

the available computer’s memory requirements, reads for the same

replicate can be simulated sequentially using multiple calls to the

main simulation function, and output files can be concatenated after

the simulation has finished running.
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Fig. 4. ROC curves for transcript-level differential expression calls from

Polyester datasets. For varying significance (P- or q-value) cutoffs, sensitivity

and specificity from the simulation experiments. Differential expression was

more difficult to detect under conditions where expression levels were highly

variable between replicates, as expected
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at the beginning of the simulation, and there is more variability in the coefficient estimates for high-variance scenario, as expected
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4 Discussion

In this article, we propose a lightweight, flexible RNA-seq read

simulator allowing users to set differential expression levels at the

isoform level. A full experiment with biological replicates can be

simulated with one command, and time-consuming alignment is not

required beforehand.

The sequencing process is complex, and some subtleties and po-

tential biases present in that process are not yet implemented in

Polyester but could be in the future. For example, adding random

hexamer priming bias (Hansen et al., 2010), implementing PCR

amplification bias (Fang and Cui, 2011) or other biases that depend

on the specific nucleotides being sequenced, simulating quality

scores for base calls, and adding the ability to simulate indels are all

possibilities for future improvements. Also, an annotation-based

simulator like Polyester cannot model biological events that may

occur in real datasets but are not annotated, such as unobserved

transcripts or splicing errors. However, our comparisons with real

data suggest that the Polyester model sufficiently mimicks real

sequencing data to be practically useful.

5 Software

The release version of Polyester is available from Bioconductor:

http://bioconductor.org/packages/release/bioc/html/polyester.html.

Community contributions and bug reports can be made at https://

github.com/alyssafrazee/polyester. Community contributions and

bug reports are welcomed in the development version. Code for

the analysis shown in this article is available at https://github.com/

alyssafrazee/polyester_code.
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