
PolyGen: An Autoregressive Generative Model of 3D Meshes

Charlie Nash 1 Yaroslav Ganin 1 S. M. Ali Eslami 1 Peter W. Battaglia 1

Abstract

Polygon meshes are an efficient representation

of 3D geometry, and are of central importance

in computer graphics, robotics and games de-

velopment. Existing learning-based approaches

for object synthesis have avoided the challenges

of working with 3D meshes, instead using al-

ternative object representations that are more

compatible with neural architectures and train-

ing approaches. We present PolyGen, a gen-

erative model of 3D objects which models the

mesh directly, predicting vertices and faces se-

quentially using a Transformer-based architecture.

Our model can condition on a range of inputs,

including object classes, voxels, and images, and

because the model is probabilistic it can produce

samples that capture uncertainty in ambiguous

scenarios. We show that the model is capable

of producing high-quality, usable meshes, and

establish log-likelihood benchmarks for the mesh-

modelling task. We also evaluate the conditional

models on surface reconstruction metrics against

alternative methods, and demonstrate competitive

performance despite not training directly on this

task.

1. Introduction

Polygon meshes are an efficient representation of 3D geom-

etry, and are widely used in computer graphics to represent

virtual objects and scenes. Automatic mesh generation en-

ables more rapid creation of the 3D objects that populate

virtual worlds in games, film, and virtual reality. In addition,

meshes are a useful output in computer vision and robotics,

enabling planning and interaction in 3D space.

Existing approaches to 3D object synthesis rely on the re-

combination and deformation of template models (Kaloger-

akis et al., 2012; Chaudhuri et al., 2011), or a paramet-
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Figure 1. Class conditional n-gon meshes generated by PolyGen.

ric shape family (Smelik et al., 2014). Meshes are chal-

lenging for deep learning architectures to work with be-

cause of their unordered elements and discrete face struc-

tures. Instead, recent deep-learning approaches have gener-

ated 3D objects using alternative representations of object

shape—voxels (Choy et al., 2016), point clouds, occupancy

functions (Mescheder et al., 2019), and surfaces (Groueix

et al., 2018)—however mesh reconstruction is left as a post-

processing step and can yield results of varying quality. This

contrasts with the human approach to mesh creation, where

the mesh itself is the central object, and is created directly

with 3D modelling software. Human created meshes are

compact, and reuse geometric primitives to efficiently rep-

resent real-world objects. Neural autoregressive models

have demonstrated a remarkable capacity to model complex,

high-dimensional data including images (van den Oord et al.,

2016c), text (Radford et al., 2019) and raw audio waveforms

(van den Oord et al., 2016a). Inspired by these methods we

present PolyGen, a neural generative model of meshes, that

autoregressively estimates a joint distribution over mesh

vertices and faces.

PolyGen consists of two parts: A vertex model, that uncondi-

tionally models mesh vertices, and a face model, that models

the mesh faces conditioned on input vertices. Both compo-

nents make use of the Transformer architecture (Vaswani

et al., 2017), which is effective at capturing the long-range

dependencies present in mesh data. The vertex model uses
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Figure 2. PolyGen first generates mesh vertices (left), and then generates mesh faces conditioned on those vertices (right). Vertices are

generated sequentially from lowest to highest on the vertical axis. To generate the next vertex the current sequence of vertex coordinates is

passed as context to a vertex Transformer, which outputs a predictive distribution for the next vertex coordinate. The face model takes as

input a collection of vertices, and the current sequence of face indices, and outputs a distribution over vertex indices.

a masked Transformer decoder to express a distribution

over the vertex sequences. For the face model we combine

Transformers with pointer networks (Vinyals et al., 2015) to

express a distribution over variable length vertex sequences.

We evaluate the modelling capacity of PolyGen using log-

likelihood and predictive accuracy as metrics, and compare

statistics of generated samples to real data. We demonstrate

conditional mesh generation with object class, images and

voxels as input and compare to existing mesh generation

methods. Overall, we find that our model is capable of

creating diverse and realistic geometry that is directly usable

in graphics applications.

2. PolyGen

Our goal is to estimate a distribution over meshes M from

which we can generate new examples. A mesh is a collection

of 3D vertices V , and polygon faces F , that define the shape

of a 3D object. We split the modelling task into two parts: i)

Generating mesh vertices V , and ii) generating mesh faces

F given vertices. Using the chain rule we have:

p(M) = p(V,F) (1)

= p(F|V)p(V) (2)

We use separate vertex and face models, both of which are

autoregressive; factoring the joint distribution over vertices

and faces into a product of conditional distributions. To

generate a mesh we first sample the vertex model, and then

pass the resulting vertices as input to the face model, from

which we sample faces (see Figure 2). In addition, we

optionally condition both the vertex and face models on a

context h, such as the mesh class identity, an input image,

or a voxelized shape.

(a) Triangle mesh (b) n-gon mesh

Figure 3. Triangle meshes consist entirely of triangles. n-gon

meshes efficiently represent shapes using variable size polygons.

2.1. n-gon Meshes

3D meshes typically consist of collections of triangles, but

many meshes can be more compactly represented using

polygons of variable sizes. Meshes with variable length

polygons are called n-gon meshes:

Ftri =
{(

f
(i)
1 , f

(i)
2 , f

(i)
3

)}

i

(3)

Fn-gon =
{(

f
(i)
1 , f

(i)
2 , . . . , f

(i)
Ni

)}

i

(4)

where Ni is the number of faces in the i-th polygon and can

vary for different faces. This means that large flat surfaces

can be represented with a single polygon e.g. the top of

the circular table in Figure 3. In this work we opt to rep-

resent meshes using n-gons rather than triangles. This has

two main advantages: The first is that it reduces the size of

meshes, as flat surfaces can be specified with a reduced num-

ber of faces. Secondly, large polygons can be triangulated

in many ways, and these triangulations can be inconsistent

across examples. By modelling n-gons we factor out this

triangulation variability.

A caveat to this approach is that n-gons do not uniquely
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define a 3D surface when n is greater than 3, unless the

vertices it references are planar. When rendering non-planar

n-gons, polygons are first triangulated by e.g. projecting

vertices to a plane (Held, 2001), which can cause artifacts

if the polygon is highly non-planar. In practice we find that

most of the n-gons produced by our model are either planar,

or close to planar, such that this is a minor issue. Triangle

meshes are a subset of n-gon meshes, and PolyGen can

therefore be used to model them if required.

2.2. Vertex Model

The goal of the vertex model is to express a distribution over

sequences of vertices. In order to simplify the modeling

task, we order the vertices from lowest to highest by z-

coordinate, where z represents the vertical axis. If there are

vertices with the same z-value, we order by y and then by

x value. After re-ordering, we obtain a flattened sequence

by concatenating tuples of (zi, yi, xi)i coordinates. Meshes

have variable numbers of vertices, so we use a stopping

token s to indicate the end of the vertex sequence. We

denote the flattened vertex sequence V seq and its elements

as vn, n = 1, . . . , NV . We decompose the joint distribution

over V seq as the product of a series of conditional vertex

distributions:

p(V seq; θ) =

NV
∏

n=1

p(vn|v<n; θ) (5)

We model this distribution using an autoregressive network

that outputs at each step the parameters of a predictive dis-

tribution for the next vertex coordinate. This predictive

distribution is defined over the vertex coordinate values as

well as over the stopping token s. The model is trained to

maximize the log-probability of the observed data with re-

spect to the model parameters θ. Note that while we impose

an ordering on the vertex sequences, it is possible to train on

un-ordered sequences, which may be useful for applications

like shape completion.

Architecture. The basis of the vertex model architecture is

a Transformer decoder (Vaswani et al., 2017), a simple and

expressive model that has demonstrated significant mod-

eling capacity in a range of domains (Child et al., 2019;

Huang et al., 2019; Parmar et al., 2018). Mesh vertices have

strong non-local dependencies, with object symmetries and

repeating parts, and the Transformer’s ability to aggregate

information from any part of the input enables it to capture

these dependencies. We use the improved Transformer vari-

ant with layer normalization inside the residual path, as in

(Child et al., 2019; Parisotto et al., 2019). See Figure 12

in the appendix for an illustration of the vertex model and

appendix C for a full description of the Transformer blocks.

Vertices as discrete variables. We apply 8-bit uniform
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Figure 4. Class conditional samples generated by PolyGen using

nucleus sampling and top-p = 0.9.

quantization to the mesh vertices. This reduces the size of

meshes as nearby vertices that fall into the same bin are

merged. We model the quantized vertex values using a

Categorical distribution, and output at each step the logits

of the distribution. This approach has been used to model

discretized continuous signals in PixelCNN (van den Oord

et al., 2016c), and WaveNet (van den Oord et al., 2016a), and

has the benefit of being able to express distributions without

shape limitations. Mesh vertices have strong symmetries

and complex dependencies, so the ability to express arbitrary

distributions is important. We find 8-bit quantization to

be a good trade-off between mesh fidelity, and mesh size.

However, it should be noted that 14-bits or higher is typical

for lossy mesh compression, and in future work it would be

desirable to extend our methods to higher resolution meshes.

Embeddings. We found the approach of using learned

position and value embedding methods proposed in (Child
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Figure 5. The mesh pointer network produces a distribution over

variable length vertex sequences by comparing an output pointer

embedding to vertex embeddings. In this example the number of

vertices under consideration NV = 4 and therefore the distribution

is over 6 elements.

et al., 2019) to work well. We use three embeddings for

each input token: A coordinate embedding, that indicates

whether the input token is an x, y, or z coordinate, a position

embedding, that indicates which vertex in the sequence the

token belongs to, and a value embedding, which expresses a

token’s quantized coordinate value. We use learned discrete

embeddings in each case.

Improving efficiency. One of the downsides of using Trans-

formers for modelling sequential data is that they incur sig-

nificant computational costs due to the quadratic nature of

the attention operation. This presents issues when it comes

to scaling our models to larger meshes. To address this,

we explored several modifications of the model inspired

by (Salimans et al., 2017). All of them relieve the compu-

tational burden by chunking the sequence into triplets of

vertex coordinates and processing each of them at once. The

first variant uses a mixture of discretized logistics to model

whole 3D vertices. The second replaces the mixture with a

MADE-based decoder (Germain et al., 2015). Finally, we

present variants that use a Transformer decoder but rely on

different vertex embedding schemes. These modifications

are described in more detail in appendix E.

2.3. Face Model

The face model expresses a distribution over a sequence of

mesh faces conditioned on the mesh vertices. We order the

faces by their lowest vertex index, then by their next lowest

vertex and so on, where the vertices have been ordered from

lowest to highest as described in Section 2.2. Within a face

we cyclically permute the face indices so that the lowest

index is first. As with the vertex sequences, we concatenate

the faces (f
(i)
1 , f

(i)
2 , . . . , f

(i)
Ni

)i to form a flattened sequence,

with a final stopping token. We write F seq for this flattened

sequence, with elements fn, n = 1, . . . , NF .

p(F seq|V; θ) =

NF
∏

n=1

p(fn|f<n,V; θ) (6)

As with the vertex model, we output a distribution over

the values of f at each step, and train by maximizing the

log-likelihood of θ over the training set. The distribution

is a categorical defined over {1, . . . , NV + 2} where NV is

the number of input vertices, and we include two additional

values for the end-face n and stopping s tokens.

Mesh pointer networks. The target distribution

p(fn|f<n,V; θ) is defined over the indices of an input set

of vertices, which poses the challenge that the size of this

set varies across examples. Pointer networks (Vinyals et al.,

2015) propose an elegant solution to this issue; Firstly the

input set is embedded using an encoder, and then at each

step an autoregressive network outputs a pointer vector that

is compared to the input embeddings via a dot-product. The

resulting scores are then normalized using a softmax to form

a valid distribution over the input set.

In our case we obtain contextual embeddings ev of the in-

put vertices using a Transformer encoder E. This has the

advantage of bi-directional information aggregation com-

pared to the LSTM used by the original pointer networks.

We jointly embed new-face and stopping tokens with the

vertices, to obtain a total of NV + 2 input embeddings. A

Transformer decoder D operates on the sequence of faces

and outputs pointers pk at each step. The target distribution

can be obtained as

{ev}
NV

v=1 = E(V; θ) (7)

pn = D(f<n,V; θ) (8)

p(fn = k | f<n,V; θ) = softmaxk(p
T
nek) (9)

See Figure 5 for an illustration of the pointer mechanism

and Figure 13 in the appendix for an illustration of the whole

face model. The decoder D is a masked Transformer de-

coder that operates on sequences of embedded face tokens.

It conditions on the input vertices in two ways, via dynamic

face embeddings as explained in the next section, and op-

tionally through cross-attention into the sequence of vertex

embeddings.

Embeddings. As with the vertex model we use learned

position and value embeddings. We decompose a token’s

position into the index of the face it belongs to, as well as

the location of a token within a face, using separate learned

embeddings for both. For value embeddings we follow the

approach of pointer networks and simply embed the vertex

indices by indexing into the contextual vertex embeddings

outputted by the vertex encoder.
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Figure 6. Image conditional samples (yellow) generated using nu-

cleus sampling with top-p=0.9 and ground truth meshes (blue).

2.4. Masking Invalid Predictions

For both the vertex and face model only certain predictions

are valid at each step. For instance, the z-coordinates must

increase monotonically, and the stopping token can only

be placed after an x coordinate. Similarly mesh faces can

not have duplicate indices, and every vertex-index must

be referenced by at least one face. When evaluating the

model we mask the predicted logits to ensure that the model

can only make valid predictions. This has a non-negative

effect on the model’s log-likelihood scores, as it reassigns

probability mass in the invalid region to values in the valid

region (Table 1). Surprisingly, we found that masking during

training to worsen performance to a small degree, so we

always train without masking. For a complete description

of the masks used, see appendix F.

2.5. Conditional Mesh Generation

We can guide the generation of mesh vertices and faces

by conditioning on a context. For instance, we can output

vertices consistent with a given object class, or infer the

mesh associated with an input image. It is straightforward

to extend the vertex and face models to condition on a con-

text h. We incorporate context in two ways, depending on

the domain of the input. For global features like class iden-

tity, we project learned class embeddings to a vector that

is added to the intermediate Transformer representations

following the self-attention layer in each block. For high

dimensional inputs like images, or voxels, we jointly train

a domain-appropriate encoder that outputs a sequence of

context embeddings. The Transformer decoder then per-

forms cross-attention into the embedding sequence, as in

the original machine translation Transformer model.

Table 1. Modelling performance of unconditional models trained

on ShapeNet and baseline methods. Negative log-likelihood is

reported in bits per vertex, averaged across test examples. Accu-

racy refers to the classification accuracy of next step predictions:

discrete vertex coordinates for the vertex model, or vertex indices

for face models. *Draco is evaluated on triangulated meshes rather

than n-gon meshes.

Bits per vertex Accuracy

Model Vertices Faces Vertices Faces

Uniform 24.08 39.73 0.004 0.002

Valid predictions 21.41 25.79 0.009 0.038

Draco* (Google) Total: 27.68 - -

PolyGen 2.46 1.79 0.851 0.900

- valid predictions 2.47 1.82 0.851 0.900

- discr. embed. (V) 2.56 - 0.844 -

- data augmentation 3.39 2.52 0.803 0.868

+ cross attention (F) - 1.87 - 0.899

Table 2. Comparison of vertex model variants. The first two

columns correspond to the test negative log-likelihood and predic-

tive accuracy (see Table 1). The last column shows training speed

in steps per second.

Model
Bits

per vertex Accuracy
Steps
per sec

Mixture 3.01 - 7.19

MADE decoder 2.65 0.844 7.02

Tr. decoder 2.50 0.851 4.07

+ Tr. embed. 2.48 0.851 4.60

Base model 2.46 0.851 2.98

For image inputs we use an encoder consisting of a series of

downsampling residual blocks. We use pre-activation resid-

ual blocks (He et al., 2016), and downsample three times

using convolutions with stride 2, taking input images of size

[256, 256, 3] to feature maps of size [16, 16, E] where E is

the embedding dimensionality of the model. For voxel in-

puts we use a similar encoder but with 3D convolutions that

takes inputs of shape [28, 28, 28, 1] to spatial embeddings

of shape [7, 7, 7, E]. For both input types we add coordinate

embeddings to the feature maps before flattening the spatial

dimensions. For more architecture details see appendix C.

3. Experiments

Our primary evaluation metric is log-likelihood, which we

find to correlate well with sample quality. We also report

summary statistics for generated meshes, and compare our

model to existing approaches using chamfer-distance in the

image and voxel conditioned settings.
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3.1. Training Details

We train all our models on the ShapeNet Core V2 dataset

(Chang et al., 2015), which we subdivide into 92.5% train-

ing, 2.5% validation and 5% testing splits. The training set

is augmented as described in Section 3.2. In order to reduce

the memory requirements of long sequences we filter out

meshes with more than 800 vertices, or more than 2800 face

indices after pre-processing. We train the vertex and face

models for 1e6 and 5e5 weight updates respectively, using

four V100 GPUs per training run for a total batch size of

16. We use the Adam optimizer with a gradient clipping

norm of 1.0, and perform cosine annealing from a maximum

learning rate of 3e−4, with a linear warm up period of 5000

steps. We use a dropout rate of 0.2 for all models.

3.2. Data Preparation and Augmentation

We use Blender’s (Blender Online Community) planar dec-

imation modifier to create n-gon meshes. This modifier

merges adjacent faces where the angle between surfaces

is greater than a certain tolerance. Decimated meshes can

then be exported for further processing. In general we ob-

served significant overfitting due to the relatively small size

of the ShapeNet dataset, which is exacerbated by the need

to filter out large meshes. In order to reduce this effect, we

augmented the input meshes by scaling the vertices inde-

pendently on each axis, using a random piecewise-linear

warp for each axis, and by varying the decimation angle

used to create n-gon meshes. For each input mesh we create

50 augmented versions which are then quantized (Section

2.2) for use during training. We found that augmentation

was necessary to obtain good performance (Table 1). For

full details of the augmentations and parameter settings

see appendix A. In order to train image-conditional models

we create renders of the processed ShapeNet meshes using

Blender. For each augmented mesh, and each validation and

test-set mesh, we create renders at 256 × 256 resolution,

using randomly chosen lighting, camera and mesh material

settings. For more details see appendix B.

3.3. Unconditional Modelling Performance

We compare unconditional models trained under varying

conditions. As evaluation metrics we report the negative

log-likelihood obtained by the models, reported in bits per

vertex. For example, the bits per vertex for the vertex model

is calculated as

1

N

N
∑

n=1

−log p(V seq
n ; θ)

NVn
log(2)

, (10)

where
{

V seq
n

}N

n=1
are the N test set vertex sequences, and

NVn
is the number of elements in the nth sequence. We also

report the accuracy of next step predictions. For vertex mod-

els this is the accuracy of next vertex coordinate predictions,

and for face models this is the accuracy of the next vertex

index predictions. In particular we compare the effect of

masking invalid predictions (Section 2.4), of using discrete

rather than continuous coordinate embeddings in the vertex

model (Section 2.2), of using data augmentation (Section

3.2), and finally of using cross-attention in the face model.

Unless otherwise specified we use embeddings of size 256,

fully connected layers of size 1024, and 18 and 12 Trans-

former blocks for the vertex and face models respectively.

As there are no existing methods that directly model mesh

vertices and faces, we report the scores obtained by models

that allocate uniform probability to the whole data domain,

as well as models that are uniform over the region of valid

predictions. We additionally report the compression rate

obtained by Draco (Google), a mesh compression library.

For details of the Draco compression settings see appendix

G.

Table 1 shows the results obtained by the various models.

We find that our models achieve significantly better mod-

elling performance than the uniform and Draco baselines,

which illustrates the gains achievable by a learned predictive

model. We find that restricting the models predictions to

the range of valid values results in a minor improvement

in modelling performance, which indicates that the model

is effective at assigning low probability to the invalid re-

gions. Using discrete rather than continuous embeddings

for vertex coordinates provides a significant improvement,

improving bits-per-vertex from 2.56 to 2.46. Surprisingly,

using cross-attention in the face model harms performance,

which we attribute to overfitting. Data augmentation has a

strong effect on performance, with models trained without

augmentation losing 1.64 bits per vertex on average. Over-

all, our best model achieves a log-likelihood score of 4.26

bits per vertex, and 85% and 90% predictive accuracy for

the vertex and face models respectively. Figure 14 in the

appendix shows random unconditional samples from the

best performing model.

Table 2 presents a comparison of different variants of the

vertex model as discussed in Section 2.2. The results suggest

that the proposed variants can achieve a 1.5× reduction in

training time with a minimal sacrifice in performance. Note

that these models used different hyperparameter settings as

detailed in Appendix E.

3.4. Statistics of Unconditional Model Samples

We compare the distribution of certain mesh summaries for

samples from our model against the ShapeNet test set. If our

model has closely matched the true data distribution then

we expect these summaries to have similar distributions.

We draw 1055 samples from our best unconditional model,

and discard samples that don’t produce a stopping token
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Figure 7. Distribution of mesh statistics for unconditional samples

from our model and the ShapeNet test set. We compare samples

generated with nucleus sampling and top-p = 0.9, to true model

samples.

Table 3. Modelling performance for conditional models. See Table

1 for details of bits per vertex, and accuracy scores.

Bits per vertex Accuracy

Context Vertices Faces Total Vertices Faces

None 2.46 1.79 4.26 0.851 0.900

Class 2.43 1.81 4.24 0.853 0.899

Image 2.30 1.81 4.11 0.857 0.900

+ pooling 2.35 1.78 4.13 0.856 0.900

Voxels 2.19 1.82 4.01 0.859 0.900

+ pooling 2.28 1.79 4.07 0.856 0.900

within 1200 vertices, or 800 faces. We use nucleus sampling

(Holtzman et al., 2019) which we found to be effective at

maintaining sample diversity while reducing the presence

of degraded samples. Nucleus sampling helps to reduce

sampling degradation by sampling from the smallest subset

of tokens that account for top-p of probability mass.

Figure 7 shows the distribution of a number of mesh sum-

maries, for samples from PolyGen as well as the true data

distribution. In particular we show: the number of vertices,

number of faces, node degree, average face area and average

edge length for sampled and true meshes. Although these

are coarse descriptions of a 3D mesh, we find our model’s

samples to have a similar distribution for each mesh statistic.

We observe that nucleus sampling with top-p = 0.9 helps to

align the model distributions with the true data for a number

of statistics. Figure 8 shows an example 3D mesh gener-

ated by our model compared to a mesh obtained through

post-processing an occupancy function (Mescheder et al.,

2019). We note that the statistics of our mesh resemble

human-created meshes to a greater extent.

(a) PolyGen (b) Occupancy Networks

Figure 8. Comparison between a 3D mesh generated by PolyGen

and a mesh obtained by post-processing an implicit surface rep-

resentation (Occupancy Networks Mescheder et al., 2019). Our

model produces a more efficient representation of the 3D shape

that resembles a human-constructed mesh.

Figure 9. Symmetric chamfer distance between predicted and tar-

get point clouds by number of predictions. Data refers to point

clouds obtained by uniformly re-sampling the target mesh.

3.5. Conditional Modelling Performance

We train vertex and face models with three kinds of condi-

tioning: class labels, images, and voxels. We use the same

settings as the best unconditional model: discrete vertex

embeddings with no cross attention in the face model. As

with the unconditional models we use 18 layers for the ver-

tex model and 12 layers for the face model. Figures 1 and

4 show class-conditional samples. Figures 6 and 10 show

samples from image and voxel conditional models respec-

tively. Note that while we train on the ShapeNet dataset,

we show ground truth meshes and inputs for a selection of

representative meshes collected from the TurboSquid online

object repository. Table 3 shows the impact of conditioning

on predictive performance in terms of bits-per-vertex and

accuracy. We find that for vertex models, voxel conditioning

provides the greatest improvement, followed by images, and

then by class labels. This confirms our expectations, as vox-

els characterize the coarse shape unambiguously, whereas

images can be ambiguous depending on the object pose

and lighting. However the additional context does not lead

to improvements for the face model, with all conditional

face models performing slightly worse than the best un-

conditional model. This is likely because mesh faces are

to a large extent determined by the input vertices, and the
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Figure 10. Voxel conditional (blue, left) samples generated using

nucleus sampling with top-p=0.9 (yellow) and ground truth meshes

(blue, right).

conditioning context provides relatively little additional in-

formation. In terms of predictive accuracy, we see similar

effects, with accuracy improving with richer contexts for

vertex models, but not for face models. We note that the

accuracy ceiling is less than 100%, due to the inherent en-

tropy of the vertex and face distributions, and so we expect

diminishing gains as models approach this ceiling.

For image and voxel conditional models, we also compare to

architectures that apply global average pooling to the outputs

of the input encoders. We observe that pooling in this way

negatively effects the vertex models’ performance, but has a

small positive effect on the face models’ performance.

3.6. Mesh Reconstruction

We additionally evaluate the image and voxel conditioned

models on mesh reconstruction, where we use symmetric

chamfer distance as the reconstruction metric. The symmet-

ric chamfer distance is a distance metric between two point

sets P and Q. It is defined as:

L(P,Q) =
∑

p∈P

min
q∈Q

(p− q)2 +
∑

q∈Q

min
p∈P

(p− q)2 (11)

For each example in the test set we draw samples from the

conditional model. We sample 2500 points uniformly on

the sampled and target mesh and compute the correspond-

ing chamfer distance. We compare our model to AtlasNet

(Groueix et al., 2018), a conditional model that defines a

mesh surface using a number of patches that have been

transformed using a deep network. AtlasNet outputs point

clouds and is trained to minimize the chamfer distance to

a target point cloud conditioned on image or point cloud

inputs. Compared to alternative methods, AtlasNet achieves

good mesh reconstruction performance, and we therefore

view it as a strong baseline. We train AtlasNets models in

the image and voxel conditioned settings, that are adapted

to use equivalent image and voxel encoders as we use for

our model. For more details see appendix D.

Figure 9 shows the mesh reconstruction results. We find

that when making a single prediction, our model performs

worse than AtlasNet. This is not unexpected, as AtlasNet

optimizes the evaluation metric directly, whereas our model

does not. When allowed to make 10 predictions, our model

achieves slightly better performance than AtlasNet. Overall

we find that while our model does not always produce good

mesh reconstructions, it typically produces a very good

reconstruction within 10 samples, which may be sufficient

for many practical applications.

4. Related Work

Generative models of 3D objects exists in a variety of forms,

including ordered (Nash & Williams, 2017) and unordered

(Li et al., 2019; Yang et al., 2019) point clouds, voxels

(Choy et al., 2016; Wu et al., 2016; Tatarchenko et al., 2017;

Rezende et al., 2016). More recently there has been sig-

nificant progress using functional representations, such as

signed distance functions (Park et al., 2019), and other im-

plicit functions (Mescheder et al., 2019). There are relatively

fewer examples of methods that explicitly generate a 3D

mesh. Such works primarily use parameterized deformable

meshes (Groueix et al., 2018; Ranjan et al., 2018), or form

meshes through a collection of mesh patches. Our methods

are distinguished in that we directly model the mesh data

created by people, rather than alternative representations or

parameterizations. In addition, our model is probabilistic,

which means we can produce diverse output, and respond

to ambiguous inputs in a principled way.

PolyGen’s vertex model is similar to PointGrow (Sun et al.,

2020), which uses an autoregressive decomposition to model

3D point clouds, outputting discrete coordinate distributions

using a self-attention based architecture. PointGrow oper-

ates on fixed-length point-clouds rather than variable vertex

sequences, and uses a bespoke self-attention architecture,

that is relatively shallow in comparison to modern autore-

gressive models in other domains. By contrast, we use

state-of-the-art deep architectures, and model vertices and

faces, enabling us to generate high quality 3D meshes.

This work borrows from architectures developed for se-

quence modelling in natural language processing. This

includes the sequence to sequence training paradigm

(Sutskever et al., 2014), the Transformer architecture

(Vaswani et al., 2017; Child et al., 2019; Parisotto et al.,

2019), and pointer networks (Vinyals et al., 2015). In addi-

tion our work is inspired by sequential models of raw data,
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like WaveNet (van den Oord et al., 2016a) PixelRNN and its

variants (van den Oord et al., 2016b; Menick & Kalchbren-

ner, 2019), and Music Transformers (Huang et al., 2019).

Our work is also related to Polygon-RNN (Castrejón et al.,

2017; Acuna et al., 2018), a method for efficient segmen-

tation in computer vision using polygons. Polygon-RNN

take an input image and autoregressively outputs a sequence

of xy coordinates that implicitly define a segmented region.

PolyGen, by contrast operates in 3D space, and explicitly

defines the connectivity of several polygons.

Finally our work is related to generative models of graph

structured data such as GraphRNN (You et al., 2018) and

GRAN (Liao et al., 2019), in that meshes can be thought

of as attributed graphs. These works focus on modelling

graph connectivity rather than graph attributes, whereas we

model both the node attributes (vertex positions), as well

as the incorporating these attributes in our model of the

connectivity.

5. Conclusion

In this work we present PolyGen, a deep generative model

of 3D meshes. We pose the problem of mesh generative

as autoregressive sequence modelling, and combine the

benefits of Transformers and pointer networks in order to

flexibly model variable length mesh sequences. PolyGen is

capable of generating coherent and diverse mesh samples,

and we believe that it will unlock a range of applications in

computer vision, robotics, and 3D content creation.
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