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Introduction: Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and 
Taiwan, and radiation therapy combined with or without chemotherapy is its mainstay 
treatment. Although it is highly sensitive to radiotherapy, local recurrence and distant 
metastasis remain difficult unsolved problems. In recent years, graphene oxide (GO) has 
been found to be a promising novel anticancer drug carrier. Here, we present our designed 
functionalized GO, polyethylene glycol-coated GO (GO-PEG), as a drug carrier, which was 
loaded with erlotinib and showed promising anticancer effects on NPC cells.
Methods: The effects of GO-PEG-erlotinib on the proliferation, migration, and invasion of 
NPC cells were investigated by WST-8 assay, wound healing assay, and invasion assay, 
respectively. RNA sequencing was conducted and analyzed to determine the molecular 
mechanisms by which GO-PEG-erlotinib affects NPC cells.
Results: Our results showed that GO-PEG-erlotinib reduced NPC cell viability in a dose- 
dependent manner and also inhibited the migration and invasion of NPC cells. The RNA 
sequencing revealed several related molecular mechanisms.
Conclusion: GO-PEG-erlotinib effectively suppressed NPC cell proliferation, migration, 
and invasion, likely by several mechanisms. GO-PEG-erlotinib may be a potential therapeu-
tic agent for treating NPC in the future.
Keywords: nasopharyngeal carcinoma, anti-cancer, graphene oxide, erlotinib, drug carrier

Introduction
Nasopharyngeal carcinoma (NPC) is very rare in western countries but is one of the 
most common cancers in southern Asian with annual incidence around 20–30/ 
100,000.1,2 Due to its deep location inside the nasal cavity and vague symptoms, 
most NPC patients have been diagnosed at an advanced stage.2 The etiology of 
NPC has been proved to be closely related to several factors, including genetic, 
Epstein-Barr virus exposure, environmental, and dietary factors.1–4 During devel-
opment of the disease, viral infection and multiple somatic genetic and epigenetic 
changes synergistically disrupt normal cell function, thus contributing to NPC 
pathogenesis.3–8 Radiotherapy is the foundation of curative treatment for NPC, 
and chemotherapy is usually combined with radiotherapy for advanced cases.9 

Although NPC is highly radiosensitive and chemosensitive with an optimal 
5-year survival of over 80%, the treatment of patients with locoregionally advanced 
disease remains problematic due to locoregional failure and distant metastasis. 
Besides, patients often suffer from systemic toxicity or related complications of 
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chemotherapy. To reach a better outcome for NPC treat-
ment, the refinement of current treatment modalities is of 
importance.

The recent development of novel materials, especially 
nanoparticles, having the advantages of large surface 
area-to-volume ratio and small size, enables them to 
carry small compounds with high efficiency. Graphene 
and its derivatives have drawn much attention in phar-
maceutical sciences as carriers for targeted drug delivery 
in cancer diagnosis and treatment.10–13 Graphene is an 
allotrope of carbon in the form of a one-atom-thick, two- 
dimensional, atomic-scale, hexagonal lattice, with high 
thermal conductivity, excellent mechanical properties, 
and large surface areas.14 There are several members of 
the graphene family, including graphene oxide (GO), 
reduced graphene oxide (RGO), and graphene quantum 
dots (GQDs), that have been used in materials science, 
nanotechnology, and biomedicine. The combination of 
biomolecules, such as DNA, peptides, proteins, enzymes, 
carbohydrates, and viruses, with graphene-based materi-
als offers a promising method to fabricate novel gra-
phene-biomolecule hybrid nanomaterials with unique 
functions in drug delivery, cancer treatment, tissue engi-
neering, biosensors, bioimaging, energy materials, and 
other nanotechnological applications.15–20

Erlotinib, a tyrosine kinase inhibitor (TKI) acting on 
the epidermal growth factor receptor (EGFR), was demon-
strated in 2004 to be effective for locally advanced or 
metastatic non-small cell lung cancer (NSCLC) and, in 
combination with gemcitabine, for locally advanced or 
metastatic pancreatic cancer.21 Currently, there is little 
information regarding its usage in NPC. Previously, an 
in vitro study showed that erlotinib has a role as an 
enhancer of radiation therapy in NPC.22 However, 
a Phase II trial conducted on patients with recurrent and/ 
or metastatic NPC revealed no efficacy of erlotinib as 
maintenance therapy after gemcitabine-platinum 
chemotherapy.23

Our previous works have prioritized several crucial 
NPC targets and identified many potential drugs for treat-
ing NPC.24,25 Erlotinib is one of our potential drugs and 
was selected to be loaded on specific functionalized gra-
phene to investigate its anticancer effect. The RNA 
sequencing was conducted to reveal related molecular 
mechanisms. The goal is to develop drugs with better 
anticancer activity but lower toxicity for possible future 
clinical applications in NPC patients.

Materials and Methods
Preparation of Graphene Oxide (GO)
The raw materials of graphite platelet (model xGnP) mea-
suring 100 μm in width and 5–15 nm in thickness were 
obtained from XG Sciences Inc (East Lansing, MI). 
Acrylic acid, potassium persulfate, sulfuric acid (H2SO4, 
98%), sodium sulfate (Na2SO4), potassium permanganate 
(KMnO4), hydrogen peroxide solution (H2O2), and ammo-
nia solution were purchased from Showa Chemical Co 
(Tokyo, Japan). Preparation of GO followed the modified 
Hummers’ method (Figure 1).26 One gram of graphite 
platelet and 23 mL of H2SO4 (98%) were added into 
a 250 mL flask under magnetic stirring for 12 hours, 
followed by slow addition of 3 g of KMnO4 in an ice 
bath while keeping the temperature below 20°C. After 
stirring for 30 minutes, the flask was heated to 35–40°C 
and continually stirred for 30 minutes. The temperature of 
the solution was increased to 65–80°C with continued 
stirring for 45 minutes, followed by addition of 46 mL of 
deionized water. Then, the temperature of the solution was 
increased to 98–105°C and stirred for 30 minutes. After 
cooling for 1 hour at room temperature, 140 mL of deio-
nized water and 10 mL 10% H2O2 were added to the 
solution and incubated for 5 minutes at 35–40°C. The 
solution was centrifuged at 10,000 rpm and washed using 
5% HCl solution 2–3 times. Then, deionized water was 
used to wash the precipitate several times to neutralize it. 
The precipitate was collected and subject to ultrasonica-
tion using an Ultrasonic Liquid Processor 2020 from 
Misonix (Farmingdale, NY) and filtered with Acrodisc 
25 mm syringe filters (0.2 μm Supor membrane). GO 
collected in the filtrate was subjected to further 
modification.

Preparation of PEGylated GO (GO-PEG)
GO-polyethylene glycol (GO-PEG) was made following the 
method below. Briefly, the PBS was added to GO solution 
and sonicated for 1 hour. After cooling at room temperature, 
DSPE-PEG-CH3 was added to the solution. The solution was 
then sonicated for 1 hour in an ice bath. Finally, the solution 
was centrifuged at high speed for 1 hour and the supernatant 
was removed. All GO materials were then dispersed in 
sterilized deionized water to prepare the stock solution (0.5 
or 1 mg/mL) for later characterization and experiments.

Characterization of GO Materials
(i) Fourier transform infrared spectroscopy (FTIR)
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FTIR (Bruker Tensor 27) was used to obtain an infra-
red spectrum of absorption or emission of the GO and 
functionalized GO materials.

(ii) Dynamic light scattering (DLS) and zeta potential

The sizes of GO and GO-PEG were respectively mea-
sured by the zetasizer (Zetasizer Nano ZS90, Malvern).

(iii) TEM

Transmission electron microscopy (TEM; JEM-2100, 
JEOL, Japan) was utilized to determine the structure of the 
GO materials. The TEM samples were prepared by depos-
iting a small drop of solution onto a carbon-coated copper 
electron microscopy grid and then dried at room 
temperature.

(iv) Raman spectroscopy

Raman spectra were collected using a Micro-Raman 
Spectrometer (PTT-EL) equipped with a 532nm laser and 
a 10X objective. The Raman spectra integration time was 
20 sec for each location.

Drug Loading Study
To prepare GO-PEG loaded with erlotinib (GO–PEG- 
erlotinib), 200 µg erlotinib was mixed with different con-
centrations of GO-PEG in 1 mL ddH2O. The suspension 
was rotated at 35 rpm at room temperature overnight and 
then centrifuged for 1 hour. The supernatant was removed 
and the concentration of erlotinib in the solution was 
analyzed by UV-Vis Spectrophotometer (Beckman 
Coulter DU730) at 735, 333, and 371 nm. The weight of 
drug loaded on GO-PEG was calculated by mass balance 
from the amount of drug initially added and the amount of 
drug in the supernatant. The drug entrapment efficiency 
(EE) (%) is defined as (weight of drug loaded on GO-PEG 
/weight of drug initially added) × 100. The drug loading 
efficiency (LE) (%) is defined as (weight of drug loaded on 
GO-PEG/weight of GO-PEG) × 100.

Drug Release Study
GO-PEG-erlotinib was placed into the microtubes with 
1 mL phosphate-buffered saline (PBS) at pH 7.4 and 5.5, 
respectively. The drug release was assumed to start as soon 
as the microtubes were placed into the incubator at 37°C. 
The microtube was under constant shaking. At particular 
time intervals, all supernatant was withdrawn from the 

Figure 1 Characterizations of GO and GO-PEG. (A) TEM images of GO and GO-PEG. (B) The table lists the measurements of size and zeta potential of GO and GO-PEG 
analyzed by DLS. (C) The intensity of D and G band of GO and GO-PEG in Raman spectra. (D) The infrared spectrum of GO and GO-PEG by FTIR shows that PEG was 
successfully conjugated on GO. (E) Raman spectra of GO and GO-PEG. (F) Absorbance of GO, GO-PEG, erlotinib, and GO-PEG-erlotinib analyzed by UV-Vis 
spectrophotometer. 
Abbreviation: PDI, polydispersity index.
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microtube for characterization after centrifugation and 
washing. The microtube was replenished with the same 
volume of PBS to continue the drug release study. The 
concentration of erlotinib released from the functionalized 
GO-PEG-erlotinib complex was determined using a UV- 
Vis Spectrophotometer (Beckman Coulter DU730). The 
drug release percentage was calculated from the cumula-
tive amount of drug released after normalizing with 
amount of loaded drug.

Cellular Uptake Study
To determine intracellular uptake of GO-PEG, NPC TW01 
cells (10,000 cells/mL) were cultured in 2 mL DMEM 
supplemented with 10% FBS in 35 mm diameter plates. 
Cells were grown in a humidified incubator at 37°C under 
5% CO2 for 48 hours. To prepare fluorescent GO-PEG, 95 
ul of 2 mg/mL FITC-NHS (5/6-carboxyfluorescein succi-
nimidyl ester) was mixed with 1 mL of 1 mg/mL GO-PEG 
solution and then vortexed at 25°C for 1 hour in the dark. 
The above solution was then mixed with 19 ul of 42mM 
Glycine and then vortexed at 25°C for 60 minutes in the 
dark. After centrifugation and washing with 1x PBS, GO- 
PEG-FITC was re-dispersed in 1 mL ddH2O. Cells were 
then incubated with GO-PEG-FITC (20 ul) in 100 μL of 
minimum essential medium for 6 hours. The medium was 
then removed, and the cells were washed with 1 mL of 
Hank’s balanced salt solution and then fixed with fresh 
ethanol for 5 minutes at room temperature. The cells were 
washed three times with Hank’s balanced salt solution and 
analyzed by a laser confocal microscope (Olympus 
FV10i).

NPC Cell Culture
The NPC cell line TW01 was kindly provided by Dr. Lin 
CT (Department of Pathology and Graduate Institute of 
Pathology, College of Medicine, National Taiwan 
University, Taiwan). The cell line was derived from pri-
mary nasopharyngeal tumors of Chinese patients with de 
novo NPC.27,28 The use of the NPC cell line was approved 
by the institutional review board of the Taipei Veterans 
General Hospital. The NPC cell line was maintained in 
DMEM with 10% FBS at 37°C under 5% CO2.

In vitro Cytotoxicity Assay
Cell viability of the exposed cells was determined using 
the Cell Counting Kit-8 (Sigma-Aldrich, St. Louis, USA), 
according to the manufacturer’s instructions. After seeding 
cells at a concentration of 2000 cells/well in 100 μL 

culture medium in a 96-well microplate for 24 hours, 
cells were washed with PBS twice and exposed with GO, 
GO-PEG, erlotinib, and GO-PEG–erlotinib for various 
concentrations in a humidified atmosphere (37°C and 5% 
CO2) for 2~3 days. Then, the cells were incubated with 
10 μL CCK-8 cell proliferation reagent for 2 hours. 
Optical density was measured using a microplate reader 
(Spectral Max250) at 450 nm.

Wound Healing Assay
Cells were plated in 6-well plates. When the cells grew 
into full confluency, a wound was created on the mono-
layer cells by scraping a gap using a micropipette tip after 
cells had been treated with control and GO-PEG–erlotinib 
for 20 hours. The speed of wound closure was compared 
between GO–PEG–erlotinib treated groups and the control 
group. Photographs were taken under 100× magnifications 
using phase contrast microscopy immediately after wound 
incision and at 20 hours later.

Cell Invasion Assay
A Transwell cell culture chamber (Millipore, Bedford, 
MA, USA) with a 6.5-mm-diameter polycarbonate filter 
(8 μm pore size) was coated with Matrigel, dried, and 
reconstituted at 37°C with culture medium. Culture med-
ium containing 10% FBS was placed in the lower chamber 
(24-well plates). Then, the cells at 1 × 105 cells per 
chamber were added to the upper chamber in serum-free 
DMEM. After 48 hours of incubation with control, Go- 
PEG, erlotinib or GO-PEG–erlotinib at 37°C, the sus-
pended media in the lower chamber were removed. The 
cells that had invaded the lower side of the filter were 
fixed in methanol and stained with DAPI. The number of 
cells that passed through the pores into the lower chamber 
was counted under a fluorescent microscope (five fields 
per chamber).

RNA-Seq Analysis
Total RNA from NPC cell lines treated with or without 
GO-PEG–erlotinib (2.15 µg/mL) for 72 hours was 
extracted with RNeasy Mini Kit (Qiagen, Germany) 
according to the manufacturer’s protocol. RNA was sub-
jected to RNA-Seq analysis on BGISEQ-500 system by 
Tri-I Biotech, Inc. Briefly, the RNA was sheared and 
reverse transcribed using random primers to obtain 
cDNA used for library construction. We performed 
sequencing on prepared library29 and filtered all the gen-
erated raw sequencing reads to get clean reads stored as 
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FASTQ format.30 We used Bowtie2 and HISAT to map 
clean reads to reference genes and genome, 
respectively.31,32 Gene expression level (FPKM) was 
quantified by RSEM.33 We used the DEseq2 method to 
screen out differentially expressed genes between two 
groups with fold change ≥2 and adjusted P value 
≤0.05.34 Gene ontology (GO) and pathway annotation 
and enrichment analyses were based on the GO Database 
(http://www.geneontology.org/) and KEGG pathway data-
base (http://www.genome.jp/kegg/), respectively. We then 
used the Ingenuity Pathway Analysis (IPA) to assign bio-
logical functions to genes and network analysis using the 
Ingenuity Pathways Knowledge Base (Ingenuity Systems, 
Inc., Redwood City, CA, USA).

Statistical Analysis
All experiments were carried out in triplicate, and at least 
three independent experiments were performed. The 
results are presented as the means ± SDs. Statistical com-
parisons of multigroup data were analyzed by ANOVA, 
followed by Scheffe’s post-test using SPSS 12.0 software 
(SPSS Inc. Chicago, IL). A value of p<0.05 indicated 
statistical significance.

Results
We prepared GO and GO-PEG from the raw materials of 
graphite platelet followed the modified Hummers’ method. 
We characterized the GO and GO-PEG using several tools, 
including the TEM, FTIR, DLS, and Raman spectroscopy. 
The TEM images showed the irregular morphology of GO 
and GO-PEG (Figure 1A) in the solution. Compared to 
GO-PEG, GO forms small clusters more readily in the 
solution. From the TEM images, GO-PEG showed better 
dispersibility in water. Moreover, no contaminating parti-
cles were found on the surface of both GO and GO-PEG, 
which revealed great purity of these two materials in the 
solution (data not shown). We further used the DSL to 
measure the size of GO and GO-PEG, which were 88 nm 
and 96 nm in average, respectively (Figure 1B). DLS is 
a technique in physics that can be used to determine the 
size-distribution profile of small particles in suspension or 
polymers in solution. The polydispersity index (PDI) is 
used to describe the degree of “non-uniformity” of 
a distribution. PDI between 0 and 0.35 means narrow size- 
distribution of particles. The PDI of GO and GO-PEG 
were 0.357 and 0.354, respectively. ZP (zeta potential) 
measurements represent the surface charge of the materi-
als. The ZP of GO and GO-PEG were −42.1 and −31.1, 

respectively (Figure 1B). The FTIR was used to obtain an 
infrared spectrum of absorption or emission of the GO and 
functionalized GO materials, which revealed that PEG was 
successfully conjugated on GO (Figure 1D). Raman spec-
trometry was performed using a Micro-Raman 
Spectrometer (PTT-EL) equipped with a 532nm laser. 
Raman spectroscopy can provide substantial information 
about nanostructure defect type, domain size, impurity 
element, etc. A G-band at around 1575cm−1 in the 
Raman spectra represents the sp2-hybridized carbon struc-
ture of GO, while a D-band at around 1355cm−1 appears 
when the carbon structure exhibits small defects or edges. 
The intensity ratio (intensity of the D-band/intensity of the 
G-band, ID/IG) represents the structural integrity of GO. 
GO and GO-PEG had similar ID/IG values, indicating that 
PEGylation did not destroy the aromatic structures of GO 
(Figure 1C and E). Absorbance of GO, GO-PEG, erlotinib, 
and GO-PEG-erlotinib analyzed by UV-Vis spectrophot-
ometer is shown in Figure 1F.

We then conducted the drug loading and release stu-
dies, which are essential for evaluating a drug delivery 
system. The drug loading efficiency (LE) and encapsula-
tion efficiency (EE) of erlotinib-loaded GO-PEG were 
about 80%, and 38%, respectively (Figure 2A). On aver-
age, 46.5 ± 9.58 µg erlotinib was loaded on 141.39 ± 9.45 
µg GO-PEG when 200 µg erlotinib was mixed with 200 
µg GO-PEG. In regard to drug release testing, the release 
rate of GO-PEG-erlotinib at pH 5 at 5 hours was 93.01%; 
at 24 hours was 95.88%; and at 72 hours was 98.99%. The 
release rate of GO-PEG-erlotinib at pH 7 at 5 hours was 
63.38%; at 24 hours was 68.33%; and at 72 hours was 
76.74% (Figure 2A). In order to duplicate the physiologi-
cal temperature, a temperature of 37°C was selected for 
the drug release response. A pH of 7.4 corresponds to the 
physiological pH of normal cells, while a pH of 5.5 corre-
sponds to acidic cancer environments, and also within 
endosomes after internalization. Figure 2B shows that the 
cumulative release profile of erlotinib from the GO-PEG is 
pH-dependent, in which erlotinib release is enhanced at 
pH 5.5.

To determine intracellular uptake of GO-PEG, NPC 
TW01 cells were cultured and incubated with FITC- 
labeled GO-PEG suspension for 6 hours. The identification 
of GO-PEG was made possible by the green fluorescence 
signals from FITC-labeled GO-PEG (Figure 3). The green 
fluorescence of FITC-labeled GO-PEG mostly appears in 
the cytoplasm of NPC TW01 cells. It is supposed that GO- 
PEG accumulating in the cytoplasm is via endocytosis.
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We then tested the GO and GO-PEG on NPC cells. Both 
GO and GO-PEG showed mild cytotoxicity on NPC cells at 
a concentration below 10 µg/mL. The erlotinib was further 
tested for cytotoxicity. Erlotinib seems to have little cytotoxi-
city effect on NPC cells; the IC50 at 72 hours is around 100 
µg/mL (data not shown). However, GO-PEG-erlotinib has 
great cytotoxicity with the IC50 at 72 hours being 2.12 µg/ 
mL (Figure 4). This indicates that GO-PEG might be 
a promising drug delivery vehicle for erlotinib in NPC 
treatment.

The migration of NPC TW01 cells with or without GO- 
PEG-erlotinib was assessed by a wound healing assay. 
More cells migrated to the denuded area of the wound in 
the control group than to the cells treated with 0.7 and 2.15 
µg/mL GO-PEG-erlotinib at 20 hours after the creation of 
the wound (Figure 5). The results indicated that GO-PEG- 
erlotinib inhibited the migration of NPC cells. To investi-
gate whether GO-PEG-erlotinib could inhibit cell invasion, 
cell invasion assays were conducted. The number of migrat-
ing cells was significantly reduced after treatment with 2.15 
µg/mL GO-PEG-erlotinib (Figure 6).

To identify differentially expressed genes, the RNA-Seq 
of the NPC cell lines treated with and without 2.15 µg/mL 
GO-PEG-erlotinib for 72 hours were compared. A p-value 
<0.05 was considered statistically significant. In regard to 
GO-PEG- erlotinib, a total of 1455 genes were differentially 
expressed by at least two-fold, with 623 upregulated and 

Figure 2 (A) The drug loading efficiency (LE) and encapsulation efficiency (EE) of erlotinib-loaded GO-PEG. (B) The drug release test of GO-PEG-erlotinib in pH 7.4 and 
5.5.

Figure 3 Confocal microscopy images of NPC TW01 cells after treatment with FITC-labeled GO-PEG for 6 hours.

Figure 4 Cell viability of NPC TW01 after treatment with erlotinib and GO-PEG- 
erlotinib at various concentrations. Cell viability was determined after incubating 
with erlotinib or GO-PEG-erlotinib for 72 hours.
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832 downregulated genes. The data were then analyzed 
using the IPA functional analysis tool. Several networks 
and interactomes were created according to the biological 
functions of the genes and were ranked by the number of 
significantly expressed genes they contained. The top 10 
upregulated and downregulated molecules and the top 10 
upstream regulators in RNA-Seq analysis of NPC cells 
treated with GO-PEG-erlotinib are listed in Table 1. 
Further study of these top molecules will be conducted in 
the future to elucidate their roles in the mechanism of GO- 
PEG-erlotinib on NPC cells. Table 2 lists the top 5 asso-
ciated networks of genes involved in the effect of GO-PEG- 

erlotinib on NPC cells. Figure 7 shows the top-ranked net-
work identified by IPA analysis in GO-PEG-erlotinib.

The KEGG pathway analysis of GO-PEG-Erlotinib on 
NPC cells is shown in Figure 8. There are seven branches 
for KEGG pathways: cellular processes, environmental infor-
mation processing, genetic information processing, human 
disease (for animals only), metabolism, and organismal 
systems.

Discussion
EGFR has been found to be overexpressed in 73% to 
89% of NPC patients, which causes decreased overall 

Figure 5 GO-PEG-erlotinib reduces cell migration in NPC TW01 cells. More cells migrated to the denuded area of the wound in the control group (left) compared to the 
cells treated with 0.7 µg/mL GO-PEG-erlotinib (middle) and 2.15 µg/mL GO-PEG-erlotinib (right) at 20 hours after the creation of the wound. *p < 0.05 compared with the 
control group by ANOVA.
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survival and an increased risk of metastasis.35–37 Several 
studies have shown that high EGFR expression is cor-
related with poor locoregional control and overall survi-
val, but not distant metastasis-free survival (DMFS).38,39 

Erlotinib, an EGFR inhibitor, has been shown to be 
effective for NSCLC and pancreatic cancer, but without 
much study regarding its effect in head and neck cancer 
patients or in NPC patients.21 A randomized phase II 
trial showed that the addition of erlotinib to cisplatin 
and radiotherapy did not confer additional tumor 
response or patient survival of 204 late-stage HNSCC 
patients.40 Previously, a phase II trial conducted on 
patients with recurrent and/or metastatic NPC revealed 

no efficacy of erlotinib as maintenance therapy after 
gemcitabine-platinum chemotherapy.23

Zheng et al recently identified serine protease inhibitor 
Kazal-type 6 (SPINK6) as a functional regulator of NPC 
metastasis via EGFR signaling, and erlotinib was revealed 
to reverse SPINK6-induced NPC cell migration and inva-
sion in vitro, as well as inhibiting SPINK6-induced metas-
tasis in vivo.41 In our study, we found erlotinib has little 
cytotoxicity effect on NPC cells with the IC50 at 72 hours 
being around 100 ug/mL, which may explain the relative 
unresponsiveness of erlotinib in clinical NPC patients. 
However, GO-PEG-erlotinib indeed showed good cyto-
toxicity on NPC cells with the IC50 at 72 hours being 

Figure 6 GO-PEG-erlotinib inhibits cell invasion in NPC TW01 cells. Matrigel invasion assays of NPC TW01 cells showed that the invasion ability of NPC cells was reduced 
after treatment with 2.15 μg/mL GO-PEG-erlotinib, 2.15 μg/mL erlotinib, and 6.45 μg/mL GO-PEG for 48 hours. *p < 0.05 compared with the control group by ANOVA.

Table 1 The Top 10 Upregulated and Downregulated Genes and Their Corresponding Upstream Regulators in RNA- 
Seq Analysis of NPC Cells Treated with GO-PEG-Erlotinib

Rank Upregulated Gene Expression Value Downregulated Gene Expression Value

1 CHAC1 4.279 SNAI1 −4.054

2 RGPD4 3.225 ART5 −3.982
3 KRCC1 3.046 NPTX1 −3.880

4 ELAC1 2.941 HIST1H2BJ −3.774

5 BORCS8-MEF2B 2.755 ART1 −3.474
6 CYP1A1 2.755 SLC6A12 −3.434

7 FGFBP3 2.592 SLC17A7 −3.313

8 C7orf25 2.576 KCNE1B −3.311
9 SPRN 2.483 KLHL41 −3.261

10 MAGI2 2.478 SUCNR1 −3.232
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2.12 ug/mL. We calculated the drug LE and EE of erloti-
nib-loaded GO-PEG was about 80%, and 38%, respec-
tively, and the release rate of GO-PEG-erlotinib was 
enhanced at pH 5.5, corresponding to the acidic cancer 
environments in endosomes after internalization. Most 
tumor cells have high metabolic activity, which contributes 
to their more acidic intracellular pH.42 Thus, an interna-
lized graphene-based drug with pH-responsive character-
istics, like GO-PEG-erlotinib in our study, can specifically 
release the drug at tumor sites.11 Moreover, our results 

show that GO-PEG-erlotinib not only reduced NPC cell 
viability in a dose-dependent manner but also inhibited the 
migration and invasion of NPC cells. The relatively mod-
erate drug loading and the pH-sensitive release of erlotinib 
suggest that GO-PEG is a potential drug delivery vehicle 
for cancer therapy,43,44 and that GO-PEG is a promising 
drug delivery vehicle for erlotinib in NPC treatment.

Graphene-based materials immobilize various biomo-
lecules through either noncovalent adsorption, such as π–π 
stacking, hydrogen bonds, and electrostatic interaction; or 

Table 2 The Top 5 Associated Networks Involved in the Effect of GO-PEG-Erlotinib on NPC Cells Identified by IPA

Rank Molecules Associated Network Functions

1 34 Cardiovascular Disease, Hematological Disease, Hereditary Disorder
2 34 Cellular Development, Embryonic Development, Hair and Skin Development and Function

3 32 Cell Death and Survival, Cell-mediated Immune Response, Cellular Function and Maintenance

4 31 Reproductive System Development and Function, Cancer, Organismal Injury and Abnormalities
5 31 Endocrine System Development and Function, Molecular Transport, Small Molecule Biochemistry

Figure 7 The top-ranked network identified by IPA analysis in GO-PEG-erlotinib study. The top-ranked network, which includes 34 genes, is related to cardiovascular 
disease, hematological disease, and hereditary disorder. The genes shaded in red are upregulated, and genes shaded in green are downregulated. All shaded genes are 
statistically significant, as indicated by the statistical analysis. A dotted line indicates an indirect interaction between the two gene products, and a solid line represents 
a direct interaction.
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covalent binding by their enriched oxygen functional 
groups.15 They offer a high surface to weight ratio, 
a high possibility for surface modification, high drug- 
loading efficiency, a pH-responsive drug-delivery mechan-
ism, and photothermal effects compared to other drug 
delivery systems.18,45,46 Graphene is characterized by 
a pure carbon, an aromatic network providing an open 
surface for noncovalent interaction with biomolecules, 
while GO has many epoxides, carboxyl, and hydroxyl 
groups on its basal plane and edges which can bind with 
biomolecules via covalent, electrostatic, and hydrogen 
bond interactions.43,44

Most drugs binding on GO are based on noncovalent 
interactions. For example, chemotherapeutic drugs pos-
sessing aromatic ring structures, such as doxorubicin, 
camptothecin, and SN-38, bind on GO through π–π 
stacking.47 Various methods have been developed to 

functionalize GO for improving its drug carrier function. 
Lui et al found that GO functionalized with polyethy-
lene glycol (PEG) can carry water-insoluble cancer 
drugs such as camptothecin and SN38 and showed pH- 
dependent drug release behavior.48 Besides, functiona-
lized GO can enter mammalian cells, and thus it is 
a reasonable drug carrier. Moreover, the hydrophilic 
groups on both sides of GO make it stable in physiolo-
gic solutions while carrying drugs. In our study, intra-
cellular uptake of FITC-labeled GO-PEG in NPC cells 
was clearly observed under confocal microscopy, which 
suggested that GO-PEG accumulating in the cytoplasm 
is via endocytosis. Finally, GO-PEG-erlotinib showed 
much better cytotoxicity on NPC cells than erlotinib 
alone, demonstrating that GO-PEG is a promising drug 
carrier for possible usage in NPC treatment in the 
future.

Figure 8 KEGG pathway analysis of GO-PEG-erlotinib on NPC cells. There are seven branches for KEGG pathways: cellular processes, environmental information 
processing, genetic information processing, human disease, metabolism, and organismal systems.

Lan et al                                                                                                                                                               Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 7578

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


In recent years, several studies have focused on gra-
phene and its derivatives as potential drug carriers for 
cancer therapy. Yang et al used a chemical coprecipitation 
method, not only adding Fe3O4 magnetic nanoparticles onto 
graphene but also decorating it with folic acid as a targeting 
ligand. The drug-loaded graphene selectively killed breast 
cancer cells with released doxorubicin.45 Zhang et al 
designed the drug carrier with low drug resistance rate but 
high cytotoxic efficacy by adding positive-charged  poly-
ethylenimine (PEI) onto the doxorubicin-loaded graphene 
which can adsorb negative-charged Bcl-2 siRNA.49 Lu et al 
modified the GO surface with abundant polyacrylic acid 
(PAA) chains, which can react with BCNU through carbo-
diimide-mediated amide bond formation to increase drug 
loading. The PAA–GO–BCNU showed promising antican-
cer efficacy in in vitro study.47 Yin et al functionalized GO 
with PEI and (PEG) as a plasmid-based Stat3 siRNA car-
rier, which showed a significant regression in tumor growth 
and tumor weight of mouse malignant melanoma growth 
in vivo.50 Yang et al developed epidermal growth factor 
receptor (EGFR) antibody-conjugated PEGylated nanogra-
phene oxide (PEG-NGO) carrying epirubicin (EPI) that was 
able to target the tumor and kill the cancer cells by its triple- 
therapeutics (growth signal blocking, chemotherapy, photo-
thermal therapy). The synergistic-targeted treatment simul-
taneously enhances the local drug concentration and 
performs ultra-efficient tumor suppression to significantly 
prolong survival in mice. This novel drug delivery platform 
overcomes the problems of low accumulation of most che-
motherapeutic agents in tumor tissue and multidrug resis-
tance (MDR) in current cancer treatment.51 Recently, Pei 
et al developed cisplatin and doxorubicin dual-drug-loaded 
PEGylated nano-graphene oxide which exhibited signifi-
cantly increased anticancer effect than the single drug deliv-
ery system.52 Wang et al synthesized folate-modified GO/ 
PEI siRNA nanocomplexes which successfully targeted 
ovarian cancer cells in vitro.53 Shirvalilou et al developed 
magnetic NGO as a drug carrier for improving glioma- 
targeted iodo-2-deoxyuridine (IUdR) delivery and 
imaging.54

By conducting RNA-Seq analysis and following IPA 
analysis, the top 10 upregulated and top 10 downregulated 
molecules after GO-PEG-erlotinib treatment on NPC cells 
were identified (Table 1). Some of these molecules have 
been reported to be associated with carcinogenesis and 
prognosis in other types of cancers. CHAC1 (ChaC glu-
tathione-specific gamma-glutamylcyclotransferase 1) plays 
a role in the regulation of glutathione levels and oxidative 

balance in cells and is also a proapoptotic component of 
the unfolded protein response (UPR).55,56 Activation of 
CHAC1 has been reported to induce cell apoptosis and 
decrease cell proliferation in human head and neck squa-
mous cell cancer cell lines.57 CYP1A1 (cytochrome P450 
family 1 subfamily A member 1) is located at the endo-
plasmic reticulum. It can metabolize some polycyclic aro-
matic hydrocarbons to carcinogenic intermediates. This 
gene has been found to be associated with lung, prostate, 
and cervical cancer risks.58–60 SNAI1 (snail family tran-
scriptional repressor 1) proteins primarily act as transcrip-
tional repressors.61 It can induce epithelial-to- 
mesenchymal transition (EMT) in colorectal and lung 
cancer cells.62,63 NPTX1 (neuronal pentraxin 1) belongs 
to the long pentraxin family of protein and is highly 
expressed in the central nervous system.64 It is also 
involved in the regulation of apoptosis in some types of 
cells.65,66 Recently, some studies found that NPTX1 may 
be involved in the progression of lung, pancreatic, and 
colon cancers.67–69

Recently, several ligands have been used in cancer targeted 
therapies, such as biotin, transferrin, and folate.70,71 

Montazerabadi et al functionalized curcumin-loaded dendritic 
magnetite nanocarriers with folate, which generated a thermo- 
chemotherapeutic effect on folate receptor-expressed cancer 
cells.72 Zeinizade et al used folate-conjugated gold nanoparti-
cles for targeted nano-photo-thermal therapy.73 Because of the 
high surface-area-to-volume ratio of nanocarriers, designing 
novel drug carriers with multiple targeting ligands are feasible 
ways to increase their antitumor effect.71 In the future, we will 
further modify GO-PEG-erlotinib with specific ligands to 
induce selective cancer cell death.

Our study revealed that GO-PEG is a promising drug 
carrier for erlotinib with the advantages of high drug 
loading and pH-dependent controlled release. GO-PEG- 
erlotinib reduced NPC cell viability in a dose-dependent 
manner, and also inhibited the migration and invasion of 
NPC cells. The RNA sequencing revealed important mole-
cules and several related molecular mechanisms. Further 
studies will be needed in the future.

Conclusion
GO-PEG-erlotinib effectively suppressed NPC cell prolif-
eration, migration, and invasion, and presented a better 
anticancer effect than free drugs. Several molecules and 
mechanisms were involved. GO-PEG-erlotinib may be 
a potential therapeutic agent for treating NPC in the future.
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